1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/Frontend/CodeGenOptions.h"
45 #include "clang/Sema/SemaDiagnostic.h"
46 #include "llvm/ADT/APSInt.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/CallingConv.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/ProfileData/InstrProfReader.h"
55 #include "llvm/Support/ConvertUTF.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MD5.h"
58
59 using namespace clang;
60 using namespace CodeGen;
61
62 static const char AnnotationSection[] = "llvm.metadata";
63
createCXXABI(CodeGenModule & CGM)64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
65 switch (CGM.getTarget().getCXXABI().getKind()) {
66 case TargetCXXABI::GenericAArch64:
67 case TargetCXXABI::GenericARM:
68 case TargetCXXABI::iOS:
69 case TargetCXXABI::iOS64:
70 case TargetCXXABI::WatchOS:
71 case TargetCXXABI::GenericMIPS:
72 case TargetCXXABI::GenericItanium:
73 case TargetCXXABI::WebAssembly:
74 return CreateItaniumCXXABI(CGM);
75 case TargetCXXABI::Microsoft:
76 return CreateMicrosoftCXXABI(CGM);
77 }
78
79 llvm_unreachable("invalid C++ ABI kind");
80 }
81
CodeGenModule(ASTContext & C,const HeaderSearchOptions & HSO,const PreprocessorOptions & PPO,const CodeGenOptions & CGO,llvm::Module & M,DiagnosticsEngine & diags,CoverageSourceInfo * CoverageInfo)82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
83 const PreprocessorOptions &PPO,
84 const CodeGenOptions &CGO, llvm::Module &M,
85 DiagnosticsEngine &diags,
86 CoverageSourceInfo *CoverageInfo)
87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
90 VMContext(M.getContext()), Types(*this), VTables(*this),
91 SanitizerMD(new SanitizerMetadata(*this)) {
92
93 // Initialize the type cache.
94 llvm::LLVMContext &LLVMContext = M.getContext();
95 VoidTy = llvm::Type::getVoidTy(LLVMContext);
96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
100 FloatTy = llvm::Type::getFloatTy(LLVMContext);
101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
103 PointerAlignInBytes =
104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
105 IntAlignInBytes =
106 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
107 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
108 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
109 Int8PtrTy = Int8Ty->getPointerTo(0);
110 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
111
112 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
113 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
114
115 if (LangOpts.ObjC1)
116 createObjCRuntime();
117 if (LangOpts.OpenCL)
118 createOpenCLRuntime();
119 if (LangOpts.OpenMP)
120 createOpenMPRuntime();
121 if (LangOpts.CUDA)
122 createCUDARuntime();
123
124 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
126 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128 getCXXABI().getMangleContext()));
129
130 // If debug info or coverage generation is enabled, create the CGDebugInfo
131 // object.
132 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
133 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
134 DebugInfo.reset(new CGDebugInfo(*this));
135
136 Block.GlobalUniqueCount = 0;
137
138 if (C.getLangOpts().ObjC1)
139 ObjCData.reset(new ObjCEntrypoints());
140
141 if (CodeGenOpts.hasProfileClangUse()) {
142 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
143 CodeGenOpts.ProfileInstrumentUsePath);
144 if (auto E = ReaderOrErr.takeError()) {
145 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
146 "Could not read profile %0: %1");
147 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
148 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
149 << EI.message();
150 });
151 } else
152 PGOReader = std::move(ReaderOrErr.get());
153 }
154
155 // If coverage mapping generation is enabled, create the
156 // CoverageMappingModuleGen object.
157 if (CodeGenOpts.CoverageMapping)
158 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
159 }
160
~CodeGenModule()161 CodeGenModule::~CodeGenModule() {}
162
createObjCRuntime()163 void CodeGenModule::createObjCRuntime() {
164 // This is just isGNUFamily(), but we want to force implementors of
165 // new ABIs to decide how best to do this.
166 switch (LangOpts.ObjCRuntime.getKind()) {
167 case ObjCRuntime::GNUstep:
168 case ObjCRuntime::GCC:
169 case ObjCRuntime::ObjFW:
170 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
171 return;
172
173 case ObjCRuntime::FragileMacOSX:
174 case ObjCRuntime::MacOSX:
175 case ObjCRuntime::iOS:
176 case ObjCRuntime::WatchOS:
177 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
178 return;
179 }
180 llvm_unreachable("bad runtime kind");
181 }
182
createOpenCLRuntime()183 void CodeGenModule::createOpenCLRuntime() {
184 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
185 }
186
createOpenMPRuntime()187 void CodeGenModule::createOpenMPRuntime() {
188 // Select a specialized code generation class based on the target, if any.
189 // If it does not exist use the default implementation.
190 switch (getTarget().getTriple().getArch()) {
191
192 case llvm::Triple::nvptx:
193 case llvm::Triple::nvptx64:
194 assert(getLangOpts().OpenMPIsDevice &&
195 "OpenMP NVPTX is only prepared to deal with device code.");
196 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
197 break;
198 default:
199 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
200 break;
201 }
202 }
203
createCUDARuntime()204 void CodeGenModule::createCUDARuntime() {
205 CUDARuntime.reset(CreateNVCUDARuntime(*this));
206 }
207
addReplacement(StringRef Name,llvm::Constant * C)208 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
209 Replacements[Name] = C;
210 }
211
applyReplacements()212 void CodeGenModule::applyReplacements() {
213 for (auto &I : Replacements) {
214 StringRef MangledName = I.first();
215 llvm::Constant *Replacement = I.second;
216 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
217 if (!Entry)
218 continue;
219 auto *OldF = cast<llvm::Function>(Entry);
220 auto *NewF = dyn_cast<llvm::Function>(Replacement);
221 if (!NewF) {
222 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
223 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
224 } else {
225 auto *CE = cast<llvm::ConstantExpr>(Replacement);
226 assert(CE->getOpcode() == llvm::Instruction::BitCast ||
227 CE->getOpcode() == llvm::Instruction::GetElementPtr);
228 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
229 }
230 }
231
232 // Replace old with new, but keep the old order.
233 OldF->replaceAllUsesWith(Replacement);
234 if (NewF) {
235 NewF->removeFromParent();
236 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
237 NewF);
238 }
239 OldF->eraseFromParent();
240 }
241 }
242
addGlobalValReplacement(llvm::GlobalValue * GV,llvm::Constant * C)243 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
244 GlobalValReplacements.push_back(std::make_pair(GV, C));
245 }
246
applyGlobalValReplacements()247 void CodeGenModule::applyGlobalValReplacements() {
248 for (auto &I : GlobalValReplacements) {
249 llvm::GlobalValue *GV = I.first;
250 llvm::Constant *C = I.second;
251
252 GV->replaceAllUsesWith(C);
253 GV->eraseFromParent();
254 }
255 }
256
257 // This is only used in aliases that we created and we know they have a
258 // linear structure.
getAliasedGlobal(const llvm::GlobalIndirectSymbol & GIS)259 static const llvm::GlobalObject *getAliasedGlobal(
260 const llvm::GlobalIndirectSymbol &GIS) {
261 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
262 const llvm::Constant *C = &GIS;
263 for (;;) {
264 C = C->stripPointerCasts();
265 if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
266 return GO;
267 // stripPointerCasts will not walk over weak aliases.
268 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
269 if (!GIS2)
270 return nullptr;
271 if (!Visited.insert(GIS2).second)
272 return nullptr;
273 C = GIS2->getIndirectSymbol();
274 }
275 }
276
checkAliases()277 void CodeGenModule::checkAliases() {
278 // Check if the constructed aliases are well formed. It is really unfortunate
279 // that we have to do this in CodeGen, but we only construct mangled names
280 // and aliases during codegen.
281 bool Error = false;
282 DiagnosticsEngine &Diags = getDiags();
283 for (const GlobalDecl &GD : Aliases) {
284 const auto *D = cast<ValueDecl>(GD.getDecl());
285 SourceLocation Location;
286 bool IsIFunc = D->hasAttr<IFuncAttr>();
287 if (const Attr *A = D->getDefiningAttr())
288 Location = A->getLocation();
289 else
290 llvm_unreachable("Not an alias or ifunc?");
291 StringRef MangledName = getMangledName(GD);
292 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
293 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
294 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
295 if (!GV) {
296 Error = true;
297 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
298 } else if (GV->isDeclaration()) {
299 Error = true;
300 Diags.Report(Location, diag::err_alias_to_undefined)
301 << IsIFunc << IsIFunc;
302 } else if (IsIFunc) {
303 // Check resolver function type.
304 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
305 GV->getType()->getPointerElementType());
306 assert(FTy);
307 if (!FTy->getReturnType()->isPointerTy())
308 Diags.Report(Location, diag::err_ifunc_resolver_return);
309 if (FTy->getNumParams())
310 Diags.Report(Location, diag::err_ifunc_resolver_params);
311 }
312
313 llvm::Constant *Aliasee = Alias->getIndirectSymbol();
314 llvm::GlobalValue *AliaseeGV;
315 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
316 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
317 else
318 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
319
320 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
321 StringRef AliasSection = SA->getName();
322 if (AliasSection != AliaseeGV->getSection())
323 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
324 << AliasSection << IsIFunc << IsIFunc;
325 }
326
327 // We have to handle alias to weak aliases in here. LLVM itself disallows
328 // this since the object semantics would not match the IL one. For
329 // compatibility with gcc we implement it by just pointing the alias
330 // to its aliasee's aliasee. We also warn, since the user is probably
331 // expecting the link to be weak.
332 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
333 if (GA->isInterposable()) {
334 Diags.Report(Location, diag::warn_alias_to_weak_alias)
335 << GV->getName() << GA->getName() << IsIFunc;
336 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
337 GA->getIndirectSymbol(), Alias->getType());
338 Alias->setIndirectSymbol(Aliasee);
339 }
340 }
341 }
342 if (!Error)
343 return;
344
345 for (const GlobalDecl &GD : Aliases) {
346 StringRef MangledName = getMangledName(GD);
347 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
348 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
349 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
350 Alias->eraseFromParent();
351 }
352 }
353
clear()354 void CodeGenModule::clear() {
355 DeferredDeclsToEmit.clear();
356 if (OpenMPRuntime)
357 OpenMPRuntime->clear();
358 }
359
reportDiagnostics(DiagnosticsEngine & Diags,StringRef MainFile)360 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
361 StringRef MainFile) {
362 if (!hasDiagnostics())
363 return;
364 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
365 if (MainFile.empty())
366 MainFile = "<stdin>";
367 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
368 } else
369 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
370 << Mismatched;
371 }
372
Release()373 void CodeGenModule::Release() {
374 EmitDeferred();
375 applyGlobalValReplacements();
376 applyReplacements();
377 checkAliases();
378 EmitCXXGlobalInitFunc();
379 EmitCXXGlobalDtorFunc();
380 EmitCXXThreadLocalInitFunc();
381 if (ObjCRuntime)
382 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
383 AddGlobalCtor(ObjCInitFunction);
384 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
385 CUDARuntime) {
386 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
387 AddGlobalCtor(CudaCtorFunction);
388 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
389 AddGlobalDtor(CudaDtorFunction);
390 }
391 if (OpenMPRuntime)
392 if (llvm::Function *OpenMPRegistrationFunction =
393 OpenMPRuntime->emitRegistrationFunction())
394 AddGlobalCtor(OpenMPRegistrationFunction, 0);
395 if (PGOReader) {
396 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
397 if (PGOStats.hasDiagnostics())
398 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
399 }
400 EmitCtorList(GlobalCtors, "llvm.global_ctors");
401 EmitCtorList(GlobalDtors, "llvm.global_dtors");
402 EmitGlobalAnnotations();
403 EmitStaticExternCAliases();
404 EmitDeferredUnusedCoverageMappings();
405 if (CoverageMapping)
406 CoverageMapping->emit();
407 if (CodeGenOpts.SanitizeCfiCrossDso)
408 CodeGenFunction(*this).EmitCfiCheckFail();
409 emitLLVMUsed();
410 if (SanStats)
411 SanStats->finish();
412
413 if (CodeGenOpts.Autolink &&
414 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
415 EmitModuleLinkOptions();
416 }
417 if (CodeGenOpts.DwarfVersion) {
418 // We actually want the latest version when there are conflicts.
419 // We can change from Warning to Latest if such mode is supported.
420 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
421 CodeGenOpts.DwarfVersion);
422 }
423 if (CodeGenOpts.EmitCodeView) {
424 // Indicate that we want CodeView in the metadata.
425 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
426 }
427 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
428 // We don't support LTO with 2 with different StrictVTablePointers
429 // FIXME: we could support it by stripping all the information introduced
430 // by StrictVTablePointers.
431
432 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
433
434 llvm::Metadata *Ops[2] = {
435 llvm::MDString::get(VMContext, "StrictVTablePointers"),
436 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
437 llvm::Type::getInt32Ty(VMContext), 1))};
438
439 getModule().addModuleFlag(llvm::Module::Require,
440 "StrictVTablePointersRequirement",
441 llvm::MDNode::get(VMContext, Ops));
442 }
443 if (DebugInfo)
444 // We support a single version in the linked module. The LLVM
445 // parser will drop debug info with a different version number
446 // (and warn about it, too).
447 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
448 llvm::DEBUG_METADATA_VERSION);
449
450 // We need to record the widths of enums and wchar_t, so that we can generate
451 // the correct build attributes in the ARM backend.
452 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
453 if ( Arch == llvm::Triple::arm
454 || Arch == llvm::Triple::armeb
455 || Arch == llvm::Triple::thumb
456 || Arch == llvm::Triple::thumbeb) {
457 // Width of wchar_t in bytes
458 uint64_t WCharWidth =
459 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
460 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
461
462 // The minimum width of an enum in bytes
463 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
464 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
465 }
466
467 if (CodeGenOpts.SanitizeCfiCrossDso) {
468 // Indicate that we want cross-DSO control flow integrity checks.
469 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
470 }
471
472 if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) {
473 // Indicate whether __nvvm_reflect should be configured to flush denormal
474 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
475 // property.)
476 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
477 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
478 }
479
480 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
481 assert(PLevel < 3 && "Invalid PIC Level");
482 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
483 if (Context.getLangOpts().PIE)
484 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
485 }
486
487 SimplifyPersonality();
488
489 if (getCodeGenOpts().EmitDeclMetadata)
490 EmitDeclMetadata();
491
492 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
493 EmitCoverageFile();
494
495 if (DebugInfo)
496 DebugInfo->finalize();
497
498 EmitVersionIdentMetadata();
499
500 EmitTargetMetadata();
501 }
502
UpdateCompletedType(const TagDecl * TD)503 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
504 // Make sure that this type is translated.
505 Types.UpdateCompletedType(TD);
506 }
507
RefreshTypeCacheForClass(const CXXRecordDecl * RD)508 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
509 // Make sure that this type is translated.
510 Types.RefreshTypeCacheForClass(RD);
511 }
512
getTBAAInfo(QualType QTy)513 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
514 if (!TBAA)
515 return nullptr;
516 return TBAA->getTBAAInfo(QTy);
517 }
518
getTBAAInfoForVTablePtr()519 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
520 if (!TBAA)
521 return nullptr;
522 return TBAA->getTBAAInfoForVTablePtr();
523 }
524
getTBAAStructInfo(QualType QTy)525 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
526 if (!TBAA)
527 return nullptr;
528 return TBAA->getTBAAStructInfo(QTy);
529 }
530
getTBAAStructTagInfo(QualType BaseTy,llvm::MDNode * AccessN,uint64_t O)531 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
532 llvm::MDNode *AccessN,
533 uint64_t O) {
534 if (!TBAA)
535 return nullptr;
536 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
537 }
538
539 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
540 /// and struct-path aware TBAA, the tag has the same format:
541 /// base type, access type and offset.
542 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
DecorateInstructionWithTBAA(llvm::Instruction * Inst,llvm::MDNode * TBAAInfo,bool ConvertTypeToTag)543 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
544 llvm::MDNode *TBAAInfo,
545 bool ConvertTypeToTag) {
546 if (ConvertTypeToTag && TBAA)
547 Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
548 TBAA->getTBAAScalarTagInfo(TBAAInfo));
549 else
550 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
551 }
552
DecorateInstructionWithInvariantGroup(llvm::Instruction * I,const CXXRecordDecl * RD)553 void CodeGenModule::DecorateInstructionWithInvariantGroup(
554 llvm::Instruction *I, const CXXRecordDecl *RD) {
555 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
556 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
557 // Check if we have to wrap MDString in MDNode.
558 if (!MetaDataNode)
559 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
560 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
561 }
562
Error(SourceLocation loc,StringRef message)563 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
564 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
565 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
566 }
567
568 /// ErrorUnsupported - Print out an error that codegen doesn't support the
569 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type)570 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
571 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
572 "cannot compile this %0 yet");
573 std::string Msg = Type;
574 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
575 << Msg << S->getSourceRange();
576 }
577
578 /// ErrorUnsupported - Print out an error that codegen doesn't support the
579 /// specified decl yet.
ErrorUnsupported(const Decl * D,const char * Type)580 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
581 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
582 "cannot compile this %0 yet");
583 std::string Msg = Type;
584 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
585 }
586
getSize(CharUnits size)587 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
588 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
589 }
590
setGlobalVisibility(llvm::GlobalValue * GV,const NamedDecl * D) const591 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
592 const NamedDecl *D) const {
593 // Internal definitions always have default visibility.
594 if (GV->hasLocalLinkage()) {
595 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
596 return;
597 }
598
599 // Set visibility for definitions.
600 LinkageInfo LV = D->getLinkageAndVisibility();
601 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
602 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
603 }
604
GetLLVMTLSModel(StringRef S)605 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
606 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
607 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
608 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
609 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
610 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
611 }
612
GetLLVMTLSModel(CodeGenOptions::TLSModel M)613 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
614 CodeGenOptions::TLSModel M) {
615 switch (M) {
616 case CodeGenOptions::GeneralDynamicTLSModel:
617 return llvm::GlobalVariable::GeneralDynamicTLSModel;
618 case CodeGenOptions::LocalDynamicTLSModel:
619 return llvm::GlobalVariable::LocalDynamicTLSModel;
620 case CodeGenOptions::InitialExecTLSModel:
621 return llvm::GlobalVariable::InitialExecTLSModel;
622 case CodeGenOptions::LocalExecTLSModel:
623 return llvm::GlobalVariable::LocalExecTLSModel;
624 }
625 llvm_unreachable("Invalid TLS model!");
626 }
627
setTLSMode(llvm::GlobalValue * GV,const VarDecl & D) const628 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
629 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
630
631 llvm::GlobalValue::ThreadLocalMode TLM;
632 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
633
634 // Override the TLS model if it is explicitly specified.
635 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
636 TLM = GetLLVMTLSModel(Attr->getModel());
637 }
638
639 GV->setThreadLocalMode(TLM);
640 }
641
getMangledName(GlobalDecl GD)642 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
643 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
644
645 // Some ABIs don't have constructor variants. Make sure that base and
646 // complete constructors get mangled the same.
647 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
648 if (!getTarget().getCXXABI().hasConstructorVariants()) {
649 CXXCtorType OrigCtorType = GD.getCtorType();
650 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
651 if (OrigCtorType == Ctor_Base)
652 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
653 }
654 }
655
656 StringRef &FoundStr = MangledDeclNames[CanonicalGD];
657 if (!FoundStr.empty())
658 return FoundStr;
659
660 const auto *ND = cast<NamedDecl>(GD.getDecl());
661 SmallString<256> Buffer;
662 StringRef Str;
663 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
664 llvm::raw_svector_ostream Out(Buffer);
665 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
666 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
667 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
668 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
669 else
670 getCXXABI().getMangleContext().mangleName(ND, Out);
671 Str = Out.str();
672 } else {
673 IdentifierInfo *II = ND->getIdentifier();
674 assert(II && "Attempt to mangle unnamed decl.");
675 Str = II->getName();
676 }
677
678 // Keep the first result in the case of a mangling collision.
679 auto Result = Manglings.insert(std::make_pair(Str, GD));
680 return FoundStr = Result.first->first();
681 }
682
getBlockMangledName(GlobalDecl GD,const BlockDecl * BD)683 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
684 const BlockDecl *BD) {
685 MangleContext &MangleCtx = getCXXABI().getMangleContext();
686 const Decl *D = GD.getDecl();
687
688 SmallString<256> Buffer;
689 llvm::raw_svector_ostream Out(Buffer);
690 if (!D)
691 MangleCtx.mangleGlobalBlock(BD,
692 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
693 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
694 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
695 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
696 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
697 else
698 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
699
700 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
701 return Result.first->first();
702 }
703
GetGlobalValue(StringRef Name)704 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
705 return getModule().getNamedValue(Name);
706 }
707
708 /// AddGlobalCtor - Add a function to the list that will be called before
709 /// main() runs.
AddGlobalCtor(llvm::Function * Ctor,int Priority,llvm::Constant * AssociatedData)710 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
711 llvm::Constant *AssociatedData) {
712 // FIXME: Type coercion of void()* types.
713 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
714 }
715
716 /// AddGlobalDtor - Add a function to the list that will be called
717 /// when the module is unloaded.
AddGlobalDtor(llvm::Function * Dtor,int Priority)718 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
719 // FIXME: Type coercion of void()* types.
720 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
721 }
722
EmitCtorList(const CtorList & Fns,const char * GlobalName)723 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
724 // Ctor function type is void()*.
725 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
726 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
727
728 // Get the type of a ctor entry, { i32, void ()*, i8* }.
729 llvm::StructType *CtorStructTy = llvm::StructType::get(
730 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
731
732 // Construct the constructor and destructor arrays.
733 SmallVector<llvm::Constant *, 8> Ctors;
734 for (const auto &I : Fns) {
735 llvm::Constant *S[] = {
736 llvm::ConstantInt::get(Int32Ty, I.Priority, false),
737 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
738 (I.AssociatedData
739 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
740 : llvm::Constant::getNullValue(VoidPtrTy))};
741 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
742 }
743
744 if (!Ctors.empty()) {
745 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
746 new llvm::GlobalVariable(TheModule, AT, false,
747 llvm::GlobalValue::AppendingLinkage,
748 llvm::ConstantArray::get(AT, Ctors),
749 GlobalName);
750 }
751 }
752
753 llvm::GlobalValue::LinkageTypes
getFunctionLinkage(GlobalDecl GD)754 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
755 const auto *D = cast<FunctionDecl>(GD.getDecl());
756
757 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
758
759 if (isa<CXXDestructorDecl>(D) &&
760 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
761 GD.getDtorType())) {
762 // Destructor variants in the Microsoft C++ ABI are always internal or
763 // linkonce_odr thunks emitted on an as-needed basis.
764 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
765 : llvm::GlobalValue::LinkOnceODRLinkage;
766 }
767
768 if (isa<CXXConstructorDecl>(D) &&
769 cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
770 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
771 // Our approach to inheriting constructors is fundamentally different from
772 // that used by the MS ABI, so keep our inheriting constructor thunks
773 // internal rather than trying to pick an unambiguous mangling for them.
774 return llvm::GlobalValue::InternalLinkage;
775 }
776
777 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
778 }
779
setFunctionDLLStorageClass(GlobalDecl GD,llvm::Function * F)780 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
781 const auto *FD = cast<FunctionDecl>(GD.getDecl());
782
783 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
784 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
785 // Don't dllexport/import destructor thunks.
786 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
787 return;
788 }
789 }
790
791 if (FD->hasAttr<DLLImportAttr>())
792 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
793 else if (FD->hasAttr<DLLExportAttr>())
794 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
795 else
796 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
797 }
798
CreateCrossDsoCfiTypeId(llvm::Metadata * MD)799 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
800 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
801 if (!MDS) return nullptr;
802
803 llvm::MD5 md5;
804 llvm::MD5::MD5Result result;
805 md5.update(MDS->getString());
806 md5.final(result);
807 uint64_t id = 0;
808 for (int i = 0; i < 8; ++i)
809 id |= static_cast<uint64_t>(result[i]) << (i * 8);
810 return llvm::ConstantInt::get(Int64Ty, id);
811 }
812
setFunctionDefinitionAttributes(const FunctionDecl * D,llvm::Function * F)813 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
814 llvm::Function *F) {
815 setNonAliasAttributes(D, F);
816 }
817
SetLLVMFunctionAttributes(const Decl * D,const CGFunctionInfo & Info,llvm::Function * F)818 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
819 const CGFunctionInfo &Info,
820 llvm::Function *F) {
821 unsigned CallingConv;
822 AttributeListType AttributeList;
823 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
824 false);
825 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
826 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
827 }
828
829 /// Determines whether the language options require us to model
830 /// unwind exceptions. We treat -fexceptions as mandating this
831 /// except under the fragile ObjC ABI with only ObjC exceptions
832 /// enabled. This means, for example, that C with -fexceptions
833 /// enables this.
hasUnwindExceptions(const LangOptions & LangOpts)834 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
835 // If exceptions are completely disabled, obviously this is false.
836 if (!LangOpts.Exceptions) return false;
837
838 // If C++ exceptions are enabled, this is true.
839 if (LangOpts.CXXExceptions) return true;
840
841 // If ObjC exceptions are enabled, this depends on the ABI.
842 if (LangOpts.ObjCExceptions) {
843 return LangOpts.ObjCRuntime.hasUnwindExceptions();
844 }
845
846 return true;
847 }
848
SetLLVMFunctionAttributesForDefinition(const Decl * D,llvm::Function * F)849 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
850 llvm::Function *F) {
851 llvm::AttrBuilder B;
852
853 if (CodeGenOpts.UnwindTables)
854 B.addAttribute(llvm::Attribute::UWTable);
855
856 if (!hasUnwindExceptions(LangOpts))
857 B.addAttribute(llvm::Attribute::NoUnwind);
858
859 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
860 B.addAttribute(llvm::Attribute::StackProtect);
861 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
862 B.addAttribute(llvm::Attribute::StackProtectStrong);
863 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
864 B.addAttribute(llvm::Attribute::StackProtectReq);
865
866 if (!D) {
867 F->addAttributes(llvm::AttributeSet::FunctionIndex,
868 llvm::AttributeSet::get(
869 F->getContext(),
870 llvm::AttributeSet::FunctionIndex, B));
871 return;
872 }
873
874 if (D->hasAttr<NakedAttr>()) {
875 // Naked implies noinline: we should not be inlining such functions.
876 B.addAttribute(llvm::Attribute::Naked);
877 B.addAttribute(llvm::Attribute::NoInline);
878 } else if (D->hasAttr<NoDuplicateAttr>()) {
879 B.addAttribute(llvm::Attribute::NoDuplicate);
880 } else if (D->hasAttr<NoInlineAttr>()) {
881 B.addAttribute(llvm::Attribute::NoInline);
882 } else if (D->hasAttr<AlwaysInlineAttr>() &&
883 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
884 llvm::Attribute::NoInline)) {
885 // (noinline wins over always_inline, and we can't specify both in IR)
886 B.addAttribute(llvm::Attribute::AlwaysInline);
887 }
888
889 if (D->hasAttr<ColdAttr>()) {
890 if (!D->hasAttr<OptimizeNoneAttr>())
891 B.addAttribute(llvm::Attribute::OptimizeForSize);
892 B.addAttribute(llvm::Attribute::Cold);
893 }
894
895 if (D->hasAttr<MinSizeAttr>())
896 B.addAttribute(llvm::Attribute::MinSize);
897
898 F->addAttributes(llvm::AttributeSet::FunctionIndex,
899 llvm::AttributeSet::get(
900 F->getContext(), llvm::AttributeSet::FunctionIndex, B));
901
902 if (D->hasAttr<OptimizeNoneAttr>()) {
903 // OptimizeNone implies noinline; we should not be inlining such functions.
904 F->addFnAttr(llvm::Attribute::OptimizeNone);
905 F->addFnAttr(llvm::Attribute::NoInline);
906
907 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
908 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
909 F->removeFnAttr(llvm::Attribute::MinSize);
910 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
911 "OptimizeNone and AlwaysInline on same function!");
912
913 // Attribute 'inlinehint' has no effect on 'optnone' functions.
914 // Explicitly remove it from the set of function attributes.
915 F->removeFnAttr(llvm::Attribute::InlineHint);
916 }
917
918 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
919 if (alignment)
920 F->setAlignment(alignment);
921
922 // Some C++ ABIs require 2-byte alignment for member functions, in order to
923 // reserve a bit for differentiating between virtual and non-virtual member
924 // functions. If the current target's C++ ABI requires this and this is a
925 // member function, set its alignment accordingly.
926 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
927 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
928 F->setAlignment(2);
929 }
930 }
931
SetCommonAttributes(const Decl * D,llvm::GlobalValue * GV)932 void CodeGenModule::SetCommonAttributes(const Decl *D,
933 llvm::GlobalValue *GV) {
934 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
935 setGlobalVisibility(GV, ND);
936 else
937 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
938
939 if (D && D->hasAttr<UsedAttr>())
940 addUsedGlobal(GV);
941 }
942
setAliasAttributes(const Decl * D,llvm::GlobalValue * GV)943 void CodeGenModule::setAliasAttributes(const Decl *D,
944 llvm::GlobalValue *GV) {
945 SetCommonAttributes(D, GV);
946
947 // Process the dllexport attribute based on whether the original definition
948 // (not necessarily the aliasee) was exported.
949 if (D->hasAttr<DLLExportAttr>())
950 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
951 }
952
setNonAliasAttributes(const Decl * D,llvm::GlobalObject * GO)953 void CodeGenModule::setNonAliasAttributes(const Decl *D,
954 llvm::GlobalObject *GO) {
955 SetCommonAttributes(D, GO);
956
957 if (D)
958 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
959 GO->setSection(SA->getName());
960
961 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
962 }
963
SetInternalFunctionAttributes(const Decl * D,llvm::Function * F,const CGFunctionInfo & FI)964 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
965 llvm::Function *F,
966 const CGFunctionInfo &FI) {
967 SetLLVMFunctionAttributes(D, FI, F);
968 SetLLVMFunctionAttributesForDefinition(D, F);
969
970 F->setLinkage(llvm::Function::InternalLinkage);
971
972 setNonAliasAttributes(D, F);
973 }
974
setLinkageAndVisibilityForGV(llvm::GlobalValue * GV,const NamedDecl * ND)975 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
976 const NamedDecl *ND) {
977 // Set linkage and visibility in case we never see a definition.
978 LinkageInfo LV = ND->getLinkageAndVisibility();
979 if (LV.getLinkage() != ExternalLinkage) {
980 // Don't set internal linkage on declarations.
981 } else {
982 if (ND->hasAttr<DLLImportAttr>()) {
983 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
984 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
985 } else if (ND->hasAttr<DLLExportAttr>()) {
986 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
987 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
988 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
989 // "extern_weak" is overloaded in LLVM; we probably should have
990 // separate linkage types for this.
991 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
992 }
993
994 // Set visibility on a declaration only if it's explicit.
995 if (LV.isVisibilityExplicit())
996 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
997 }
998 }
999
CreateFunctionTypeMetadata(const FunctionDecl * FD,llvm::Function * F)1000 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1001 llvm::Function *F) {
1002 // Only if we are checking indirect calls.
1003 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1004 return;
1005
1006 // Non-static class methods are handled via vtable pointer checks elsewhere.
1007 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1008 return;
1009
1010 // Additionally, if building with cross-DSO support...
1011 if (CodeGenOpts.SanitizeCfiCrossDso) {
1012 // Don't emit entries for function declarations. In cross-DSO mode these are
1013 // handled with better precision at run time.
1014 if (!FD->hasBody())
1015 return;
1016 // Skip available_externally functions. They won't be codegen'ed in the
1017 // current module anyway.
1018 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1019 return;
1020 }
1021
1022 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1023 F->addTypeMetadata(0, MD);
1024
1025 // Emit a hash-based bit set entry for cross-DSO calls.
1026 if (CodeGenOpts.SanitizeCfiCrossDso)
1027 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1028 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1029 }
1030
SetFunctionAttributes(GlobalDecl GD,llvm::Function * F,bool IsIncompleteFunction,bool IsThunk)1031 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1032 bool IsIncompleteFunction,
1033 bool IsThunk) {
1034 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1035 // If this is an intrinsic function, set the function's attributes
1036 // to the intrinsic's attributes.
1037 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1038 return;
1039 }
1040
1041 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1042
1043 if (!IsIncompleteFunction)
1044 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1045
1046 // Add the Returned attribute for "this", except for iOS 5 and earlier
1047 // where substantial code, including the libstdc++ dylib, was compiled with
1048 // GCC and does not actually return "this".
1049 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1050 !(getTarget().getTriple().isiOS() &&
1051 getTarget().getTriple().isOSVersionLT(6))) {
1052 assert(!F->arg_empty() &&
1053 F->arg_begin()->getType()
1054 ->canLosslesslyBitCastTo(F->getReturnType()) &&
1055 "unexpected this return");
1056 F->addAttribute(1, llvm::Attribute::Returned);
1057 }
1058
1059 // Only a few attributes are set on declarations; these may later be
1060 // overridden by a definition.
1061
1062 setLinkageAndVisibilityForGV(F, FD);
1063
1064 if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1065 F->setSection(SA->getName());
1066
1067 if (FD->isReplaceableGlobalAllocationFunction()) {
1068 // A replaceable global allocation function does not act like a builtin by
1069 // default, only if it is invoked by a new-expression or delete-expression.
1070 F->addAttribute(llvm::AttributeSet::FunctionIndex,
1071 llvm::Attribute::NoBuiltin);
1072
1073 // A sane operator new returns a non-aliasing pointer.
1074 // FIXME: Also add NonNull attribute to the return value
1075 // for the non-nothrow forms?
1076 auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1077 if (getCodeGenOpts().AssumeSaneOperatorNew &&
1078 (Kind == OO_New || Kind == OO_Array_New))
1079 F->addAttribute(llvm::AttributeSet::ReturnIndex,
1080 llvm::Attribute::NoAlias);
1081 }
1082
1083 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1084 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1085 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1086 if (MD->isVirtual())
1087 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1088
1089 CreateFunctionTypeMetadata(FD, F);
1090 }
1091
addUsedGlobal(llvm::GlobalValue * GV)1092 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1093 assert(!GV->isDeclaration() &&
1094 "Only globals with definition can force usage.");
1095 LLVMUsed.emplace_back(GV);
1096 }
1097
addCompilerUsedGlobal(llvm::GlobalValue * GV)1098 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1099 assert(!GV->isDeclaration() &&
1100 "Only globals with definition can force usage.");
1101 LLVMCompilerUsed.emplace_back(GV);
1102 }
1103
emitUsed(CodeGenModule & CGM,StringRef Name,std::vector<llvm::WeakVH> & List)1104 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1105 std::vector<llvm::WeakVH> &List) {
1106 // Don't create llvm.used if there is no need.
1107 if (List.empty())
1108 return;
1109
1110 // Convert List to what ConstantArray needs.
1111 SmallVector<llvm::Constant*, 8> UsedArray;
1112 UsedArray.resize(List.size());
1113 for (unsigned i = 0, e = List.size(); i != e; ++i) {
1114 UsedArray[i] =
1115 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1116 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1117 }
1118
1119 if (UsedArray.empty())
1120 return;
1121 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1122
1123 auto *GV = new llvm::GlobalVariable(
1124 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1125 llvm::ConstantArray::get(ATy, UsedArray), Name);
1126
1127 GV->setSection("llvm.metadata");
1128 }
1129
emitLLVMUsed()1130 void CodeGenModule::emitLLVMUsed() {
1131 emitUsed(*this, "llvm.used", LLVMUsed);
1132 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1133 }
1134
AppendLinkerOptions(StringRef Opts)1135 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1136 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1137 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1138 }
1139
AddDetectMismatch(StringRef Name,StringRef Value)1140 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1141 llvm::SmallString<32> Opt;
1142 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1143 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1144 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1145 }
1146
AddDependentLib(StringRef Lib)1147 void CodeGenModule::AddDependentLib(StringRef Lib) {
1148 llvm::SmallString<24> Opt;
1149 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1150 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1151 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1152 }
1153
1154 /// \brief Add link options implied by the given module, including modules
1155 /// it depends on, using a postorder walk.
addLinkOptionsPostorder(CodeGenModule & CGM,Module * Mod,SmallVectorImpl<llvm::Metadata * > & Metadata,llvm::SmallPtrSet<Module *,16> & Visited)1156 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1157 SmallVectorImpl<llvm::Metadata *> &Metadata,
1158 llvm::SmallPtrSet<Module *, 16> &Visited) {
1159 // Import this module's parent.
1160 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1161 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1162 }
1163
1164 // Import this module's dependencies.
1165 for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1166 if (Visited.insert(Mod->Imports[I - 1]).second)
1167 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1168 }
1169
1170 // Add linker options to link against the libraries/frameworks
1171 // described by this module.
1172 llvm::LLVMContext &Context = CGM.getLLVMContext();
1173 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1174 // Link against a framework. Frameworks are currently Darwin only, so we
1175 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1176 if (Mod->LinkLibraries[I-1].IsFramework) {
1177 llvm::Metadata *Args[2] = {
1178 llvm::MDString::get(Context, "-framework"),
1179 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1180
1181 Metadata.push_back(llvm::MDNode::get(Context, Args));
1182 continue;
1183 }
1184
1185 // Link against a library.
1186 llvm::SmallString<24> Opt;
1187 CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1188 Mod->LinkLibraries[I-1].Library, Opt);
1189 auto *OptString = llvm::MDString::get(Context, Opt);
1190 Metadata.push_back(llvm::MDNode::get(Context, OptString));
1191 }
1192 }
1193
EmitModuleLinkOptions()1194 void CodeGenModule::EmitModuleLinkOptions() {
1195 // Collect the set of all of the modules we want to visit to emit link
1196 // options, which is essentially the imported modules and all of their
1197 // non-explicit child modules.
1198 llvm::SetVector<clang::Module *> LinkModules;
1199 llvm::SmallPtrSet<clang::Module *, 16> Visited;
1200 SmallVector<clang::Module *, 16> Stack;
1201
1202 // Seed the stack with imported modules.
1203 for (Module *M : ImportedModules)
1204 if (Visited.insert(M).second)
1205 Stack.push_back(M);
1206
1207 // Find all of the modules to import, making a little effort to prune
1208 // non-leaf modules.
1209 while (!Stack.empty()) {
1210 clang::Module *Mod = Stack.pop_back_val();
1211
1212 bool AnyChildren = false;
1213
1214 // Visit the submodules of this module.
1215 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1216 SubEnd = Mod->submodule_end();
1217 Sub != SubEnd; ++Sub) {
1218 // Skip explicit children; they need to be explicitly imported to be
1219 // linked against.
1220 if ((*Sub)->IsExplicit)
1221 continue;
1222
1223 if (Visited.insert(*Sub).second) {
1224 Stack.push_back(*Sub);
1225 AnyChildren = true;
1226 }
1227 }
1228
1229 // We didn't find any children, so add this module to the list of
1230 // modules to link against.
1231 if (!AnyChildren) {
1232 LinkModules.insert(Mod);
1233 }
1234 }
1235
1236 // Add link options for all of the imported modules in reverse topological
1237 // order. We don't do anything to try to order import link flags with respect
1238 // to linker options inserted by things like #pragma comment().
1239 SmallVector<llvm::Metadata *, 16> MetadataArgs;
1240 Visited.clear();
1241 for (Module *M : LinkModules)
1242 if (Visited.insert(M).second)
1243 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1244 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1245 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1246
1247 // Add the linker options metadata flag.
1248 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1249 llvm::MDNode::get(getLLVMContext(),
1250 LinkerOptionsMetadata));
1251 }
1252
EmitDeferred()1253 void CodeGenModule::EmitDeferred() {
1254 // Emit code for any potentially referenced deferred decls. Since a
1255 // previously unused static decl may become used during the generation of code
1256 // for a static function, iterate until no changes are made.
1257
1258 if (!DeferredVTables.empty()) {
1259 EmitDeferredVTables();
1260
1261 // Emitting a vtable doesn't directly cause more vtables to
1262 // become deferred, although it can cause functions to be
1263 // emitted that then need those vtables.
1264 assert(DeferredVTables.empty());
1265 }
1266
1267 // Stop if we're out of both deferred vtables and deferred declarations.
1268 if (DeferredDeclsToEmit.empty())
1269 return;
1270
1271 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1272 // work, it will not interfere with this.
1273 std::vector<DeferredGlobal> CurDeclsToEmit;
1274 CurDeclsToEmit.swap(DeferredDeclsToEmit);
1275
1276 for (DeferredGlobal &G : CurDeclsToEmit) {
1277 GlobalDecl D = G.GD;
1278 G.GV = nullptr;
1279
1280 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1281 // to get GlobalValue with exactly the type we need, not something that
1282 // might had been created for another decl with the same mangled name but
1283 // different type.
1284 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1285 GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1286
1287 // In case of different address spaces, we may still get a cast, even with
1288 // IsForDefinition equal to true. Query mangled names table to get
1289 // GlobalValue.
1290 if (!GV)
1291 GV = GetGlobalValue(getMangledName(D));
1292
1293 // Make sure GetGlobalValue returned non-null.
1294 assert(GV);
1295
1296 // Check to see if we've already emitted this. This is necessary
1297 // for a couple of reasons: first, decls can end up in the
1298 // deferred-decls queue multiple times, and second, decls can end
1299 // up with definitions in unusual ways (e.g. by an extern inline
1300 // function acquiring a strong function redefinition). Just
1301 // ignore these cases.
1302 if (!GV->isDeclaration())
1303 continue;
1304
1305 // Otherwise, emit the definition and move on to the next one.
1306 EmitGlobalDefinition(D, GV);
1307
1308 // If we found out that we need to emit more decls, do that recursively.
1309 // This has the advantage that the decls are emitted in a DFS and related
1310 // ones are close together, which is convenient for testing.
1311 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1312 EmitDeferred();
1313 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1314 }
1315 }
1316 }
1317
EmitGlobalAnnotations()1318 void CodeGenModule::EmitGlobalAnnotations() {
1319 if (Annotations.empty())
1320 return;
1321
1322 // Create a new global variable for the ConstantStruct in the Module.
1323 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1324 Annotations[0]->getType(), Annotations.size()), Annotations);
1325 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1326 llvm::GlobalValue::AppendingLinkage,
1327 Array, "llvm.global.annotations");
1328 gv->setSection(AnnotationSection);
1329 }
1330
EmitAnnotationString(StringRef Str)1331 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1332 llvm::Constant *&AStr = AnnotationStrings[Str];
1333 if (AStr)
1334 return AStr;
1335
1336 // Not found yet, create a new global.
1337 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1338 auto *gv =
1339 new llvm::GlobalVariable(getModule(), s->getType(), true,
1340 llvm::GlobalValue::PrivateLinkage, s, ".str");
1341 gv->setSection(AnnotationSection);
1342 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1343 AStr = gv;
1344 return gv;
1345 }
1346
EmitAnnotationUnit(SourceLocation Loc)1347 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1348 SourceManager &SM = getContext().getSourceManager();
1349 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1350 if (PLoc.isValid())
1351 return EmitAnnotationString(PLoc.getFilename());
1352 return EmitAnnotationString(SM.getBufferName(Loc));
1353 }
1354
EmitAnnotationLineNo(SourceLocation L)1355 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1356 SourceManager &SM = getContext().getSourceManager();
1357 PresumedLoc PLoc = SM.getPresumedLoc(L);
1358 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1359 SM.getExpansionLineNumber(L);
1360 return llvm::ConstantInt::get(Int32Ty, LineNo);
1361 }
1362
EmitAnnotateAttr(llvm::GlobalValue * GV,const AnnotateAttr * AA,SourceLocation L)1363 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1364 const AnnotateAttr *AA,
1365 SourceLocation L) {
1366 // Get the globals for file name, annotation, and the line number.
1367 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1368 *UnitGV = EmitAnnotationUnit(L),
1369 *LineNoCst = EmitAnnotationLineNo(L);
1370
1371 // Create the ConstantStruct for the global annotation.
1372 llvm::Constant *Fields[4] = {
1373 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1374 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1375 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1376 LineNoCst
1377 };
1378 return llvm::ConstantStruct::getAnon(Fields);
1379 }
1380
AddGlobalAnnotations(const ValueDecl * D,llvm::GlobalValue * GV)1381 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1382 llvm::GlobalValue *GV) {
1383 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1384 // Get the struct elements for these annotations.
1385 for (const auto *I : D->specific_attrs<AnnotateAttr>())
1386 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1387 }
1388
isInSanitizerBlacklist(llvm::Function * Fn,SourceLocation Loc) const1389 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1390 SourceLocation Loc) const {
1391 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1392 // Blacklist by function name.
1393 if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1394 return true;
1395 // Blacklist by location.
1396 if (Loc.isValid())
1397 return SanitizerBL.isBlacklistedLocation(Loc);
1398 // If location is unknown, this may be a compiler-generated function. Assume
1399 // it's located in the main file.
1400 auto &SM = Context.getSourceManager();
1401 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1402 return SanitizerBL.isBlacklistedFile(MainFile->getName());
1403 }
1404 return false;
1405 }
1406
isInSanitizerBlacklist(llvm::GlobalVariable * GV,SourceLocation Loc,QualType Ty,StringRef Category) const1407 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1408 SourceLocation Loc, QualType Ty,
1409 StringRef Category) const {
1410 // For now globals can be blacklisted only in ASan and KASan.
1411 if (!LangOpts.Sanitize.hasOneOf(
1412 SanitizerKind::Address | SanitizerKind::KernelAddress))
1413 return false;
1414 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1415 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1416 return true;
1417 if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1418 return true;
1419 // Check global type.
1420 if (!Ty.isNull()) {
1421 // Drill down the array types: if global variable of a fixed type is
1422 // blacklisted, we also don't instrument arrays of them.
1423 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1424 Ty = AT->getElementType();
1425 Ty = Ty.getCanonicalType().getUnqualifiedType();
1426 // We allow to blacklist only record types (classes, structs etc.)
1427 if (Ty->isRecordType()) {
1428 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1429 if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1430 return true;
1431 }
1432 }
1433 return false;
1434 }
1435
MustBeEmitted(const ValueDecl * Global)1436 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1437 // Never defer when EmitAllDecls is specified.
1438 if (LangOpts.EmitAllDecls)
1439 return true;
1440
1441 return getContext().DeclMustBeEmitted(Global);
1442 }
1443
MayBeEmittedEagerly(const ValueDecl * Global)1444 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1445 if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1446 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1447 // Implicit template instantiations may change linkage if they are later
1448 // explicitly instantiated, so they should not be emitted eagerly.
1449 return false;
1450 if (const auto *VD = dyn_cast<VarDecl>(Global))
1451 if (Context.getInlineVariableDefinitionKind(VD) ==
1452 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1453 // A definition of an inline constexpr static data member may change
1454 // linkage later if it's redeclared outside the class.
1455 return false;
1456 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1457 // codegen for global variables, because they may be marked as threadprivate.
1458 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1459 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1460 return false;
1461
1462 return true;
1463 }
1464
GetAddrOfUuidDescriptor(const CXXUuidofExpr * E)1465 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1466 const CXXUuidofExpr* E) {
1467 // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1468 // well-formed.
1469 StringRef Uuid = E->getUuidStr();
1470 std::string Name = "_GUID_" + Uuid.lower();
1471 std::replace(Name.begin(), Name.end(), '-', '_');
1472
1473 // The UUID descriptor should be pointer aligned.
1474 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1475
1476 // Look for an existing global.
1477 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1478 return ConstantAddress(GV, Alignment);
1479
1480 llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1481 assert(Init && "failed to initialize as constant");
1482
1483 auto *GV = new llvm::GlobalVariable(
1484 getModule(), Init->getType(),
1485 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1486 if (supportsCOMDAT())
1487 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1488 return ConstantAddress(GV, Alignment);
1489 }
1490
GetWeakRefReference(const ValueDecl * VD)1491 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1492 const AliasAttr *AA = VD->getAttr<AliasAttr>();
1493 assert(AA && "No alias?");
1494
1495 CharUnits Alignment = getContext().getDeclAlign(VD);
1496 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1497
1498 // See if there is already something with the target's name in the module.
1499 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1500 if (Entry) {
1501 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1502 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1503 return ConstantAddress(Ptr, Alignment);
1504 }
1505
1506 llvm::Constant *Aliasee;
1507 if (isa<llvm::FunctionType>(DeclTy))
1508 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1509 GlobalDecl(cast<FunctionDecl>(VD)),
1510 /*ForVTable=*/false);
1511 else
1512 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1513 llvm::PointerType::getUnqual(DeclTy),
1514 nullptr);
1515
1516 auto *F = cast<llvm::GlobalValue>(Aliasee);
1517 F->setLinkage(llvm::Function::ExternalWeakLinkage);
1518 WeakRefReferences.insert(F);
1519
1520 return ConstantAddress(Aliasee, Alignment);
1521 }
1522
EmitGlobal(GlobalDecl GD)1523 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1524 const auto *Global = cast<ValueDecl>(GD.getDecl());
1525
1526 // Weak references don't produce any output by themselves.
1527 if (Global->hasAttr<WeakRefAttr>())
1528 return;
1529
1530 // If this is an alias definition (which otherwise looks like a declaration)
1531 // emit it now.
1532 if (Global->hasAttr<AliasAttr>())
1533 return EmitAliasDefinition(GD);
1534
1535 // IFunc like an alias whose value is resolved at runtime by calling resolver.
1536 if (Global->hasAttr<IFuncAttr>())
1537 return emitIFuncDefinition(GD);
1538
1539 // If this is CUDA, be selective about which declarations we emit.
1540 if (LangOpts.CUDA) {
1541 if (LangOpts.CUDAIsDevice) {
1542 if (!Global->hasAttr<CUDADeviceAttr>() &&
1543 !Global->hasAttr<CUDAGlobalAttr>() &&
1544 !Global->hasAttr<CUDAConstantAttr>() &&
1545 !Global->hasAttr<CUDASharedAttr>())
1546 return;
1547 } else {
1548 // We need to emit host-side 'shadows' for all global
1549 // device-side variables because the CUDA runtime needs their
1550 // size and host-side address in order to provide access to
1551 // their device-side incarnations.
1552
1553 // So device-only functions are the only things we skip.
1554 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1555 Global->hasAttr<CUDADeviceAttr>())
1556 return;
1557
1558 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1559 "Expected Variable or Function");
1560 }
1561 }
1562
1563 if (LangOpts.OpenMP) {
1564 // If this is OpenMP device, check if it is legal to emit this global
1565 // normally.
1566 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1567 return;
1568 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1569 if (MustBeEmitted(Global))
1570 EmitOMPDeclareReduction(DRD);
1571 return;
1572 }
1573 }
1574
1575 // Ignore declarations, they will be emitted on their first use.
1576 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1577 // Forward declarations are emitted lazily on first use.
1578 if (!FD->doesThisDeclarationHaveABody()) {
1579 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1580 return;
1581
1582 StringRef MangledName = getMangledName(GD);
1583
1584 // Compute the function info and LLVM type.
1585 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1586 llvm::Type *Ty = getTypes().GetFunctionType(FI);
1587
1588 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1589 /*DontDefer=*/false);
1590 return;
1591 }
1592 } else {
1593 const auto *VD = cast<VarDecl>(Global);
1594 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1595 // We need to emit device-side global CUDA variables even if a
1596 // variable does not have a definition -- we still need to define
1597 // host-side shadow for it.
1598 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1599 !VD->hasDefinition() &&
1600 (VD->hasAttr<CUDAConstantAttr>() ||
1601 VD->hasAttr<CUDADeviceAttr>());
1602 if (!MustEmitForCuda &&
1603 VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1604 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1605 // If this declaration may have caused an inline variable definition to
1606 // change linkage, make sure that it's emitted.
1607 if (Context.getInlineVariableDefinitionKind(VD) ==
1608 ASTContext::InlineVariableDefinitionKind::Strong)
1609 GetAddrOfGlobalVar(VD);
1610 return;
1611 }
1612 }
1613
1614 // Defer code generation to first use when possible, e.g. if this is an inline
1615 // function. If the global must always be emitted, do it eagerly if possible
1616 // to benefit from cache locality.
1617 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1618 // Emit the definition if it can't be deferred.
1619 EmitGlobalDefinition(GD);
1620 return;
1621 }
1622
1623 // If we're deferring emission of a C++ variable with an
1624 // initializer, remember the order in which it appeared in the file.
1625 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1626 cast<VarDecl>(Global)->hasInit()) {
1627 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1628 CXXGlobalInits.push_back(nullptr);
1629 }
1630
1631 StringRef MangledName = getMangledName(GD);
1632 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1633 // The value has already been used and should therefore be emitted.
1634 addDeferredDeclToEmit(GV, GD);
1635 } else if (MustBeEmitted(Global)) {
1636 // The value must be emitted, but cannot be emitted eagerly.
1637 assert(!MayBeEmittedEagerly(Global));
1638 addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1639 } else {
1640 // Otherwise, remember that we saw a deferred decl with this name. The
1641 // first use of the mangled name will cause it to move into
1642 // DeferredDeclsToEmit.
1643 DeferredDecls[MangledName] = GD;
1644 }
1645 }
1646
1647 namespace {
1648 struct FunctionIsDirectlyRecursive :
1649 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1650 const StringRef Name;
1651 const Builtin::Context &BI;
1652 bool Result;
FunctionIsDirectlyRecursive__anonf58d2ce00211::FunctionIsDirectlyRecursive1653 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1654 Name(N), BI(C), Result(false) {
1655 }
1656 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1657
TraverseCallExpr__anonf58d2ce00211::FunctionIsDirectlyRecursive1658 bool TraverseCallExpr(CallExpr *E) {
1659 const FunctionDecl *FD = E->getDirectCallee();
1660 if (!FD)
1661 return true;
1662 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1663 if (Attr && Name == Attr->getLabel()) {
1664 Result = true;
1665 return false;
1666 }
1667 unsigned BuiltinID = FD->getBuiltinID();
1668 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1669 return true;
1670 StringRef BuiltinName = BI.getName(BuiltinID);
1671 if (BuiltinName.startswith("__builtin_") &&
1672 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1673 Result = true;
1674 return false;
1675 }
1676 return true;
1677 }
1678 };
1679
1680 struct DLLImportFunctionVisitor
1681 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1682 bool SafeToInline = true;
1683
VisitVarDecl__anonf58d2ce00211::DLLImportFunctionVisitor1684 bool VisitVarDecl(VarDecl *VD) {
1685 // A thread-local variable cannot be imported.
1686 SafeToInline = !VD->getTLSKind();
1687 return SafeToInline;
1688 }
1689
1690 // Make sure we're not referencing non-imported vars or functions.
VisitDeclRefExpr__anonf58d2ce00211::DLLImportFunctionVisitor1691 bool VisitDeclRefExpr(DeclRefExpr *E) {
1692 ValueDecl *VD = E->getDecl();
1693 if (isa<FunctionDecl>(VD))
1694 SafeToInline = VD->hasAttr<DLLImportAttr>();
1695 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1696 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1697 return SafeToInline;
1698 }
VisitCXXDeleteExpr__anonf58d2ce00211::DLLImportFunctionVisitor1699 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1700 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1701 return SafeToInline;
1702 }
VisitCXXNewExpr__anonf58d2ce00211::DLLImportFunctionVisitor1703 bool VisitCXXNewExpr(CXXNewExpr *E) {
1704 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1705 return SafeToInline;
1706 }
1707 };
1708 }
1709
1710 // isTriviallyRecursive - Check if this function calls another
1711 // decl that, because of the asm attribute or the other decl being a builtin,
1712 // ends up pointing to itself.
1713 bool
isTriviallyRecursive(const FunctionDecl * FD)1714 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1715 StringRef Name;
1716 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1717 // asm labels are a special kind of mangling we have to support.
1718 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1719 if (!Attr)
1720 return false;
1721 Name = Attr->getLabel();
1722 } else {
1723 Name = FD->getName();
1724 }
1725
1726 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1727 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1728 return Walker.Result;
1729 }
1730
1731 bool
shouldEmitFunction(GlobalDecl GD)1732 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1733 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1734 return true;
1735 const auto *F = cast<FunctionDecl>(GD.getDecl());
1736 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1737 return false;
1738
1739 if (F->hasAttr<DLLImportAttr>()) {
1740 // Check whether it would be safe to inline this dllimport function.
1741 DLLImportFunctionVisitor Visitor;
1742 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1743 if (!Visitor.SafeToInline)
1744 return false;
1745 }
1746
1747 // PR9614. Avoid cases where the source code is lying to us. An available
1748 // externally function should have an equivalent function somewhere else,
1749 // but a function that calls itself is clearly not equivalent to the real
1750 // implementation.
1751 // This happens in glibc's btowc and in some configure checks.
1752 return !isTriviallyRecursive(F);
1753 }
1754
1755 /// If the type for the method's class was generated by
1756 /// CGDebugInfo::createContextChain(), the cache contains only a
1757 /// limited DIType without any declarations. Since EmitFunctionStart()
1758 /// needs to find the canonical declaration for each method, we need
1759 /// to construct the complete type prior to emitting the method.
CompleteDIClassType(const CXXMethodDecl * D)1760 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1761 if (!D->isInstance())
1762 return;
1763
1764 if (CGDebugInfo *DI = getModuleDebugInfo())
1765 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
1766 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1767 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1768 }
1769 }
1770
EmitGlobalDefinition(GlobalDecl GD,llvm::GlobalValue * GV)1771 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1772 const auto *D = cast<ValueDecl>(GD.getDecl());
1773
1774 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1775 Context.getSourceManager(),
1776 "Generating code for declaration");
1777
1778 if (isa<FunctionDecl>(D)) {
1779 // At -O0, don't generate IR for functions with available_externally
1780 // linkage.
1781 if (!shouldEmitFunction(GD))
1782 return;
1783
1784 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1785 CompleteDIClassType(Method);
1786 // Make sure to emit the definition(s) before we emit the thunks.
1787 // This is necessary for the generation of certain thunks.
1788 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1789 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1790 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1791 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1792 else
1793 EmitGlobalFunctionDefinition(GD, GV);
1794
1795 if (Method->isVirtual())
1796 getVTables().EmitThunks(GD);
1797
1798 return;
1799 }
1800
1801 return EmitGlobalFunctionDefinition(GD, GV);
1802 }
1803
1804 if (const auto *VD = dyn_cast<VarDecl>(D))
1805 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1806
1807 llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1808 }
1809
1810 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1811 llvm::Function *NewFn);
1812
1813 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1814 /// module, create and return an llvm Function with the specified type. If there
1815 /// is something in the module with the specified name, return it potentially
1816 /// bitcasted to the right type.
1817 ///
1818 /// If D is non-null, it specifies a decl that correspond to this. This is used
1819 /// to set the attributes on the function when it is first created.
1820 llvm::Constant *
GetOrCreateLLVMFunction(StringRef MangledName,llvm::Type * Ty,GlobalDecl GD,bool ForVTable,bool DontDefer,bool IsThunk,llvm::AttributeSet ExtraAttrs,bool IsForDefinition)1821 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1822 llvm::Type *Ty,
1823 GlobalDecl GD, bool ForVTable,
1824 bool DontDefer, bool IsThunk,
1825 llvm::AttributeSet ExtraAttrs,
1826 bool IsForDefinition) {
1827 const Decl *D = GD.getDecl();
1828
1829 // Lookup the entry, lazily creating it if necessary.
1830 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1831 if (Entry) {
1832 if (WeakRefReferences.erase(Entry)) {
1833 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1834 if (FD && !FD->hasAttr<WeakAttr>())
1835 Entry->setLinkage(llvm::Function::ExternalLinkage);
1836 }
1837
1838 // Handle dropped DLL attributes.
1839 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1840 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1841
1842 // If there are two attempts to define the same mangled name, issue an
1843 // error.
1844 if (IsForDefinition && !Entry->isDeclaration()) {
1845 GlobalDecl OtherGD;
1846 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1847 // to make sure that we issue an error only once.
1848 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1849 (GD.getCanonicalDecl().getDecl() !=
1850 OtherGD.getCanonicalDecl().getDecl()) &&
1851 DiagnosedConflictingDefinitions.insert(GD).second) {
1852 getDiags().Report(D->getLocation(),
1853 diag::err_duplicate_mangled_name);
1854 getDiags().Report(OtherGD.getDecl()->getLocation(),
1855 diag::note_previous_definition);
1856 }
1857 }
1858
1859 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1860 (Entry->getType()->getElementType() == Ty)) {
1861 return Entry;
1862 }
1863
1864 // Make sure the result is of the correct type.
1865 // (If function is requested for a definition, we always need to create a new
1866 // function, not just return a bitcast.)
1867 if (!IsForDefinition)
1868 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1869 }
1870
1871 // This function doesn't have a complete type (for example, the return
1872 // type is an incomplete struct). Use a fake type instead, and make
1873 // sure not to try to set attributes.
1874 bool IsIncompleteFunction = false;
1875
1876 llvm::FunctionType *FTy;
1877 if (isa<llvm::FunctionType>(Ty)) {
1878 FTy = cast<llvm::FunctionType>(Ty);
1879 } else {
1880 FTy = llvm::FunctionType::get(VoidTy, false);
1881 IsIncompleteFunction = true;
1882 }
1883
1884 llvm::Function *F =
1885 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1886 Entry ? StringRef() : MangledName, &getModule());
1887
1888 // If we already created a function with the same mangled name (but different
1889 // type) before, take its name and add it to the list of functions to be
1890 // replaced with F at the end of CodeGen.
1891 //
1892 // This happens if there is a prototype for a function (e.g. "int f()") and
1893 // then a definition of a different type (e.g. "int f(int x)").
1894 if (Entry) {
1895 F->takeName(Entry);
1896
1897 // This might be an implementation of a function without a prototype, in
1898 // which case, try to do special replacement of calls which match the new
1899 // prototype. The really key thing here is that we also potentially drop
1900 // arguments from the call site so as to make a direct call, which makes the
1901 // inliner happier and suppresses a number of optimizer warnings (!) about
1902 // dropping arguments.
1903 if (!Entry->use_empty()) {
1904 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1905 Entry->removeDeadConstantUsers();
1906 }
1907
1908 llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1909 F, Entry->getType()->getElementType()->getPointerTo());
1910 addGlobalValReplacement(Entry, BC);
1911 }
1912
1913 assert(F->getName() == MangledName && "name was uniqued!");
1914 if (D)
1915 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1916 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1917 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1918 F->addAttributes(llvm::AttributeSet::FunctionIndex,
1919 llvm::AttributeSet::get(VMContext,
1920 llvm::AttributeSet::FunctionIndex,
1921 B));
1922 }
1923
1924 if (!DontDefer) {
1925 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1926 // each other bottoming out with the base dtor. Therefore we emit non-base
1927 // dtors on usage, even if there is no dtor definition in the TU.
1928 if (D && isa<CXXDestructorDecl>(D) &&
1929 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1930 GD.getDtorType()))
1931 addDeferredDeclToEmit(F, GD);
1932
1933 // This is the first use or definition of a mangled name. If there is a
1934 // deferred decl with this name, remember that we need to emit it at the end
1935 // of the file.
1936 auto DDI = DeferredDecls.find(MangledName);
1937 if (DDI != DeferredDecls.end()) {
1938 // Move the potentially referenced deferred decl to the
1939 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1940 // don't need it anymore).
1941 addDeferredDeclToEmit(F, DDI->second);
1942 DeferredDecls.erase(DDI);
1943
1944 // Otherwise, there are cases we have to worry about where we're
1945 // using a declaration for which we must emit a definition but where
1946 // we might not find a top-level definition:
1947 // - member functions defined inline in their classes
1948 // - friend functions defined inline in some class
1949 // - special member functions with implicit definitions
1950 // If we ever change our AST traversal to walk into class methods,
1951 // this will be unnecessary.
1952 //
1953 // We also don't emit a definition for a function if it's going to be an
1954 // entry in a vtable, unless it's already marked as used.
1955 } else if (getLangOpts().CPlusPlus && D) {
1956 // Look for a declaration that's lexically in a record.
1957 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1958 FD = FD->getPreviousDecl()) {
1959 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1960 if (FD->doesThisDeclarationHaveABody()) {
1961 addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1962 break;
1963 }
1964 }
1965 }
1966 }
1967 }
1968
1969 // Make sure the result is of the requested type.
1970 if (!IsIncompleteFunction) {
1971 assert(F->getType()->getElementType() == Ty);
1972 return F;
1973 }
1974
1975 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1976 return llvm::ConstantExpr::getBitCast(F, PTy);
1977 }
1978
1979 /// GetAddrOfFunction - Return the address of the given function. If Ty is
1980 /// non-null, then this function will use the specified type if it has to
1981 /// create it (this occurs when we see a definition of the function).
GetAddrOfFunction(GlobalDecl GD,llvm::Type * Ty,bool ForVTable,bool DontDefer,bool IsForDefinition)1982 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1983 llvm::Type *Ty,
1984 bool ForVTable,
1985 bool DontDefer,
1986 bool IsForDefinition) {
1987 // If there was no specific requested type, just convert it now.
1988 if (!Ty) {
1989 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1990 auto CanonTy = Context.getCanonicalType(FD->getType());
1991 Ty = getTypes().ConvertFunctionType(CanonTy, FD);
1992 }
1993
1994 StringRef MangledName = getMangledName(GD);
1995 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
1996 /*IsThunk=*/false, llvm::AttributeSet(),
1997 IsForDefinition);
1998 }
1999
2000 /// CreateRuntimeFunction - Create a new runtime function with the specified
2001 /// type and name.
2002 llvm::Constant *
CreateRuntimeFunction(llvm::FunctionType * FTy,StringRef Name,llvm::AttributeSet ExtraAttrs)2003 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
2004 StringRef Name,
2005 llvm::AttributeSet ExtraAttrs) {
2006 llvm::Constant *C =
2007 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2008 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2009 if (auto *F = dyn_cast<llvm::Function>(C))
2010 if (F->empty())
2011 F->setCallingConv(getRuntimeCC());
2012 return C;
2013 }
2014
2015 /// CreateBuiltinFunction - Create a new builtin function with the specified
2016 /// type and name.
2017 llvm::Constant *
CreateBuiltinFunction(llvm::FunctionType * FTy,StringRef Name,llvm::AttributeSet ExtraAttrs)2018 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
2019 StringRef Name,
2020 llvm::AttributeSet ExtraAttrs) {
2021 llvm::Constant *C =
2022 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2023 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2024 if (auto *F = dyn_cast<llvm::Function>(C))
2025 if (F->empty())
2026 F->setCallingConv(getBuiltinCC());
2027 return C;
2028 }
2029
2030 /// isTypeConstant - Determine whether an object of this type can be emitted
2031 /// as a constant.
2032 ///
2033 /// If ExcludeCtor is true, the duration when the object's constructor runs
2034 /// will not be considered. The caller will need to verify that the object is
2035 /// not written to during its construction.
isTypeConstant(QualType Ty,bool ExcludeCtor)2036 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2037 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2038 return false;
2039
2040 if (Context.getLangOpts().CPlusPlus) {
2041 if (const CXXRecordDecl *Record
2042 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2043 return ExcludeCtor && !Record->hasMutableFields() &&
2044 Record->hasTrivialDestructor();
2045 }
2046
2047 return true;
2048 }
2049
2050 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2051 /// create and return an llvm GlobalVariable with the specified type. If there
2052 /// is something in the module with the specified name, return it potentially
2053 /// bitcasted to the right type.
2054 ///
2055 /// If D is non-null, it specifies a decl that correspond to this. This is used
2056 /// to set the attributes on the global when it is first created.
2057 ///
2058 /// If IsForDefinition is true, it is guranteed that an actual global with
2059 /// type Ty will be returned, not conversion of a variable with the same
2060 /// mangled name but some other type.
2061 llvm::Constant *
GetOrCreateLLVMGlobal(StringRef MangledName,llvm::PointerType * Ty,const VarDecl * D,bool IsForDefinition)2062 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2063 llvm::PointerType *Ty,
2064 const VarDecl *D,
2065 bool IsForDefinition) {
2066 // Lookup the entry, lazily creating it if necessary.
2067 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2068 if (Entry) {
2069 if (WeakRefReferences.erase(Entry)) {
2070 if (D && !D->hasAttr<WeakAttr>())
2071 Entry->setLinkage(llvm::Function::ExternalLinkage);
2072 }
2073
2074 // Handle dropped DLL attributes.
2075 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2076 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2077
2078 if (Entry->getType() == Ty)
2079 return Entry;
2080
2081 // If there are two attempts to define the same mangled name, issue an
2082 // error.
2083 if (IsForDefinition && !Entry->isDeclaration()) {
2084 GlobalDecl OtherGD;
2085 const VarDecl *OtherD;
2086
2087 // Check that D is not yet in DiagnosedConflictingDefinitions is required
2088 // to make sure that we issue an error only once.
2089 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2090 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2091 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2092 OtherD->hasInit() &&
2093 DiagnosedConflictingDefinitions.insert(D).second) {
2094 getDiags().Report(D->getLocation(),
2095 diag::err_duplicate_mangled_name);
2096 getDiags().Report(OtherGD.getDecl()->getLocation(),
2097 diag::note_previous_definition);
2098 }
2099 }
2100
2101 // Make sure the result is of the correct type.
2102 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2103 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2104
2105 // (If global is requested for a definition, we always need to create a new
2106 // global, not just return a bitcast.)
2107 if (!IsForDefinition)
2108 return llvm::ConstantExpr::getBitCast(Entry, Ty);
2109 }
2110
2111 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2112 auto *GV = new llvm::GlobalVariable(
2113 getModule(), Ty->getElementType(), false,
2114 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2115 llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2116
2117 // If we already created a global with the same mangled name (but different
2118 // type) before, take its name and remove it from its parent.
2119 if (Entry) {
2120 GV->takeName(Entry);
2121
2122 if (!Entry->use_empty()) {
2123 llvm::Constant *NewPtrForOldDecl =
2124 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2125 Entry->replaceAllUsesWith(NewPtrForOldDecl);
2126 }
2127
2128 Entry->eraseFromParent();
2129 }
2130
2131 // This is the first use or definition of a mangled name. If there is a
2132 // deferred decl with this name, remember that we need to emit it at the end
2133 // of the file.
2134 auto DDI = DeferredDecls.find(MangledName);
2135 if (DDI != DeferredDecls.end()) {
2136 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2137 // list, and remove it from DeferredDecls (since we don't need it anymore).
2138 addDeferredDeclToEmit(GV, DDI->second);
2139 DeferredDecls.erase(DDI);
2140 }
2141
2142 // Handle things which are present even on external declarations.
2143 if (D) {
2144 // FIXME: This code is overly simple and should be merged with other global
2145 // handling.
2146 GV->setConstant(isTypeConstant(D->getType(), false));
2147
2148 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2149
2150 setLinkageAndVisibilityForGV(GV, D);
2151
2152 if (D->getTLSKind()) {
2153 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2154 CXXThreadLocals.push_back(D);
2155 setTLSMode(GV, *D);
2156 }
2157
2158 // If required by the ABI, treat declarations of static data members with
2159 // inline initializers as definitions.
2160 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2161 EmitGlobalVarDefinition(D);
2162 }
2163
2164 // Handle XCore specific ABI requirements.
2165 if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
2166 D->getLanguageLinkage() == CLanguageLinkage &&
2167 D->getType().isConstant(Context) &&
2168 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2169 GV->setSection(".cp.rodata");
2170 }
2171
2172 if (AddrSpace != Ty->getAddressSpace())
2173 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2174
2175 return GV;
2176 }
2177
2178 llvm::Constant *
GetAddrOfGlobal(GlobalDecl GD,bool IsForDefinition)2179 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2180 bool IsForDefinition) {
2181 if (isa<CXXConstructorDecl>(GD.getDecl()))
2182 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2183 getFromCtorType(GD.getCtorType()),
2184 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2185 /*DontDefer=*/false, IsForDefinition);
2186 else if (isa<CXXDestructorDecl>(GD.getDecl()))
2187 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2188 getFromDtorType(GD.getDtorType()),
2189 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2190 /*DontDefer=*/false, IsForDefinition);
2191 else if (isa<CXXMethodDecl>(GD.getDecl())) {
2192 auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2193 cast<CXXMethodDecl>(GD.getDecl()));
2194 auto Ty = getTypes().GetFunctionType(*FInfo);
2195 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2196 IsForDefinition);
2197 } else if (isa<FunctionDecl>(GD.getDecl())) {
2198 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2199 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2200 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2201 IsForDefinition);
2202 } else
2203 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr,
2204 IsForDefinition);
2205 }
2206
2207 llvm::GlobalVariable *
CreateOrReplaceCXXRuntimeVariable(StringRef Name,llvm::Type * Ty,llvm::GlobalValue::LinkageTypes Linkage)2208 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2209 llvm::Type *Ty,
2210 llvm::GlobalValue::LinkageTypes Linkage) {
2211 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2212 llvm::GlobalVariable *OldGV = nullptr;
2213
2214 if (GV) {
2215 // Check if the variable has the right type.
2216 if (GV->getType()->getElementType() == Ty)
2217 return GV;
2218
2219 // Because C++ name mangling, the only way we can end up with an already
2220 // existing global with the same name is if it has been declared extern "C".
2221 assert(GV->isDeclaration() && "Declaration has wrong type!");
2222 OldGV = GV;
2223 }
2224
2225 // Create a new variable.
2226 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2227 Linkage, nullptr, Name);
2228
2229 if (OldGV) {
2230 // Replace occurrences of the old variable if needed.
2231 GV->takeName(OldGV);
2232
2233 if (!OldGV->use_empty()) {
2234 llvm::Constant *NewPtrForOldDecl =
2235 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2236 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2237 }
2238
2239 OldGV->eraseFromParent();
2240 }
2241
2242 if (supportsCOMDAT() && GV->isWeakForLinker() &&
2243 !GV->hasAvailableExternallyLinkage())
2244 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2245
2246 return GV;
2247 }
2248
2249 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2250 /// given global variable. If Ty is non-null and if the global doesn't exist,
2251 /// then it will be created with the specified type instead of whatever the
2252 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2253 /// that an actual global with type Ty will be returned, not conversion of a
2254 /// variable with the same mangled name but some other type.
GetAddrOfGlobalVar(const VarDecl * D,llvm::Type * Ty,bool IsForDefinition)2255 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2256 llvm::Type *Ty,
2257 bool IsForDefinition) {
2258 assert(D->hasGlobalStorage() && "Not a global variable");
2259 QualType ASTTy = D->getType();
2260 if (!Ty)
2261 Ty = getTypes().ConvertTypeForMem(ASTTy);
2262
2263 llvm::PointerType *PTy =
2264 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2265
2266 StringRef MangledName = getMangledName(D);
2267 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2268 }
2269
2270 /// CreateRuntimeVariable - Create a new runtime global variable with the
2271 /// specified type and name.
2272 llvm::Constant *
CreateRuntimeVariable(llvm::Type * Ty,StringRef Name)2273 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2274 StringRef Name) {
2275 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2276 }
2277
EmitTentativeDefinition(const VarDecl * D)2278 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2279 assert(!D->getInit() && "Cannot emit definite definitions here!");
2280
2281 StringRef MangledName = getMangledName(D);
2282 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2283
2284 // We already have a definition, not declaration, with the same mangled name.
2285 // Emitting of declaration is not required (and actually overwrites emitted
2286 // definition).
2287 if (GV && !GV->isDeclaration())
2288 return;
2289
2290 // If we have not seen a reference to this variable yet, place it into the
2291 // deferred declarations table to be emitted if needed later.
2292 if (!MustBeEmitted(D) && !GV) {
2293 DeferredDecls[MangledName] = D;
2294 return;
2295 }
2296
2297 // The tentative definition is the only definition.
2298 EmitGlobalVarDefinition(D);
2299 }
2300
GetTargetTypeStoreSize(llvm::Type * Ty) const2301 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2302 return Context.toCharUnitsFromBits(
2303 getDataLayout().getTypeStoreSizeInBits(Ty));
2304 }
2305
GetGlobalVarAddressSpace(const VarDecl * D,unsigned AddrSpace)2306 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2307 unsigned AddrSpace) {
2308 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2309 if (D->hasAttr<CUDAConstantAttr>())
2310 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2311 else if (D->hasAttr<CUDASharedAttr>())
2312 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2313 else
2314 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2315 }
2316
2317 return AddrSpace;
2318 }
2319
2320 template<typename SomeDecl>
MaybeHandleStaticInExternC(const SomeDecl * D,llvm::GlobalValue * GV)2321 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2322 llvm::GlobalValue *GV) {
2323 if (!getLangOpts().CPlusPlus)
2324 return;
2325
2326 // Must have 'used' attribute, or else inline assembly can't rely on
2327 // the name existing.
2328 if (!D->template hasAttr<UsedAttr>())
2329 return;
2330
2331 // Must have internal linkage and an ordinary name.
2332 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2333 return;
2334
2335 // Must be in an extern "C" context. Entities declared directly within
2336 // a record are not extern "C" even if the record is in such a context.
2337 const SomeDecl *First = D->getFirstDecl();
2338 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2339 return;
2340
2341 // OK, this is an internal linkage entity inside an extern "C" linkage
2342 // specification. Make a note of that so we can give it the "expected"
2343 // mangled name if nothing else is using that name.
2344 std::pair<StaticExternCMap::iterator, bool> R =
2345 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2346
2347 // If we have multiple internal linkage entities with the same name
2348 // in extern "C" regions, none of them gets that name.
2349 if (!R.second)
2350 R.first->second = nullptr;
2351 }
2352
shouldBeInCOMDAT(CodeGenModule & CGM,const Decl & D)2353 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2354 if (!CGM.supportsCOMDAT())
2355 return false;
2356
2357 if (D.hasAttr<SelectAnyAttr>())
2358 return true;
2359
2360 GVALinkage Linkage;
2361 if (auto *VD = dyn_cast<VarDecl>(&D))
2362 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2363 else
2364 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2365
2366 switch (Linkage) {
2367 case GVA_Internal:
2368 case GVA_AvailableExternally:
2369 case GVA_StrongExternal:
2370 return false;
2371 case GVA_DiscardableODR:
2372 case GVA_StrongODR:
2373 return true;
2374 }
2375 llvm_unreachable("No such linkage");
2376 }
2377
maybeSetTrivialComdat(const Decl & D,llvm::GlobalObject & GO)2378 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2379 llvm::GlobalObject &GO) {
2380 if (!shouldBeInCOMDAT(*this, D))
2381 return;
2382 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2383 }
2384
2385 /// Pass IsTentative as true if you want to create a tentative definition.
EmitGlobalVarDefinition(const VarDecl * D,bool IsTentative)2386 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2387 bool IsTentative) {
2388 llvm::Constant *Init = nullptr;
2389 QualType ASTTy = D->getType();
2390 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2391 bool NeedsGlobalCtor = false;
2392 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2393
2394 const VarDecl *InitDecl;
2395 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2396
2397 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2398 // as part of their declaration." Sema has already checked for
2399 // error cases, so we just need to set Init to UndefValue.
2400 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2401 D->hasAttr<CUDASharedAttr>())
2402 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2403 else if (!InitExpr) {
2404 // This is a tentative definition; tentative definitions are
2405 // implicitly initialized with { 0 }.
2406 //
2407 // Note that tentative definitions are only emitted at the end of
2408 // a translation unit, so they should never have incomplete
2409 // type. In addition, EmitTentativeDefinition makes sure that we
2410 // never attempt to emit a tentative definition if a real one
2411 // exists. A use may still exists, however, so we still may need
2412 // to do a RAUW.
2413 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2414 Init = EmitNullConstant(D->getType());
2415 } else {
2416 initializedGlobalDecl = GlobalDecl(D);
2417 Init = EmitConstantInit(*InitDecl);
2418
2419 if (!Init) {
2420 QualType T = InitExpr->getType();
2421 if (D->getType()->isReferenceType())
2422 T = D->getType();
2423
2424 if (getLangOpts().CPlusPlus) {
2425 Init = EmitNullConstant(T);
2426 NeedsGlobalCtor = true;
2427 } else {
2428 ErrorUnsupported(D, "static initializer");
2429 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2430 }
2431 } else {
2432 // We don't need an initializer, so remove the entry for the delayed
2433 // initializer position (just in case this entry was delayed) if we
2434 // also don't need to register a destructor.
2435 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2436 DelayedCXXInitPosition.erase(D);
2437 }
2438 }
2439
2440 llvm::Type* InitType = Init->getType();
2441 llvm::Constant *Entry =
2442 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative);
2443
2444 // Strip off a bitcast if we got one back.
2445 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2446 assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2447 CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2448 // All zero index gep.
2449 CE->getOpcode() == llvm::Instruction::GetElementPtr);
2450 Entry = CE->getOperand(0);
2451 }
2452
2453 // Entry is now either a Function or GlobalVariable.
2454 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2455
2456 // We have a definition after a declaration with the wrong type.
2457 // We must make a new GlobalVariable* and update everything that used OldGV
2458 // (a declaration or tentative definition) with the new GlobalVariable*
2459 // (which will be a definition).
2460 //
2461 // This happens if there is a prototype for a global (e.g.
2462 // "extern int x[];") and then a definition of a different type (e.g.
2463 // "int x[10];"). This also happens when an initializer has a different type
2464 // from the type of the global (this happens with unions).
2465 if (!GV ||
2466 GV->getType()->getElementType() != InitType ||
2467 GV->getType()->getAddressSpace() !=
2468 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2469
2470 // Move the old entry aside so that we'll create a new one.
2471 Entry->setName(StringRef());
2472
2473 // Make a new global with the correct type, this is now guaranteed to work.
2474 GV = cast<llvm::GlobalVariable>(
2475 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative));
2476
2477 // Replace all uses of the old global with the new global
2478 llvm::Constant *NewPtrForOldDecl =
2479 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2480 Entry->replaceAllUsesWith(NewPtrForOldDecl);
2481
2482 // Erase the old global, since it is no longer used.
2483 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2484 }
2485
2486 MaybeHandleStaticInExternC(D, GV);
2487
2488 if (D->hasAttr<AnnotateAttr>())
2489 AddGlobalAnnotations(D, GV);
2490
2491 // Set the llvm linkage type as appropriate.
2492 llvm::GlobalValue::LinkageTypes Linkage =
2493 getLLVMLinkageVarDefinition(D, GV->isConstant());
2494
2495 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2496 // the device. [...]"
2497 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2498 // __device__, declares a variable that: [...]
2499 // Is accessible from all the threads within the grid and from the host
2500 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2501 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2502 if (GV && LangOpts.CUDA) {
2503 if (LangOpts.CUDAIsDevice) {
2504 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2505 GV->setExternallyInitialized(true);
2506 } else {
2507 // Host-side shadows of external declarations of device-side
2508 // global variables become internal definitions. These have to
2509 // be internal in order to prevent name conflicts with global
2510 // host variables with the same name in a different TUs.
2511 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2512 Linkage = llvm::GlobalValue::InternalLinkage;
2513
2514 // Shadow variables and their properties must be registered
2515 // with CUDA runtime.
2516 unsigned Flags = 0;
2517 if (!D->hasDefinition())
2518 Flags |= CGCUDARuntime::ExternDeviceVar;
2519 if (D->hasAttr<CUDAConstantAttr>())
2520 Flags |= CGCUDARuntime::ConstantDeviceVar;
2521 getCUDARuntime().registerDeviceVar(*GV, Flags);
2522 } else if (D->hasAttr<CUDASharedAttr>())
2523 // __shared__ variables are odd. Shadows do get created, but
2524 // they are not registered with the CUDA runtime, so they
2525 // can't really be used to access their device-side
2526 // counterparts. It's not clear yet whether it's nvcc's bug or
2527 // a feature, but we've got to do the same for compatibility.
2528 Linkage = llvm::GlobalValue::InternalLinkage;
2529 }
2530 }
2531 GV->setInitializer(Init);
2532
2533 // If it is safe to mark the global 'constant', do so now.
2534 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2535 isTypeConstant(D->getType(), true));
2536
2537 // If it is in a read-only section, mark it 'constant'.
2538 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2539 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2540 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2541 GV->setConstant(true);
2542 }
2543
2544 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2545
2546
2547 // On Darwin, if the normal linkage of a C++ thread_local variable is
2548 // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2549 // copies within a linkage unit; otherwise, the backing variable has
2550 // internal linkage and all accesses should just be calls to the
2551 // Itanium-specified entry point, which has the normal linkage of the
2552 // variable. This is to preserve the ability to change the implementation
2553 // behind the scenes.
2554 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2555 Context.getTargetInfo().getTriple().isOSDarwin() &&
2556 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2557 !llvm::GlobalVariable::isWeakLinkage(Linkage))
2558 Linkage = llvm::GlobalValue::InternalLinkage;
2559
2560 GV->setLinkage(Linkage);
2561 if (D->hasAttr<DLLImportAttr>())
2562 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2563 else if (D->hasAttr<DLLExportAttr>())
2564 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2565 else
2566 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2567
2568 if (Linkage == llvm::GlobalVariable::CommonLinkage)
2569 // common vars aren't constant even if declared const.
2570 GV->setConstant(false);
2571
2572 setNonAliasAttributes(D, GV);
2573
2574 if (D->getTLSKind() && !GV->isThreadLocal()) {
2575 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2576 CXXThreadLocals.push_back(D);
2577 setTLSMode(GV, *D);
2578 }
2579
2580 maybeSetTrivialComdat(*D, *GV);
2581
2582 // Emit the initializer function if necessary.
2583 if (NeedsGlobalCtor || NeedsGlobalDtor)
2584 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2585
2586 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2587
2588 // Emit global variable debug information.
2589 if (CGDebugInfo *DI = getModuleDebugInfo())
2590 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2591 DI->EmitGlobalVariable(GV, D);
2592 }
2593
isVarDeclStrongDefinition(const ASTContext & Context,CodeGenModule & CGM,const VarDecl * D,bool NoCommon)2594 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2595 CodeGenModule &CGM, const VarDecl *D,
2596 bool NoCommon) {
2597 // Don't give variables common linkage if -fno-common was specified unless it
2598 // was overridden by a NoCommon attribute.
2599 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2600 return true;
2601
2602 // C11 6.9.2/2:
2603 // A declaration of an identifier for an object that has file scope without
2604 // an initializer, and without a storage-class specifier or with the
2605 // storage-class specifier static, constitutes a tentative definition.
2606 if (D->getInit() || D->hasExternalStorage())
2607 return true;
2608
2609 // A variable cannot be both common and exist in a section.
2610 if (D->hasAttr<SectionAttr>())
2611 return true;
2612
2613 // Thread local vars aren't considered common linkage.
2614 if (D->getTLSKind())
2615 return true;
2616
2617 // Tentative definitions marked with WeakImportAttr are true definitions.
2618 if (D->hasAttr<WeakImportAttr>())
2619 return true;
2620
2621 // A variable cannot be both common and exist in a comdat.
2622 if (shouldBeInCOMDAT(CGM, *D))
2623 return true;
2624
2625 // Declarations with a required alignment do not have common linkage in MSVC
2626 // mode.
2627 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2628 if (D->hasAttr<AlignedAttr>())
2629 return true;
2630 QualType VarType = D->getType();
2631 if (Context.isAlignmentRequired(VarType))
2632 return true;
2633
2634 if (const auto *RT = VarType->getAs<RecordType>()) {
2635 const RecordDecl *RD = RT->getDecl();
2636 for (const FieldDecl *FD : RD->fields()) {
2637 if (FD->isBitField())
2638 continue;
2639 if (FD->hasAttr<AlignedAttr>())
2640 return true;
2641 if (Context.isAlignmentRequired(FD->getType()))
2642 return true;
2643 }
2644 }
2645 }
2646
2647 return false;
2648 }
2649
getLLVMLinkageForDeclarator(const DeclaratorDecl * D,GVALinkage Linkage,bool IsConstantVariable)2650 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2651 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2652 if (Linkage == GVA_Internal)
2653 return llvm::Function::InternalLinkage;
2654
2655 if (D->hasAttr<WeakAttr>()) {
2656 if (IsConstantVariable)
2657 return llvm::GlobalVariable::WeakODRLinkage;
2658 else
2659 return llvm::GlobalVariable::WeakAnyLinkage;
2660 }
2661
2662 // We are guaranteed to have a strong definition somewhere else,
2663 // so we can use available_externally linkage.
2664 if (Linkage == GVA_AvailableExternally)
2665 return llvm::Function::AvailableExternallyLinkage;
2666
2667 // Note that Apple's kernel linker doesn't support symbol
2668 // coalescing, so we need to avoid linkonce and weak linkages there.
2669 // Normally, this means we just map to internal, but for explicit
2670 // instantiations we'll map to external.
2671
2672 // In C++, the compiler has to emit a definition in every translation unit
2673 // that references the function. We should use linkonce_odr because
2674 // a) if all references in this translation unit are optimized away, we
2675 // don't need to codegen it. b) if the function persists, it needs to be
2676 // merged with other definitions. c) C++ has the ODR, so we know the
2677 // definition is dependable.
2678 if (Linkage == GVA_DiscardableODR)
2679 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2680 : llvm::Function::InternalLinkage;
2681
2682 // An explicit instantiation of a template has weak linkage, since
2683 // explicit instantiations can occur in multiple translation units
2684 // and must all be equivalent. However, we are not allowed to
2685 // throw away these explicit instantiations.
2686 //
2687 // We don't currently support CUDA device code spread out across multiple TUs,
2688 // so say that CUDA templates are either external (for kernels) or internal.
2689 // This lets llvm perform aggressive inter-procedural optimizations.
2690 if (Linkage == GVA_StrongODR) {
2691 if (Context.getLangOpts().AppleKext)
2692 return llvm::Function::ExternalLinkage;
2693 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2694 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2695 : llvm::Function::InternalLinkage;
2696 return llvm::Function::WeakODRLinkage;
2697 }
2698
2699 // C++ doesn't have tentative definitions and thus cannot have common
2700 // linkage.
2701 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2702 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2703 CodeGenOpts.NoCommon))
2704 return llvm::GlobalVariable::CommonLinkage;
2705
2706 // selectany symbols are externally visible, so use weak instead of
2707 // linkonce. MSVC optimizes away references to const selectany globals, so
2708 // all definitions should be the same and ODR linkage should be used.
2709 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2710 if (D->hasAttr<SelectAnyAttr>())
2711 return llvm::GlobalVariable::WeakODRLinkage;
2712
2713 // Otherwise, we have strong external linkage.
2714 assert(Linkage == GVA_StrongExternal);
2715 return llvm::GlobalVariable::ExternalLinkage;
2716 }
2717
getLLVMLinkageVarDefinition(const VarDecl * VD,bool IsConstant)2718 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2719 const VarDecl *VD, bool IsConstant) {
2720 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2721 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2722 }
2723
2724 /// Replace the uses of a function that was declared with a non-proto type.
2725 /// We want to silently drop extra arguments from call sites
replaceUsesOfNonProtoConstant(llvm::Constant * old,llvm::Function * newFn)2726 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2727 llvm::Function *newFn) {
2728 // Fast path.
2729 if (old->use_empty()) return;
2730
2731 llvm::Type *newRetTy = newFn->getReturnType();
2732 SmallVector<llvm::Value*, 4> newArgs;
2733 SmallVector<llvm::OperandBundleDef, 1> newBundles;
2734
2735 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2736 ui != ue; ) {
2737 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2738 llvm::User *user = use->getUser();
2739
2740 // Recognize and replace uses of bitcasts. Most calls to
2741 // unprototyped functions will use bitcasts.
2742 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2743 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2744 replaceUsesOfNonProtoConstant(bitcast, newFn);
2745 continue;
2746 }
2747
2748 // Recognize calls to the function.
2749 llvm::CallSite callSite(user);
2750 if (!callSite) continue;
2751 if (!callSite.isCallee(&*use)) continue;
2752
2753 // If the return types don't match exactly, then we can't
2754 // transform this call unless it's dead.
2755 if (callSite->getType() != newRetTy && !callSite->use_empty())
2756 continue;
2757
2758 // Get the call site's attribute list.
2759 SmallVector<llvm::AttributeSet, 8> newAttrs;
2760 llvm::AttributeSet oldAttrs = callSite.getAttributes();
2761
2762 // Collect any return attributes from the call.
2763 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2764 newAttrs.push_back(
2765 llvm::AttributeSet::get(newFn->getContext(),
2766 oldAttrs.getRetAttributes()));
2767
2768 // If the function was passed too few arguments, don't transform.
2769 unsigned newNumArgs = newFn->arg_size();
2770 if (callSite.arg_size() < newNumArgs) continue;
2771
2772 // If extra arguments were passed, we silently drop them.
2773 // If any of the types mismatch, we don't transform.
2774 unsigned argNo = 0;
2775 bool dontTransform = false;
2776 for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2777 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2778 if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2779 dontTransform = true;
2780 break;
2781 }
2782
2783 // Add any parameter attributes.
2784 if (oldAttrs.hasAttributes(argNo + 1))
2785 newAttrs.
2786 push_back(llvm::
2787 AttributeSet::get(newFn->getContext(),
2788 oldAttrs.getParamAttributes(argNo + 1)));
2789 }
2790 if (dontTransform)
2791 continue;
2792
2793 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2794 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2795 oldAttrs.getFnAttributes()));
2796
2797 // Okay, we can transform this. Create the new call instruction and copy
2798 // over the required information.
2799 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2800
2801 // Copy over any operand bundles.
2802 callSite.getOperandBundlesAsDefs(newBundles);
2803
2804 llvm::CallSite newCall;
2805 if (callSite.isCall()) {
2806 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2807 callSite.getInstruction());
2808 } else {
2809 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2810 newCall = llvm::InvokeInst::Create(newFn,
2811 oldInvoke->getNormalDest(),
2812 oldInvoke->getUnwindDest(),
2813 newArgs, newBundles, "",
2814 callSite.getInstruction());
2815 }
2816 newArgs.clear(); // for the next iteration
2817
2818 if (!newCall->getType()->isVoidTy())
2819 newCall->takeName(callSite.getInstruction());
2820 newCall.setAttributes(
2821 llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2822 newCall.setCallingConv(callSite.getCallingConv());
2823
2824 // Finally, remove the old call, replacing any uses with the new one.
2825 if (!callSite->use_empty())
2826 callSite->replaceAllUsesWith(newCall.getInstruction());
2827
2828 // Copy debug location attached to CI.
2829 if (callSite->getDebugLoc())
2830 newCall->setDebugLoc(callSite->getDebugLoc());
2831
2832 callSite->eraseFromParent();
2833 }
2834 }
2835
2836 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2837 /// implement a function with no prototype, e.g. "int foo() {}". If there are
2838 /// existing call uses of the old function in the module, this adjusts them to
2839 /// call the new function directly.
2840 ///
2841 /// This is not just a cleanup: the always_inline pass requires direct calls to
2842 /// functions to be able to inline them. If there is a bitcast in the way, it
2843 /// won't inline them. Instcombine normally deletes these calls, but it isn't
2844 /// run at -O0.
ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue * Old,llvm::Function * NewFn)2845 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2846 llvm::Function *NewFn) {
2847 // If we're redefining a global as a function, don't transform it.
2848 if (!isa<llvm::Function>(Old)) return;
2849
2850 replaceUsesOfNonProtoConstant(Old, NewFn);
2851 }
2852
HandleCXXStaticMemberVarInstantiation(VarDecl * VD)2853 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2854 auto DK = VD->isThisDeclarationADefinition();
2855 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
2856 return;
2857
2858 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2859 // If we have a definition, this might be a deferred decl. If the
2860 // instantiation is explicit, make sure we emit it at the end.
2861 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2862 GetAddrOfGlobalVar(VD);
2863
2864 EmitTopLevelDecl(VD);
2865 }
2866
EmitGlobalFunctionDefinition(GlobalDecl GD,llvm::GlobalValue * GV)2867 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2868 llvm::GlobalValue *GV) {
2869 const auto *D = cast<FunctionDecl>(GD.getDecl());
2870
2871 // Compute the function info and LLVM type.
2872 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2873 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2874
2875 // Get or create the prototype for the function.
2876 if (!GV || (GV->getType()->getElementType() != Ty))
2877 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2878 /*DontDefer=*/true,
2879 /*IsForDefinition=*/true));
2880
2881 // Already emitted.
2882 if (!GV->isDeclaration())
2883 return;
2884
2885 // We need to set linkage and visibility on the function before
2886 // generating code for it because various parts of IR generation
2887 // want to propagate this information down (e.g. to local static
2888 // declarations).
2889 auto *Fn = cast<llvm::Function>(GV);
2890 setFunctionLinkage(GD, Fn);
2891 setFunctionDLLStorageClass(GD, Fn);
2892
2893 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2894 setGlobalVisibility(Fn, D);
2895
2896 MaybeHandleStaticInExternC(D, Fn);
2897
2898 maybeSetTrivialComdat(*D, *Fn);
2899
2900 CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2901
2902 setFunctionDefinitionAttributes(D, Fn);
2903 SetLLVMFunctionAttributesForDefinition(D, Fn);
2904
2905 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2906 AddGlobalCtor(Fn, CA->getPriority());
2907 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2908 AddGlobalDtor(Fn, DA->getPriority());
2909 if (D->hasAttr<AnnotateAttr>())
2910 AddGlobalAnnotations(D, Fn);
2911 }
2912
EmitAliasDefinition(GlobalDecl GD)2913 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2914 const auto *D = cast<ValueDecl>(GD.getDecl());
2915 const AliasAttr *AA = D->getAttr<AliasAttr>();
2916 assert(AA && "Not an alias?");
2917
2918 StringRef MangledName = getMangledName(GD);
2919
2920 if (AA->getAliasee() == MangledName) {
2921 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2922 return;
2923 }
2924
2925 // If there is a definition in the module, then it wins over the alias.
2926 // This is dubious, but allow it to be safe. Just ignore the alias.
2927 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2928 if (Entry && !Entry->isDeclaration())
2929 return;
2930
2931 Aliases.push_back(GD);
2932
2933 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2934
2935 // Create a reference to the named value. This ensures that it is emitted
2936 // if a deferred decl.
2937 llvm::Constant *Aliasee;
2938 if (isa<llvm::FunctionType>(DeclTy))
2939 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2940 /*ForVTable=*/false);
2941 else
2942 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2943 llvm::PointerType::getUnqual(DeclTy),
2944 /*D=*/nullptr);
2945
2946 // Create the new alias itself, but don't set a name yet.
2947 auto *GA = llvm::GlobalAlias::create(
2948 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2949
2950 if (Entry) {
2951 if (GA->getAliasee() == Entry) {
2952 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2953 return;
2954 }
2955
2956 assert(Entry->isDeclaration());
2957
2958 // If there is a declaration in the module, then we had an extern followed
2959 // by the alias, as in:
2960 // extern int test6();
2961 // ...
2962 // int test6() __attribute__((alias("test7")));
2963 //
2964 // Remove it and replace uses of it with the alias.
2965 GA->takeName(Entry);
2966
2967 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2968 Entry->getType()));
2969 Entry->eraseFromParent();
2970 } else {
2971 GA->setName(MangledName);
2972 }
2973
2974 // Set attributes which are particular to an alias; this is a
2975 // specialization of the attributes which may be set on a global
2976 // variable/function.
2977 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2978 D->isWeakImported()) {
2979 GA->setLinkage(llvm::Function::WeakAnyLinkage);
2980 }
2981
2982 if (const auto *VD = dyn_cast<VarDecl>(D))
2983 if (VD->getTLSKind())
2984 setTLSMode(GA, *VD);
2985
2986 setAliasAttributes(D, GA);
2987 }
2988
emitIFuncDefinition(GlobalDecl GD)2989 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
2990 const auto *D = cast<ValueDecl>(GD.getDecl());
2991 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
2992 assert(IFA && "Not an ifunc?");
2993
2994 StringRef MangledName = getMangledName(GD);
2995
2996 if (IFA->getResolver() == MangledName) {
2997 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
2998 return;
2999 }
3000
3001 // Report an error if some definition overrides ifunc.
3002 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3003 if (Entry && !Entry->isDeclaration()) {
3004 GlobalDecl OtherGD;
3005 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3006 DiagnosedConflictingDefinitions.insert(GD).second) {
3007 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3008 Diags.Report(OtherGD.getDecl()->getLocation(),
3009 diag::note_previous_definition);
3010 }
3011 return;
3012 }
3013
3014 Aliases.push_back(GD);
3015
3016 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3017 llvm::Constant *Resolver =
3018 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3019 /*ForVTable=*/false);
3020 llvm::GlobalIFunc *GIF =
3021 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3022 "", Resolver, &getModule());
3023 if (Entry) {
3024 if (GIF->getResolver() == Entry) {
3025 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3026 return;
3027 }
3028 assert(Entry->isDeclaration());
3029
3030 // If there is a declaration in the module, then we had an extern followed
3031 // by the ifunc, as in:
3032 // extern int test();
3033 // ...
3034 // int test() __attribute__((ifunc("resolver")));
3035 //
3036 // Remove it and replace uses of it with the ifunc.
3037 GIF->takeName(Entry);
3038
3039 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3040 Entry->getType()));
3041 Entry->eraseFromParent();
3042 } else
3043 GIF->setName(MangledName);
3044
3045 SetCommonAttributes(D, GIF);
3046 }
3047
getIntrinsic(unsigned IID,ArrayRef<llvm::Type * > Tys)3048 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3049 ArrayRef<llvm::Type*> Tys) {
3050 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3051 Tys);
3052 }
3053
3054 static llvm::StringMapEntry<llvm::GlobalVariable *> &
GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable * > & Map,const StringLiteral * Literal,bool TargetIsLSB,bool & IsUTF16,unsigned & StringLength)3055 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3056 const StringLiteral *Literal, bool TargetIsLSB,
3057 bool &IsUTF16, unsigned &StringLength) {
3058 StringRef String = Literal->getString();
3059 unsigned NumBytes = String.size();
3060
3061 // Check for simple case.
3062 if (!Literal->containsNonAsciiOrNull()) {
3063 StringLength = NumBytes;
3064 return *Map.insert(std::make_pair(String, nullptr)).first;
3065 }
3066
3067 // Otherwise, convert the UTF8 literals into a string of shorts.
3068 IsUTF16 = true;
3069
3070 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3071 const UTF8 *FromPtr = (const UTF8 *)String.data();
3072 UTF16 *ToPtr = &ToBuf[0];
3073
3074 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
3075 &ToPtr, ToPtr + NumBytes,
3076 strictConversion);
3077
3078 // ConvertUTF8toUTF16 returns the length in ToPtr.
3079 StringLength = ToPtr - &ToBuf[0];
3080
3081 // Add an explicit null.
3082 *ToPtr = 0;
3083 return *Map.insert(std::make_pair(
3084 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3085 (StringLength + 1) * 2),
3086 nullptr)).first;
3087 }
3088
3089 static llvm::StringMapEntry<llvm::GlobalVariable *> &
GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable * > & Map,const StringLiteral * Literal,unsigned & StringLength)3090 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3091 const StringLiteral *Literal, unsigned &StringLength) {
3092 StringRef String = Literal->getString();
3093 StringLength = String.size();
3094 return *Map.insert(std::make_pair(String, nullptr)).first;
3095 }
3096
3097 ConstantAddress
GetAddrOfConstantCFString(const StringLiteral * Literal)3098 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3099 unsigned StringLength = 0;
3100 bool isUTF16 = false;
3101 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3102 GetConstantCFStringEntry(CFConstantStringMap, Literal,
3103 getDataLayout().isLittleEndian(), isUTF16,
3104 StringLength);
3105
3106 if (auto *C = Entry.second)
3107 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3108
3109 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3110 llvm::Constant *Zeros[] = { Zero, Zero };
3111 llvm::Value *V;
3112
3113 // If we don't already have it, get __CFConstantStringClassReference.
3114 if (!CFConstantStringClassRef) {
3115 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3116 Ty = llvm::ArrayType::get(Ty, 0);
3117 llvm::Constant *GV =
3118 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3119
3120 if (getTarget().getTriple().isOSBinFormatCOFF()) {
3121 IdentifierInfo &II = getContext().Idents.get(GV->getName());
3122 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3123 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3124 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3125
3126 const VarDecl *VD = nullptr;
3127 for (const auto &Result : DC->lookup(&II))
3128 if ((VD = dyn_cast<VarDecl>(Result)))
3129 break;
3130
3131 if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3132 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3133 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3134 } else {
3135 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3136 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3137 }
3138 }
3139
3140 // Decay array -> ptr
3141 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3142 CFConstantStringClassRef = V;
3143 } else {
3144 V = CFConstantStringClassRef;
3145 }
3146
3147 QualType CFTy = getContext().getCFConstantStringType();
3148
3149 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3150
3151 llvm::Constant *Fields[4];
3152
3153 // Class pointer.
3154 Fields[0] = cast<llvm::ConstantExpr>(V);
3155
3156 // Flags.
3157 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3158 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
3159 : llvm::ConstantInt::get(Ty, 0x07C8);
3160
3161 // String pointer.
3162 llvm::Constant *C = nullptr;
3163 if (isUTF16) {
3164 auto Arr = llvm::makeArrayRef(
3165 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3166 Entry.first().size() / 2);
3167 C = llvm::ConstantDataArray::get(VMContext, Arr);
3168 } else {
3169 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3170 }
3171
3172 // Note: -fwritable-strings doesn't make the backing store strings of
3173 // CFStrings writable. (See <rdar://problem/10657500>)
3174 auto *GV =
3175 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3176 llvm::GlobalValue::PrivateLinkage, C, ".str");
3177 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3178 // Don't enforce the target's minimum global alignment, since the only use
3179 // of the string is via this class initializer.
3180 CharUnits Align = isUTF16
3181 ? getContext().getTypeAlignInChars(getContext().ShortTy)
3182 : getContext().getTypeAlignInChars(getContext().CharTy);
3183 GV->setAlignment(Align.getQuantity());
3184
3185 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3186 // Without it LLVM can merge the string with a non unnamed_addr one during
3187 // LTO. Doing that changes the section it ends in, which surprises ld64.
3188 if (getTarget().getTriple().isOSBinFormatMachO())
3189 GV->setSection(isUTF16 ? "__TEXT,__ustring"
3190 : "__TEXT,__cstring,cstring_literals");
3191
3192 // String.
3193 Fields[2] =
3194 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3195
3196 if (isUTF16)
3197 // Cast the UTF16 string to the correct type.
3198 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
3199
3200 // String length.
3201 Ty = getTypes().ConvertType(getContext().LongTy);
3202 Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
3203
3204 CharUnits Alignment = getPointerAlign();
3205
3206 // The struct.
3207 C = llvm::ConstantStruct::get(STy, Fields);
3208 GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3209 llvm::GlobalVariable::PrivateLinkage, C,
3210 "_unnamed_cfstring_");
3211 GV->setAlignment(Alignment.getQuantity());
3212 switch (getTarget().getTriple().getObjectFormat()) {
3213 case llvm::Triple::UnknownObjectFormat:
3214 llvm_unreachable("unknown file format");
3215 case llvm::Triple::COFF:
3216 case llvm::Triple::ELF:
3217 GV->setSection("cfstring");
3218 break;
3219 case llvm::Triple::MachO:
3220 GV->setSection("__DATA,__cfstring");
3221 break;
3222 }
3223 Entry.second = GV;
3224
3225 return ConstantAddress(GV, Alignment);
3226 }
3227
3228 ConstantAddress
GetAddrOfConstantString(const StringLiteral * Literal)3229 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
3230 unsigned StringLength = 0;
3231 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3232 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
3233
3234 if (auto *C = Entry.second)
3235 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3236
3237 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3238 llvm::Constant *Zeros[] = { Zero, Zero };
3239 llvm::Value *V;
3240 // If we don't already have it, get _NSConstantStringClassReference.
3241 if (!ConstantStringClassRef) {
3242 std::string StringClass(getLangOpts().ObjCConstantStringClass);
3243 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3244 llvm::Constant *GV;
3245 if (LangOpts.ObjCRuntime.isNonFragile()) {
3246 std::string str =
3247 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
3248 : "OBJC_CLASS_$_" + StringClass;
3249 GV = getObjCRuntime().GetClassGlobal(str);
3250 // Make sure the result is of the correct type.
3251 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3252 V = llvm::ConstantExpr::getBitCast(GV, PTy);
3253 ConstantStringClassRef = V;
3254 } else {
3255 std::string str =
3256 StringClass.empty() ? "_NSConstantStringClassReference"
3257 : "_" + StringClass + "ClassReference";
3258 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
3259 GV = CreateRuntimeVariable(PTy, str);
3260 // Decay array -> ptr
3261 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
3262 ConstantStringClassRef = V;
3263 }
3264 } else
3265 V = ConstantStringClassRef;
3266
3267 if (!NSConstantStringType) {
3268 // Construct the type for a constant NSString.
3269 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
3270 D->startDefinition();
3271
3272 QualType FieldTypes[3];
3273
3274 // const int *isa;
3275 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3276 // const char *str;
3277 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3278 // unsigned int length;
3279 FieldTypes[2] = Context.UnsignedIntTy;
3280
3281 // Create fields
3282 for (unsigned i = 0; i < 3; ++i) {
3283 FieldDecl *Field = FieldDecl::Create(Context, D,
3284 SourceLocation(),
3285 SourceLocation(), nullptr,
3286 FieldTypes[i], /*TInfo=*/nullptr,
3287 /*BitWidth=*/nullptr,
3288 /*Mutable=*/false,
3289 ICIS_NoInit);
3290 Field->setAccess(AS_public);
3291 D->addDecl(Field);
3292 }
3293
3294 D->completeDefinition();
3295 QualType NSTy = Context.getTagDeclType(D);
3296 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3297 }
3298
3299 llvm::Constant *Fields[3];
3300
3301 // Class pointer.
3302 Fields[0] = cast<llvm::ConstantExpr>(V);
3303
3304 // String pointer.
3305 llvm::Constant *C =
3306 llvm::ConstantDataArray::getString(VMContext, Entry.first());
3307
3308 llvm::GlobalValue::LinkageTypes Linkage;
3309 bool isConstant;
3310 Linkage = llvm::GlobalValue::PrivateLinkage;
3311 isConstant = !LangOpts.WritableStrings;
3312
3313 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3314 Linkage, C, ".str");
3315 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3316 // Don't enforce the target's minimum global alignment, since the only use
3317 // of the string is via this class initializer.
3318 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3319 GV->setAlignment(Align.getQuantity());
3320 Fields[1] =
3321 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3322
3323 // String length.
3324 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3325 Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3326
3327 // The struct.
3328 CharUnits Alignment = getPointerAlign();
3329 C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3330 GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3331 llvm::GlobalVariable::PrivateLinkage, C,
3332 "_unnamed_nsstring_");
3333 GV->setAlignment(Alignment.getQuantity());
3334 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3335 const char *NSStringNonFragileABISection =
3336 "__DATA,__objc_stringobj,regular,no_dead_strip";
3337 // FIXME. Fix section.
3338 GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3339 ? NSStringNonFragileABISection
3340 : NSStringSection);
3341 Entry.second = GV;
3342
3343 return ConstantAddress(GV, Alignment);
3344 }
3345
getObjCFastEnumerationStateType()3346 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3347 if (ObjCFastEnumerationStateType.isNull()) {
3348 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3349 D->startDefinition();
3350
3351 QualType FieldTypes[] = {
3352 Context.UnsignedLongTy,
3353 Context.getPointerType(Context.getObjCIdType()),
3354 Context.getPointerType(Context.UnsignedLongTy),
3355 Context.getConstantArrayType(Context.UnsignedLongTy,
3356 llvm::APInt(32, 5), ArrayType::Normal, 0)
3357 };
3358
3359 for (size_t i = 0; i < 4; ++i) {
3360 FieldDecl *Field = FieldDecl::Create(Context,
3361 D,
3362 SourceLocation(),
3363 SourceLocation(), nullptr,
3364 FieldTypes[i], /*TInfo=*/nullptr,
3365 /*BitWidth=*/nullptr,
3366 /*Mutable=*/false,
3367 ICIS_NoInit);
3368 Field->setAccess(AS_public);
3369 D->addDecl(Field);
3370 }
3371
3372 D->completeDefinition();
3373 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3374 }
3375
3376 return ObjCFastEnumerationStateType;
3377 }
3378
3379 llvm::Constant *
GetConstantArrayFromStringLiteral(const StringLiteral * E)3380 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3381 assert(!E->getType()->isPointerType() && "Strings are always arrays");
3382
3383 // Don't emit it as the address of the string, emit the string data itself
3384 // as an inline array.
3385 if (E->getCharByteWidth() == 1) {
3386 SmallString<64> Str(E->getString());
3387
3388 // Resize the string to the right size, which is indicated by its type.
3389 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3390 Str.resize(CAT->getSize().getZExtValue());
3391 return llvm::ConstantDataArray::getString(VMContext, Str, false);
3392 }
3393
3394 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3395 llvm::Type *ElemTy = AType->getElementType();
3396 unsigned NumElements = AType->getNumElements();
3397
3398 // Wide strings have either 2-byte or 4-byte elements.
3399 if (ElemTy->getPrimitiveSizeInBits() == 16) {
3400 SmallVector<uint16_t, 32> Elements;
3401 Elements.reserve(NumElements);
3402
3403 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3404 Elements.push_back(E->getCodeUnit(i));
3405 Elements.resize(NumElements);
3406 return llvm::ConstantDataArray::get(VMContext, Elements);
3407 }
3408
3409 assert(ElemTy->getPrimitiveSizeInBits() == 32);
3410 SmallVector<uint32_t, 32> Elements;
3411 Elements.reserve(NumElements);
3412
3413 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3414 Elements.push_back(E->getCodeUnit(i));
3415 Elements.resize(NumElements);
3416 return llvm::ConstantDataArray::get(VMContext, Elements);
3417 }
3418
3419 static llvm::GlobalVariable *
GenerateStringLiteral(llvm::Constant * C,llvm::GlobalValue::LinkageTypes LT,CodeGenModule & CGM,StringRef GlobalName,CharUnits Alignment)3420 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3421 CodeGenModule &CGM, StringRef GlobalName,
3422 CharUnits Alignment) {
3423 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3424 unsigned AddrSpace = 0;
3425 if (CGM.getLangOpts().OpenCL)
3426 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3427
3428 llvm::Module &M = CGM.getModule();
3429 // Create a global variable for this string
3430 auto *GV = new llvm::GlobalVariable(
3431 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3432 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3433 GV->setAlignment(Alignment.getQuantity());
3434 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3435 if (GV->isWeakForLinker()) {
3436 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3437 GV->setComdat(M.getOrInsertComdat(GV->getName()));
3438 }
3439
3440 return GV;
3441 }
3442
3443 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3444 /// constant array for the given string literal.
3445 ConstantAddress
GetAddrOfConstantStringFromLiteral(const StringLiteral * S,StringRef Name)3446 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3447 StringRef Name) {
3448 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3449
3450 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3451 llvm::GlobalVariable **Entry = nullptr;
3452 if (!LangOpts.WritableStrings) {
3453 Entry = &ConstantStringMap[C];
3454 if (auto GV = *Entry) {
3455 if (Alignment.getQuantity() > GV->getAlignment())
3456 GV->setAlignment(Alignment.getQuantity());
3457 return ConstantAddress(GV, Alignment);
3458 }
3459 }
3460
3461 SmallString<256> MangledNameBuffer;
3462 StringRef GlobalVariableName;
3463 llvm::GlobalValue::LinkageTypes LT;
3464
3465 // Mangle the string literal if the ABI allows for it. However, we cannot
3466 // do this if we are compiling with ASan or -fwritable-strings because they
3467 // rely on strings having normal linkage.
3468 if (!LangOpts.WritableStrings &&
3469 !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3470 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3471 llvm::raw_svector_ostream Out(MangledNameBuffer);
3472 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3473
3474 LT = llvm::GlobalValue::LinkOnceODRLinkage;
3475 GlobalVariableName = MangledNameBuffer;
3476 } else {
3477 LT = llvm::GlobalValue::PrivateLinkage;
3478 GlobalVariableName = Name;
3479 }
3480
3481 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3482 if (Entry)
3483 *Entry = GV;
3484
3485 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3486 QualType());
3487 return ConstantAddress(GV, Alignment);
3488 }
3489
3490 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3491 /// array for the given ObjCEncodeExpr node.
3492 ConstantAddress
GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr * E)3493 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3494 std::string Str;
3495 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3496
3497 return GetAddrOfConstantCString(Str);
3498 }
3499
3500 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3501 /// the literal and a terminating '\0' character.
3502 /// The result has pointer to array type.
GetAddrOfConstantCString(const std::string & Str,const char * GlobalName)3503 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3504 const std::string &Str, const char *GlobalName) {
3505 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3506 CharUnits Alignment =
3507 getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3508
3509 llvm::Constant *C =
3510 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3511
3512 // Don't share any string literals if strings aren't constant.
3513 llvm::GlobalVariable **Entry = nullptr;
3514 if (!LangOpts.WritableStrings) {
3515 Entry = &ConstantStringMap[C];
3516 if (auto GV = *Entry) {
3517 if (Alignment.getQuantity() > GV->getAlignment())
3518 GV->setAlignment(Alignment.getQuantity());
3519 return ConstantAddress(GV, Alignment);
3520 }
3521 }
3522
3523 // Get the default prefix if a name wasn't specified.
3524 if (!GlobalName)
3525 GlobalName = ".str";
3526 // Create a global variable for this.
3527 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3528 GlobalName, Alignment);
3529 if (Entry)
3530 *Entry = GV;
3531 return ConstantAddress(GV, Alignment);
3532 }
3533
GetAddrOfGlobalTemporary(const MaterializeTemporaryExpr * E,const Expr * Init)3534 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3535 const MaterializeTemporaryExpr *E, const Expr *Init) {
3536 assert((E->getStorageDuration() == SD_Static ||
3537 E->getStorageDuration() == SD_Thread) && "not a global temporary");
3538 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3539
3540 // If we're not materializing a subobject of the temporary, keep the
3541 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3542 QualType MaterializedType = Init->getType();
3543 if (Init == E->GetTemporaryExpr())
3544 MaterializedType = E->getType();
3545
3546 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3547
3548 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3549 return ConstantAddress(Slot, Align);
3550
3551 // FIXME: If an externally-visible declaration extends multiple temporaries,
3552 // we need to give each temporary the same name in every translation unit (and
3553 // we also need to make the temporaries externally-visible).
3554 SmallString<256> Name;
3555 llvm::raw_svector_ostream Out(Name);
3556 getCXXABI().getMangleContext().mangleReferenceTemporary(
3557 VD, E->getManglingNumber(), Out);
3558
3559 APValue *Value = nullptr;
3560 if (E->getStorageDuration() == SD_Static) {
3561 // We might have a cached constant initializer for this temporary. Note
3562 // that this might have a different value from the value computed by
3563 // evaluating the initializer if the surrounding constant expression
3564 // modifies the temporary.
3565 Value = getContext().getMaterializedTemporaryValue(E, false);
3566 if (Value && Value->isUninit())
3567 Value = nullptr;
3568 }
3569
3570 // Try evaluating it now, it might have a constant initializer.
3571 Expr::EvalResult EvalResult;
3572 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3573 !EvalResult.hasSideEffects())
3574 Value = &EvalResult.Val;
3575
3576 llvm::Constant *InitialValue = nullptr;
3577 bool Constant = false;
3578 llvm::Type *Type;
3579 if (Value) {
3580 // The temporary has a constant initializer, use it.
3581 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3582 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3583 Type = InitialValue->getType();
3584 } else {
3585 // No initializer, the initialization will be provided when we
3586 // initialize the declaration which performed lifetime extension.
3587 Type = getTypes().ConvertTypeForMem(MaterializedType);
3588 }
3589
3590 // Create a global variable for this lifetime-extended temporary.
3591 llvm::GlobalValue::LinkageTypes Linkage =
3592 getLLVMLinkageVarDefinition(VD, Constant);
3593 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3594 const VarDecl *InitVD;
3595 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3596 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3597 // Temporaries defined inside a class get linkonce_odr linkage because the
3598 // class can be defined in multipe translation units.
3599 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3600 } else {
3601 // There is no need for this temporary to have external linkage if the
3602 // VarDecl has external linkage.
3603 Linkage = llvm::GlobalVariable::InternalLinkage;
3604 }
3605 }
3606 unsigned AddrSpace = GetGlobalVarAddressSpace(
3607 VD, getContext().getTargetAddressSpace(MaterializedType));
3608 auto *GV = new llvm::GlobalVariable(
3609 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3610 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3611 AddrSpace);
3612 setGlobalVisibility(GV, VD);
3613 GV->setAlignment(Align.getQuantity());
3614 if (supportsCOMDAT() && GV->isWeakForLinker())
3615 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3616 if (VD->getTLSKind())
3617 setTLSMode(GV, *VD);
3618 MaterializedGlobalTemporaryMap[E] = GV;
3619 return ConstantAddress(GV, Align);
3620 }
3621
3622 /// EmitObjCPropertyImplementations - Emit information for synthesized
3623 /// properties for an implementation.
EmitObjCPropertyImplementations(const ObjCImplementationDecl * D)3624 void CodeGenModule::EmitObjCPropertyImplementations(const
3625 ObjCImplementationDecl *D) {
3626 for (const auto *PID : D->property_impls()) {
3627 // Dynamic is just for type-checking.
3628 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3629 ObjCPropertyDecl *PD = PID->getPropertyDecl();
3630
3631 // Determine which methods need to be implemented, some may have
3632 // been overridden. Note that ::isPropertyAccessor is not the method
3633 // we want, that just indicates if the decl came from a
3634 // property. What we want to know is if the method is defined in
3635 // this implementation.
3636 if (!D->getInstanceMethod(PD->getGetterName()))
3637 CodeGenFunction(*this).GenerateObjCGetter(
3638 const_cast<ObjCImplementationDecl *>(D), PID);
3639 if (!PD->isReadOnly() &&
3640 !D->getInstanceMethod(PD->getSetterName()))
3641 CodeGenFunction(*this).GenerateObjCSetter(
3642 const_cast<ObjCImplementationDecl *>(D), PID);
3643 }
3644 }
3645 }
3646
needsDestructMethod(ObjCImplementationDecl * impl)3647 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3648 const ObjCInterfaceDecl *iface = impl->getClassInterface();
3649 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3650 ivar; ivar = ivar->getNextIvar())
3651 if (ivar->getType().isDestructedType())
3652 return true;
3653
3654 return false;
3655 }
3656
AllTrivialInitializers(CodeGenModule & CGM,ObjCImplementationDecl * D)3657 static bool AllTrivialInitializers(CodeGenModule &CGM,
3658 ObjCImplementationDecl *D) {
3659 CodeGenFunction CGF(CGM);
3660 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3661 E = D->init_end(); B != E; ++B) {
3662 CXXCtorInitializer *CtorInitExp = *B;
3663 Expr *Init = CtorInitExp->getInit();
3664 if (!CGF.isTrivialInitializer(Init))
3665 return false;
3666 }
3667 return true;
3668 }
3669
3670 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3671 /// for an implementation.
EmitObjCIvarInitializations(ObjCImplementationDecl * D)3672 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3673 // We might need a .cxx_destruct even if we don't have any ivar initializers.
3674 if (needsDestructMethod(D)) {
3675 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3676 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3677 ObjCMethodDecl *DTORMethod =
3678 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3679 cxxSelector, getContext().VoidTy, nullptr, D,
3680 /*isInstance=*/true, /*isVariadic=*/false,
3681 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3682 /*isDefined=*/false, ObjCMethodDecl::Required);
3683 D->addInstanceMethod(DTORMethod);
3684 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3685 D->setHasDestructors(true);
3686 }
3687
3688 // If the implementation doesn't have any ivar initializers, we don't need
3689 // a .cxx_construct.
3690 if (D->getNumIvarInitializers() == 0 ||
3691 AllTrivialInitializers(*this, D))
3692 return;
3693
3694 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3695 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3696 // The constructor returns 'self'.
3697 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3698 D->getLocation(),
3699 D->getLocation(),
3700 cxxSelector,
3701 getContext().getObjCIdType(),
3702 nullptr, D, /*isInstance=*/true,
3703 /*isVariadic=*/false,
3704 /*isPropertyAccessor=*/true,
3705 /*isImplicitlyDeclared=*/true,
3706 /*isDefined=*/false,
3707 ObjCMethodDecl::Required);
3708 D->addInstanceMethod(CTORMethod);
3709 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3710 D->setHasNonZeroConstructors(true);
3711 }
3712
3713 /// EmitNamespace - Emit all declarations in a namespace.
EmitNamespace(const NamespaceDecl * ND)3714 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3715 for (auto *I : ND->decls()) {
3716 if (const auto *VD = dyn_cast<VarDecl>(I))
3717 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3718 VD->getTemplateSpecializationKind() != TSK_Undeclared)
3719 continue;
3720 EmitTopLevelDecl(I);
3721 }
3722 }
3723
3724 // EmitLinkageSpec - Emit all declarations in a linkage spec.
EmitLinkageSpec(const LinkageSpecDecl * LSD)3725 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3726 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3727 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3728 ErrorUnsupported(LSD, "linkage spec");
3729 return;
3730 }
3731
3732 for (auto *I : LSD->decls()) {
3733 // Meta-data for ObjC class includes references to implemented methods.
3734 // Generate class's method definitions first.
3735 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3736 for (auto *M : OID->methods())
3737 EmitTopLevelDecl(M);
3738 }
3739 EmitTopLevelDecl(I);
3740 }
3741 }
3742
3743 /// EmitTopLevelDecl - Emit code for a single top level declaration.
EmitTopLevelDecl(Decl * D)3744 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3745 // Ignore dependent declarations.
3746 if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3747 return;
3748
3749 switch (D->getKind()) {
3750 case Decl::CXXConversion:
3751 case Decl::CXXMethod:
3752 case Decl::Function:
3753 // Skip function templates
3754 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3755 cast<FunctionDecl>(D)->isLateTemplateParsed())
3756 return;
3757
3758 EmitGlobal(cast<FunctionDecl>(D));
3759 // Always provide some coverage mapping
3760 // even for the functions that aren't emitted.
3761 AddDeferredUnusedCoverageMapping(D);
3762 break;
3763
3764 case Decl::Var:
3765 // Skip variable templates
3766 if (cast<VarDecl>(D)->getDescribedVarTemplate())
3767 return;
3768 case Decl::VarTemplateSpecialization:
3769 EmitGlobal(cast<VarDecl>(D));
3770 break;
3771
3772 // Indirect fields from global anonymous structs and unions can be
3773 // ignored; only the actual variable requires IR gen support.
3774 case Decl::IndirectField:
3775 break;
3776
3777 // C++ Decls
3778 case Decl::Namespace:
3779 EmitNamespace(cast<NamespaceDecl>(D));
3780 break;
3781 case Decl::CXXRecord:
3782 // Emit any static data members, they may be definitions.
3783 for (auto *I : cast<CXXRecordDecl>(D)->decls())
3784 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3785 EmitTopLevelDecl(I);
3786 break;
3787 // No code generation needed.
3788 case Decl::UsingShadow:
3789 case Decl::ClassTemplate:
3790 case Decl::VarTemplate:
3791 case Decl::VarTemplatePartialSpecialization:
3792 case Decl::FunctionTemplate:
3793 case Decl::TypeAliasTemplate:
3794 case Decl::Block:
3795 case Decl::Empty:
3796 break;
3797 case Decl::Using: // using X; [C++]
3798 if (CGDebugInfo *DI = getModuleDebugInfo())
3799 DI->EmitUsingDecl(cast<UsingDecl>(*D));
3800 return;
3801 case Decl::NamespaceAlias:
3802 if (CGDebugInfo *DI = getModuleDebugInfo())
3803 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3804 return;
3805 case Decl::UsingDirective: // using namespace X; [C++]
3806 if (CGDebugInfo *DI = getModuleDebugInfo())
3807 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3808 return;
3809 case Decl::CXXConstructor:
3810 // Skip function templates
3811 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3812 cast<FunctionDecl>(D)->isLateTemplateParsed())
3813 return;
3814
3815 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3816 break;
3817 case Decl::CXXDestructor:
3818 if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3819 return;
3820 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3821 break;
3822
3823 case Decl::StaticAssert:
3824 // Nothing to do.
3825 break;
3826
3827 // Objective-C Decls
3828
3829 // Forward declarations, no (immediate) code generation.
3830 case Decl::ObjCInterface:
3831 case Decl::ObjCCategory:
3832 break;
3833
3834 case Decl::ObjCProtocol: {
3835 auto *Proto = cast<ObjCProtocolDecl>(D);
3836 if (Proto->isThisDeclarationADefinition())
3837 ObjCRuntime->GenerateProtocol(Proto);
3838 break;
3839 }
3840
3841 case Decl::ObjCCategoryImpl:
3842 // Categories have properties but don't support synthesize so we
3843 // can ignore them here.
3844 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3845 break;
3846
3847 case Decl::ObjCImplementation: {
3848 auto *OMD = cast<ObjCImplementationDecl>(D);
3849 EmitObjCPropertyImplementations(OMD);
3850 EmitObjCIvarInitializations(OMD);
3851 ObjCRuntime->GenerateClass(OMD);
3852 // Emit global variable debug information.
3853 if (CGDebugInfo *DI = getModuleDebugInfo())
3854 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3855 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3856 OMD->getClassInterface()), OMD->getLocation());
3857 break;
3858 }
3859 case Decl::ObjCMethod: {
3860 auto *OMD = cast<ObjCMethodDecl>(D);
3861 // If this is not a prototype, emit the body.
3862 if (OMD->getBody())
3863 CodeGenFunction(*this).GenerateObjCMethod(OMD);
3864 break;
3865 }
3866 case Decl::ObjCCompatibleAlias:
3867 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3868 break;
3869
3870 case Decl::PragmaComment: {
3871 const auto *PCD = cast<PragmaCommentDecl>(D);
3872 switch (PCD->getCommentKind()) {
3873 case PCK_Unknown:
3874 llvm_unreachable("unexpected pragma comment kind");
3875 case PCK_Linker:
3876 AppendLinkerOptions(PCD->getArg());
3877 break;
3878 case PCK_Lib:
3879 AddDependentLib(PCD->getArg());
3880 break;
3881 case PCK_Compiler:
3882 case PCK_ExeStr:
3883 case PCK_User:
3884 break; // We ignore all of these.
3885 }
3886 break;
3887 }
3888
3889 case Decl::PragmaDetectMismatch: {
3890 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3891 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3892 break;
3893 }
3894
3895 case Decl::LinkageSpec:
3896 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3897 break;
3898
3899 case Decl::FileScopeAsm: {
3900 // File-scope asm is ignored during device-side CUDA compilation.
3901 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3902 break;
3903 // File-scope asm is ignored during device-side OpenMP compilation.
3904 if (LangOpts.OpenMPIsDevice)
3905 break;
3906 auto *AD = cast<FileScopeAsmDecl>(D);
3907 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3908 break;
3909 }
3910
3911 case Decl::Import: {
3912 auto *Import = cast<ImportDecl>(D);
3913
3914 // Ignore import declarations that come from imported modules.
3915 if (Import->getImportedOwningModule())
3916 break;
3917 if (CGDebugInfo *DI = getModuleDebugInfo())
3918 DI->EmitImportDecl(*Import);
3919
3920 ImportedModules.insert(Import->getImportedModule());
3921 break;
3922 }
3923
3924 case Decl::OMPThreadPrivate:
3925 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3926 break;
3927
3928 case Decl::ClassTemplateSpecialization: {
3929 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3930 if (DebugInfo &&
3931 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3932 Spec->hasDefinition())
3933 DebugInfo->completeTemplateDefinition(*Spec);
3934 break;
3935 }
3936
3937 case Decl::OMPDeclareReduction:
3938 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
3939 break;
3940
3941 default:
3942 // Make sure we handled everything we should, every other kind is a
3943 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
3944 // function. Need to recode Decl::Kind to do that easily.
3945 assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3946 break;
3947 }
3948 }
3949
AddDeferredUnusedCoverageMapping(Decl * D)3950 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3951 // Do we need to generate coverage mapping?
3952 if (!CodeGenOpts.CoverageMapping)
3953 return;
3954 switch (D->getKind()) {
3955 case Decl::CXXConversion:
3956 case Decl::CXXMethod:
3957 case Decl::Function:
3958 case Decl::ObjCMethod:
3959 case Decl::CXXConstructor:
3960 case Decl::CXXDestructor: {
3961 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
3962 return;
3963 auto I = DeferredEmptyCoverageMappingDecls.find(D);
3964 if (I == DeferredEmptyCoverageMappingDecls.end())
3965 DeferredEmptyCoverageMappingDecls[D] = true;
3966 break;
3967 }
3968 default:
3969 break;
3970 };
3971 }
3972
ClearUnusedCoverageMapping(const Decl * D)3973 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3974 // Do we need to generate coverage mapping?
3975 if (!CodeGenOpts.CoverageMapping)
3976 return;
3977 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3978 if (Fn->isTemplateInstantiation())
3979 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3980 }
3981 auto I = DeferredEmptyCoverageMappingDecls.find(D);
3982 if (I == DeferredEmptyCoverageMappingDecls.end())
3983 DeferredEmptyCoverageMappingDecls[D] = false;
3984 else
3985 I->second = false;
3986 }
3987
EmitDeferredUnusedCoverageMappings()3988 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3989 std::vector<const Decl *> DeferredDecls;
3990 for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3991 if (!I.second)
3992 continue;
3993 DeferredDecls.push_back(I.first);
3994 }
3995 // Sort the declarations by their location to make sure that the tests get a
3996 // predictable order for the coverage mapping for the unused declarations.
3997 if (CodeGenOpts.DumpCoverageMapping)
3998 std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3999 [] (const Decl *LHS, const Decl *RHS) {
4000 return LHS->getLocStart() < RHS->getLocStart();
4001 });
4002 for (const auto *D : DeferredDecls) {
4003 switch (D->getKind()) {
4004 case Decl::CXXConversion:
4005 case Decl::CXXMethod:
4006 case Decl::Function:
4007 case Decl::ObjCMethod: {
4008 CodeGenPGO PGO(*this);
4009 GlobalDecl GD(cast<FunctionDecl>(D));
4010 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4011 getFunctionLinkage(GD));
4012 break;
4013 }
4014 case Decl::CXXConstructor: {
4015 CodeGenPGO PGO(*this);
4016 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4017 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4018 getFunctionLinkage(GD));
4019 break;
4020 }
4021 case Decl::CXXDestructor: {
4022 CodeGenPGO PGO(*this);
4023 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4024 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4025 getFunctionLinkage(GD));
4026 break;
4027 }
4028 default:
4029 break;
4030 };
4031 }
4032 }
4033
4034 /// Turns the given pointer into a constant.
GetPointerConstant(llvm::LLVMContext & Context,const void * Ptr)4035 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4036 const void *Ptr) {
4037 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4038 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4039 return llvm::ConstantInt::get(i64, PtrInt);
4040 }
4041
EmitGlobalDeclMetadata(CodeGenModule & CGM,llvm::NamedMDNode * & GlobalMetadata,GlobalDecl D,llvm::GlobalValue * Addr)4042 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4043 llvm::NamedMDNode *&GlobalMetadata,
4044 GlobalDecl D,
4045 llvm::GlobalValue *Addr) {
4046 if (!GlobalMetadata)
4047 GlobalMetadata =
4048 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4049
4050 // TODO: should we report variant information for ctors/dtors?
4051 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4052 llvm::ConstantAsMetadata::get(GetPointerConstant(
4053 CGM.getLLVMContext(), D.getDecl()))};
4054 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4055 }
4056
4057 /// For each function which is declared within an extern "C" region and marked
4058 /// as 'used', but has internal linkage, create an alias from the unmangled
4059 /// name to the mangled name if possible. People expect to be able to refer
4060 /// to such functions with an unmangled name from inline assembly within the
4061 /// same translation unit.
EmitStaticExternCAliases()4062 void CodeGenModule::EmitStaticExternCAliases() {
4063 // Don't do anything if we're generating CUDA device code -- the NVPTX
4064 // assembly target doesn't support aliases.
4065 if (Context.getTargetInfo().getTriple().isNVPTX())
4066 return;
4067 for (auto &I : StaticExternCValues) {
4068 IdentifierInfo *Name = I.first;
4069 llvm::GlobalValue *Val = I.second;
4070 if (Val && !getModule().getNamedValue(Name->getName()))
4071 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4072 }
4073 }
4074
lookupRepresentativeDecl(StringRef MangledName,GlobalDecl & Result) const4075 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4076 GlobalDecl &Result) const {
4077 auto Res = Manglings.find(MangledName);
4078 if (Res == Manglings.end())
4079 return false;
4080 Result = Res->getValue();
4081 return true;
4082 }
4083
4084 /// Emits metadata nodes associating all the global values in the
4085 /// current module with the Decls they came from. This is useful for
4086 /// projects using IR gen as a subroutine.
4087 ///
4088 /// Since there's currently no way to associate an MDNode directly
4089 /// with an llvm::GlobalValue, we create a global named metadata
4090 /// with the name 'clang.global.decl.ptrs'.
EmitDeclMetadata()4091 void CodeGenModule::EmitDeclMetadata() {
4092 llvm::NamedMDNode *GlobalMetadata = nullptr;
4093
4094 for (auto &I : MangledDeclNames) {
4095 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4096 // Some mangled names don't necessarily have an associated GlobalValue
4097 // in this module, e.g. if we mangled it for DebugInfo.
4098 if (Addr)
4099 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4100 }
4101 }
4102
4103 /// Emits metadata nodes for all the local variables in the current
4104 /// function.
EmitDeclMetadata()4105 void CodeGenFunction::EmitDeclMetadata() {
4106 if (LocalDeclMap.empty()) return;
4107
4108 llvm::LLVMContext &Context = getLLVMContext();
4109
4110 // Find the unique metadata ID for this name.
4111 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4112
4113 llvm::NamedMDNode *GlobalMetadata = nullptr;
4114
4115 for (auto &I : LocalDeclMap) {
4116 const Decl *D = I.first;
4117 llvm::Value *Addr = I.second.getPointer();
4118 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4119 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4120 Alloca->setMetadata(
4121 DeclPtrKind, llvm::MDNode::get(
4122 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4123 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4124 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4125 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4126 }
4127 }
4128 }
4129
EmitVersionIdentMetadata()4130 void CodeGenModule::EmitVersionIdentMetadata() {
4131 llvm::NamedMDNode *IdentMetadata =
4132 TheModule.getOrInsertNamedMetadata("llvm.ident");
4133 std::string Version = getClangFullVersion();
4134 llvm::LLVMContext &Ctx = TheModule.getContext();
4135
4136 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4137 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4138 }
4139
EmitTargetMetadata()4140 void CodeGenModule::EmitTargetMetadata() {
4141 // Warning, new MangledDeclNames may be appended within this loop.
4142 // We rely on MapVector insertions adding new elements to the end
4143 // of the container.
4144 // FIXME: Move this loop into the one target that needs it, and only
4145 // loop over those declarations for which we couldn't emit the target
4146 // metadata when we emitted the declaration.
4147 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4148 auto Val = *(MangledDeclNames.begin() + I);
4149 const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4150 llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4151 getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4152 }
4153 }
4154
EmitCoverageFile()4155 void CodeGenModule::EmitCoverageFile() {
4156 if (!getCodeGenOpts().CoverageFile.empty()) {
4157 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
4158 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4159 llvm::LLVMContext &Ctx = TheModule.getContext();
4160 llvm::MDString *CoverageFile =
4161 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
4162 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4163 llvm::MDNode *CU = CUNode->getOperand(i);
4164 llvm::Metadata *Elts[] = {CoverageFile, CU};
4165 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4166 }
4167 }
4168 }
4169 }
4170
EmitUuidofInitializer(StringRef Uuid)4171 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4172 // Sema has checked that all uuid strings are of the form
4173 // "12345678-1234-1234-1234-1234567890ab".
4174 assert(Uuid.size() == 36);
4175 for (unsigned i = 0; i < 36; ++i) {
4176 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4177 else assert(isHexDigit(Uuid[i]));
4178 }
4179
4180 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4181 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4182
4183 llvm::Constant *Field3[8];
4184 for (unsigned Idx = 0; Idx < 8; ++Idx)
4185 Field3[Idx] = llvm::ConstantInt::get(
4186 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4187
4188 llvm::Constant *Fields[4] = {
4189 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16),
4190 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16),
4191 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4192 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4193 };
4194
4195 return llvm::ConstantStruct::getAnon(Fields);
4196 }
4197
GetAddrOfRTTIDescriptor(QualType Ty,bool ForEH)4198 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4199 bool ForEH) {
4200 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4201 // FIXME: should we even be calling this method if RTTI is disabled
4202 // and it's not for EH?
4203 if (!ForEH && !getLangOpts().RTTI)
4204 return llvm::Constant::getNullValue(Int8PtrTy);
4205
4206 if (ForEH && Ty->isObjCObjectPointerType() &&
4207 LangOpts.ObjCRuntime.isGNUFamily())
4208 return ObjCRuntime->GetEHType(Ty);
4209
4210 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4211 }
4212
EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl * D)4213 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4214 for (auto RefExpr : D->varlists()) {
4215 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4216 bool PerformInit =
4217 VD->getAnyInitializer() &&
4218 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4219 /*ForRef=*/false);
4220
4221 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4222 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4223 VD, Addr, RefExpr->getLocStart(), PerformInit))
4224 CXXGlobalInits.push_back(InitFunction);
4225 }
4226 }
4227
CreateMetadataIdentifierForType(QualType T)4228 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4229 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4230 if (InternalId)
4231 return InternalId;
4232
4233 if (isExternallyVisible(T->getLinkage())) {
4234 std::string OutName;
4235 llvm::raw_string_ostream Out(OutName);
4236 getCXXABI().getMangleContext().mangleTypeName(T, Out);
4237
4238 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4239 } else {
4240 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4241 llvm::ArrayRef<llvm::Metadata *>());
4242 }
4243
4244 return InternalId;
4245 }
4246
4247 /// Returns whether this module needs the "all-vtables" type identifier.
NeedAllVtablesTypeId() const4248 bool CodeGenModule::NeedAllVtablesTypeId() const {
4249 // Returns true if at least one of vtable-based CFI checkers is enabled and
4250 // is not in the trapping mode.
4251 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4252 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4253 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4254 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4255 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4256 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4257 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4258 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4259 }
4260
AddVTableTypeMetadata(llvm::GlobalVariable * VTable,CharUnits Offset,const CXXRecordDecl * RD)4261 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4262 CharUnits Offset,
4263 const CXXRecordDecl *RD) {
4264 llvm::Metadata *MD =
4265 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4266 VTable->addTypeMetadata(Offset.getQuantity(), MD);
4267
4268 if (CodeGenOpts.SanitizeCfiCrossDso)
4269 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4270 VTable->addTypeMetadata(Offset.getQuantity(),
4271 llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4272
4273 if (NeedAllVtablesTypeId()) {
4274 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4275 VTable->addTypeMetadata(Offset.getQuantity(), MD);
4276 }
4277 }
4278
4279 // Fills in the supplied string map with the set of target features for the
4280 // passed in function.
getFunctionFeatureMap(llvm::StringMap<bool> & FeatureMap,const FunctionDecl * FD)4281 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4282 const FunctionDecl *FD) {
4283 StringRef TargetCPU = Target.getTargetOpts().CPU;
4284 if (const auto *TD = FD->getAttr<TargetAttr>()) {
4285 // If we have a TargetAttr build up the feature map based on that.
4286 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4287
4288 // Make a copy of the features as passed on the command line into the
4289 // beginning of the additional features from the function to override.
4290 ParsedAttr.first.insert(ParsedAttr.first.begin(),
4291 Target.getTargetOpts().FeaturesAsWritten.begin(),
4292 Target.getTargetOpts().FeaturesAsWritten.end());
4293
4294 if (ParsedAttr.second != "")
4295 TargetCPU = ParsedAttr.second;
4296
4297 // Now populate the feature map, first with the TargetCPU which is either
4298 // the default or a new one from the target attribute string. Then we'll use
4299 // the passed in features (FeaturesAsWritten) along with the new ones from
4300 // the attribute.
4301 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4302 } else {
4303 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4304 Target.getTargetOpts().Features);
4305 }
4306 }
4307
getSanStats()4308 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4309 if (!SanStats)
4310 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4311
4312 return *SanStats;
4313 }
4314