1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/x86_64/processor.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "../kvm_util_internal.h"
11 #include "processor.h"
12
13 #ifndef NUM_INTERRUPTS
14 #define NUM_INTERRUPTS 256
15 #endif
16
17 #define DEFAULT_CODE_SELECTOR 0x8
18 #define DEFAULT_DATA_SELECTOR 0x10
19
20 vm_vaddr_t exception_handlers;
21
22 /* Virtual translation table structure declarations */
23 struct pageUpperEntry {
24 uint64_t present:1;
25 uint64_t writable:1;
26 uint64_t user:1;
27 uint64_t write_through:1;
28 uint64_t cache_disable:1;
29 uint64_t accessed:1;
30 uint64_t ignored_06:1;
31 uint64_t page_size:1;
32 uint64_t ignored_11_08:4;
33 uint64_t pfn:40;
34 uint64_t ignored_62_52:11;
35 uint64_t execute_disable:1;
36 };
37
38 struct pageTableEntry {
39 uint64_t present:1;
40 uint64_t writable:1;
41 uint64_t user:1;
42 uint64_t write_through:1;
43 uint64_t cache_disable:1;
44 uint64_t accessed:1;
45 uint64_t dirty:1;
46 uint64_t reserved_07:1;
47 uint64_t global:1;
48 uint64_t ignored_11_09:3;
49 uint64_t pfn:40;
50 uint64_t ignored_62_52:11;
51 uint64_t execute_disable:1;
52 };
53
regs_dump(FILE * stream,struct kvm_regs * regs,uint8_t indent)54 void regs_dump(FILE *stream, struct kvm_regs *regs,
55 uint8_t indent)
56 {
57 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
58 "rcx: 0x%.16llx rdx: 0x%.16llx\n",
59 indent, "",
60 regs->rax, regs->rbx, regs->rcx, regs->rdx);
61 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
62 "rsp: 0x%.16llx rbp: 0x%.16llx\n",
63 indent, "",
64 regs->rsi, regs->rdi, regs->rsp, regs->rbp);
65 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx "
66 "r10: 0x%.16llx r11: 0x%.16llx\n",
67 indent, "",
68 regs->r8, regs->r9, regs->r10, regs->r11);
69 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
70 "r14: 0x%.16llx r15: 0x%.16llx\n",
71 indent, "",
72 regs->r12, regs->r13, regs->r14, regs->r15);
73 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
74 indent, "",
75 regs->rip, regs->rflags);
76 }
77
78 /*
79 * Segment Dump
80 *
81 * Input Args:
82 * stream - Output FILE stream
83 * segment - KVM segment
84 * indent - Left margin indent amount
85 *
86 * Output Args: None
87 *
88 * Return: None
89 *
90 * Dumps the state of the KVM segment given by @segment, to the FILE stream
91 * given by @stream.
92 */
segment_dump(FILE * stream,struct kvm_segment * segment,uint8_t indent)93 static void segment_dump(FILE *stream, struct kvm_segment *segment,
94 uint8_t indent)
95 {
96 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
97 "selector: 0x%.4x type: 0x%.2x\n",
98 indent, "", segment->base, segment->limit,
99 segment->selector, segment->type);
100 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
101 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
102 indent, "", segment->present, segment->dpl,
103 segment->db, segment->s, segment->l);
104 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
105 "unusable: 0x%.2x padding: 0x%.2x\n",
106 indent, "", segment->g, segment->avl,
107 segment->unusable, segment->padding);
108 }
109
110 /*
111 * dtable Dump
112 *
113 * Input Args:
114 * stream - Output FILE stream
115 * dtable - KVM dtable
116 * indent - Left margin indent amount
117 *
118 * Output Args: None
119 *
120 * Return: None
121 *
122 * Dumps the state of the KVM dtable given by @dtable, to the FILE stream
123 * given by @stream.
124 */
dtable_dump(FILE * stream,struct kvm_dtable * dtable,uint8_t indent)125 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
126 uint8_t indent)
127 {
128 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
129 "padding: 0x%.4x 0x%.4x 0x%.4x\n",
130 indent, "", dtable->base, dtable->limit,
131 dtable->padding[0], dtable->padding[1], dtable->padding[2]);
132 }
133
sregs_dump(FILE * stream,struct kvm_sregs * sregs,uint8_t indent)134 void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
135 uint8_t indent)
136 {
137 unsigned int i;
138
139 fprintf(stream, "%*scs:\n", indent, "");
140 segment_dump(stream, &sregs->cs, indent + 2);
141 fprintf(stream, "%*sds:\n", indent, "");
142 segment_dump(stream, &sregs->ds, indent + 2);
143 fprintf(stream, "%*ses:\n", indent, "");
144 segment_dump(stream, &sregs->es, indent + 2);
145 fprintf(stream, "%*sfs:\n", indent, "");
146 segment_dump(stream, &sregs->fs, indent + 2);
147 fprintf(stream, "%*sgs:\n", indent, "");
148 segment_dump(stream, &sregs->gs, indent + 2);
149 fprintf(stream, "%*sss:\n", indent, "");
150 segment_dump(stream, &sregs->ss, indent + 2);
151 fprintf(stream, "%*str:\n", indent, "");
152 segment_dump(stream, &sregs->tr, indent + 2);
153 fprintf(stream, "%*sldt:\n", indent, "");
154 segment_dump(stream, &sregs->ldt, indent + 2);
155
156 fprintf(stream, "%*sgdt:\n", indent, "");
157 dtable_dump(stream, &sregs->gdt, indent + 2);
158 fprintf(stream, "%*sidt:\n", indent, "");
159 dtable_dump(stream, &sregs->idt, indent + 2);
160
161 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
162 "cr3: 0x%.16llx cr4: 0x%.16llx\n",
163 indent, "",
164 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
165 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
166 "apic_base: 0x%.16llx\n",
167 indent, "",
168 sregs->cr8, sregs->efer, sregs->apic_base);
169
170 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
171 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
172 fprintf(stream, "%*s%.16llx\n", indent + 2, "",
173 sregs->interrupt_bitmap[i]);
174 }
175 }
176
virt_pgd_alloc(struct kvm_vm * vm)177 void virt_pgd_alloc(struct kvm_vm *vm)
178 {
179 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
180 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
181
182 /* If needed, create page map l4 table. */
183 if (!vm->pgd_created) {
184 vm->pgd = vm_alloc_page_table(vm);
185 vm->pgd_created = true;
186 }
187 }
188
virt_get_pte(struct kvm_vm * vm,uint64_t pt_pfn,uint64_t vaddr,int level)189 static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr,
190 int level)
191 {
192 uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift);
193 int index = vaddr >> (vm->page_shift + level * 9) & 0x1ffu;
194
195 return &page_table[index];
196 }
197
virt_create_upper_pte(struct kvm_vm * vm,uint64_t pt_pfn,uint64_t vaddr,uint64_t paddr,int level,enum x86_page_size page_size)198 static struct pageUpperEntry *virt_create_upper_pte(struct kvm_vm *vm,
199 uint64_t pt_pfn,
200 uint64_t vaddr,
201 uint64_t paddr,
202 int level,
203 enum x86_page_size page_size)
204 {
205 struct pageUpperEntry *pte = virt_get_pte(vm, pt_pfn, vaddr, level);
206
207 if (!pte->present) {
208 pte->writable = true;
209 pte->present = true;
210 pte->page_size = (level == page_size);
211 if (pte->page_size)
212 pte->pfn = paddr >> vm->page_shift;
213 else
214 pte->pfn = vm_alloc_page_table(vm) >> vm->page_shift;
215 } else {
216 /*
217 * Entry already present. Assert that the caller doesn't want
218 * a hugepage at this level, and that there isn't a hugepage at
219 * this level.
220 */
221 TEST_ASSERT(level != page_size,
222 "Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
223 page_size, vaddr);
224 TEST_ASSERT(!pte->page_size,
225 "Cannot create page table at level: %u, vaddr: 0x%lx\n",
226 level, vaddr);
227 }
228 return pte;
229 }
230
__virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,enum x86_page_size page_size)231 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
232 enum x86_page_size page_size)
233 {
234 const uint64_t pg_size = 1ull << ((page_size * 9) + 12);
235 struct pageUpperEntry *pml4e, *pdpe, *pde;
236 struct pageTableEntry *pte;
237
238 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
239 "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
240
241 TEST_ASSERT((vaddr % pg_size) == 0,
242 "Virtual address not aligned,\n"
243 "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
244 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
245 "Invalid virtual address, vaddr: 0x%lx", vaddr);
246 TEST_ASSERT((paddr % pg_size) == 0,
247 "Physical address not aligned,\n"
248 " paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
249 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
250 "Physical address beyond maximum supported,\n"
251 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
252 paddr, vm->max_gfn, vm->page_size);
253
254 /*
255 * Allocate upper level page tables, if not already present. Return
256 * early if a hugepage was created.
257 */
258 pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift,
259 vaddr, paddr, 3, page_size);
260 if (pml4e->page_size)
261 return;
262
263 pdpe = virt_create_upper_pte(vm, pml4e->pfn, vaddr, paddr, 2, page_size);
264 if (pdpe->page_size)
265 return;
266
267 pde = virt_create_upper_pte(vm, pdpe->pfn, vaddr, paddr, 1, page_size);
268 if (pde->page_size)
269 return;
270
271 /* Fill in page table entry. */
272 pte = virt_get_pte(vm, pde->pfn, vaddr, 0);
273 TEST_ASSERT(!pte->present,
274 "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
275 pte->pfn = paddr >> vm->page_shift;
276 pte->writable = true;
277 pte->present = 1;
278 }
279
virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr)280 void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
281 {
282 __virt_pg_map(vm, vaddr, paddr, X86_PAGE_SIZE_4K);
283 }
284
_vm_get_page_table_entry(struct kvm_vm * vm,int vcpuid,uint64_t vaddr)285 static struct pageTableEntry *_vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid,
286 uint64_t vaddr)
287 {
288 uint16_t index[4];
289 struct pageUpperEntry *pml4e, *pdpe, *pde;
290 struct pageTableEntry *pte;
291 struct kvm_cpuid_entry2 *entry;
292 struct kvm_sregs sregs;
293 int max_phy_addr;
294 /* Set the bottom 52 bits. */
295 uint64_t rsvd_mask = 0x000fffffffffffff;
296
297 entry = kvm_get_supported_cpuid_index(0x80000008, 0);
298 max_phy_addr = entry->eax & 0x000000ff;
299 /* Clear the bottom bits of the reserved mask. */
300 rsvd_mask = (rsvd_mask >> max_phy_addr) << max_phy_addr;
301
302 /*
303 * SDM vol 3, fig 4-11 "Formats of CR3 and Paging-Structure Entries
304 * with 4-Level Paging and 5-Level Paging".
305 * If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1,
306 * the XD flag (bit 63) is reserved.
307 */
308 vcpu_sregs_get(vm, vcpuid, &sregs);
309 if ((sregs.efer & EFER_NX) == 0) {
310 rsvd_mask |= (1ull << 63);
311 }
312
313 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
314 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
315 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
316 (vaddr >> vm->page_shift)),
317 "Invalid virtual address, vaddr: 0x%lx",
318 vaddr);
319 /*
320 * Based on the mode check above there are 48 bits in the vaddr, so
321 * shift 16 to sign extend the last bit (bit-47),
322 */
323 TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
324 "Canonical check failed. The virtual address is invalid.");
325
326 index[0] = (vaddr >> 12) & 0x1ffu;
327 index[1] = (vaddr >> 21) & 0x1ffu;
328 index[2] = (vaddr >> 30) & 0x1ffu;
329 index[3] = (vaddr >> 39) & 0x1ffu;
330
331 pml4e = addr_gpa2hva(vm, vm->pgd);
332 TEST_ASSERT(pml4e[index[3]].present,
333 "Expected pml4e to be present for gva: 0x%08lx", vaddr);
334 TEST_ASSERT((*(uint64_t*)(&pml4e[index[3]]) &
335 (rsvd_mask | (1ull << 7))) == 0,
336 "Unexpected reserved bits set.");
337
338 pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size);
339 TEST_ASSERT(pdpe[index[2]].present,
340 "Expected pdpe to be present for gva: 0x%08lx", vaddr);
341 TEST_ASSERT(pdpe[index[2]].page_size == 0,
342 "Expected pdpe to map a pde not a 1-GByte page.");
343 TEST_ASSERT((*(uint64_t*)(&pdpe[index[2]]) & rsvd_mask) == 0,
344 "Unexpected reserved bits set.");
345
346 pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size);
347 TEST_ASSERT(pde[index[1]].present,
348 "Expected pde to be present for gva: 0x%08lx", vaddr);
349 TEST_ASSERT(pde[index[1]].page_size == 0,
350 "Expected pde to map a pte not a 2-MByte page.");
351 TEST_ASSERT((*(uint64_t*)(&pde[index[1]]) & rsvd_mask) == 0,
352 "Unexpected reserved bits set.");
353
354 pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size);
355 TEST_ASSERT(pte[index[0]].present,
356 "Expected pte to be present for gva: 0x%08lx", vaddr);
357
358 return &pte[index[0]];
359 }
360
vm_get_page_table_entry(struct kvm_vm * vm,int vcpuid,uint64_t vaddr)361 uint64_t vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr)
362 {
363 struct pageTableEntry *pte = _vm_get_page_table_entry(vm, vcpuid, vaddr);
364
365 return *(uint64_t *)pte;
366 }
367
vm_set_page_table_entry(struct kvm_vm * vm,int vcpuid,uint64_t vaddr,uint64_t pte)368 void vm_set_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr,
369 uint64_t pte)
370 {
371 struct pageTableEntry *new_pte = _vm_get_page_table_entry(vm, vcpuid,
372 vaddr);
373
374 *(uint64_t *)new_pte = pte;
375 }
376
virt_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)377 void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
378 {
379 struct pageUpperEntry *pml4e, *pml4e_start;
380 struct pageUpperEntry *pdpe, *pdpe_start;
381 struct pageUpperEntry *pde, *pde_start;
382 struct pageTableEntry *pte, *pte_start;
383
384 if (!vm->pgd_created)
385 return;
386
387 fprintf(stream, "%*s "
388 " no\n", indent, "");
389 fprintf(stream, "%*s index hvaddr gpaddr "
390 "addr w exec dirty\n",
391 indent, "");
392 pml4e_start = (struct pageUpperEntry *) addr_gpa2hva(vm, vm->pgd);
393 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
394 pml4e = &pml4e_start[n1];
395 if (!pml4e->present)
396 continue;
397 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u "
398 " %u\n",
399 indent, "",
400 pml4e - pml4e_start, pml4e,
401 addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->pfn,
402 pml4e->writable, pml4e->execute_disable);
403
404 pdpe_start = addr_gpa2hva(vm, pml4e->pfn * vm->page_size);
405 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
406 pdpe = &pdpe_start[n2];
407 if (!pdpe->present)
408 continue;
409 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10lx "
410 "%u %u\n",
411 indent, "",
412 pdpe - pdpe_start, pdpe,
413 addr_hva2gpa(vm, pdpe),
414 (uint64_t) pdpe->pfn, pdpe->writable,
415 pdpe->execute_disable);
416
417 pde_start = addr_gpa2hva(vm, pdpe->pfn * vm->page_size);
418 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
419 pde = &pde_start[n3];
420 if (!pde->present)
421 continue;
422 fprintf(stream, "%*spde 0x%-3zx %p "
423 "0x%-12lx 0x%-10lx %u %u\n",
424 indent, "", pde - pde_start, pde,
425 addr_hva2gpa(vm, pde),
426 (uint64_t) pde->pfn, pde->writable,
427 pde->execute_disable);
428
429 pte_start = addr_gpa2hva(vm, pde->pfn * vm->page_size);
430 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
431 pte = &pte_start[n4];
432 if (!pte->present)
433 continue;
434 fprintf(stream, "%*spte 0x%-3zx %p "
435 "0x%-12lx 0x%-10lx %u %u "
436 " %u 0x%-10lx\n",
437 indent, "",
438 pte - pte_start, pte,
439 addr_hva2gpa(vm, pte),
440 (uint64_t) pte->pfn,
441 pte->writable,
442 pte->execute_disable,
443 pte->dirty,
444 ((uint64_t) n1 << 27)
445 | ((uint64_t) n2 << 18)
446 | ((uint64_t) n3 << 9)
447 | ((uint64_t) n4));
448 }
449 }
450 }
451 }
452 }
453
454 /*
455 * Set Unusable Segment
456 *
457 * Input Args: None
458 *
459 * Output Args:
460 * segp - Pointer to segment register
461 *
462 * Return: None
463 *
464 * Sets the segment register pointed to by @segp to an unusable state.
465 */
kvm_seg_set_unusable(struct kvm_segment * segp)466 static void kvm_seg_set_unusable(struct kvm_segment *segp)
467 {
468 memset(segp, 0, sizeof(*segp));
469 segp->unusable = true;
470 }
471
kvm_seg_fill_gdt_64bit(struct kvm_vm * vm,struct kvm_segment * segp)472 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
473 {
474 void *gdt = addr_gva2hva(vm, vm->gdt);
475 struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
476
477 desc->limit0 = segp->limit & 0xFFFF;
478 desc->base0 = segp->base & 0xFFFF;
479 desc->base1 = segp->base >> 16;
480 desc->type = segp->type;
481 desc->s = segp->s;
482 desc->dpl = segp->dpl;
483 desc->p = segp->present;
484 desc->limit1 = segp->limit >> 16;
485 desc->avl = segp->avl;
486 desc->l = segp->l;
487 desc->db = segp->db;
488 desc->g = segp->g;
489 desc->base2 = segp->base >> 24;
490 if (!segp->s)
491 desc->base3 = segp->base >> 32;
492 }
493
494
495 /*
496 * Set Long Mode Flat Kernel Code Segment
497 *
498 * Input Args:
499 * vm - VM whose GDT is being filled, or NULL to only write segp
500 * selector - selector value
501 *
502 * Output Args:
503 * segp - Pointer to KVM segment
504 *
505 * Return: None
506 *
507 * Sets up the KVM segment pointed to by @segp, to be a code segment
508 * with the selector value given by @selector.
509 */
kvm_seg_set_kernel_code_64bit(struct kvm_vm * vm,uint16_t selector,struct kvm_segment * segp)510 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
511 struct kvm_segment *segp)
512 {
513 memset(segp, 0, sizeof(*segp));
514 segp->selector = selector;
515 segp->limit = 0xFFFFFFFFu;
516 segp->s = 0x1; /* kTypeCodeData */
517 segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
518 * | kFlagCodeReadable
519 */
520 segp->g = true;
521 segp->l = true;
522 segp->present = 1;
523 if (vm)
524 kvm_seg_fill_gdt_64bit(vm, segp);
525 }
526
527 /*
528 * Set Long Mode Flat Kernel Data Segment
529 *
530 * Input Args:
531 * vm - VM whose GDT is being filled, or NULL to only write segp
532 * selector - selector value
533 *
534 * Output Args:
535 * segp - Pointer to KVM segment
536 *
537 * Return: None
538 *
539 * Sets up the KVM segment pointed to by @segp, to be a data segment
540 * with the selector value given by @selector.
541 */
kvm_seg_set_kernel_data_64bit(struct kvm_vm * vm,uint16_t selector,struct kvm_segment * segp)542 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
543 struct kvm_segment *segp)
544 {
545 memset(segp, 0, sizeof(*segp));
546 segp->selector = selector;
547 segp->limit = 0xFFFFFFFFu;
548 segp->s = 0x1; /* kTypeCodeData */
549 segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
550 * | kFlagDataWritable
551 */
552 segp->g = true;
553 segp->present = true;
554 if (vm)
555 kvm_seg_fill_gdt_64bit(vm, segp);
556 }
557
addr_gva2gpa(struct kvm_vm * vm,vm_vaddr_t gva)558 vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
559 {
560 uint16_t index[4];
561 struct pageUpperEntry *pml4e, *pdpe, *pde;
562 struct pageTableEntry *pte;
563
564 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
565 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
566
567 index[0] = (gva >> 12) & 0x1ffu;
568 index[1] = (gva >> 21) & 0x1ffu;
569 index[2] = (gva >> 30) & 0x1ffu;
570 index[3] = (gva >> 39) & 0x1ffu;
571
572 if (!vm->pgd_created)
573 goto unmapped_gva;
574 pml4e = addr_gpa2hva(vm, vm->pgd);
575 if (!pml4e[index[3]].present)
576 goto unmapped_gva;
577
578 pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size);
579 if (!pdpe[index[2]].present)
580 goto unmapped_gva;
581
582 pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size);
583 if (!pde[index[1]].present)
584 goto unmapped_gva;
585
586 pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size);
587 if (!pte[index[0]].present)
588 goto unmapped_gva;
589
590 return (pte[index[0]].pfn * vm->page_size) + (gva & 0xfffu);
591
592 unmapped_gva:
593 TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
594 exit(EXIT_FAILURE);
595 }
596
kvm_setup_gdt(struct kvm_vm * vm,struct kvm_dtable * dt)597 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
598 {
599 if (!vm->gdt)
600 vm->gdt = vm_vaddr_alloc_page(vm);
601
602 dt->base = vm->gdt;
603 dt->limit = getpagesize();
604 }
605
kvm_setup_tss_64bit(struct kvm_vm * vm,struct kvm_segment * segp,int selector)606 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
607 int selector)
608 {
609 if (!vm->tss)
610 vm->tss = vm_vaddr_alloc_page(vm);
611
612 memset(segp, 0, sizeof(*segp));
613 segp->base = vm->tss;
614 segp->limit = 0x67;
615 segp->selector = selector;
616 segp->type = 0xb;
617 segp->present = 1;
618 kvm_seg_fill_gdt_64bit(vm, segp);
619 }
620
vcpu_setup(struct kvm_vm * vm,int vcpuid)621 static void vcpu_setup(struct kvm_vm *vm, int vcpuid)
622 {
623 struct kvm_sregs sregs;
624
625 /* Set mode specific system register values. */
626 vcpu_sregs_get(vm, vcpuid, &sregs);
627
628 sregs.idt.limit = 0;
629
630 kvm_setup_gdt(vm, &sregs.gdt);
631
632 switch (vm->mode) {
633 case VM_MODE_PXXV48_4K:
634 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
635 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
636 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
637
638 kvm_seg_set_unusable(&sregs.ldt);
639 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
640 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
641 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
642 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
643 break;
644
645 default:
646 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
647 }
648
649 sregs.cr3 = vm->pgd;
650 vcpu_sregs_set(vm, vcpuid, &sregs);
651 }
652
653 #define CPUID_XFD_BIT (1 << 4)
is_xfd_supported(void)654 static bool is_xfd_supported(void)
655 {
656 int eax, ebx, ecx, edx;
657 const int leaf = 0xd, subleaf = 0x1;
658
659 __asm__ __volatile__(
660 "cpuid"
661 : /* output */ "=a"(eax), "=b"(ebx),
662 "=c"(ecx), "=d"(edx)
663 : /* input */ "0"(leaf), "2"(subleaf));
664
665 return !!(eax & CPUID_XFD_BIT);
666 }
667
vm_xsave_req_perm(int bit)668 void vm_xsave_req_perm(int bit)
669 {
670 int kvm_fd;
671 u64 bitmask;
672 long rc;
673 struct kvm_device_attr attr = {
674 .group = 0,
675 .attr = KVM_X86_XCOMP_GUEST_SUPP,
676 .addr = (unsigned long) &bitmask
677 };
678
679 kvm_fd = open_kvm_dev_path_or_exit();
680 rc = ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
681 close(kvm_fd);
682 if (rc == -1 && (errno == ENXIO || errno == EINVAL))
683 exit(KSFT_SKIP);
684 TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
685 if (!(bitmask & (1ULL << bit)))
686 exit(KSFT_SKIP);
687
688 if (!is_xfd_supported())
689 exit(KSFT_SKIP);
690
691 rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
692
693 /*
694 * The older kernel version(<5.15) can't support
695 * ARCH_REQ_XCOMP_GUEST_PERM and directly return.
696 */
697 if (rc)
698 return;
699
700 rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
701 TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
702 TEST_ASSERT(bitmask & (1ULL << bit),
703 "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx",
704 bitmask);
705 }
706
vm_vcpu_add_default(struct kvm_vm * vm,uint32_t vcpuid,void * guest_code)707 void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
708 {
709 struct kvm_mp_state mp_state;
710 struct kvm_regs regs;
711 vm_vaddr_t stack_vaddr;
712 stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
713 DEFAULT_GUEST_STACK_VADDR_MIN);
714
715 /* Create VCPU */
716 vm_vcpu_add(vm, vcpuid);
717 vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
718 vcpu_setup(vm, vcpuid);
719
720 /* Setup guest general purpose registers */
721 vcpu_regs_get(vm, vcpuid, ®s);
722 regs.rflags = regs.rflags | 0x2;
723 regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
724 regs.rip = (unsigned long) guest_code;
725 vcpu_regs_set(vm, vcpuid, ®s);
726
727 /* Setup the MP state */
728 mp_state.mp_state = 0;
729 vcpu_set_mp_state(vm, vcpuid, &mp_state);
730 }
731
732 /*
733 * Allocate an instance of struct kvm_cpuid2
734 *
735 * Input Args: None
736 *
737 * Output Args: None
738 *
739 * Return: A pointer to the allocated struct. The caller is responsible
740 * for freeing this struct.
741 *
742 * Since kvm_cpuid2 uses a 0-length array to allow a the size of the
743 * array to be decided at allocation time, allocation is slightly
744 * complicated. This function uses a reasonable default length for
745 * the array and performs the appropriate allocation.
746 */
allocate_kvm_cpuid2(void)747 static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
748 {
749 struct kvm_cpuid2 *cpuid;
750 int nent = 100;
751 size_t size;
752
753 size = sizeof(*cpuid);
754 size += nent * sizeof(struct kvm_cpuid_entry2);
755 cpuid = malloc(size);
756 if (!cpuid) {
757 perror("malloc");
758 abort();
759 }
760
761 cpuid->nent = nent;
762
763 return cpuid;
764 }
765
766 /*
767 * KVM Supported CPUID Get
768 *
769 * Input Args: None
770 *
771 * Output Args:
772 *
773 * Return: The supported KVM CPUID
774 *
775 * Get the guest CPUID supported by KVM.
776 */
kvm_get_supported_cpuid(void)777 struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
778 {
779 static struct kvm_cpuid2 *cpuid;
780 int ret;
781 int kvm_fd;
782
783 if (cpuid)
784 return cpuid;
785
786 cpuid = allocate_kvm_cpuid2();
787 kvm_fd = open_kvm_dev_path_or_exit();
788
789 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
790 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
791 ret, errno);
792
793 close(kvm_fd);
794 return cpuid;
795 }
796
797 /*
798 * KVM Get MSR
799 *
800 * Input Args:
801 * msr_index - Index of MSR
802 *
803 * Output Args: None
804 *
805 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
806 *
807 * Get value of MSR for VCPU.
808 */
kvm_get_feature_msr(uint64_t msr_index)809 uint64_t kvm_get_feature_msr(uint64_t msr_index)
810 {
811 struct {
812 struct kvm_msrs header;
813 struct kvm_msr_entry entry;
814 } buffer = {};
815 int r, kvm_fd;
816
817 buffer.header.nmsrs = 1;
818 buffer.entry.index = msr_index;
819 kvm_fd = open_kvm_dev_path_or_exit();
820
821 r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
822 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
823 " rc: %i errno: %i", r, errno);
824
825 close(kvm_fd);
826 return buffer.entry.data;
827 }
828
829 /*
830 * VM VCPU CPUID Set
831 *
832 * Input Args:
833 * vm - Virtual Machine
834 * vcpuid - VCPU id
835 *
836 * Output Args: None
837 *
838 * Return: KVM CPUID (KVM_GET_CPUID2)
839 *
840 * Set the VCPU's CPUID.
841 */
vcpu_get_cpuid(struct kvm_vm * vm,uint32_t vcpuid)842 struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
843 {
844 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
845 struct kvm_cpuid2 *cpuid;
846 int max_ent;
847 int rc = -1;
848
849 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
850
851 cpuid = allocate_kvm_cpuid2();
852 max_ent = cpuid->nent;
853
854 for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) {
855 rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid);
856 if (!rc)
857 break;
858
859 TEST_ASSERT(rc == -1 && errno == E2BIG,
860 "KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d",
861 rc, errno);
862 }
863
864 TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i",
865 rc, errno);
866
867 return cpuid;
868 }
869
870
871
872 /*
873 * Locate a cpuid entry.
874 *
875 * Input Args:
876 * function: The function of the cpuid entry to find.
877 * index: The index of the cpuid entry.
878 *
879 * Output Args: None
880 *
881 * Return: A pointer to the cpuid entry. Never returns NULL.
882 */
883 struct kvm_cpuid_entry2 *
kvm_get_supported_cpuid_index(uint32_t function,uint32_t index)884 kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
885 {
886 struct kvm_cpuid2 *cpuid;
887 struct kvm_cpuid_entry2 *entry = NULL;
888 int i;
889
890 cpuid = kvm_get_supported_cpuid();
891 for (i = 0; i < cpuid->nent; i++) {
892 if (cpuid->entries[i].function == function &&
893 cpuid->entries[i].index == index) {
894 entry = &cpuid->entries[i];
895 break;
896 }
897 }
898
899 TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
900 function, index);
901 return entry;
902 }
903
904
__vcpu_set_cpuid(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_cpuid2 * cpuid)905 int __vcpu_set_cpuid(struct kvm_vm *vm, uint32_t vcpuid,
906 struct kvm_cpuid2 *cpuid)
907 {
908 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
909
910 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
911
912 return ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
913 }
914
915 /*
916 * VM VCPU CPUID Set
917 *
918 * Input Args:
919 * vm - Virtual Machine
920 * vcpuid - VCPU id
921 * cpuid - The CPUID values to set.
922 *
923 * Output Args: None
924 *
925 * Return: void
926 *
927 * Set the VCPU's CPUID.
928 */
vcpu_set_cpuid(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_cpuid2 * cpuid)929 void vcpu_set_cpuid(struct kvm_vm *vm,
930 uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
931 {
932 int rc;
933
934 rc = __vcpu_set_cpuid(vm, vcpuid, cpuid);
935 TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
936 rc, errno);
937
938 }
939
940 /*
941 * VCPU Get MSR
942 *
943 * Input Args:
944 * vm - Virtual Machine
945 * vcpuid - VCPU ID
946 * msr_index - Index of MSR
947 *
948 * Output Args: None
949 *
950 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
951 *
952 * Get value of MSR for VCPU.
953 */
vcpu_get_msr(struct kvm_vm * vm,uint32_t vcpuid,uint64_t msr_index)954 uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
955 {
956 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
957 struct {
958 struct kvm_msrs header;
959 struct kvm_msr_entry entry;
960 } buffer = {};
961 int r;
962
963 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
964 buffer.header.nmsrs = 1;
965 buffer.entry.index = msr_index;
966 r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
967 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
968 " rc: %i errno: %i", r, errno);
969
970 return buffer.entry.data;
971 }
972
973 /*
974 * _VCPU Set MSR
975 *
976 * Input Args:
977 * vm - Virtual Machine
978 * vcpuid - VCPU ID
979 * msr_index - Index of MSR
980 * msr_value - New value of MSR
981 *
982 * Output Args: None
983 *
984 * Return: The result of KVM_SET_MSRS.
985 *
986 * Sets the value of an MSR for the given VCPU.
987 */
_vcpu_set_msr(struct kvm_vm * vm,uint32_t vcpuid,uint64_t msr_index,uint64_t msr_value)988 int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
989 uint64_t msr_value)
990 {
991 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
992 struct {
993 struct kvm_msrs header;
994 struct kvm_msr_entry entry;
995 } buffer = {};
996 int r;
997
998 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
999 memset(&buffer, 0, sizeof(buffer));
1000 buffer.header.nmsrs = 1;
1001 buffer.entry.index = msr_index;
1002 buffer.entry.data = msr_value;
1003 r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
1004 return r;
1005 }
1006
1007 /*
1008 * VCPU Set MSR
1009 *
1010 * Input Args:
1011 * vm - Virtual Machine
1012 * vcpuid - VCPU ID
1013 * msr_index - Index of MSR
1014 * msr_value - New value of MSR
1015 *
1016 * Output Args: None
1017 *
1018 * Return: On success, nothing. On failure a TEST_ASSERT is produced.
1019 *
1020 * Set value of MSR for VCPU.
1021 */
vcpu_set_msr(struct kvm_vm * vm,uint32_t vcpuid,uint64_t msr_index,uint64_t msr_value)1022 void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
1023 uint64_t msr_value)
1024 {
1025 int r;
1026
1027 r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value);
1028 TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
1029 " rc: %i errno: %i", r, errno);
1030 }
1031
vcpu_args_set(struct kvm_vm * vm,uint32_t vcpuid,unsigned int num,...)1032 void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
1033 {
1034 va_list ap;
1035 struct kvm_regs regs;
1036
1037 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
1038 " num: %u\n",
1039 num);
1040
1041 va_start(ap, num);
1042 vcpu_regs_get(vm, vcpuid, ®s);
1043
1044 if (num >= 1)
1045 regs.rdi = va_arg(ap, uint64_t);
1046
1047 if (num >= 2)
1048 regs.rsi = va_arg(ap, uint64_t);
1049
1050 if (num >= 3)
1051 regs.rdx = va_arg(ap, uint64_t);
1052
1053 if (num >= 4)
1054 regs.rcx = va_arg(ap, uint64_t);
1055
1056 if (num >= 5)
1057 regs.r8 = va_arg(ap, uint64_t);
1058
1059 if (num >= 6)
1060 regs.r9 = va_arg(ap, uint64_t);
1061
1062 vcpu_regs_set(vm, vcpuid, ®s);
1063 va_end(ap);
1064 }
1065
vcpu_dump(FILE * stream,struct kvm_vm * vm,uint32_t vcpuid,uint8_t indent)1066 void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
1067 {
1068 struct kvm_regs regs;
1069 struct kvm_sregs sregs;
1070
1071 fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
1072
1073 fprintf(stream, "%*sregs:\n", indent + 2, "");
1074 vcpu_regs_get(vm, vcpuid, ®s);
1075 regs_dump(stream, ®s, indent + 4);
1076
1077 fprintf(stream, "%*ssregs:\n", indent + 2, "");
1078 vcpu_sregs_get(vm, vcpuid, &sregs);
1079 sregs_dump(stream, &sregs, indent + 4);
1080 }
1081
kvm_get_num_msrs_fd(int kvm_fd)1082 static int kvm_get_num_msrs_fd(int kvm_fd)
1083 {
1084 struct kvm_msr_list nmsrs;
1085 int r;
1086
1087 nmsrs.nmsrs = 0;
1088 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
1089 TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
1090 r);
1091
1092 return nmsrs.nmsrs;
1093 }
1094
kvm_get_num_msrs(struct kvm_vm * vm)1095 static int kvm_get_num_msrs(struct kvm_vm *vm)
1096 {
1097 return kvm_get_num_msrs_fd(vm->kvm_fd);
1098 }
1099
kvm_get_msr_index_list(void)1100 struct kvm_msr_list *kvm_get_msr_index_list(void)
1101 {
1102 struct kvm_msr_list *list;
1103 int nmsrs, r, kvm_fd;
1104
1105 kvm_fd = open_kvm_dev_path_or_exit();
1106
1107 nmsrs = kvm_get_num_msrs_fd(kvm_fd);
1108 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1109 list->nmsrs = nmsrs;
1110 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1111 close(kvm_fd);
1112
1113 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1114 r);
1115
1116 return list;
1117 }
1118
vcpu_save_xsave_state(struct kvm_vm * vm,struct vcpu * vcpu,struct kvm_x86_state * state)1119 static int vcpu_save_xsave_state(struct kvm_vm *vm, struct vcpu *vcpu,
1120 struct kvm_x86_state *state)
1121 {
1122 int size;
1123
1124 size = vm_check_cap(vm, KVM_CAP_XSAVE2);
1125 if (!size)
1126 size = sizeof(struct kvm_xsave);
1127
1128 state->xsave = malloc(size);
1129 if (size == sizeof(struct kvm_xsave))
1130 return ioctl(vcpu->fd, KVM_GET_XSAVE, state->xsave);
1131 else
1132 return ioctl(vcpu->fd, KVM_GET_XSAVE2, state->xsave);
1133 }
1134
vcpu_save_state(struct kvm_vm * vm,uint32_t vcpuid)1135 struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
1136 {
1137 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1138 struct kvm_msr_list *list;
1139 struct kvm_x86_state *state;
1140 int nmsrs, r, i;
1141 static int nested_size = -1;
1142
1143 if (nested_size == -1) {
1144 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1145 TEST_ASSERT(nested_size <= sizeof(state->nested_),
1146 "Nested state size too big, %i > %zi",
1147 nested_size, sizeof(state->nested_));
1148 }
1149
1150 /*
1151 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1152 * guest state is consistent only after userspace re-enters the
1153 * kernel with KVM_RUN. Complete IO prior to migrating state
1154 * to a new VM.
1155 */
1156 vcpu_run_complete_io(vm, vcpuid);
1157
1158 nmsrs = kvm_get_num_msrs(vm);
1159 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1160 list->nmsrs = nmsrs;
1161 r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1162 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1163 r);
1164
1165 state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
1166 r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
1167 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
1168 r);
1169
1170 r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
1171 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
1172 r);
1173
1174 r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
1175 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
1176 r);
1177
1178 r = vcpu_save_xsave_state(vm, vcpu, state);
1179 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
1180 r);
1181
1182 if (kvm_check_cap(KVM_CAP_XCRS)) {
1183 r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
1184 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
1185 r);
1186 }
1187
1188 r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
1189 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
1190 r);
1191
1192 if (nested_size) {
1193 state->nested.size = sizeof(state->nested_);
1194 r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
1195 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
1196 r);
1197 TEST_ASSERT(state->nested.size <= nested_size,
1198 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1199 state->nested.size, nested_size);
1200 } else
1201 state->nested.size = 0;
1202
1203 state->msrs.nmsrs = nmsrs;
1204 for (i = 0; i < nmsrs; i++)
1205 state->msrs.entries[i].index = list->indices[i];
1206 r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
1207 TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)",
1208 r, r == nmsrs ? -1 : list->indices[r]);
1209
1210 r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
1211 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
1212 r);
1213
1214 free(list);
1215 return state;
1216 }
1217
vcpu_load_state(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_x86_state * state)1218 void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
1219 {
1220 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1221 int r;
1222
1223 r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
1224 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
1225 r);
1226
1227 r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
1228 TEST_ASSERT(r == state->msrs.nmsrs,
1229 "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
1230 r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
1231
1232 if (kvm_check_cap(KVM_CAP_XCRS)) {
1233 r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
1234 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
1235 r);
1236 }
1237
1238 r = ioctl(vcpu->fd, KVM_SET_XSAVE, state->xsave);
1239 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
1240 r);
1241
1242 r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
1243 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
1244 r);
1245
1246 r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
1247 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
1248 r);
1249
1250 r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
1251 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
1252 r);
1253
1254 r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
1255 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
1256 r);
1257
1258 if (state->nested.size) {
1259 r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
1260 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
1261 r);
1262 }
1263 }
1264
kvm_x86_state_cleanup(struct kvm_x86_state * state)1265 void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1266 {
1267 free(state->xsave);
1268 free(state);
1269 }
1270
cpu_vendor_string_is(const char * vendor)1271 static bool cpu_vendor_string_is(const char *vendor)
1272 {
1273 const uint32_t *chunk = (const uint32_t *)vendor;
1274 int eax, ebx, ecx, edx;
1275 const int leaf = 0;
1276
1277 __asm__ __volatile__(
1278 "cpuid"
1279 : /* output */ "=a"(eax), "=b"(ebx),
1280 "=c"(ecx), "=d"(edx)
1281 : /* input */ "0"(leaf), "2"(0));
1282
1283 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
1284 }
1285
is_intel_cpu(void)1286 bool is_intel_cpu(void)
1287 {
1288 return cpu_vendor_string_is("GenuineIntel");
1289 }
1290
1291 /*
1292 * Exclude early K5 samples with a vendor string of "AMDisbetter!"
1293 */
is_amd_cpu(void)1294 bool is_amd_cpu(void)
1295 {
1296 return cpu_vendor_string_is("AuthenticAMD");
1297 }
1298
kvm_get_cpuid_max_basic(void)1299 uint32_t kvm_get_cpuid_max_basic(void)
1300 {
1301 return kvm_get_supported_cpuid_entry(0)->eax;
1302 }
1303
kvm_get_cpuid_max_extended(void)1304 uint32_t kvm_get_cpuid_max_extended(void)
1305 {
1306 return kvm_get_supported_cpuid_entry(0x80000000)->eax;
1307 }
1308
kvm_get_cpu_address_width(unsigned int * pa_bits,unsigned int * va_bits)1309 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1310 {
1311 struct kvm_cpuid_entry2 *entry;
1312 bool pae;
1313
1314 /* SDM 4.1.4 */
1315 if (kvm_get_cpuid_max_extended() < 0x80000008) {
1316 pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
1317 *pa_bits = pae ? 36 : 32;
1318 *va_bits = 32;
1319 } else {
1320 entry = kvm_get_supported_cpuid_entry(0x80000008);
1321 *pa_bits = entry->eax & 0xff;
1322 *va_bits = (entry->eax >> 8) & 0xff;
1323 }
1324 }
1325
1326 struct idt_entry {
1327 uint16_t offset0;
1328 uint16_t selector;
1329 uint16_t ist : 3;
1330 uint16_t : 5;
1331 uint16_t type : 4;
1332 uint16_t : 1;
1333 uint16_t dpl : 2;
1334 uint16_t p : 1;
1335 uint16_t offset1;
1336 uint32_t offset2; uint32_t reserved;
1337 };
1338
set_idt_entry(struct kvm_vm * vm,int vector,unsigned long addr,int dpl,unsigned short selector)1339 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1340 int dpl, unsigned short selector)
1341 {
1342 struct idt_entry *base =
1343 (struct idt_entry *)addr_gva2hva(vm, vm->idt);
1344 struct idt_entry *e = &base[vector];
1345
1346 memset(e, 0, sizeof(*e));
1347 e->offset0 = addr;
1348 e->selector = selector;
1349 e->ist = 0;
1350 e->type = 14;
1351 e->dpl = dpl;
1352 e->p = 1;
1353 e->offset1 = addr >> 16;
1354 e->offset2 = addr >> 32;
1355 }
1356
kvm_exit_unexpected_vector(uint32_t value)1357 void kvm_exit_unexpected_vector(uint32_t value)
1358 {
1359 ucall(UCALL_UNHANDLED, 1, value);
1360 }
1361
route_exception(struct ex_regs * regs)1362 void route_exception(struct ex_regs *regs)
1363 {
1364 typedef void(*handler)(struct ex_regs *);
1365 handler *handlers = (handler *)exception_handlers;
1366
1367 if (handlers && handlers[regs->vector]) {
1368 handlers[regs->vector](regs);
1369 return;
1370 }
1371
1372 kvm_exit_unexpected_vector(regs->vector);
1373 }
1374
vm_init_descriptor_tables(struct kvm_vm * vm)1375 void vm_init_descriptor_tables(struct kvm_vm *vm)
1376 {
1377 extern void *idt_handlers;
1378 int i;
1379
1380 vm->idt = vm_vaddr_alloc_page(vm);
1381 vm->handlers = vm_vaddr_alloc_page(vm);
1382 /* Handlers have the same address in both address spaces.*/
1383 for (i = 0; i < NUM_INTERRUPTS; i++)
1384 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1385 DEFAULT_CODE_SELECTOR);
1386 }
1387
vcpu_init_descriptor_tables(struct kvm_vm * vm,uint32_t vcpuid)1388 void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid)
1389 {
1390 struct kvm_sregs sregs;
1391
1392 vcpu_sregs_get(vm, vcpuid, &sregs);
1393 sregs.idt.base = vm->idt;
1394 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1395 sregs.gdt.base = vm->gdt;
1396 sregs.gdt.limit = getpagesize() - 1;
1397 kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1398 vcpu_sregs_set(vm, vcpuid, &sregs);
1399 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1400 }
1401
vm_install_exception_handler(struct kvm_vm * vm,int vector,void (* handler)(struct ex_regs *))1402 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1403 void (*handler)(struct ex_regs *))
1404 {
1405 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1406
1407 handlers[vector] = (vm_vaddr_t)handler;
1408 }
1409
assert_on_unhandled_exception(struct kvm_vm * vm,uint32_t vcpuid)1410 void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
1411 {
1412 struct ucall uc;
1413
1414 if (get_ucall(vm, vcpuid, &uc) == UCALL_UNHANDLED) {
1415 uint64_t vector = uc.args[0];
1416
1417 TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
1418 vector);
1419 }
1420 }
1421
get_cpuid(struct kvm_cpuid2 * cpuid,uint32_t function,uint32_t index)1422 struct kvm_cpuid_entry2 *get_cpuid(struct kvm_cpuid2 *cpuid, uint32_t function,
1423 uint32_t index)
1424 {
1425 int i;
1426
1427 for (i = 0; i < cpuid->nent; i++) {
1428 struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1429
1430 if (cur->function == function && cur->index == index)
1431 return cur;
1432 }
1433
1434 TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1435
1436 return NULL;
1437 }
1438
set_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 * ent)1439 bool set_cpuid(struct kvm_cpuid2 *cpuid,
1440 struct kvm_cpuid_entry2 *ent)
1441 {
1442 int i;
1443
1444 for (i = 0; i < cpuid->nent; i++) {
1445 struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1446
1447 if (cur->function != ent->function || cur->index != ent->index)
1448 continue;
1449
1450 memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2));
1451 return true;
1452 }
1453
1454 return false;
1455 }
1456
kvm_hypercall(uint64_t nr,uint64_t a0,uint64_t a1,uint64_t a2,uint64_t a3)1457 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1458 uint64_t a3)
1459 {
1460 uint64_t r;
1461
1462 asm volatile("vmcall"
1463 : "=a"(r)
1464 : "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1465 return r;
1466 }
1467
kvm_get_supported_hv_cpuid(void)1468 struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1469 {
1470 static struct kvm_cpuid2 *cpuid;
1471 int ret;
1472 int kvm_fd;
1473
1474 if (cpuid)
1475 return cpuid;
1476
1477 cpuid = allocate_kvm_cpuid2();
1478 kvm_fd = open_kvm_dev_path_or_exit();
1479
1480 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1481 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n",
1482 ret, errno);
1483
1484 close(kvm_fd);
1485 return cpuid;
1486 }
1487
vcpu_set_hv_cpuid(struct kvm_vm * vm,uint32_t vcpuid)1488 void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1489 {
1490 static struct kvm_cpuid2 *cpuid_full;
1491 struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1492 int i, nent = 0;
1493
1494 if (!cpuid_full) {
1495 cpuid_sys = kvm_get_supported_cpuid();
1496 cpuid_hv = kvm_get_supported_hv_cpuid();
1497
1498 cpuid_full = malloc(sizeof(*cpuid_full) +
1499 (cpuid_sys->nent + cpuid_hv->nent) *
1500 sizeof(struct kvm_cpuid_entry2));
1501 if (!cpuid_full) {
1502 perror("malloc");
1503 abort();
1504 }
1505
1506 /* Need to skip KVM CPUID leaves 0x400000xx */
1507 for (i = 0; i < cpuid_sys->nent; i++) {
1508 if (cpuid_sys->entries[i].function >= 0x40000000 &&
1509 cpuid_sys->entries[i].function < 0x40000100)
1510 continue;
1511 cpuid_full->entries[nent] = cpuid_sys->entries[i];
1512 nent++;
1513 }
1514
1515 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1516 cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1517 cpuid_full->nent = nent + cpuid_hv->nent;
1518 }
1519
1520 vcpu_set_cpuid(vm, vcpuid, cpuid_full);
1521 }
1522
vcpu_get_supported_hv_cpuid(struct kvm_vm * vm,uint32_t vcpuid)1523 struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1524 {
1525 static struct kvm_cpuid2 *cpuid;
1526
1527 cpuid = allocate_kvm_cpuid2();
1528
1529 vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1530
1531 return cpuid;
1532 }
1533
vm_compute_max_gfn(struct kvm_vm * vm)1534 unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1535 {
1536 const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1537 unsigned long ht_gfn, max_gfn, max_pfn;
1538 uint32_t eax, ebx, ecx, edx, max_ext_leaf;
1539
1540 max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
1541
1542 /* Avoid reserved HyperTransport region on AMD processors. */
1543 if (!is_amd_cpu())
1544 return max_gfn;
1545
1546 /* On parts with <40 physical address bits, the area is fully hidden */
1547 if (vm->pa_bits < 40)
1548 return max_gfn;
1549
1550 /* Before family 17h, the HyperTransport area is just below 1T. */
1551 ht_gfn = (1 << 28) - num_ht_pages;
1552 eax = 1;
1553 ecx = 0;
1554 cpuid(&eax, &ebx, &ecx, &edx);
1555 if (x86_family(eax) < 0x17)
1556 goto done;
1557
1558 /*
1559 * Otherwise it's at the top of the physical address space, possibly
1560 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use
1561 * the old conservative value if MAXPHYADDR is not enumerated.
1562 */
1563 eax = 0x80000000;
1564 cpuid(&eax, &ebx, &ecx, &edx);
1565 max_ext_leaf = eax;
1566 if (max_ext_leaf < 0x80000008)
1567 goto done;
1568
1569 eax = 0x80000008;
1570 cpuid(&eax, &ebx, &ecx, &edx);
1571 max_pfn = (1ULL << ((eax & 0xff) - vm->page_shift)) - 1;
1572 if (max_ext_leaf >= 0x8000001f) {
1573 eax = 0x8000001f;
1574 cpuid(&eax, &ebx, &ecx, &edx);
1575 max_pfn >>= (ebx >> 6) & 0x3f;
1576 }
1577
1578 ht_gfn = max_pfn - num_ht_pages;
1579 done:
1580 return min(max_gfn, ht_gfn - 1);
1581 }
1582