• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "code_generator_arm_vixl.h"
18 
19 #include "arch/arm/asm_support_arm.h"
20 #include "arch/arm/instruction_set_features_arm.h"
21 #include "arch/arm/jni_frame_arm.h"
22 #include "art_method-inl.h"
23 #include "base/bit_utils.h"
24 #include "base/bit_utils_iterator.h"
25 #include "class_root-inl.h"
26 #include "class_table.h"
27 #include "code_generator_utils.h"
28 #include "common_arm.h"
29 #include "entrypoints/quick/quick_entrypoints.h"
30 #include "gc/accounting/card_table.h"
31 #include "gc/space/image_space.h"
32 #include "heap_poisoning.h"
33 #include "interpreter/mterp/nterp.h"
34 #include "intrinsics.h"
35 #include "intrinsics_arm_vixl.h"
36 #include "intrinsics_utils.h"
37 #include "linker/linker_patch.h"
38 #include "mirror/array-inl.h"
39 #include "mirror/class-inl.h"
40 #include "mirror/var_handle.h"
41 #include "scoped_thread_state_change-inl.h"
42 #include "thread.h"
43 #include "utils/arm/assembler_arm_vixl.h"
44 #include "utils/arm/managed_register_arm.h"
45 #include "utils/assembler.h"
46 #include "utils/stack_checks.h"
47 
48 namespace art HIDDEN {
49 namespace arm {
50 
51 namespace vixl32 = vixl::aarch32;
52 using namespace vixl32;  // NOLINT(build/namespaces)
53 
54 using helpers::DRegisterFrom;
55 using helpers::HighRegisterFrom;
56 using helpers::InputDRegisterAt;
57 using helpers::InputOperandAt;
58 using helpers::InputRegister;
59 using helpers::InputRegisterAt;
60 using helpers::InputSRegisterAt;
61 using helpers::InputVRegister;
62 using helpers::InputVRegisterAt;
63 using helpers::Int32ConstantFrom;
64 using helpers::Int64ConstantFrom;
65 using helpers::LocationFrom;
66 using helpers::LowRegisterFrom;
67 using helpers::LowSRegisterFrom;
68 using helpers::OperandFrom;
69 using helpers::OutputRegister;
70 using helpers::OutputSRegister;
71 using helpers::OutputVRegister;
72 using helpers::RegisterFrom;
73 using helpers::SRegisterFrom;
74 using helpers::Uint64ConstantFrom;
75 
76 using vixl::EmissionCheckScope;
77 using vixl::ExactAssemblyScope;
78 using vixl::CodeBufferCheckScope;
79 
80 using RegisterList = vixl32::RegisterList;
81 
ExpectedPairLayout(Location location)82 static bool ExpectedPairLayout(Location location) {
83   // We expected this for both core and fpu register pairs.
84   return ((location.low() & 1) == 0) && (location.low() + 1 == location.high());
85 }
86 // Use a local definition to prevent copying mistakes.
87 static constexpr size_t kArmWordSize = static_cast<size_t>(kArmPointerSize);
88 static constexpr size_t kArmBitsPerWord = kArmWordSize * kBitsPerByte;
89 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
90 
91 // Reference load (except object array loads) is using LDR Rt, [Rn, #offset] which can handle
92 // offset < 4KiB. For offsets >= 4KiB, the load shall be emitted as two or more instructions.
93 // For the Baker read barrier implementation using link-time generated thunks we need to split
94 // the offset explicitly.
95 constexpr uint32_t kReferenceLoadMinFarOffset = 4 * KB;
96 
97 // Using a base helps identify when we hit Marking Register check breakpoints.
98 constexpr int kMarkingRegisterCheckBreakCodeBaseCode = 0x10;
99 
100 #ifdef __
101 #error "ARM Codegen VIXL macro-assembler macro already defined."
102 #endif
103 
104 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
105 #define __ down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler()->  // NOLINT
106 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value()
107 
108 // Marker that code is yet to be, and must, be implemented.
109 #define TODO_VIXL32(level) LOG(level) << __PRETTY_FUNCTION__ << " unimplemented "
110 
CanEmitNarrowLdr(vixl32::Register rt,vixl32::Register rn,uint32_t offset)111 static inline bool CanEmitNarrowLdr(vixl32::Register rt, vixl32::Register rn, uint32_t offset) {
112   return rt.IsLow() && rn.IsLow() && offset < 32u;
113 }
114 
115 class EmitAdrCode {
116  public:
EmitAdrCode(ArmVIXLMacroAssembler * assembler,vixl32::Register rd,vixl32::Label * label)117   EmitAdrCode(ArmVIXLMacroAssembler* assembler, vixl32::Register rd, vixl32::Label* label)
118       : assembler_(assembler), rd_(rd), label_(label) {
119     DCHECK(!assembler->AllowMacroInstructions());  // In ExactAssemblyScope.
120     adr_location_ = assembler->GetCursorOffset();
121     assembler->adr(EncodingSize(Wide), rd, label);
122   }
123 
~EmitAdrCode()124   ~EmitAdrCode() {
125     DCHECK(label_->IsBound());
126     // The ADR emitted by the assembler does not set the Thumb mode bit we need.
127     // TODO: Maybe extend VIXL to allow ADR for return address?
128     uint8_t* raw_adr = assembler_->GetBuffer()->GetOffsetAddress<uint8_t*>(adr_location_);
129     // Expecting ADR encoding T3 with `(offset & 1) == 0`.
130     DCHECK_EQ(raw_adr[1] & 0xfbu, 0xf2u);           // Check bits 24-31, except 26.
131     DCHECK_EQ(raw_adr[0] & 0xffu, 0x0fu);           // Check bits 16-23.
132     DCHECK_EQ(raw_adr[3] & 0x8fu, rd_.GetCode());   // Check bits 8-11 and 15.
133     DCHECK_EQ(raw_adr[2] & 0x01u, 0x00u);           // Check bit 0, i.e. the `offset & 1`.
134     // Add the Thumb mode bit.
135     raw_adr[2] |= 0x01u;
136   }
137 
138  private:
139   ArmVIXLMacroAssembler* const assembler_;
140   vixl32::Register rd_;
141   vixl32::Label* const label_;
142   int32_t adr_location_;
143 };
144 
OneRegInReferenceOutSaveEverythingCallerSaves()145 static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() {
146   InvokeRuntimeCallingConventionARMVIXL calling_convention;
147   RegisterSet caller_saves = RegisterSet::Empty();
148   caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
149   // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK()
150   // that the the kPrimNot result register is the same as the first argument register.
151   return caller_saves;
152 }
153 
154 // SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers,
155 // for each live D registers they treat two corresponding S registers as live ones.
156 //
157 // Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build
158 // from a list of contiguous S registers a list of contiguous D registers (processing first/last
159 // S registers corner cases) and save/restore this new list treating them as D registers.
160 // - decreasing code size
161 // - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is
162 //   restored and then used in regular non SlowPath code as D register.
163 //
164 // For the following example (v means the S register is live):
165 //   D names: |    D0   |    D1   |    D2   |    D4   | ...
166 //   S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ...
167 //   Live?    |    |  v |  v |  v |  v |  v |  v |    | ...
168 //
169 // S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed
170 // as D registers.
171 //
172 // TODO(VIXL): All this code should be unnecessary once the VIXL AArch32 backend provides helpers
173 // for lists of floating-point registers.
SaveContiguousSRegisterList(size_t first,size_t last,CodeGenerator * codegen,size_t stack_offset)174 static size_t SaveContiguousSRegisterList(size_t first,
175                                           size_t last,
176                                           CodeGenerator* codegen,
177                                           size_t stack_offset) {
178   static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes.");
179   static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes.");
180   DCHECK_LE(first, last);
181   if ((first == last) && (first == 0)) {
182     __ Vstr(vixl32::SRegister(first), MemOperand(sp, stack_offset));
183     return stack_offset + kSRegSizeInBytes;
184   }
185   if (first % 2 == 1) {
186     __ Vstr(vixl32::SRegister(first++), MemOperand(sp, stack_offset));
187     stack_offset += kSRegSizeInBytes;
188   }
189 
190   bool save_last = false;
191   if (last % 2 == 0) {
192     save_last = true;
193     --last;
194   }
195 
196   if (first < last) {
197     vixl32::DRegister d_reg = vixl32::DRegister(first / 2);
198     DCHECK_EQ((last - first + 1) % 2, 0u);
199     size_t number_of_d_regs = (last - first + 1) / 2;
200 
201     if (number_of_d_regs == 1) {
202       __ Vstr(d_reg, MemOperand(sp, stack_offset));
203     } else if (number_of_d_regs > 1) {
204       UseScratchRegisterScope temps(down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
205       vixl32::Register base = sp;
206       if (stack_offset != 0) {
207         base = temps.Acquire();
208         __ Add(base, sp, Operand::From(stack_offset));
209       }
210       __ Vstm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs));
211     }
212     stack_offset += number_of_d_regs * kDRegSizeInBytes;
213   }
214 
215   if (save_last) {
216     __ Vstr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset));
217     stack_offset += kSRegSizeInBytes;
218   }
219 
220   return stack_offset;
221 }
222 
RestoreContiguousSRegisterList(size_t first,size_t last,CodeGenerator * codegen,size_t stack_offset)223 static size_t RestoreContiguousSRegisterList(size_t first,
224                                              size_t last,
225                                              CodeGenerator* codegen,
226                                              size_t stack_offset) {
227   static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes.");
228   static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes.");
229   DCHECK_LE(first, last);
230   if ((first == last) && (first == 0)) {
231     __ Vldr(vixl32::SRegister(first), MemOperand(sp, stack_offset));
232     return stack_offset + kSRegSizeInBytes;
233   }
234   if (first % 2 == 1) {
235     __ Vldr(vixl32::SRegister(first++), MemOperand(sp, stack_offset));
236     stack_offset += kSRegSizeInBytes;
237   }
238 
239   bool restore_last = false;
240   if (last % 2 == 0) {
241     restore_last = true;
242     --last;
243   }
244 
245   if (first < last) {
246     vixl32::DRegister d_reg = vixl32::DRegister(first / 2);
247     DCHECK_EQ((last - first + 1) % 2, 0u);
248     size_t number_of_d_regs = (last - first + 1) / 2;
249     if (number_of_d_regs == 1) {
250       __ Vldr(d_reg, MemOperand(sp, stack_offset));
251     } else if (number_of_d_regs > 1) {
252       UseScratchRegisterScope temps(down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
253       vixl32::Register base = sp;
254       if (stack_offset != 0) {
255         base = temps.Acquire();
256         __ Add(base, sp, Operand::From(stack_offset));
257       }
258       __ Vldm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs));
259     }
260     stack_offset += number_of_d_regs * kDRegSizeInBytes;
261   }
262 
263   if (restore_last) {
264     __ Vldr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset));
265     stack_offset += kSRegSizeInBytes;
266   }
267 
268   return stack_offset;
269 }
270 
GetLoadOperandType(DataType::Type type)271 static LoadOperandType GetLoadOperandType(DataType::Type type) {
272   switch (type) {
273     case DataType::Type::kReference:
274       return kLoadWord;
275     case DataType::Type::kBool:
276     case DataType::Type::kUint8:
277       return kLoadUnsignedByte;
278     case DataType::Type::kInt8:
279       return kLoadSignedByte;
280     case DataType::Type::kUint16:
281       return kLoadUnsignedHalfword;
282     case DataType::Type::kInt16:
283       return kLoadSignedHalfword;
284     case DataType::Type::kInt32:
285       return kLoadWord;
286     case DataType::Type::kInt64:
287       return kLoadWordPair;
288     case DataType::Type::kFloat32:
289       return kLoadSWord;
290     case DataType::Type::kFloat64:
291       return kLoadDWord;
292     default:
293       LOG(FATAL) << "Unreachable type " << type;
294       UNREACHABLE();
295   }
296 }
297 
GetStoreOperandType(DataType::Type type)298 static StoreOperandType GetStoreOperandType(DataType::Type type) {
299   switch (type) {
300     case DataType::Type::kReference:
301       return kStoreWord;
302     case DataType::Type::kBool:
303     case DataType::Type::kUint8:
304     case DataType::Type::kInt8:
305       return kStoreByte;
306     case DataType::Type::kUint16:
307     case DataType::Type::kInt16:
308       return kStoreHalfword;
309     case DataType::Type::kInt32:
310       return kStoreWord;
311     case DataType::Type::kInt64:
312       return kStoreWordPair;
313     case DataType::Type::kFloat32:
314       return kStoreSWord;
315     case DataType::Type::kFloat64:
316       return kStoreDWord;
317     default:
318       LOG(FATAL) << "Unreachable type " << type;
319       UNREACHABLE();
320   }
321 }
322 
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)323 void SlowPathCodeARMVIXL::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
324   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
325   size_t orig_offset = stack_offset;
326 
327   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
328   for (uint32_t i : LowToHighBits(core_spills)) {
329     // If the register holds an object, update the stack mask.
330     if (locations->RegisterContainsObject(i)) {
331       locations->SetStackBit(stack_offset / kVRegSize);
332     }
333     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
334     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
335     saved_core_stack_offsets_[i] = stack_offset;
336     stack_offset += kArmWordSize;
337   }
338 
339   CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
340   arm_codegen->GetAssembler()->StoreRegisterList(core_spills, orig_offset);
341 
342   uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
343   orig_offset = stack_offset;
344   for (uint32_t i : LowToHighBits(fp_spills)) {
345     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
346     saved_fpu_stack_offsets_[i] = stack_offset;
347     stack_offset += kArmWordSize;
348   }
349 
350   stack_offset = orig_offset;
351   while (fp_spills != 0u) {
352     uint32_t begin = CTZ(fp_spills);
353     uint32_t tmp = fp_spills + (1u << begin);
354     fp_spills &= tmp;  // Clear the contiguous range of 1s.
355     uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp);  // CTZ(0) is undefined.
356     stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
357   }
358   DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
359 }
360 
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)361 void SlowPathCodeARMVIXL::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
362   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
363   size_t orig_offset = stack_offset;
364 
365   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
366   for (uint32_t i : LowToHighBits(core_spills)) {
367     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
368     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
369     stack_offset += kArmWordSize;
370   }
371 
372   // TODO(VIXL): Check the coherency of stack_offset after this with a test.
373   CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
374   arm_codegen->GetAssembler()->LoadRegisterList(core_spills, orig_offset);
375 
376   uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
377   while (fp_spills != 0u) {
378     uint32_t begin = CTZ(fp_spills);
379     uint32_t tmp = fp_spills + (1u << begin);
380     fp_spills &= tmp;  // Clear the contiguous range of 1s.
381     uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp);  // CTZ(0) is undefined.
382     stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
383   }
384   DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
385 }
386 
387 class NullCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
388  public:
NullCheckSlowPathARMVIXL(HNullCheck * instruction)389   explicit NullCheckSlowPathARMVIXL(HNullCheck* instruction) : SlowPathCodeARMVIXL(instruction) {}
390 
EmitNativeCode(CodeGenerator * codegen)391   void EmitNativeCode(CodeGenerator* codegen) override {
392     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
393     __ Bind(GetEntryLabel());
394     if (instruction_->CanThrowIntoCatchBlock()) {
395       // Live registers will be restored in the catch block if caught.
396       SaveLiveRegisters(codegen, instruction_->GetLocations());
397     }
398     arm_codegen->InvokeRuntime(kQuickThrowNullPointer,
399                                instruction_,
400                                instruction_->GetDexPc(),
401                                this);
402     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
403   }
404 
IsFatal() const405   bool IsFatal() const override { return true; }
406 
GetDescription() const407   const char* GetDescription() const override { return "NullCheckSlowPathARMVIXL"; }
408 
409  private:
410   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARMVIXL);
411 };
412 
413 class DivZeroCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
414  public:
DivZeroCheckSlowPathARMVIXL(HDivZeroCheck * instruction)415   explicit DivZeroCheckSlowPathARMVIXL(HDivZeroCheck* instruction)
416       : SlowPathCodeARMVIXL(instruction) {}
417 
EmitNativeCode(CodeGenerator * codegen)418   void EmitNativeCode(CodeGenerator* codegen) override {
419     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
420     __ Bind(GetEntryLabel());
421     arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
422     CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
423   }
424 
IsFatal() const425   bool IsFatal() const override { return true; }
426 
GetDescription() const427   const char* GetDescription() const override { return "DivZeroCheckSlowPathARMVIXL"; }
428 
429  private:
430   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARMVIXL);
431 };
432 
433 class SuspendCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
434  public:
SuspendCheckSlowPathARMVIXL(HSuspendCheck * instruction,HBasicBlock * successor)435   SuspendCheckSlowPathARMVIXL(HSuspendCheck* instruction, HBasicBlock* successor)
436       : SlowPathCodeARMVIXL(instruction), successor_(successor) {}
437 
EmitNativeCode(CodeGenerator * codegen)438   void EmitNativeCode(CodeGenerator* codegen) override {
439     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
440     __ Bind(GetEntryLabel());
441     arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
442     CheckEntrypointTypes<kQuickTestSuspend, void, void>();
443     if (successor_ == nullptr) {
444       __ B(GetReturnLabel());
445     } else {
446       __ B(arm_codegen->GetLabelOf(successor_));
447     }
448   }
449 
GetReturnLabel()450   vixl32::Label* GetReturnLabel() {
451     DCHECK(successor_ == nullptr);
452     return &return_label_;
453   }
454 
GetSuccessor() const455   HBasicBlock* GetSuccessor() const {
456     return successor_;
457   }
458 
GetDescription() const459   const char* GetDescription() const override { return "SuspendCheckSlowPathARMVIXL"; }
460 
461  private:
462   // If not null, the block to branch to after the suspend check.
463   HBasicBlock* const successor_;
464 
465   // If `successor_` is null, the label to branch to after the suspend check.
466   vixl32::Label return_label_;
467 
468   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARMVIXL);
469 };
470 
471 class BoundsCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
472  public:
BoundsCheckSlowPathARMVIXL(HBoundsCheck * instruction)473   explicit BoundsCheckSlowPathARMVIXL(HBoundsCheck* instruction)
474       : SlowPathCodeARMVIXL(instruction) {}
475 
EmitNativeCode(CodeGenerator * codegen)476   void EmitNativeCode(CodeGenerator* codegen) override {
477     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
478     LocationSummary* locations = instruction_->GetLocations();
479 
480     __ Bind(GetEntryLabel());
481     if (instruction_->CanThrowIntoCatchBlock()) {
482       // Live registers will be restored in the catch block if caught.
483       SaveLiveRegisters(codegen, instruction_->GetLocations());
484     }
485     // We're moving two locations to locations that could overlap, so we need a parallel
486     // move resolver.
487     InvokeRuntimeCallingConventionARMVIXL calling_convention;
488     codegen->EmitParallelMoves(
489         locations->InAt(0),
490         LocationFrom(calling_convention.GetRegisterAt(0)),
491         DataType::Type::kInt32,
492         locations->InAt(1),
493         LocationFrom(calling_convention.GetRegisterAt(1)),
494         DataType::Type::kInt32);
495     QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
496         ? kQuickThrowStringBounds
497         : kQuickThrowArrayBounds;
498     arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
499     CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
500     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
501   }
502 
IsFatal() const503   bool IsFatal() const override { return true; }
504 
GetDescription() const505   const char* GetDescription() const override { return "BoundsCheckSlowPathARMVIXL"; }
506 
507  private:
508   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARMVIXL);
509 };
510 
511 class LoadClassSlowPathARMVIXL : public SlowPathCodeARMVIXL {
512  public:
LoadClassSlowPathARMVIXL(HLoadClass * cls,HInstruction * at)513   LoadClassSlowPathARMVIXL(HLoadClass* cls, HInstruction* at)
514       : SlowPathCodeARMVIXL(at), cls_(cls) {
515     DCHECK(at->IsLoadClass() || at->IsClinitCheck());
516     DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
517   }
518 
EmitNativeCode(CodeGenerator * codegen)519   void EmitNativeCode(CodeGenerator* codegen) override {
520     LocationSummary* locations = instruction_->GetLocations();
521     Location out = locations->Out();
522     const uint32_t dex_pc = instruction_->GetDexPc();
523     bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath();
524     bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck();
525 
526     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
527     __ Bind(GetEntryLabel());
528     SaveLiveRegisters(codegen, locations);
529 
530     InvokeRuntimeCallingConventionARMVIXL calling_convention;
531     if (must_resolve_type) {
532       DCHECK(IsSameDexFile(cls_->GetDexFile(), arm_codegen->GetGraph()->GetDexFile()) ||
533              arm_codegen->GetCompilerOptions().WithinOatFile(&cls_->GetDexFile()) ||
534              ContainsElement(Runtime::Current()->GetClassLinker()->GetBootClassPath(),
535                              &cls_->GetDexFile()));
536       dex::TypeIndex type_index = cls_->GetTypeIndex();
537       __ Mov(calling_convention.GetRegisterAt(0), type_index.index_);
538       if (cls_->NeedsAccessCheck()) {
539         CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
540         arm_codegen->InvokeRuntime(kQuickResolveTypeAndVerifyAccess, instruction_, dex_pc, this);
541       } else {
542         CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
543         arm_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this);
544       }
545       // If we also must_do_clinit, the resolved type is now in the correct register.
546     } else {
547       DCHECK(must_do_clinit);
548       Location source = instruction_->IsLoadClass() ? out : locations->InAt(0);
549       arm_codegen->Move32(LocationFrom(calling_convention.GetRegisterAt(0)), source);
550     }
551     if (must_do_clinit) {
552       arm_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this);
553       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>();
554     }
555 
556     // Move the class to the desired location.
557     if (out.IsValid()) {
558       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
559       arm_codegen->Move32(locations->Out(), LocationFrom(r0));
560     }
561     RestoreLiveRegisters(codegen, locations);
562     __ B(GetExitLabel());
563   }
564 
GetDescription() const565   const char* GetDescription() const override { return "LoadClassSlowPathARMVIXL"; }
566 
567  private:
568   // The class this slow path will load.
569   HLoadClass* const cls_;
570 
571   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARMVIXL);
572 };
573 
574 class LoadStringSlowPathARMVIXL : public SlowPathCodeARMVIXL {
575  public:
LoadStringSlowPathARMVIXL(HLoadString * instruction)576   explicit LoadStringSlowPathARMVIXL(HLoadString* instruction)
577       : SlowPathCodeARMVIXL(instruction) {}
578 
EmitNativeCode(CodeGenerator * codegen)579   void EmitNativeCode(CodeGenerator* codegen) override {
580     DCHECK(instruction_->IsLoadString());
581     DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry);
582     LocationSummary* locations = instruction_->GetLocations();
583     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
584     const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
585 
586     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
587     __ Bind(GetEntryLabel());
588     SaveLiveRegisters(codegen, locations);
589 
590     InvokeRuntimeCallingConventionARMVIXL calling_convention;
591     __ Mov(calling_convention.GetRegisterAt(0), string_index.index_);
592     arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
593     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
594 
595     arm_codegen->Move32(locations->Out(), LocationFrom(r0));
596     RestoreLiveRegisters(codegen, locations);
597 
598     __ B(GetExitLabel());
599   }
600 
GetDescription() const601   const char* GetDescription() const override { return "LoadStringSlowPathARMVIXL"; }
602 
603  private:
604   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARMVIXL);
605 };
606 
607 class TypeCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
608  public:
TypeCheckSlowPathARMVIXL(HInstruction * instruction,bool is_fatal)609   TypeCheckSlowPathARMVIXL(HInstruction* instruction, bool is_fatal)
610       : SlowPathCodeARMVIXL(instruction), is_fatal_(is_fatal) {}
611 
EmitNativeCode(CodeGenerator * codegen)612   void EmitNativeCode(CodeGenerator* codegen) override {
613     LocationSummary* locations = instruction_->GetLocations();
614     DCHECK(instruction_->IsCheckCast()
615            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
616 
617     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
618     __ Bind(GetEntryLabel());
619 
620     if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
621       SaveLiveRegisters(codegen, locations);
622     }
623 
624     // We're moving two locations to locations that could overlap, so we need a parallel
625     // move resolver.
626     InvokeRuntimeCallingConventionARMVIXL calling_convention;
627 
628     codegen->EmitParallelMoves(locations->InAt(0),
629                                LocationFrom(calling_convention.GetRegisterAt(0)),
630                                DataType::Type::kReference,
631                                locations->InAt(1),
632                                LocationFrom(calling_convention.GetRegisterAt(1)),
633                                DataType::Type::kReference);
634     if (instruction_->IsInstanceOf()) {
635       arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial,
636                                  instruction_,
637                                  instruction_->GetDexPc(),
638                                  this);
639       CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
640       arm_codegen->Move32(locations->Out(), LocationFrom(r0));
641     } else {
642       DCHECK(instruction_->IsCheckCast());
643       arm_codegen->InvokeRuntime(kQuickCheckInstanceOf,
644                                  instruction_,
645                                  instruction_->GetDexPc(),
646                                  this);
647       CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
648     }
649 
650     if (!is_fatal_) {
651       RestoreLiveRegisters(codegen, locations);
652       __ B(GetExitLabel());
653     }
654   }
655 
GetDescription() const656   const char* GetDescription() const override { return "TypeCheckSlowPathARMVIXL"; }
657 
IsFatal() const658   bool IsFatal() const override { return is_fatal_; }
659 
660  private:
661   const bool is_fatal_;
662 
663   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARMVIXL);
664 };
665 
666 class DeoptimizationSlowPathARMVIXL : public SlowPathCodeARMVIXL {
667  public:
DeoptimizationSlowPathARMVIXL(HDeoptimize * instruction)668   explicit DeoptimizationSlowPathARMVIXL(HDeoptimize* instruction)
669       : SlowPathCodeARMVIXL(instruction) {}
670 
EmitNativeCode(CodeGenerator * codegen)671   void EmitNativeCode(CodeGenerator* codegen) override {
672     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
673     __ Bind(GetEntryLabel());
674         LocationSummary* locations = instruction_->GetLocations();
675     SaveLiveRegisters(codegen, locations);
676     InvokeRuntimeCallingConventionARMVIXL calling_convention;
677     __ Mov(calling_convention.GetRegisterAt(0),
678            static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
679 
680     arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
681     CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
682   }
683 
GetDescription() const684   const char* GetDescription() const override { return "DeoptimizationSlowPathARMVIXL"; }
685 
686  private:
687   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARMVIXL);
688 };
689 
690 class ArraySetSlowPathARMVIXL : public SlowPathCodeARMVIXL {
691  public:
ArraySetSlowPathARMVIXL(HInstruction * instruction)692   explicit ArraySetSlowPathARMVIXL(HInstruction* instruction) : SlowPathCodeARMVIXL(instruction) {}
693 
EmitNativeCode(CodeGenerator * codegen)694   void EmitNativeCode(CodeGenerator* codegen) override {
695     LocationSummary* locations = instruction_->GetLocations();
696     __ Bind(GetEntryLabel());
697     SaveLiveRegisters(codegen, locations);
698 
699     InvokeRuntimeCallingConventionARMVIXL calling_convention;
700     HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
701     parallel_move.AddMove(
702         locations->InAt(0),
703         LocationFrom(calling_convention.GetRegisterAt(0)),
704         DataType::Type::kReference,
705         nullptr);
706     parallel_move.AddMove(
707         locations->InAt(1),
708         LocationFrom(calling_convention.GetRegisterAt(1)),
709         DataType::Type::kInt32,
710         nullptr);
711     parallel_move.AddMove(
712         locations->InAt(2),
713         LocationFrom(calling_convention.GetRegisterAt(2)),
714         DataType::Type::kReference,
715         nullptr);
716     codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
717 
718     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
719     arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
720     CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
721     RestoreLiveRegisters(codegen, locations);
722     __ B(GetExitLabel());
723   }
724 
GetDescription() const725   const char* GetDescription() const override { return "ArraySetSlowPathARMVIXL"; }
726 
727  private:
728   DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARMVIXL);
729 };
730 
731 // Slow path generating a read barrier for a heap reference.
732 class ReadBarrierForHeapReferenceSlowPathARMVIXL : public SlowPathCodeARMVIXL {
733  public:
ReadBarrierForHeapReferenceSlowPathARMVIXL(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)734   ReadBarrierForHeapReferenceSlowPathARMVIXL(HInstruction* instruction,
735                                              Location out,
736                                              Location ref,
737                                              Location obj,
738                                              uint32_t offset,
739                                              Location index)
740       : SlowPathCodeARMVIXL(instruction),
741         out_(out),
742         ref_(ref),
743         obj_(obj),
744         offset_(offset),
745         index_(index) {
746     DCHECK(gUseReadBarrier);
747     // If `obj` is equal to `out` or `ref`, it means the initial object
748     // has been overwritten by (or after) the heap object reference load
749     // to be instrumented, e.g.:
750     //
751     //   __ LoadFromOffset(kLoadWord, out, out, offset);
752     //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
753     //
754     // In that case, we have lost the information about the original
755     // object, and the emitted read barrier cannot work properly.
756     DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
757     DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
758   }
759 
EmitNativeCode(CodeGenerator * codegen)760   void EmitNativeCode(CodeGenerator* codegen) override {
761     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
762     LocationSummary* locations = instruction_->GetLocations();
763     vixl32::Register reg_out = RegisterFrom(out_);
764     DCHECK(locations->CanCall());
765     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode()));
766     DCHECK(instruction_->IsInstanceFieldGet() ||
767            instruction_->IsPredicatedInstanceFieldGet() ||
768            instruction_->IsStaticFieldGet() ||
769            instruction_->IsArrayGet() ||
770            instruction_->IsInstanceOf() ||
771            instruction_->IsCheckCast() ||
772            (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
773         << "Unexpected instruction in read barrier for heap reference slow path: "
774         << instruction_->DebugName();
775     // The read barrier instrumentation of object ArrayGet
776     // instructions does not support the HIntermediateAddress
777     // instruction.
778     DCHECK(!(instruction_->IsArrayGet() &&
779              instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
780 
781     __ Bind(GetEntryLabel());
782     SaveLiveRegisters(codegen, locations);
783 
784     // We may have to change the index's value, but as `index_` is a
785     // constant member (like other "inputs" of this slow path),
786     // introduce a copy of it, `index`.
787     Location index = index_;
788     if (index_.IsValid()) {
789       // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
790       if (instruction_->IsArrayGet()) {
791         // Compute the actual memory offset and store it in `index`.
792         vixl32::Register index_reg = RegisterFrom(index_);
793         DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg.GetCode()));
794         if (codegen->IsCoreCalleeSaveRegister(index_reg.GetCode())) {
795           // We are about to change the value of `index_reg` (see the
796           // calls to art::arm::ArmVIXLMacroAssembler::Lsl and
797           // art::arm::ArmVIXLMacroAssembler::Add below), but it has
798           // not been saved by the previous call to
799           // art::SlowPathCode::SaveLiveRegisters, as it is a
800           // callee-save register --
801           // art::SlowPathCode::SaveLiveRegisters does not consider
802           // callee-save registers, as it has been designed with the
803           // assumption that callee-save registers are supposed to be
804           // handled by the called function.  So, as a callee-save
805           // register, `index_reg` _would_ eventually be saved onto
806           // the stack, but it would be too late: we would have
807           // changed its value earlier.  Therefore, we manually save
808           // it here into another freely available register,
809           // `free_reg`, chosen of course among the caller-save
810           // registers (as a callee-save `free_reg` register would
811           // exhibit the same problem).
812           //
813           // Note we could have requested a temporary register from
814           // the register allocator instead; but we prefer not to, as
815           // this is a slow path, and we know we can find a
816           // caller-save register that is available.
817           vixl32::Register free_reg = FindAvailableCallerSaveRegister(codegen);
818           __ Mov(free_reg, index_reg);
819           index_reg = free_reg;
820           index = LocationFrom(index_reg);
821         } else {
822           // The initial register stored in `index_` has already been
823           // saved in the call to art::SlowPathCode::SaveLiveRegisters
824           // (as it is not a callee-save register), so we can freely
825           // use it.
826         }
827         // Shifting the index value contained in `index_reg` by the scale
828         // factor (2) cannot overflow in practice, as the runtime is
829         // unable to allocate object arrays with a size larger than
830         // 2^26 - 1 (that is, 2^28 - 4 bytes).
831         __ Lsl(index_reg, index_reg, TIMES_4);
832         static_assert(
833             sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
834             "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
835         __ Add(index_reg, index_reg, offset_);
836       } else {
837         // In the case of the following intrinsics `index_` is not shifted by a scale factor of 2
838         // (as in the case of ArrayGet), as it is actually an offset to an object field within an
839         // object.
840         DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
841         DCHECK(instruction_->GetLocations()->Intrinsified());
842         HInvoke* invoke = instruction_->AsInvoke();
843         DCHECK(IsUnsafeGetObject(invoke) || IsVarHandleGet(invoke) || IsVarHandleCASFamily(invoke))
844             << invoke->GetIntrinsic();
845         DCHECK_EQ(offset_, 0U);
846         // Though UnsafeGet's offset location is a register pair, we only pass the low
847         // part (high part is irrelevant for 32-bit addresses) to the slow path.
848         // For VarHandle intrinsics, the index is always just a register.
849         DCHECK(index_.IsRegister());
850         index = index_;
851       }
852     }
853 
854     // We're moving two or three locations to locations that could
855     // overlap, so we need a parallel move resolver.
856     InvokeRuntimeCallingConventionARMVIXL calling_convention;
857     HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
858     parallel_move.AddMove(ref_,
859                           LocationFrom(calling_convention.GetRegisterAt(0)),
860                           DataType::Type::kReference,
861                           nullptr);
862     parallel_move.AddMove(obj_,
863                           LocationFrom(calling_convention.GetRegisterAt(1)),
864                           DataType::Type::kReference,
865                           nullptr);
866     if (index.IsValid()) {
867       parallel_move.AddMove(index,
868                             LocationFrom(calling_convention.GetRegisterAt(2)),
869                             DataType::Type::kInt32,
870                             nullptr);
871       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
872     } else {
873       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
874       __ Mov(calling_convention.GetRegisterAt(2), offset_);
875     }
876     arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this);
877     CheckEntrypointTypes<
878         kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
879     arm_codegen->Move32(out_, LocationFrom(r0));
880 
881     RestoreLiveRegisters(codegen, locations);
882     __ B(GetExitLabel());
883   }
884 
GetDescription() const885   const char* GetDescription() const override {
886     return "ReadBarrierForHeapReferenceSlowPathARMVIXL";
887   }
888 
889  private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)890   vixl32::Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
891     uint32_t ref = RegisterFrom(ref_).GetCode();
892     uint32_t obj = RegisterFrom(obj_).GetCode();
893     for (uint32_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
894       if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
895         return vixl32::Register(i);
896       }
897     }
898     // We shall never fail to find a free caller-save register, as
899     // there are more than two core caller-save registers on ARM
900     // (meaning it is possible to find one which is different from
901     // `ref` and `obj`).
902     DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
903     LOG(FATAL) << "Could not find a free caller-save register";
904     UNREACHABLE();
905   }
906 
907   const Location out_;
908   const Location ref_;
909   const Location obj_;
910   const uint32_t offset_;
911   // An additional location containing an index to an array.
912   // Only used for HArrayGet and the UnsafeGetObject &
913   // UnsafeGetObjectVolatile intrinsics.
914   const Location index_;
915 
916   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARMVIXL);
917 };
918 
919 // Slow path generating a read barrier for a GC root.
920 class ReadBarrierForRootSlowPathARMVIXL : public SlowPathCodeARMVIXL {
921  public:
ReadBarrierForRootSlowPathARMVIXL(HInstruction * instruction,Location out,Location root)922   ReadBarrierForRootSlowPathARMVIXL(HInstruction* instruction, Location out, Location root)
923       : SlowPathCodeARMVIXL(instruction), out_(out), root_(root) {
924     DCHECK(gUseReadBarrier);
925   }
926 
EmitNativeCode(CodeGenerator * codegen)927   void EmitNativeCode(CodeGenerator* codegen) override {
928     LocationSummary* locations = instruction_->GetLocations();
929     vixl32::Register reg_out = RegisterFrom(out_);
930     DCHECK(locations->CanCall());
931     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode()));
932     DCHECK(instruction_->IsLoadClass() ||
933            instruction_->IsLoadString() ||
934            (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
935         << "Unexpected instruction in read barrier for GC root slow path: "
936         << instruction_->DebugName();
937 
938     __ Bind(GetEntryLabel());
939     SaveLiveRegisters(codegen, locations);
940 
941     InvokeRuntimeCallingConventionARMVIXL calling_convention;
942     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
943     arm_codegen->Move32(LocationFrom(calling_convention.GetRegisterAt(0)), root_);
944     arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
945                                instruction_,
946                                instruction_->GetDexPc(),
947                                this);
948     CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
949     arm_codegen->Move32(out_, LocationFrom(r0));
950 
951     RestoreLiveRegisters(codegen, locations);
952     __ B(GetExitLabel());
953   }
954 
GetDescription() const955   const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARMVIXL"; }
956 
957  private:
958   const Location out_;
959   const Location root_;
960 
961   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARMVIXL);
962 };
963 
964 class MethodEntryExitHooksSlowPathARMVIXL : public SlowPathCodeARMVIXL {
965  public:
MethodEntryExitHooksSlowPathARMVIXL(HInstruction * instruction)966   explicit MethodEntryExitHooksSlowPathARMVIXL(HInstruction* instruction)
967       : SlowPathCodeARMVIXL(instruction) {}
968 
EmitNativeCode(CodeGenerator * codegen)969   void EmitNativeCode(CodeGenerator* codegen) override {
970     LocationSummary* locations = instruction_->GetLocations();
971     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
972     QuickEntrypointEnum entry_point =
973         (instruction_->IsMethodEntryHook()) ? kQuickMethodEntryHook : kQuickMethodExitHook;
974     __ Bind(GetEntryLabel());
975     SaveLiveRegisters(codegen, locations);
976     if (instruction_->IsMethodExitHook()) {
977       // Load frame size to pass to the exit hooks
978       __ Mov(vixl::aarch32::Register(R2), arm_codegen->GetFrameSize());
979     }
980     arm_codegen->InvokeRuntime(entry_point, instruction_, instruction_->GetDexPc(), this);
981     RestoreLiveRegisters(codegen, locations);
982     __ B(GetExitLabel());
983   }
984 
GetDescription() const985   const char* GetDescription() const override {
986     return "MethodEntryExitHooksSlowPath";
987   }
988 
989  private:
990   DISALLOW_COPY_AND_ASSIGN(MethodEntryExitHooksSlowPathARMVIXL);
991 };
992 
993 class CompileOptimizedSlowPathARMVIXL : public SlowPathCodeARMVIXL {
994  public:
CompileOptimizedSlowPathARMVIXL()995   CompileOptimizedSlowPathARMVIXL() : SlowPathCodeARMVIXL(/* instruction= */ nullptr) {}
996 
EmitNativeCode(CodeGenerator * codegen)997   void EmitNativeCode(CodeGenerator* codegen) override {
998     uint32_t entry_point_offset =
999         GetThreadOffset<kArmPointerSize>(kQuickCompileOptimized).Int32Value();
1000     __ Bind(GetEntryLabel());
1001     __ Ldr(lr, MemOperand(tr, entry_point_offset));
1002     // Note: we don't record the call here (and therefore don't generate a stack
1003     // map), as the entrypoint should never be suspended.
1004     __ Blx(lr);
1005     __ B(GetExitLabel());
1006   }
1007 
GetDescription() const1008   const char* GetDescription() const override {
1009     return "CompileOptimizedSlowPath";
1010   }
1011 
1012  private:
1013   DISALLOW_COPY_AND_ASSIGN(CompileOptimizedSlowPathARMVIXL);
1014 };
1015 
ARMCondition(IfCondition cond)1016 inline vixl32::Condition ARMCondition(IfCondition cond) {
1017   switch (cond) {
1018     case kCondEQ: return eq;
1019     case kCondNE: return ne;
1020     case kCondLT: return lt;
1021     case kCondLE: return le;
1022     case kCondGT: return gt;
1023     case kCondGE: return ge;
1024     case kCondB:  return lo;
1025     case kCondBE: return ls;
1026     case kCondA:  return hi;
1027     case kCondAE: return hs;
1028   }
1029   LOG(FATAL) << "Unreachable";
1030   UNREACHABLE();
1031 }
1032 
1033 // Maps signed condition to unsigned condition.
ARMUnsignedCondition(IfCondition cond)1034 inline vixl32::Condition ARMUnsignedCondition(IfCondition cond) {
1035   switch (cond) {
1036     case kCondEQ: return eq;
1037     case kCondNE: return ne;
1038     // Signed to unsigned.
1039     case kCondLT: return lo;
1040     case kCondLE: return ls;
1041     case kCondGT: return hi;
1042     case kCondGE: return hs;
1043     // Unsigned remain unchanged.
1044     case kCondB:  return lo;
1045     case kCondBE: return ls;
1046     case kCondA:  return hi;
1047     case kCondAE: return hs;
1048   }
1049   LOG(FATAL) << "Unreachable";
1050   UNREACHABLE();
1051 }
1052 
ARMFPCondition(IfCondition cond,bool gt_bias)1053 inline vixl32::Condition ARMFPCondition(IfCondition cond, bool gt_bias) {
1054   // The ARM condition codes can express all the necessary branches, see the
1055   // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual.
1056   // There is no dex instruction or HIR that would need the missing conditions
1057   // "equal or unordered" or "not equal".
1058   switch (cond) {
1059     case kCondEQ: return eq;
1060     case kCondNE: return ne /* unordered */;
1061     case kCondLT: return gt_bias ? cc : lt /* unordered */;
1062     case kCondLE: return gt_bias ? ls : le /* unordered */;
1063     case kCondGT: return gt_bias ? hi /* unordered */ : gt;
1064     case kCondGE: return gt_bias ? cs /* unordered */ : ge;
1065     default:
1066       LOG(FATAL) << "UNREACHABLE";
1067       UNREACHABLE();
1068   }
1069 }
1070 
ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind)1071 inline ShiftType ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind) {
1072   switch (op_kind) {
1073     case HDataProcWithShifterOp::kASR: return ShiftType::ASR;
1074     case HDataProcWithShifterOp::kLSL: return ShiftType::LSL;
1075     case HDataProcWithShifterOp::kLSR: return ShiftType::LSR;
1076     default:
1077       LOG(FATAL) << "Unexpected op kind " << op_kind;
1078       UNREACHABLE();
1079   }
1080 }
1081 
DumpCoreRegister(std::ostream & stream,int reg) const1082 void CodeGeneratorARMVIXL::DumpCoreRegister(std::ostream& stream, int reg) const {
1083   stream << vixl32::Register(reg);
1084 }
1085 
DumpFloatingPointRegister(std::ostream & stream,int reg) const1086 void CodeGeneratorARMVIXL::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1087   stream << vixl32::SRegister(reg);
1088 }
1089 
GetInstructionSetFeatures() const1090 const ArmInstructionSetFeatures& CodeGeneratorARMVIXL::GetInstructionSetFeatures() const {
1091   return *GetCompilerOptions().GetInstructionSetFeatures()->AsArmInstructionSetFeatures();
1092 }
1093 
ComputeSRegisterListMask(const SRegisterList & regs)1094 static uint32_t ComputeSRegisterListMask(const SRegisterList& regs) {
1095   uint32_t mask = 0;
1096   for (uint32_t i = regs.GetFirstSRegister().GetCode();
1097        i <= regs.GetLastSRegister().GetCode();
1098        ++i) {
1099     mask |= (1 << i);
1100   }
1101   return mask;
1102 }
1103 
1104 // Saves the register in the stack. Returns the size taken on stack.
SaveCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1105 size_t CodeGeneratorARMVIXL::SaveCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,
1106                                               uint32_t reg_id ATTRIBUTE_UNUSED) {
1107   TODO_VIXL32(FATAL);
1108   UNREACHABLE();
1109 }
1110 
1111 // Restores the register from the stack. Returns the size taken on stack.
RestoreCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1112 size_t CodeGeneratorARMVIXL::RestoreCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,
1113                                                  uint32_t reg_id ATTRIBUTE_UNUSED) {
1114   TODO_VIXL32(FATAL);
1115   UNREACHABLE();
1116 }
1117 
SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1118 size_t CodeGeneratorARMVIXL::SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1119                                                        uint32_t reg_id ATTRIBUTE_UNUSED) {
1120   TODO_VIXL32(FATAL);
1121   UNREACHABLE();
1122 }
1123 
RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1124 size_t CodeGeneratorARMVIXL::RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1125                                                           uint32_t reg_id ATTRIBUTE_UNUSED) {
1126   TODO_VIXL32(FATAL);
1127   UNREACHABLE();
1128 }
1129 
GenerateDataProcInstruction(HInstruction::InstructionKind kind,vixl32::Register out,vixl32::Register first,const Operand & second,CodeGeneratorARMVIXL * codegen)1130 static void GenerateDataProcInstruction(HInstruction::InstructionKind kind,
1131                                         vixl32::Register out,
1132                                         vixl32::Register first,
1133                                         const Operand& second,
1134                                         CodeGeneratorARMVIXL* codegen) {
1135   if (second.IsImmediate() && second.GetImmediate() == 0) {
1136     const Operand in = kind == HInstruction::kAnd
1137         ? Operand(0)
1138         : Operand(first);
1139 
1140     __ Mov(out, in);
1141   } else {
1142     switch (kind) {
1143       case HInstruction::kAdd:
1144         __ Add(out, first, second);
1145         break;
1146       case HInstruction::kAnd:
1147         __ And(out, first, second);
1148         break;
1149       case HInstruction::kOr:
1150         __ Orr(out, first, second);
1151         break;
1152       case HInstruction::kSub:
1153         __ Sub(out, first, second);
1154         break;
1155       case HInstruction::kXor:
1156         __ Eor(out, first, second);
1157         break;
1158       default:
1159         LOG(FATAL) << "Unexpected instruction kind: " << kind;
1160         UNREACHABLE();
1161     }
1162   }
1163 }
1164 
GenerateDataProc(HInstruction::InstructionKind kind,const Location & out,const Location & first,const Operand & second_lo,const Operand & second_hi,CodeGeneratorARMVIXL * codegen)1165 static void GenerateDataProc(HInstruction::InstructionKind kind,
1166                              const Location& out,
1167                              const Location& first,
1168                              const Operand& second_lo,
1169                              const Operand& second_hi,
1170                              CodeGeneratorARMVIXL* codegen) {
1171   const vixl32::Register first_hi = HighRegisterFrom(first);
1172   const vixl32::Register first_lo = LowRegisterFrom(first);
1173   const vixl32::Register out_hi = HighRegisterFrom(out);
1174   const vixl32::Register out_lo = LowRegisterFrom(out);
1175 
1176   if (kind == HInstruction::kAdd) {
1177     __ Adds(out_lo, first_lo, second_lo);
1178     __ Adc(out_hi, first_hi, second_hi);
1179   } else if (kind == HInstruction::kSub) {
1180     __ Subs(out_lo, first_lo, second_lo);
1181     __ Sbc(out_hi, first_hi, second_hi);
1182   } else {
1183     GenerateDataProcInstruction(kind, out_lo, first_lo, second_lo, codegen);
1184     GenerateDataProcInstruction(kind, out_hi, first_hi, second_hi, codegen);
1185   }
1186 }
1187 
GetShifterOperand(vixl32::Register rm,ShiftType shift,uint32_t shift_imm)1188 static Operand GetShifterOperand(vixl32::Register rm, ShiftType shift, uint32_t shift_imm) {
1189   return shift_imm == 0 ? Operand(rm) : Operand(rm, shift, shift_imm);
1190 }
1191 
GenerateLongDataProc(HDataProcWithShifterOp * instruction,CodeGeneratorARMVIXL * codegen)1192 static void GenerateLongDataProc(HDataProcWithShifterOp* instruction,
1193                                  CodeGeneratorARMVIXL* codegen) {
1194   DCHECK_EQ(instruction->GetType(), DataType::Type::kInt64);
1195   DCHECK(HDataProcWithShifterOp::IsShiftOp(instruction->GetOpKind()));
1196 
1197   const LocationSummary* const locations = instruction->GetLocations();
1198   const uint32_t shift_value = instruction->GetShiftAmount();
1199   const HInstruction::InstructionKind kind = instruction->GetInstrKind();
1200   const Location first = locations->InAt(0);
1201   const Location second = locations->InAt(1);
1202   const Location out = locations->Out();
1203   const vixl32::Register first_hi = HighRegisterFrom(first);
1204   const vixl32::Register first_lo = LowRegisterFrom(first);
1205   const vixl32::Register out_hi = HighRegisterFrom(out);
1206   const vixl32::Register out_lo = LowRegisterFrom(out);
1207   const vixl32::Register second_hi = HighRegisterFrom(second);
1208   const vixl32::Register second_lo = LowRegisterFrom(second);
1209   const ShiftType shift = ShiftFromOpKind(instruction->GetOpKind());
1210 
1211   if (shift_value >= 32) {
1212     if (shift == ShiftType::LSL) {
1213       GenerateDataProcInstruction(kind,
1214                                   out_hi,
1215                                   first_hi,
1216                                   Operand(second_lo, ShiftType::LSL, shift_value - 32),
1217                                   codegen);
1218       GenerateDataProcInstruction(kind, out_lo, first_lo, 0, codegen);
1219     } else if (shift == ShiftType::ASR) {
1220       GenerateDataProc(kind,
1221                        out,
1222                        first,
1223                        GetShifterOperand(second_hi, ShiftType::ASR, shift_value - 32),
1224                        Operand(second_hi, ShiftType::ASR, 31),
1225                        codegen);
1226     } else {
1227       DCHECK_EQ(shift, ShiftType::LSR);
1228       GenerateDataProc(kind,
1229                        out,
1230                        first,
1231                        GetShifterOperand(second_hi, ShiftType::LSR, shift_value - 32),
1232                        0,
1233                        codegen);
1234     }
1235   } else {
1236     DCHECK_GT(shift_value, 1U);
1237     DCHECK_LT(shift_value, 32U);
1238 
1239     UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1240 
1241     if (shift == ShiftType::LSL) {
1242       // We are not doing this for HInstruction::kAdd because the output will require
1243       // Location::kOutputOverlap; not applicable to other cases.
1244       if (kind == HInstruction::kOr || kind == HInstruction::kXor) {
1245         GenerateDataProcInstruction(kind,
1246                                     out_hi,
1247                                     first_hi,
1248                                     Operand(second_hi, ShiftType::LSL, shift_value),
1249                                     codegen);
1250         GenerateDataProcInstruction(kind,
1251                                     out_hi,
1252                                     out_hi,
1253                                     Operand(second_lo, ShiftType::LSR, 32 - shift_value),
1254                                     codegen);
1255         GenerateDataProcInstruction(kind,
1256                                     out_lo,
1257                                     first_lo,
1258                                     Operand(second_lo, ShiftType::LSL, shift_value),
1259                                     codegen);
1260       } else {
1261         const vixl32::Register temp = temps.Acquire();
1262 
1263         __ Lsl(temp, second_hi, shift_value);
1264         __ Orr(temp, temp, Operand(second_lo, ShiftType::LSR, 32 - shift_value));
1265         GenerateDataProc(kind,
1266                          out,
1267                          first,
1268                          Operand(second_lo, ShiftType::LSL, shift_value),
1269                          temp,
1270                          codegen);
1271       }
1272     } else {
1273       DCHECK(shift == ShiftType::ASR || shift == ShiftType::LSR);
1274 
1275       // We are not doing this for HInstruction::kAdd because the output will require
1276       // Location::kOutputOverlap; not applicable to other cases.
1277       if (kind == HInstruction::kOr || kind == HInstruction::kXor) {
1278         GenerateDataProcInstruction(kind,
1279                                     out_lo,
1280                                     first_lo,
1281                                     Operand(second_lo, ShiftType::LSR, shift_value),
1282                                     codegen);
1283         GenerateDataProcInstruction(kind,
1284                                     out_lo,
1285                                     out_lo,
1286                                     Operand(second_hi, ShiftType::LSL, 32 - shift_value),
1287                                     codegen);
1288         GenerateDataProcInstruction(kind,
1289                                     out_hi,
1290                                     first_hi,
1291                                     Operand(second_hi, shift, shift_value),
1292                                     codegen);
1293       } else {
1294         const vixl32::Register temp = temps.Acquire();
1295 
1296         __ Lsr(temp, second_lo, shift_value);
1297         __ Orr(temp, temp, Operand(second_hi, ShiftType::LSL, 32 - shift_value));
1298         GenerateDataProc(kind,
1299                          out,
1300                          first,
1301                          temp,
1302                          Operand(second_hi, shift, shift_value),
1303                          codegen);
1304       }
1305     }
1306   }
1307 }
1308 
GenerateVcmp(HInstruction * instruction,CodeGeneratorARMVIXL * codegen)1309 static void GenerateVcmp(HInstruction* instruction, CodeGeneratorARMVIXL* codegen) {
1310   const Location rhs_loc = instruction->GetLocations()->InAt(1);
1311   if (rhs_loc.IsConstant()) {
1312     // 0.0 is the only immediate that can be encoded directly in
1313     // a VCMP instruction.
1314     //
1315     // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
1316     // specify that in a floating-point comparison, positive zero
1317     // and negative zero are considered equal, so we can use the
1318     // literal 0.0 for both cases here.
1319     //
1320     // Note however that some methods (Float.equal, Float.compare,
1321     // Float.compareTo, Double.equal, Double.compare,
1322     // Double.compareTo, Math.max, Math.min, StrictMath.max,
1323     // StrictMath.min) consider 0.0 to be (strictly) greater than
1324     // -0.0. So if we ever translate calls to these methods into a
1325     // HCompare instruction, we must handle the -0.0 case with
1326     // care here.
1327     DCHECK(rhs_loc.GetConstant()->IsArithmeticZero());
1328 
1329     const DataType::Type type = instruction->InputAt(0)->GetType();
1330 
1331     if (type == DataType::Type::kFloat32) {
1332       __ Vcmp(F32, InputSRegisterAt(instruction, 0), 0.0);
1333     } else {
1334       DCHECK_EQ(type, DataType::Type::kFloat64);
1335       __ Vcmp(F64, InputDRegisterAt(instruction, 0), 0.0);
1336     }
1337   } else {
1338     __ Vcmp(InputVRegisterAt(instruction, 0), InputVRegisterAt(instruction, 1));
1339   }
1340 }
1341 
AdjustConstantForCondition(int64_t value,IfCondition * condition,IfCondition * opposite)1342 static int64_t AdjustConstantForCondition(int64_t value,
1343                                           IfCondition* condition,
1344                                           IfCondition* opposite) {
1345   if (value == 1) {
1346     if (*condition == kCondB) {
1347       value = 0;
1348       *condition = kCondEQ;
1349       *opposite = kCondNE;
1350     } else if (*condition == kCondAE) {
1351       value = 0;
1352       *condition = kCondNE;
1353       *opposite = kCondEQ;
1354     }
1355   } else if (value == -1) {
1356     if (*condition == kCondGT) {
1357       value = 0;
1358       *condition = kCondGE;
1359       *opposite = kCondLT;
1360     } else if (*condition == kCondLE) {
1361       value = 0;
1362       *condition = kCondLT;
1363       *opposite = kCondGE;
1364     }
1365   }
1366 
1367   return value;
1368 }
1369 
GenerateLongTestConstant(HCondition * condition,bool invert,CodeGeneratorARMVIXL * codegen)1370 static std::pair<vixl32::Condition, vixl32::Condition> GenerateLongTestConstant(
1371     HCondition* condition,
1372     bool invert,
1373     CodeGeneratorARMVIXL* codegen) {
1374   DCHECK_EQ(condition->GetLeft()->GetType(), DataType::Type::kInt64);
1375 
1376   const LocationSummary* const locations = condition->GetLocations();
1377   IfCondition cond = condition->GetCondition();
1378   IfCondition opposite = condition->GetOppositeCondition();
1379 
1380   if (invert) {
1381     std::swap(cond, opposite);
1382   }
1383 
1384   std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
1385   const Location left = locations->InAt(0);
1386   const Location right = locations->InAt(1);
1387 
1388   DCHECK(right.IsConstant());
1389 
1390   const vixl32::Register left_high = HighRegisterFrom(left);
1391   const vixl32::Register left_low = LowRegisterFrom(left);
1392   int64_t value = AdjustConstantForCondition(Int64ConstantFrom(right), &cond, &opposite);
1393   UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1394 
1395   // Comparisons against 0 are common enough to deserve special attention.
1396   if (value == 0) {
1397     switch (cond) {
1398       case kCondNE:
1399       // x > 0 iff x != 0 when the comparison is unsigned.
1400       case kCondA:
1401         ret = std::make_pair(ne, eq);
1402         FALLTHROUGH_INTENDED;
1403       case kCondEQ:
1404       // x <= 0 iff x == 0 when the comparison is unsigned.
1405       case kCondBE:
1406         __ Orrs(temps.Acquire(), left_low, left_high);
1407         return ret;
1408       case kCondLT:
1409       case kCondGE:
1410         __ Cmp(left_high, 0);
1411         return std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1412       // Trivially true or false.
1413       case kCondB:
1414         ret = std::make_pair(ne, eq);
1415         FALLTHROUGH_INTENDED;
1416       case kCondAE:
1417         __ Cmp(left_low, left_low);
1418         return ret;
1419       default:
1420         break;
1421     }
1422   }
1423 
1424   switch (cond) {
1425     case kCondEQ:
1426     case kCondNE:
1427     case kCondB:
1428     case kCondBE:
1429     case kCondA:
1430     case kCondAE: {
1431       const uint32_t value_low = Low32Bits(value);
1432       Operand operand_low(value_low);
1433 
1434       __ Cmp(left_high, High32Bits(value));
1435 
1436       // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
1437       // we must ensure that the operands corresponding to the least significant
1438       // halves of the inputs fit into a 16-bit CMP encoding.
1439       if (!left_low.IsLow() || !IsUint<8>(value_low)) {
1440         operand_low = Operand(temps.Acquire());
1441         __ Mov(LeaveFlags, operand_low.GetBaseRegister(), value_low);
1442       }
1443 
1444       // We use the scope because of the IT block that follows.
1445       ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1446                                2 * vixl32::k16BitT32InstructionSizeInBytes,
1447                                CodeBufferCheckScope::kExactSize);
1448 
1449       __ it(eq);
1450       __ cmp(eq, left_low, operand_low);
1451       ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite));
1452       break;
1453     }
1454     case kCondLE:
1455     case kCondGT:
1456       // Trivially true or false.
1457       if (value == std::numeric_limits<int64_t>::max()) {
1458         __ Cmp(left_low, left_low);
1459         ret = cond == kCondLE ? std::make_pair(eq, ne) : std::make_pair(ne, eq);
1460         break;
1461       }
1462 
1463       if (cond == kCondLE) {
1464         DCHECK_EQ(opposite, kCondGT);
1465         cond = kCondLT;
1466         opposite = kCondGE;
1467       } else {
1468         DCHECK_EQ(cond, kCondGT);
1469         DCHECK_EQ(opposite, kCondLE);
1470         cond = kCondGE;
1471         opposite = kCondLT;
1472       }
1473 
1474       value++;
1475       FALLTHROUGH_INTENDED;
1476     case kCondGE:
1477     case kCondLT: {
1478       __ Cmp(left_low, Low32Bits(value));
1479       __ Sbcs(temps.Acquire(), left_high, High32Bits(value));
1480       ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1481       break;
1482     }
1483     default:
1484       LOG(FATAL) << "Unreachable";
1485       UNREACHABLE();
1486   }
1487 
1488   return ret;
1489 }
1490 
GenerateLongTest(HCondition * condition,bool invert,CodeGeneratorARMVIXL * codegen)1491 static std::pair<vixl32::Condition, vixl32::Condition> GenerateLongTest(
1492     HCondition* condition,
1493     bool invert,
1494     CodeGeneratorARMVIXL* codegen) {
1495   DCHECK_EQ(condition->GetLeft()->GetType(), DataType::Type::kInt64);
1496 
1497   const LocationSummary* const locations = condition->GetLocations();
1498   IfCondition cond = condition->GetCondition();
1499   IfCondition opposite = condition->GetOppositeCondition();
1500 
1501   if (invert) {
1502     std::swap(cond, opposite);
1503   }
1504 
1505   std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
1506   Location left = locations->InAt(0);
1507   Location right = locations->InAt(1);
1508 
1509   DCHECK(right.IsRegisterPair());
1510 
1511   switch (cond) {
1512     case kCondEQ:
1513     case kCondNE:
1514     case kCondB:
1515     case kCondBE:
1516     case kCondA:
1517     case kCondAE: {
1518       __ Cmp(HighRegisterFrom(left), HighRegisterFrom(right));
1519 
1520       // We use the scope because of the IT block that follows.
1521       ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1522                                2 * vixl32::k16BitT32InstructionSizeInBytes,
1523                                CodeBufferCheckScope::kExactSize);
1524 
1525       __ it(eq);
1526       __ cmp(eq, LowRegisterFrom(left), LowRegisterFrom(right));
1527       ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite));
1528       break;
1529     }
1530     case kCondLE:
1531     case kCondGT:
1532       if (cond == kCondLE) {
1533         DCHECK_EQ(opposite, kCondGT);
1534         cond = kCondGE;
1535         opposite = kCondLT;
1536       } else {
1537         DCHECK_EQ(cond, kCondGT);
1538         DCHECK_EQ(opposite, kCondLE);
1539         cond = kCondLT;
1540         opposite = kCondGE;
1541       }
1542 
1543       std::swap(left, right);
1544       FALLTHROUGH_INTENDED;
1545     case kCondGE:
1546     case kCondLT: {
1547       UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1548 
1549       __ Cmp(LowRegisterFrom(left), LowRegisterFrom(right));
1550       __ Sbcs(temps.Acquire(), HighRegisterFrom(left), HighRegisterFrom(right));
1551       ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1552       break;
1553     }
1554     default:
1555       LOG(FATAL) << "Unreachable";
1556       UNREACHABLE();
1557   }
1558 
1559   return ret;
1560 }
1561 
GenerateTest(HCondition * condition,bool invert,CodeGeneratorARMVIXL * codegen)1562 static std::pair<vixl32::Condition, vixl32::Condition> GenerateTest(HCondition* condition,
1563                                                                     bool invert,
1564                                                                     CodeGeneratorARMVIXL* codegen) {
1565   const DataType::Type type = condition->GetLeft()->GetType();
1566   IfCondition cond = condition->GetCondition();
1567   IfCondition opposite = condition->GetOppositeCondition();
1568   std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
1569 
1570   if (invert) {
1571     std::swap(cond, opposite);
1572   }
1573 
1574   if (type == DataType::Type::kInt64) {
1575     ret = condition->GetLocations()->InAt(1).IsConstant()
1576         ? GenerateLongTestConstant(condition, invert, codegen)
1577         : GenerateLongTest(condition, invert, codegen);
1578   } else if (DataType::IsFloatingPointType(type)) {
1579     GenerateVcmp(condition, codegen);
1580     __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
1581     ret = std::make_pair(ARMFPCondition(cond, condition->IsGtBias()),
1582                          ARMFPCondition(opposite, condition->IsGtBias()));
1583   } else {
1584     DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
1585     __ Cmp(InputRegisterAt(condition, 0), InputOperandAt(condition, 1));
1586     ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1587   }
1588 
1589   return ret;
1590 }
1591 
GenerateConditionGeneric(HCondition * cond,CodeGeneratorARMVIXL * codegen)1592 static void GenerateConditionGeneric(HCondition* cond, CodeGeneratorARMVIXL* codegen) {
1593   const vixl32::Register out = OutputRegister(cond);
1594   const auto condition = GenerateTest(cond, false, codegen);
1595 
1596   __ Mov(LeaveFlags, out, 0);
1597 
1598   if (out.IsLow()) {
1599     // We use the scope because of the IT block that follows.
1600     ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1601                              2 * vixl32::k16BitT32InstructionSizeInBytes,
1602                              CodeBufferCheckScope::kExactSize);
1603 
1604     __ it(condition.first);
1605     __ mov(condition.first, out, 1);
1606   } else {
1607     vixl32::Label done_label;
1608     vixl32::Label* const final_label = codegen->GetFinalLabel(cond, &done_label);
1609 
1610     __ B(condition.second, final_label, /* is_far_target= */ false);
1611     __ Mov(out, 1);
1612 
1613     if (done_label.IsReferenced()) {
1614       __ Bind(&done_label);
1615     }
1616   }
1617 }
1618 
GenerateEqualLong(HCondition * cond,CodeGeneratorARMVIXL * codegen)1619 static void GenerateEqualLong(HCondition* cond, CodeGeneratorARMVIXL* codegen) {
1620   DCHECK_EQ(cond->GetLeft()->GetType(), DataType::Type::kInt64);
1621 
1622   const LocationSummary* const locations = cond->GetLocations();
1623   IfCondition condition = cond->GetCondition();
1624   const vixl32::Register out = OutputRegister(cond);
1625   const Location left = locations->InAt(0);
1626   const Location right = locations->InAt(1);
1627   vixl32::Register left_high = HighRegisterFrom(left);
1628   vixl32::Register left_low = LowRegisterFrom(left);
1629   vixl32::Register temp;
1630   UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1631 
1632   if (right.IsConstant()) {
1633     IfCondition opposite = cond->GetOppositeCondition();
1634     const int64_t value = AdjustConstantForCondition(Int64ConstantFrom(right),
1635                                                      &condition,
1636                                                      &opposite);
1637     Operand right_high = High32Bits(value);
1638     Operand right_low = Low32Bits(value);
1639 
1640     // The output uses Location::kNoOutputOverlap.
1641     if (out.Is(left_high)) {
1642       std::swap(left_low, left_high);
1643       std::swap(right_low, right_high);
1644     }
1645 
1646     __ Sub(out, left_low, right_low);
1647     temp = temps.Acquire();
1648     __ Sub(temp, left_high, right_high);
1649   } else {
1650     DCHECK(right.IsRegisterPair());
1651     temp = temps.Acquire();
1652     __ Sub(temp, left_high, HighRegisterFrom(right));
1653     __ Sub(out, left_low, LowRegisterFrom(right));
1654   }
1655 
1656   // Need to check after calling AdjustConstantForCondition().
1657   DCHECK(condition == kCondEQ || condition == kCondNE) << condition;
1658 
1659   if (condition == kCondNE && out.IsLow()) {
1660     __ Orrs(out, out, temp);
1661 
1662     // We use the scope because of the IT block that follows.
1663     ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1664                              2 * vixl32::k16BitT32InstructionSizeInBytes,
1665                              CodeBufferCheckScope::kExactSize);
1666 
1667     __ it(ne);
1668     __ mov(ne, out, 1);
1669   } else {
1670     __ Orr(out, out, temp);
1671     codegen->GenerateConditionWithZero(condition, out, out, temp);
1672   }
1673 }
1674 
GenerateConditionLong(HCondition * cond,CodeGeneratorARMVIXL * codegen)1675 static void GenerateConditionLong(HCondition* cond, CodeGeneratorARMVIXL* codegen) {
1676   DCHECK_EQ(cond->GetLeft()->GetType(), DataType::Type::kInt64);
1677 
1678   const LocationSummary* const locations = cond->GetLocations();
1679   IfCondition condition = cond->GetCondition();
1680   const vixl32::Register out = OutputRegister(cond);
1681   const Location left = locations->InAt(0);
1682   const Location right = locations->InAt(1);
1683 
1684   if (right.IsConstant()) {
1685     IfCondition opposite = cond->GetOppositeCondition();
1686 
1687     // Comparisons against 0 are common enough to deserve special attention.
1688     if (AdjustConstantForCondition(Int64ConstantFrom(right), &condition, &opposite) == 0) {
1689       switch (condition) {
1690         case kCondNE:
1691         case kCondA:
1692           if (out.IsLow()) {
1693             // We only care if both input registers are 0 or not.
1694             __ Orrs(out, LowRegisterFrom(left), HighRegisterFrom(left));
1695 
1696             // We use the scope because of the IT block that follows.
1697             ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1698                                      2 * vixl32::k16BitT32InstructionSizeInBytes,
1699                                      CodeBufferCheckScope::kExactSize);
1700 
1701             __ it(ne);
1702             __ mov(ne, out, 1);
1703             return;
1704           }
1705 
1706           FALLTHROUGH_INTENDED;
1707         case kCondEQ:
1708         case kCondBE:
1709           // We only care if both input registers are 0 or not.
1710           __ Orr(out, LowRegisterFrom(left), HighRegisterFrom(left));
1711           codegen->GenerateConditionWithZero(condition, out, out);
1712           return;
1713         case kCondLT:
1714         case kCondGE:
1715           // We only care about the sign bit.
1716           FALLTHROUGH_INTENDED;
1717         case kCondAE:
1718         case kCondB:
1719           codegen->GenerateConditionWithZero(condition, out, HighRegisterFrom(left));
1720           return;
1721         case kCondLE:
1722         case kCondGT:
1723         default:
1724           break;
1725       }
1726     }
1727   }
1728 
1729   // If `out` is a low register, then the GenerateConditionGeneric()
1730   // function generates a shorter code sequence that is still branchless.
1731   if ((condition == kCondEQ || condition == kCondNE) && !out.IsLow()) {
1732     GenerateEqualLong(cond, codegen);
1733     return;
1734   }
1735 
1736   GenerateConditionGeneric(cond, codegen);
1737 }
1738 
GenerateConditionIntegralOrNonPrimitive(HCondition * cond,CodeGeneratorARMVIXL * codegen)1739 static void GenerateConditionIntegralOrNonPrimitive(HCondition* cond,
1740                                                     CodeGeneratorARMVIXL* codegen) {
1741   const DataType::Type type = cond->GetLeft()->GetType();
1742 
1743   DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
1744 
1745   if (type == DataType::Type::kInt64) {
1746     GenerateConditionLong(cond, codegen);
1747     return;
1748   }
1749 
1750   IfCondition condition = cond->GetCondition();
1751   vixl32::Register in = InputRegisterAt(cond, 0);
1752   const vixl32::Register out = OutputRegister(cond);
1753   const Location right = cond->GetLocations()->InAt(1);
1754   int64_t value;
1755 
1756   if (right.IsConstant()) {
1757     IfCondition opposite = cond->GetOppositeCondition();
1758 
1759     value = AdjustConstantForCondition(Int64ConstantFrom(right), &condition, &opposite);
1760 
1761     // Comparisons against 0 are common enough to deserve special attention.
1762     if (value == 0) {
1763       switch (condition) {
1764         case kCondNE:
1765         case kCondA:
1766           if (out.IsLow() && out.Is(in)) {
1767             __ Cmp(out, 0);
1768 
1769             // We use the scope because of the IT block that follows.
1770             ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1771                                      2 * vixl32::k16BitT32InstructionSizeInBytes,
1772                                      CodeBufferCheckScope::kExactSize);
1773 
1774             __ it(ne);
1775             __ mov(ne, out, 1);
1776             return;
1777           }
1778 
1779           FALLTHROUGH_INTENDED;
1780         case kCondEQ:
1781         case kCondBE:
1782         case kCondLT:
1783         case kCondGE:
1784         case kCondAE:
1785         case kCondB:
1786           codegen->GenerateConditionWithZero(condition, out, in);
1787           return;
1788         case kCondLE:
1789         case kCondGT:
1790         default:
1791           break;
1792       }
1793     }
1794   }
1795 
1796   if (condition == kCondEQ || condition == kCondNE) {
1797     Operand operand(0);
1798 
1799     if (right.IsConstant()) {
1800       operand = Operand::From(value);
1801     } else if (out.Is(RegisterFrom(right))) {
1802       // Avoid 32-bit instructions if possible.
1803       operand = InputOperandAt(cond, 0);
1804       in = RegisterFrom(right);
1805     } else {
1806       operand = InputOperandAt(cond, 1);
1807     }
1808 
1809     if (condition == kCondNE && out.IsLow()) {
1810       __ Subs(out, in, operand);
1811 
1812       // We use the scope because of the IT block that follows.
1813       ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1814                                2 * vixl32::k16BitT32InstructionSizeInBytes,
1815                                CodeBufferCheckScope::kExactSize);
1816 
1817       __ it(ne);
1818       __ mov(ne, out, 1);
1819     } else {
1820       __ Sub(out, in, operand);
1821       codegen->GenerateConditionWithZero(condition, out, out);
1822     }
1823 
1824     return;
1825   }
1826 
1827   GenerateConditionGeneric(cond, codegen);
1828 }
1829 
CanEncodeConstantAs8BitImmediate(HConstant * constant)1830 static bool CanEncodeConstantAs8BitImmediate(HConstant* constant) {
1831   const DataType::Type type = constant->GetType();
1832   bool ret = false;
1833 
1834   DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
1835 
1836   if (type == DataType::Type::kInt64) {
1837     const uint64_t value = Uint64ConstantFrom(constant);
1838 
1839     ret = IsUint<8>(Low32Bits(value)) && IsUint<8>(High32Bits(value));
1840   } else {
1841     ret = IsUint<8>(Int32ConstantFrom(constant));
1842   }
1843 
1844   return ret;
1845 }
1846 
Arm8BitEncodableConstantOrRegister(HInstruction * constant)1847 static Location Arm8BitEncodableConstantOrRegister(HInstruction* constant) {
1848   DCHECK(!DataType::IsFloatingPointType(constant->GetType()));
1849 
1850   if (constant->IsConstant() && CanEncodeConstantAs8BitImmediate(constant->AsConstant())) {
1851     return Location::ConstantLocation(constant);
1852   }
1853 
1854   return Location::RequiresRegister();
1855 }
1856 
CanGenerateConditionalMove(const Location & out,const Location & src)1857 static bool CanGenerateConditionalMove(const Location& out, const Location& src) {
1858   // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
1859   // we check that we are not dealing with floating-point output (there is no
1860   // 16-bit VMOV encoding).
1861   if (!out.IsRegister() && !out.IsRegisterPair()) {
1862     return false;
1863   }
1864 
1865   // For constants, we also check that the output is in one or two low registers,
1866   // and that the constants fit in an 8-bit unsigned integer, so that a 16-bit
1867   // MOV encoding can be used.
1868   if (src.IsConstant()) {
1869     if (!CanEncodeConstantAs8BitImmediate(src.GetConstant())) {
1870       return false;
1871     }
1872 
1873     if (out.IsRegister()) {
1874       if (!RegisterFrom(out).IsLow()) {
1875         return false;
1876       }
1877     } else {
1878       DCHECK(out.IsRegisterPair());
1879 
1880       if (!HighRegisterFrom(out).IsLow()) {
1881         return false;
1882       }
1883     }
1884   }
1885 
1886   return true;
1887 }
1888 
1889 #undef __
1890 
GetFinalLabel(HInstruction * instruction,vixl32::Label * final_label)1891 vixl32::Label* CodeGeneratorARMVIXL::GetFinalLabel(HInstruction* instruction,
1892                                                    vixl32::Label* final_label) {
1893   DCHECK(!instruction->IsControlFlow() && !instruction->IsSuspendCheck());
1894   DCHECK_IMPLIES(instruction->IsInvoke(), !instruction->GetLocations()->CanCall());
1895 
1896   const HBasicBlock* const block = instruction->GetBlock();
1897   const HLoopInformation* const info = block->GetLoopInformation();
1898   HInstruction* const next = instruction->GetNext();
1899 
1900   // Avoid a branch to a branch.
1901   if (next->IsGoto() && (info == nullptr ||
1902                          !info->IsBackEdge(*block) ||
1903                          !info->HasSuspendCheck())) {
1904     final_label = GetLabelOf(next->AsGoto()->GetSuccessor());
1905   }
1906 
1907   return final_label;
1908 }
1909 
1910 namespace detail {
1911 // Mark which intrinsics we don't have handcrafted code for.
1912 template <Intrinsics T>
1913 struct IsUnimplemented {
1914   bool is_unimplemented = false;
1915 };
1916 
1917 #define TRUE_OVERRIDE(Name)                     \
1918   template <>                                   \
1919   struct IsUnimplemented<Intrinsics::k##Name> { \
1920     bool is_unimplemented = true;               \
1921   };
1922 UNIMPLEMENTED_INTRINSIC_LIST_ARM(TRUE_OVERRIDE)
1923 #undef TRUE_OVERRIDE
1924 
1925 #include "intrinsics_list.h"
1926 static constexpr bool kIsIntrinsicUnimplemented[] = {
1927   false,  // kNone
1928 #define IS_UNIMPLEMENTED(Intrinsic, ...) \
1929   IsUnimplemented<Intrinsics::k##Intrinsic>().is_unimplemented,
1930   INTRINSICS_LIST(IS_UNIMPLEMENTED)
1931 #undef IS_UNIMPLEMENTED
1932 };
1933 #undef INTRINSICS_LIST
1934 
1935 }  // namespace detail
1936 
CodeGeneratorARMVIXL(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)1937 CodeGeneratorARMVIXL::CodeGeneratorARMVIXL(HGraph* graph,
1938                                            const CompilerOptions& compiler_options,
1939                                            OptimizingCompilerStats* stats)
1940     : CodeGenerator(graph,
1941                     kNumberOfCoreRegisters,
1942                     kNumberOfSRegisters,
1943                     kNumberOfRegisterPairs,
1944                     kCoreCalleeSaves.GetList(),
1945                     ComputeSRegisterListMask(kFpuCalleeSaves),
1946                     compiler_options,
1947                     stats,
1948                     ArrayRef<const bool>(detail::kIsIntrinsicUnimplemented)),
1949       block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1950       jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1951       location_builder_(graph, this),
1952       instruction_visitor_(graph, this),
1953       move_resolver_(graph->GetAllocator(), this),
1954       assembler_(graph->GetAllocator()),
1955       boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1956       method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1957       boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1958       type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1959       public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1960       package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1961       boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1962       string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1963       boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1964       call_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1965       baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1966       uint32_literals_(std::less<uint32_t>(),
1967                        graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1968       jit_string_patches_(StringReferenceValueComparator(),
1969                           graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1970       jit_class_patches_(TypeReferenceValueComparator(),
1971                          graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1972       jit_baker_read_barrier_slow_paths_(std::less<uint32_t>(),
1973                                          graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) {
1974   // Always save the LR register to mimic Quick.
1975   AddAllocatedRegister(Location::RegisterLocation(LR));
1976   // Give D30 and D31 as scratch register to VIXL. The register allocator only works on
1977   // S0-S31, which alias to D0-D15.
1978   GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d31);
1979   GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d30);
1980 }
1981 
EmitTable(CodeGeneratorARMVIXL * codegen)1982 void JumpTableARMVIXL::EmitTable(CodeGeneratorARMVIXL* codegen) {
1983   uint32_t num_entries = switch_instr_->GetNumEntries();
1984   DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
1985 
1986   // We are about to use the assembler to place literals directly. Make sure we have enough
1987   // underlying code buffer and we have generated a jump table of the right size, using
1988   // codegen->GetVIXLAssembler()->GetBuffer().Align();
1989   ExactAssemblyScope aas(codegen->GetVIXLAssembler(),
1990                          num_entries * sizeof(int32_t),
1991                          CodeBufferCheckScope::kMaximumSize);
1992   // TODO(VIXL): Check that using lower case bind is fine here.
1993   codegen->GetVIXLAssembler()->bind(&table_start_);
1994   for (uint32_t i = 0; i < num_entries; i++) {
1995     codegen->GetVIXLAssembler()->place(bb_addresses_[i].get());
1996   }
1997 }
1998 
FixTable(CodeGeneratorARMVIXL * codegen)1999 void JumpTableARMVIXL::FixTable(CodeGeneratorARMVIXL* codegen) {
2000   uint32_t num_entries = switch_instr_->GetNumEntries();
2001   DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
2002 
2003   const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
2004   for (uint32_t i = 0; i < num_entries; i++) {
2005     vixl32::Label* target_label = codegen->GetLabelOf(successors[i]);
2006     DCHECK(target_label->IsBound());
2007     int32_t jump_offset = target_label->GetLocation() - table_start_.GetLocation();
2008     // When doing BX to address we need to have lower bit set to 1 in T32.
2009     if (codegen->GetVIXLAssembler()->IsUsingT32()) {
2010       jump_offset++;
2011     }
2012     DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
2013     DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
2014 
2015     bb_addresses_[i].get()->UpdateValue(jump_offset, codegen->GetVIXLAssembler()->GetBuffer());
2016   }
2017 }
2018 
FixJumpTables()2019 void CodeGeneratorARMVIXL::FixJumpTables() {
2020   for (auto&& jump_table : jump_tables_) {
2021     jump_table->FixTable(this);
2022   }
2023 }
2024 
2025 #define __ reinterpret_cast<ArmVIXLAssembler*>(GetAssembler())->GetVIXLAssembler()->  // NOLINT
2026 
Finalize(CodeAllocator * allocator)2027 void CodeGeneratorARMVIXL::Finalize(CodeAllocator* allocator) {
2028   FixJumpTables();
2029 
2030   // Emit JIT baker read barrier slow paths.
2031   DCHECK(GetCompilerOptions().IsJitCompiler() || jit_baker_read_barrier_slow_paths_.empty());
2032   for (auto& entry : jit_baker_read_barrier_slow_paths_) {
2033     uint32_t encoded_data = entry.first;
2034     vixl::aarch32::Label* slow_path_entry = &entry.second.label;
2035     __ Bind(slow_path_entry);
2036     CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr);
2037   }
2038 
2039   GetAssembler()->FinalizeCode();
2040   CodeGenerator::Finalize(allocator);
2041 
2042   // Verify Baker read barrier linker patches.
2043   if (kIsDebugBuild) {
2044     ArrayRef<const uint8_t> code = allocator->GetMemory();
2045     for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
2046       DCHECK(info.label.IsBound());
2047       uint32_t literal_offset = info.label.GetLocation();
2048       DCHECK_ALIGNED(literal_offset, 2u);
2049 
2050       auto GetInsn16 = [&code](uint32_t offset) {
2051         DCHECK_ALIGNED(offset, 2u);
2052         return (static_cast<uint32_t>(code[offset + 0]) << 0) +
2053                (static_cast<uint32_t>(code[offset + 1]) << 8);
2054       };
2055       auto GetInsn32 = [=](uint32_t offset) {
2056         return (GetInsn16(offset) << 16) + (GetInsn16(offset + 2u) << 0);
2057       };
2058 
2059       uint32_t encoded_data = info.custom_data;
2060       BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
2061       // Check that the next instruction matches the expected LDR.
2062       switch (kind) {
2063         case BakerReadBarrierKind::kField: {
2064           BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
2065           if (width == BakerReadBarrierWidth::kWide) {
2066             DCHECK_GE(code.size() - literal_offset, 8u);
2067             uint32_t next_insn = GetInsn32(literal_offset + 4u);
2068             // LDR (immediate), encoding T3, with correct base_reg.
2069             CheckValidReg((next_insn >> 12) & 0xfu);  // Check destination register.
2070             const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2071             CHECK_EQ(next_insn & 0xffff0000u, 0xf8d00000u | (base_reg << 16));
2072           } else {
2073             DCHECK_GE(code.size() - literal_offset, 6u);
2074             uint32_t next_insn = GetInsn16(literal_offset + 4u);
2075             // LDR (immediate), encoding T1, with correct base_reg.
2076             CheckValidReg(next_insn & 0x7u);  // Check destination register.
2077             const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2078             CHECK_EQ(next_insn & 0xf838u, 0x6800u | (base_reg << 3));
2079           }
2080           break;
2081         }
2082         case BakerReadBarrierKind::kArray: {
2083           DCHECK_GE(code.size() - literal_offset, 8u);
2084           uint32_t next_insn = GetInsn32(literal_offset + 4u);
2085           // LDR (register) with correct base_reg, S=1 and option=011 (LDR Wt, [Xn, Xm, LSL #2]).
2086           CheckValidReg((next_insn >> 12) & 0xfu);  // Check destination register.
2087           const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2088           CHECK_EQ(next_insn & 0xffff0ff0u, 0xf8500020u | (base_reg << 16));
2089           CheckValidReg(next_insn & 0xf);  // Check index register
2090           break;
2091         }
2092         case BakerReadBarrierKind::kGcRoot: {
2093           BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
2094           if (width == BakerReadBarrierWidth::kWide) {
2095             DCHECK_GE(literal_offset, 4u);
2096             uint32_t prev_insn = GetInsn32(literal_offset - 4u);
2097             // LDR (immediate), encoding T3, with correct root_reg.
2098             const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2099             CHECK_EQ(prev_insn & 0xfff0f000u, 0xf8d00000u | (root_reg << 12));
2100           } else {
2101             DCHECK_GE(literal_offset, 2u);
2102             uint32_t prev_insn = GetInsn16(literal_offset - 2u);
2103             const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2104             // Usually LDR (immediate), encoding T1, with correct root_reg but we may have
2105             // a `MOV marked, old_value` for intrinsic CAS where `marked` is a low register.
2106             if ((prev_insn & 0xff87u) != (0x4600 | root_reg)) {
2107               CHECK_EQ(prev_insn & 0xf807u, 0x6800u | root_reg);
2108             }
2109           }
2110           break;
2111         }
2112         case BakerReadBarrierKind::kIntrinsicCas: {
2113           DCHECK_GE(literal_offset, 4u);
2114           uint32_t prev_insn = GetInsn32(literal_offset - 4u);
2115           // MOV (register), encoding T3, with correct root_reg.
2116           const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2117           DCHECK_GE(root_reg, 8u);  // Used only for high registers.
2118           CHECK_EQ(prev_insn & 0xfffffff0u, 0xea4f0000u | (root_reg << 8));
2119           break;
2120         }
2121         default:
2122           LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
2123           UNREACHABLE();
2124       }
2125     }
2126   }
2127 }
2128 
SetupBlockedRegisters() const2129 void CodeGeneratorARMVIXL::SetupBlockedRegisters() const {
2130   // Stack register, LR and PC are always reserved.
2131   blocked_core_registers_[SP] = true;
2132   blocked_core_registers_[LR] = true;
2133   blocked_core_registers_[PC] = true;
2134 
2135   // TODO: We don't need to reserve marking-register for userfaultfd GC. But
2136   // that would require some work in the assembler code as the right GC is
2137   // chosen at load-time and not compile time.
2138   if (kReserveMarkingRegister) {
2139     // Reserve marking register.
2140     blocked_core_registers_[MR] = true;
2141   }
2142 
2143   // Reserve thread register.
2144   blocked_core_registers_[TR] = true;
2145 
2146   // Reserve temp register.
2147   blocked_core_registers_[IP] = true;
2148 
2149   if (GetGraph()->IsDebuggable()) {
2150     // Stubs do not save callee-save floating point registers. If the graph
2151     // is debuggable, we need to deal with these registers differently. For
2152     // now, just block them.
2153     for (uint32_t i = kFpuCalleeSaves.GetFirstSRegister().GetCode();
2154          i <= kFpuCalleeSaves.GetLastSRegister().GetCode();
2155          ++i) {
2156       blocked_fpu_registers_[i] = true;
2157     }
2158   }
2159 }
2160 
InstructionCodeGeneratorARMVIXL(HGraph * graph,CodeGeneratorARMVIXL * codegen)2161 InstructionCodeGeneratorARMVIXL::InstructionCodeGeneratorARMVIXL(HGraph* graph,
2162                                                                  CodeGeneratorARMVIXL* codegen)
2163       : InstructionCodeGenerator(graph, codegen),
2164         assembler_(codegen->GetAssembler()),
2165         codegen_(codegen) {}
2166 
ComputeSpillMask()2167 void CodeGeneratorARMVIXL::ComputeSpillMask() {
2168   core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
2169   DCHECK_NE(core_spill_mask_ & (1u << kLrCode), 0u)
2170       << "At least the return address register must be saved";
2171   // 16-bit PUSH/POP (T1) can save/restore just the LR/PC.
2172   DCHECK(GetVIXLAssembler()->IsUsingT32());
2173   fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
2174   // We use vpush and vpop for saving and restoring floating point registers, which take
2175   // a SRegister and the number of registers to save/restore after that SRegister. We
2176   // therefore update the `fpu_spill_mask_` to also contain those registers not allocated,
2177   // but in the range.
2178   if (fpu_spill_mask_ != 0) {
2179     uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_);
2180     uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_);
2181     for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) {
2182       fpu_spill_mask_ |= (1 << i);
2183     }
2184   }
2185 }
2186 
VisitMethodExitHook(HMethodExitHook * method_hook)2187 void LocationsBuilderARMVIXL::VisitMethodExitHook(HMethodExitHook* method_hook) {
2188   LocationSummary* locations = new (GetGraph()->GetAllocator())
2189       LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
2190   locations->SetInAt(0, parameter_visitor_.GetReturnLocation(method_hook->InputAt(0)->GetType()));
2191 }
2192 
GenerateMethodEntryExitHook(HInstruction * instruction)2193 void InstructionCodeGeneratorARMVIXL::GenerateMethodEntryExitHook(HInstruction* instruction) {
2194   UseScratchRegisterScope temps(GetVIXLAssembler());
2195   vixl32::Register temp = temps.Acquire();
2196 
2197   SlowPathCodeARMVIXL* slow_path =
2198       new (codegen_->GetScopedAllocator()) MethodEntryExitHooksSlowPathARMVIXL(instruction);
2199   codegen_->AddSlowPath(slow_path);
2200 
2201   if (instruction->IsMethodExitHook()) {
2202     // Check if we are required to check if the caller needs a deoptimization. Strictly speaking it
2203     // would be sufficient to check if CheckCallerForDeopt bit is set. Though it is faster to check
2204     // if it is just non-zero. kCHA bit isn't used in debuggable runtimes as cha optimization is
2205     // disabled in debuggable runtime. The other bit is used when this method itself requires a
2206     // deoptimization due to redefinition. So it is safe to just check for non-zero value here.
2207     GetAssembler()->LoadFromOffset(kLoadWord,
2208                                    temp,
2209                                    sp,
2210                                    codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
2211     __ CompareAndBranchIfNonZero(temp, slow_path->GetEntryLabel());
2212   }
2213 
2214   MemberOffset  offset = instruction->IsMethodExitHook() ?
2215       instrumentation::Instrumentation::HaveMethodExitListenersOffset() :
2216       instrumentation::Instrumentation::HaveMethodEntryListenersOffset();
2217   uint32_t address = reinterpret_cast32<uint32_t>(Runtime::Current()->GetInstrumentation());
2218   __ Mov(temp, address + offset.Int32Value());
2219   __ Ldrb(temp, MemOperand(temp, 0));
2220   __ CompareAndBranchIfNonZero(temp, slow_path->GetEntryLabel());
2221   __ Bind(slow_path->GetExitLabel());
2222 }
2223 
VisitMethodExitHook(HMethodExitHook * instruction)2224 void InstructionCodeGeneratorARMVIXL::VisitMethodExitHook(HMethodExitHook* instruction) {
2225   DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
2226   DCHECK(codegen_->RequiresCurrentMethod());
2227   GenerateMethodEntryExitHook(instruction);
2228 }
2229 
VisitMethodEntryHook(HMethodEntryHook * method_hook)2230 void LocationsBuilderARMVIXL::VisitMethodEntryHook(HMethodEntryHook* method_hook) {
2231   new (GetGraph()->GetAllocator()) LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
2232 }
2233 
VisitMethodEntryHook(HMethodEntryHook * instruction)2234 void InstructionCodeGeneratorARMVIXL::VisitMethodEntryHook(HMethodEntryHook* instruction) {
2235   DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
2236   DCHECK(codegen_->RequiresCurrentMethod());
2237   GenerateMethodEntryExitHook(instruction);
2238 }
2239 
MaybeIncrementHotness(bool is_frame_entry)2240 void CodeGeneratorARMVIXL::MaybeIncrementHotness(bool is_frame_entry) {
2241   if (GetCompilerOptions().CountHotnessInCompiledCode()) {
2242     UseScratchRegisterScope temps(GetVIXLAssembler());
2243     vixl32::Register temp = temps.Acquire();
2244     static_assert(ArtMethod::MaxCounter() == 0xFFFF, "asm is probably wrong");
2245     if (!is_frame_entry) {
2246       __ Push(vixl32::Register(kMethodRegister));
2247       GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize);
2248       GetAssembler()->LoadFromOffset(kLoadWord, kMethodRegister, sp, kArmWordSize);
2249     }
2250     // Load with zero extend to clear the high bits for integer overflow check.
2251     __ Ldrh(temp, MemOperand(kMethodRegister, ArtMethod::HotnessCountOffset().Int32Value()));
2252     vixl::aarch32::Label done;
2253     DCHECK_EQ(0u, interpreter::kNterpHotnessValue);
2254     __ CompareAndBranchIfZero(temp, &done, /* is_far_target= */ false);
2255     __ Add(temp, temp, -1);
2256     __ Strh(temp, MemOperand(kMethodRegister, ArtMethod::HotnessCountOffset().Int32Value()));
2257     __ Bind(&done);
2258     if (!is_frame_entry) {
2259       __ Pop(vixl32::Register(kMethodRegister));
2260       GetAssembler()->cfi().AdjustCFAOffset(-static_cast<int>(kArmWordSize));
2261     }
2262   }
2263 
2264   if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) {
2265     SlowPathCodeARMVIXL* slow_path = new (GetScopedAllocator()) CompileOptimizedSlowPathARMVIXL();
2266     AddSlowPath(slow_path);
2267     ProfilingInfo* info = GetGraph()->GetProfilingInfo();
2268     DCHECK(info != nullptr);
2269     DCHECK(!HasEmptyFrame());
2270     uint32_t address = reinterpret_cast32<uint32_t>(info);
2271     UseScratchRegisterScope temps(GetVIXLAssembler());
2272     vixl32::Register tmp = temps.Acquire();
2273     __ Mov(lr, address);
2274     __ Ldrh(tmp, MemOperand(lr, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
2275     __ Adds(tmp, tmp, -1);
2276     __ B(cc, slow_path->GetEntryLabel());
2277     __ Strh(tmp, MemOperand(lr, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
2278     __ Bind(slow_path->GetExitLabel());
2279   }
2280 }
2281 
GenerateFrameEntry()2282 void CodeGeneratorARMVIXL::GenerateFrameEntry() {
2283   bool skip_overflow_check =
2284       IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm);
2285   DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
2286 
2287   // Check if we need to generate the clinit check. We will jump to the
2288   // resolution stub if the class is not initialized and the executing thread is
2289   // not the thread initializing it.
2290   // We do this before constructing the frame to get the correct stack trace if
2291   // an exception is thrown.
2292   if (GetCompilerOptions().ShouldCompileWithClinitCheck(GetGraph()->GetArtMethod())) {
2293     UseScratchRegisterScope temps(GetVIXLAssembler());
2294     vixl32::Label resolution;
2295     vixl32::Label memory_barrier;
2296 
2297     // Check if we're visibly initialized.
2298 
2299     vixl32::Register temp1 = temps.Acquire();
2300     // Use r4 as other temporary register.
2301     DCHECK(!blocked_core_registers_[R4]);
2302     DCHECK(!kCoreCalleeSaves.Includes(r4));
2303     vixl32::Register temp2 = r4;
2304     for (vixl32::Register reg : kParameterCoreRegistersVIXL) {
2305       DCHECK(!reg.Is(r4));
2306     }
2307 
2308     // We don't emit a read barrier here to save on code size. We rely on the
2309     // resolution trampoline to do a suspend check before re-entering this code.
2310     __ Ldr(temp1, MemOperand(kMethodRegister, ArtMethod::DeclaringClassOffset().Int32Value()));
2311     __ Ldrb(temp2, MemOperand(temp1, status_byte_offset));
2312     __ Cmp(temp2, shifted_visibly_initialized_value);
2313     __ B(cs, &frame_entry_label_);
2314 
2315     // Check if we're initialized and jump to code that does a memory barrier if
2316     // so.
2317     __ Cmp(temp2, shifted_initialized_value);
2318     __ B(cs, &memory_barrier);
2319 
2320     // Check if we're initializing and the thread initializing is the one
2321     // executing the code.
2322     __ Cmp(temp2, shifted_initializing_value);
2323     __ B(lo, &resolution);
2324 
2325     __ Ldr(temp1, MemOperand(temp1, mirror::Class::ClinitThreadIdOffset().Int32Value()));
2326     __ Ldr(temp2, MemOperand(tr, Thread::TidOffset<kArmPointerSize>().Int32Value()));
2327     __ Cmp(temp1, temp2);
2328     __ B(eq, &frame_entry_label_);
2329     __ Bind(&resolution);
2330 
2331     // Jump to the resolution stub.
2332     ThreadOffset32 entrypoint_offset =
2333         GetThreadOffset<kArmPointerSize>(kQuickQuickResolutionTrampoline);
2334     __ Ldr(temp1, MemOperand(tr, entrypoint_offset.Int32Value()));
2335     __ Bx(temp1);
2336 
2337     __ Bind(&memory_barrier);
2338     GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
2339   }
2340 
2341   __ Bind(&frame_entry_label_);
2342 
2343   if (HasEmptyFrame()) {
2344     // Ensure that the CFI opcode list is not empty.
2345     GetAssembler()->cfi().Nop();
2346     MaybeIncrementHotness(/* is_frame_entry= */ true);
2347     return;
2348   }
2349 
2350   if (!skip_overflow_check) {
2351     // Using r4 instead of IP saves 2 bytes.
2352     UseScratchRegisterScope temps(GetVIXLAssembler());
2353     vixl32::Register temp;
2354     // TODO: Remove this check when R4 is made a callee-save register
2355     // in ART compiled code (b/72801708). Currently we need to make
2356     // sure r4 is not blocked, e.g. in special purpose
2357     // TestCodeGeneratorARMVIXL; also asserting that r4 is available
2358     // here.
2359     if (!blocked_core_registers_[R4]) {
2360       for (vixl32::Register reg : kParameterCoreRegistersVIXL) {
2361         DCHECK(!reg.Is(r4));
2362       }
2363       DCHECK(!kCoreCalleeSaves.Includes(r4));
2364       temp = r4;
2365     } else {
2366       temp = temps.Acquire();
2367     }
2368     __ Sub(temp, sp, Operand::From(GetStackOverflowReservedBytes(InstructionSet::kArm)));
2369     // The load must immediately precede RecordPcInfo.
2370     ExactAssemblyScope aas(GetVIXLAssembler(),
2371                            vixl32::kMaxInstructionSizeInBytes,
2372                            CodeBufferCheckScope::kMaximumSize);
2373     __ ldr(temp, MemOperand(temp));
2374     RecordPcInfo(nullptr, 0);
2375   }
2376 
2377   uint32_t frame_size = GetFrameSize();
2378   uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
2379   uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
2380   if ((fpu_spill_mask_ == 0u || IsPowerOfTwo(fpu_spill_mask_)) &&
2381       core_spills_offset <= 3u * kArmWordSize) {
2382     // Do a single PUSH for core registers including the method and up to two
2383     // filler registers. Then store the single FP spill if any.
2384     // (The worst case is when the method is not required and we actually
2385     // store 3 extra registers but they are stored in the same properly
2386     // aligned 16-byte chunk where we're already writing anyway.)
2387     DCHECK_EQ(kMethodRegister.GetCode(), 0u);
2388     uint32_t extra_regs = MaxInt<uint32_t>(core_spills_offset / kArmWordSize);
2389     DCHECK_LT(MostSignificantBit(extra_regs), LeastSignificantBit(core_spill_mask_));
2390     __ Push(RegisterList(core_spill_mask_ | extra_regs));
2391     GetAssembler()->cfi().AdjustCFAOffset(frame_size);
2392     GetAssembler()->cfi().RelOffsetForMany(DWARFReg(kMethodRegister),
2393                                            core_spills_offset,
2394                                            core_spill_mask_,
2395                                            kArmWordSize);
2396     if (fpu_spill_mask_ != 0u) {
2397       DCHECK(IsPowerOfTwo(fpu_spill_mask_));
2398       vixl::aarch32::SRegister sreg(LeastSignificantBit(fpu_spill_mask_));
2399       GetAssembler()->StoreSToOffset(sreg, sp, fp_spills_offset);
2400       GetAssembler()->cfi().RelOffset(DWARFReg(sreg), /*offset=*/ fp_spills_offset);
2401     }
2402   } else {
2403     __ Push(RegisterList(core_spill_mask_));
2404     GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_));
2405     GetAssembler()->cfi().RelOffsetForMany(DWARFReg(kMethodRegister),
2406                                            /*offset=*/ 0,
2407                                            core_spill_mask_,
2408                                            kArmWordSize);
2409     if (fpu_spill_mask_ != 0) {
2410       uint32_t first = LeastSignificantBit(fpu_spill_mask_);
2411 
2412       // Check that list is contiguous.
2413       DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_)));
2414 
2415       __ Vpush(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_)));
2416       GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_));
2417       GetAssembler()->cfi().RelOffsetForMany(DWARFReg(s0),
2418                                              /*offset=*/ 0,
2419                                              fpu_spill_mask_,
2420                                              kArmWordSize);
2421     }
2422 
2423     // Adjust SP and save the current method if we need it. Note that we do
2424     // not save the method in HCurrentMethod, as the instruction might have
2425     // been removed in the SSA graph.
2426     if (RequiresCurrentMethod() && fp_spills_offset <= 3 * kArmWordSize) {
2427       DCHECK_EQ(kMethodRegister.GetCode(), 0u);
2428       __ Push(RegisterList(MaxInt<uint32_t>(fp_spills_offset / kArmWordSize)));
2429       GetAssembler()->cfi().AdjustCFAOffset(fp_spills_offset);
2430     } else {
2431       IncreaseFrame(fp_spills_offset);
2432       if (RequiresCurrentMethod()) {
2433         GetAssembler()->StoreToOffset(kStoreWord, kMethodRegister, sp, 0);
2434       }
2435     }
2436   }
2437 
2438   if (GetGraph()->HasShouldDeoptimizeFlag()) {
2439     UseScratchRegisterScope temps(GetVIXLAssembler());
2440     vixl32::Register temp = temps.Acquire();
2441     // Initialize should_deoptimize flag to 0.
2442     __ Mov(temp, 0);
2443     GetAssembler()->StoreToOffset(kStoreWord, temp, sp, GetStackOffsetOfShouldDeoptimizeFlag());
2444   }
2445 
2446   MaybeIncrementHotness(/* is_frame_entry= */ true);
2447   MaybeGenerateMarkingRegisterCheck(/* code= */ 1);
2448 }
2449 
GenerateFrameExit()2450 void CodeGeneratorARMVIXL::GenerateFrameExit() {
2451   if (HasEmptyFrame()) {
2452     __ Bx(lr);
2453     return;
2454   }
2455 
2456   // Pop LR into PC to return.
2457   DCHECK_NE(core_spill_mask_ & (1 << kLrCode), 0U);
2458   uint32_t pop_mask = (core_spill_mask_ & (~(1 << kLrCode))) | 1 << kPcCode;
2459 
2460   uint32_t frame_size = GetFrameSize();
2461   uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
2462   uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
2463   if ((fpu_spill_mask_ == 0u || IsPowerOfTwo(fpu_spill_mask_)) &&
2464       // r4 is blocked by TestCodeGeneratorARMVIXL used by some tests.
2465       core_spills_offset <= (blocked_core_registers_[r4.GetCode()] ? 2u : 3u) * kArmWordSize) {
2466     // Load the FP spill if any and then do a single POP including the method
2467     // and up to two filler registers. If we have no FP spills, this also has
2468     // the advantage that we do not need to emit CFI directives.
2469     if (fpu_spill_mask_ != 0u) {
2470       DCHECK(IsPowerOfTwo(fpu_spill_mask_));
2471       vixl::aarch32::SRegister sreg(LeastSignificantBit(fpu_spill_mask_));
2472       GetAssembler()->cfi().RememberState();
2473       GetAssembler()->LoadSFromOffset(sreg, sp, fp_spills_offset);
2474       GetAssembler()->cfi().Restore(DWARFReg(sreg));
2475     }
2476     // Clobber registers r2-r4 as they are caller-save in ART managed ABI and
2477     // never hold the return value.
2478     uint32_t extra_regs = MaxInt<uint32_t>(core_spills_offset / kArmWordSize) << r2.GetCode();
2479     DCHECK_EQ(extra_regs & kCoreCalleeSaves.GetList(), 0u);
2480     DCHECK_LT(MostSignificantBit(extra_regs), LeastSignificantBit(pop_mask));
2481     __ Pop(RegisterList(pop_mask | extra_regs));
2482     if (fpu_spill_mask_ != 0u) {
2483       GetAssembler()->cfi().RestoreState();
2484     }
2485   } else {
2486     GetAssembler()->cfi().RememberState();
2487     DecreaseFrame(fp_spills_offset);
2488     if (fpu_spill_mask_ != 0) {
2489       uint32_t first = LeastSignificantBit(fpu_spill_mask_);
2490 
2491       // Check that list is contiguous.
2492       DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_)));
2493 
2494       __ Vpop(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_)));
2495       GetAssembler()->cfi().AdjustCFAOffset(
2496           -static_cast<int>(kArmWordSize) * POPCOUNT(fpu_spill_mask_));
2497       GetAssembler()->cfi().RestoreMany(DWARFReg(vixl32::SRegister(0)), fpu_spill_mask_);
2498     }
2499     __ Pop(RegisterList(pop_mask));
2500     GetAssembler()->cfi().RestoreState();
2501     GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
2502   }
2503 }
2504 
Bind(HBasicBlock * block)2505 void CodeGeneratorARMVIXL::Bind(HBasicBlock* block) {
2506   __ Bind(GetLabelOf(block));
2507 }
2508 
GetNextLocation(DataType::Type type)2509 Location InvokeDexCallingConventionVisitorARMVIXL::GetNextLocation(DataType::Type type) {
2510   switch (type) {
2511     case DataType::Type::kReference:
2512     case DataType::Type::kBool:
2513     case DataType::Type::kUint8:
2514     case DataType::Type::kInt8:
2515     case DataType::Type::kUint16:
2516     case DataType::Type::kInt16:
2517     case DataType::Type::kInt32: {
2518       uint32_t index = gp_index_++;
2519       uint32_t stack_index = stack_index_++;
2520       if (index < calling_convention.GetNumberOfRegisters()) {
2521         return LocationFrom(calling_convention.GetRegisterAt(index));
2522       } else {
2523         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
2524       }
2525     }
2526 
2527     case DataType::Type::kInt64: {
2528       uint32_t index = gp_index_;
2529       uint32_t stack_index = stack_index_;
2530       gp_index_ += 2;
2531       stack_index_ += 2;
2532       if (index + 1 < calling_convention.GetNumberOfRegisters()) {
2533         if (calling_convention.GetRegisterAt(index).Is(r1)) {
2534           // Skip R1, and use R2_R3 instead.
2535           gp_index_++;
2536           index++;
2537         }
2538       }
2539       if (index + 1 < calling_convention.GetNumberOfRegisters()) {
2540         DCHECK_EQ(calling_convention.GetRegisterAt(index).GetCode() + 1,
2541                   calling_convention.GetRegisterAt(index + 1).GetCode());
2542 
2543         return LocationFrom(calling_convention.GetRegisterAt(index),
2544                             calling_convention.GetRegisterAt(index + 1));
2545       } else {
2546         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
2547       }
2548     }
2549 
2550     case DataType::Type::kFloat32: {
2551       uint32_t stack_index = stack_index_++;
2552       if (float_index_ % 2 == 0) {
2553         float_index_ = std::max(double_index_, float_index_);
2554       }
2555       if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) {
2556         return LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
2557       } else {
2558         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
2559       }
2560     }
2561 
2562     case DataType::Type::kFloat64: {
2563       double_index_ = std::max(double_index_, RoundUp(float_index_, 2));
2564       uint32_t stack_index = stack_index_;
2565       stack_index_ += 2;
2566       if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) {
2567         uint32_t index = double_index_;
2568         double_index_ += 2;
2569         Location result = LocationFrom(
2570           calling_convention.GetFpuRegisterAt(index),
2571           calling_convention.GetFpuRegisterAt(index + 1));
2572         DCHECK(ExpectedPairLayout(result));
2573         return result;
2574       } else {
2575         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
2576       }
2577     }
2578 
2579     case DataType::Type::kUint32:
2580     case DataType::Type::kUint64:
2581     case DataType::Type::kVoid:
2582       LOG(FATAL) << "Unexpected parameter type " << type;
2583       UNREACHABLE();
2584   }
2585   return Location::NoLocation();
2586 }
2587 
GetReturnLocation(DataType::Type type) const2588 Location InvokeDexCallingConventionVisitorARMVIXL::GetReturnLocation(DataType::Type type) const {
2589   switch (type) {
2590     case DataType::Type::kReference:
2591     case DataType::Type::kBool:
2592     case DataType::Type::kUint8:
2593     case DataType::Type::kInt8:
2594     case DataType::Type::kUint16:
2595     case DataType::Type::kInt16:
2596     case DataType::Type::kUint32:
2597     case DataType::Type::kInt32: {
2598       return LocationFrom(r0);
2599     }
2600 
2601     case DataType::Type::kFloat32: {
2602       return LocationFrom(s0);
2603     }
2604 
2605     case DataType::Type::kUint64:
2606     case DataType::Type::kInt64: {
2607       return LocationFrom(r0, r1);
2608     }
2609 
2610     case DataType::Type::kFloat64: {
2611       return LocationFrom(s0, s1);
2612     }
2613 
2614     case DataType::Type::kVoid:
2615       return Location::NoLocation();
2616   }
2617 
2618   UNREACHABLE();
2619 }
2620 
GetMethodLocation() const2621 Location InvokeDexCallingConventionVisitorARMVIXL::GetMethodLocation() const {
2622   return LocationFrom(kMethodRegister);
2623 }
2624 
GetNextLocation(DataType::Type type)2625 Location CriticalNativeCallingConventionVisitorARMVIXL::GetNextLocation(DataType::Type type) {
2626   DCHECK_NE(type, DataType::Type::kReference);
2627 
2628   // Native ABI uses the same registers as managed, except that the method register r0
2629   // is a normal argument.
2630   Location location = Location::NoLocation();
2631   if (DataType::Is64BitType(type)) {
2632     gpr_index_ = RoundUp(gpr_index_, 2u);
2633     stack_offset_ = RoundUp(stack_offset_, 2 * kFramePointerSize);
2634     if (gpr_index_ < 1u + kParameterCoreRegistersLengthVIXL) {
2635       location = LocationFrom(gpr_index_ == 0u ? r0 : kParameterCoreRegistersVIXL[gpr_index_ - 1u],
2636                               kParameterCoreRegistersVIXL[gpr_index_]);
2637       gpr_index_ += 2u;
2638     }
2639   } else {
2640     if (gpr_index_ < 1u + kParameterCoreRegistersLengthVIXL) {
2641       location = LocationFrom(gpr_index_ == 0u ? r0 : kParameterCoreRegistersVIXL[gpr_index_ - 1u]);
2642       ++gpr_index_;
2643     }
2644   }
2645   if (location.IsInvalid()) {
2646     if (DataType::Is64BitType(type)) {
2647       location = Location::DoubleStackSlot(stack_offset_);
2648       stack_offset_ += 2 * kFramePointerSize;
2649     } else {
2650       location = Location::StackSlot(stack_offset_);
2651       stack_offset_ += kFramePointerSize;
2652     }
2653 
2654     if (for_register_allocation_) {
2655       location = Location::Any();
2656     }
2657   }
2658   return location;
2659 }
2660 
GetReturnLocation(DataType::Type type) const2661 Location CriticalNativeCallingConventionVisitorARMVIXL::GetReturnLocation(DataType::Type type)
2662     const {
2663   // We perform conversion to the managed ABI return register after the call if needed.
2664   InvokeDexCallingConventionVisitorARMVIXL dex_calling_convention;
2665   return dex_calling_convention.GetReturnLocation(type);
2666 }
2667 
GetMethodLocation() const2668 Location CriticalNativeCallingConventionVisitorARMVIXL::GetMethodLocation() const {
2669   // Pass the method in the hidden argument R4.
2670   return Location::RegisterLocation(R4);
2671 }
2672 
Move32(Location destination,Location source)2673 void CodeGeneratorARMVIXL::Move32(Location destination, Location source) {
2674   if (source.Equals(destination)) {
2675     return;
2676   }
2677   if (destination.IsRegister()) {
2678     if (source.IsRegister()) {
2679       __ Mov(RegisterFrom(destination), RegisterFrom(source));
2680     } else if (source.IsFpuRegister()) {
2681       __ Vmov(RegisterFrom(destination), SRegisterFrom(source));
2682     } else {
2683       GetAssembler()->LoadFromOffset(kLoadWord,
2684                                      RegisterFrom(destination),
2685                                      sp,
2686                                      source.GetStackIndex());
2687     }
2688   } else if (destination.IsFpuRegister()) {
2689     if (source.IsRegister()) {
2690       __ Vmov(SRegisterFrom(destination), RegisterFrom(source));
2691     } else if (source.IsFpuRegister()) {
2692       __ Vmov(SRegisterFrom(destination), SRegisterFrom(source));
2693     } else {
2694       GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex());
2695     }
2696   } else {
2697     DCHECK(destination.IsStackSlot()) << destination;
2698     if (source.IsRegister()) {
2699       GetAssembler()->StoreToOffset(kStoreWord,
2700                                     RegisterFrom(source),
2701                                     sp,
2702                                     destination.GetStackIndex());
2703     } else if (source.IsFpuRegister()) {
2704       GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex());
2705     } else {
2706       DCHECK(source.IsStackSlot()) << source;
2707       UseScratchRegisterScope temps(GetVIXLAssembler());
2708       vixl32::Register temp = temps.Acquire();
2709       GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex());
2710       GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
2711     }
2712   }
2713 }
2714 
MoveConstant(Location location,int32_t value)2715 void CodeGeneratorARMVIXL::MoveConstant(Location location, int32_t value) {
2716   DCHECK(location.IsRegister());
2717   __ Mov(RegisterFrom(location), value);
2718 }
2719 
MoveLocation(Location dst,Location src,DataType::Type dst_type)2720 void CodeGeneratorARMVIXL::MoveLocation(Location dst, Location src, DataType::Type dst_type) {
2721   // TODO(VIXL): Maybe refactor to have the 'move' implementation here and use it in
2722   // `ParallelMoveResolverARMVIXL::EmitMove`, as is done in the `arm64` backend.
2723   HParallelMove move(GetGraph()->GetAllocator());
2724   move.AddMove(src, dst, dst_type, nullptr);
2725   GetMoveResolver()->EmitNativeCode(&move);
2726 }
2727 
AddLocationAsTemp(Location location,LocationSummary * locations)2728 void CodeGeneratorARMVIXL::AddLocationAsTemp(Location location, LocationSummary* locations) {
2729   if (location.IsRegister()) {
2730     locations->AddTemp(location);
2731   } else if (location.IsRegisterPair()) {
2732     locations->AddTemp(LocationFrom(LowRegisterFrom(location)));
2733     locations->AddTemp(LocationFrom(HighRegisterFrom(location)));
2734   } else {
2735     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
2736   }
2737 }
2738 
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)2739 void CodeGeneratorARMVIXL::InvokeRuntime(QuickEntrypointEnum entrypoint,
2740                                          HInstruction* instruction,
2741                                          uint32_t dex_pc,
2742                                          SlowPathCode* slow_path) {
2743   ValidateInvokeRuntime(entrypoint, instruction, slow_path);
2744 
2745   ThreadOffset32 entrypoint_offset = GetThreadOffset<kArmPointerSize>(entrypoint);
2746   // Reduce code size for AOT by using shared trampolines for slow path runtime calls across the
2747   // entire oat file. This adds an extra branch and we do not want to slow down the main path.
2748   // For JIT, thunk sharing is per-method, so the gains would be smaller or even negative.
2749   if (slow_path == nullptr || GetCompilerOptions().IsJitCompiler()) {
2750     __ Ldr(lr, MemOperand(tr, entrypoint_offset.Int32Value()));
2751     // Ensure the pc position is recorded immediately after the `blx` instruction.
2752     // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
2753     ExactAssemblyScope aas(GetVIXLAssembler(),
2754                            vixl32::k16BitT32InstructionSizeInBytes,
2755                            CodeBufferCheckScope::kExactSize);
2756     __ blx(lr);
2757     if (EntrypointRequiresStackMap(entrypoint)) {
2758       RecordPcInfo(instruction, dex_pc, slow_path);
2759     }
2760   } else {
2761     // Ensure the pc position is recorded immediately after the `bl` instruction.
2762     ExactAssemblyScope aas(GetVIXLAssembler(),
2763                            vixl32::k32BitT32InstructionSizeInBytes,
2764                            CodeBufferCheckScope::kExactSize);
2765     EmitEntrypointThunkCall(entrypoint_offset);
2766     if (EntrypointRequiresStackMap(entrypoint)) {
2767       RecordPcInfo(instruction, dex_pc, slow_path);
2768     }
2769   }
2770 }
2771 
InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,HInstruction * instruction,SlowPathCode * slow_path)2772 void CodeGeneratorARMVIXL::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
2773                                                                HInstruction* instruction,
2774                                                                SlowPathCode* slow_path) {
2775   ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
2776   __ Ldr(lr, MemOperand(tr, entry_point_offset));
2777   __ Blx(lr);
2778 }
2779 
HandleGoto(HInstruction * got,HBasicBlock * successor)2780 void InstructionCodeGeneratorARMVIXL::HandleGoto(HInstruction* got, HBasicBlock* successor) {
2781   if (successor->IsExitBlock()) {
2782     DCHECK(got->GetPrevious()->AlwaysThrows());
2783     return;  // no code needed
2784   }
2785 
2786   HBasicBlock* block = got->GetBlock();
2787   HInstruction* previous = got->GetPrevious();
2788   HLoopInformation* info = block->GetLoopInformation();
2789 
2790   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
2791     codegen_->MaybeIncrementHotness(/* is_frame_entry= */ false);
2792     GenerateSuspendCheck(info->GetSuspendCheck(), successor);
2793     return;
2794   }
2795   if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
2796     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
2797     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 2);
2798   }
2799   if (!codegen_->GoesToNextBlock(block, successor)) {
2800     __ B(codegen_->GetLabelOf(successor));
2801   }
2802 }
2803 
VisitGoto(HGoto * got)2804 void LocationsBuilderARMVIXL::VisitGoto(HGoto* got) {
2805   got->SetLocations(nullptr);
2806 }
2807 
VisitGoto(HGoto * got)2808 void InstructionCodeGeneratorARMVIXL::VisitGoto(HGoto* got) {
2809   HandleGoto(got, got->GetSuccessor());
2810 }
2811 
VisitTryBoundary(HTryBoundary * try_boundary)2812 void LocationsBuilderARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) {
2813   try_boundary->SetLocations(nullptr);
2814 }
2815 
VisitTryBoundary(HTryBoundary * try_boundary)2816 void InstructionCodeGeneratorARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) {
2817   HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
2818   if (!successor->IsExitBlock()) {
2819     HandleGoto(try_boundary, successor);
2820   }
2821 }
2822 
VisitExit(HExit * exit)2823 void LocationsBuilderARMVIXL::VisitExit(HExit* exit) {
2824   exit->SetLocations(nullptr);
2825 }
2826 
VisitExit(HExit * exit ATTRIBUTE_UNUSED)2827 void InstructionCodeGeneratorARMVIXL::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
2828 }
2829 
GenerateCompareTestAndBranch(HCondition * condition,vixl32::Label * true_target,vixl32::Label * false_target,bool is_far_target)2830 void InstructionCodeGeneratorARMVIXL::GenerateCompareTestAndBranch(HCondition* condition,
2831                                                                    vixl32::Label* true_target,
2832                                                                    vixl32::Label* false_target,
2833                                                                    bool is_far_target) {
2834   if (true_target == false_target) {
2835     DCHECK(true_target != nullptr);
2836     __ B(true_target);
2837     return;
2838   }
2839 
2840   vixl32::Label* non_fallthrough_target;
2841   bool invert;
2842   bool emit_both_branches;
2843 
2844   if (true_target == nullptr) {
2845     // The true target is fallthrough.
2846     DCHECK(false_target != nullptr);
2847     non_fallthrough_target = false_target;
2848     invert = true;
2849     emit_both_branches = false;
2850   } else {
2851     non_fallthrough_target = true_target;
2852     invert = false;
2853     // Either the false target is fallthrough, or there is no fallthrough
2854     // and both branches must be emitted.
2855     emit_both_branches = (false_target != nullptr);
2856   }
2857 
2858   const auto cond = GenerateTest(condition, invert, codegen_);
2859 
2860   __ B(cond.first, non_fallthrough_target, is_far_target);
2861 
2862   if (emit_both_branches) {
2863     // No target falls through, we need to branch.
2864     __ B(false_target);
2865   }
2866 }
2867 
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,vixl32::Label * true_target,vixl32::Label * false_target,bool far_target)2868 void InstructionCodeGeneratorARMVIXL::GenerateTestAndBranch(HInstruction* instruction,
2869                                                             size_t condition_input_index,
2870                                                             vixl32::Label* true_target,
2871                                                             vixl32::Label* false_target,
2872                                                             bool far_target) {
2873   HInstruction* cond = instruction->InputAt(condition_input_index);
2874 
2875   if (true_target == nullptr && false_target == nullptr) {
2876     // Nothing to do. The code always falls through.
2877     return;
2878   } else if (cond->IsIntConstant()) {
2879     // Constant condition, statically compared against "true" (integer value 1).
2880     if (cond->AsIntConstant()->IsTrue()) {
2881       if (true_target != nullptr) {
2882         __ B(true_target);
2883       }
2884     } else {
2885       DCHECK(cond->AsIntConstant()->IsFalse()) << Int32ConstantFrom(cond);
2886       if (false_target != nullptr) {
2887         __ B(false_target);
2888       }
2889     }
2890     return;
2891   }
2892 
2893   // The following code generates these patterns:
2894   //  (1) true_target == nullptr && false_target != nullptr
2895   //        - opposite condition true => branch to false_target
2896   //  (2) true_target != nullptr && false_target == nullptr
2897   //        - condition true => branch to true_target
2898   //  (3) true_target != nullptr && false_target != nullptr
2899   //        - condition true => branch to true_target
2900   //        - branch to false_target
2901   if (IsBooleanValueOrMaterializedCondition(cond)) {
2902     // Condition has been materialized, compare the output to 0.
2903     if (kIsDebugBuild) {
2904       Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
2905       DCHECK(cond_val.IsRegister());
2906     }
2907     if (true_target == nullptr) {
2908       __ CompareAndBranchIfZero(InputRegisterAt(instruction, condition_input_index),
2909                                 false_target,
2910                                 far_target);
2911     } else {
2912       __ CompareAndBranchIfNonZero(InputRegisterAt(instruction, condition_input_index),
2913                                    true_target,
2914                                    far_target);
2915     }
2916   } else {
2917     // Condition has not been materialized. Use its inputs as the comparison and
2918     // its condition as the branch condition.
2919     HCondition* condition = cond->AsCondition();
2920 
2921     // If this is a long or FP comparison that has been folded into
2922     // the HCondition, generate the comparison directly.
2923     DataType::Type type = condition->InputAt(0)->GetType();
2924     if (type == DataType::Type::kInt64 || DataType::IsFloatingPointType(type)) {
2925       GenerateCompareTestAndBranch(condition, true_target, false_target, far_target);
2926       return;
2927     }
2928 
2929     vixl32::Label* non_fallthrough_target;
2930     vixl32::Condition arm_cond = vixl32::Condition::None();
2931     const vixl32::Register left = InputRegisterAt(cond, 0);
2932     const Operand right = InputOperandAt(cond, 1);
2933 
2934     if (true_target == nullptr) {
2935       arm_cond = ARMCondition(condition->GetOppositeCondition());
2936       non_fallthrough_target = false_target;
2937     } else {
2938       arm_cond = ARMCondition(condition->GetCondition());
2939       non_fallthrough_target = true_target;
2940     }
2941 
2942     if (right.IsImmediate() && right.GetImmediate() == 0 && (arm_cond.Is(ne) || arm_cond.Is(eq))) {
2943       if (arm_cond.Is(eq)) {
2944         __ CompareAndBranchIfZero(left, non_fallthrough_target, far_target);
2945       } else {
2946         DCHECK(arm_cond.Is(ne));
2947         __ CompareAndBranchIfNonZero(left, non_fallthrough_target, far_target);
2948       }
2949     } else {
2950       __ Cmp(left, right);
2951       __ B(arm_cond, non_fallthrough_target, far_target);
2952     }
2953   }
2954 
2955   // If neither branch falls through (case 3), the conditional branch to `true_target`
2956   // was already emitted (case 2) and we need to emit a jump to `false_target`.
2957   if (true_target != nullptr && false_target != nullptr) {
2958     __ B(false_target);
2959   }
2960 }
2961 
VisitIf(HIf * if_instr)2962 void LocationsBuilderARMVIXL::VisitIf(HIf* if_instr) {
2963   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr);
2964   if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
2965     locations->SetInAt(0, Location::RequiresRegister());
2966   }
2967 }
2968 
VisitIf(HIf * if_instr)2969 void InstructionCodeGeneratorARMVIXL::VisitIf(HIf* if_instr) {
2970   HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
2971   HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
2972   vixl32::Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
2973       nullptr : codegen_->GetLabelOf(true_successor);
2974   vixl32::Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
2975       nullptr : codegen_->GetLabelOf(false_successor);
2976   GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target);
2977 }
2978 
VisitDeoptimize(HDeoptimize * deoptimize)2979 void LocationsBuilderARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) {
2980   LocationSummary* locations = new (GetGraph()->GetAllocator())
2981       LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
2982   InvokeRuntimeCallingConventionARMVIXL calling_convention;
2983   RegisterSet caller_saves = RegisterSet::Empty();
2984   caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
2985   locations->SetCustomSlowPathCallerSaves(caller_saves);
2986   if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
2987     locations->SetInAt(0, Location::RequiresRegister());
2988   }
2989 }
2990 
VisitDeoptimize(HDeoptimize * deoptimize)2991 void InstructionCodeGeneratorARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) {
2992   SlowPathCodeARMVIXL* slow_path =
2993       deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARMVIXL>(deoptimize);
2994   GenerateTestAndBranch(deoptimize,
2995                         /* condition_input_index= */ 0,
2996                         slow_path->GetEntryLabel(),
2997                         /* false_target= */ nullptr);
2998 }
2999 
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)3000 void LocationsBuilderARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
3001   LocationSummary* locations = new (GetGraph()->GetAllocator())
3002       LocationSummary(flag, LocationSummary::kNoCall);
3003   locations->SetOut(Location::RequiresRegister());
3004 }
3005 
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)3006 void InstructionCodeGeneratorARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
3007   GetAssembler()->LoadFromOffset(kLoadWord,
3008                                  OutputRegister(flag),
3009                                  sp,
3010                                  codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
3011 }
3012 
VisitSelect(HSelect * select)3013 void LocationsBuilderARMVIXL::VisitSelect(HSelect* select) {
3014   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select);
3015   const bool is_floating_point = DataType::IsFloatingPointType(select->GetType());
3016 
3017   if (is_floating_point) {
3018     locations->SetInAt(0, Location::RequiresFpuRegister());
3019     locations->SetInAt(1, Location::FpuRegisterOrConstant(select->GetTrueValue()));
3020   } else {
3021     locations->SetInAt(0, Location::RequiresRegister());
3022     locations->SetInAt(1, Arm8BitEncodableConstantOrRegister(select->GetTrueValue()));
3023   }
3024 
3025   if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
3026     locations->SetInAt(2, Location::RegisterOrConstant(select->GetCondition()));
3027     // The code generator handles overlap with the values, but not with the condition.
3028     locations->SetOut(Location::SameAsFirstInput());
3029   } else if (is_floating_point) {
3030     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3031   } else {
3032     if (!locations->InAt(1).IsConstant()) {
3033       locations->SetInAt(0, Arm8BitEncodableConstantOrRegister(select->GetFalseValue()));
3034     }
3035 
3036     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3037   }
3038 }
3039 
VisitSelect(HSelect * select)3040 void InstructionCodeGeneratorARMVIXL::VisitSelect(HSelect* select) {
3041   HInstruction* const condition = select->GetCondition();
3042   const LocationSummary* const locations = select->GetLocations();
3043   const DataType::Type type = select->GetType();
3044   const Location first = locations->InAt(0);
3045   const Location out = locations->Out();
3046   const Location second = locations->InAt(1);
3047 
3048   // In the unlucky case the output of this instruction overlaps
3049   // with an input of an "emitted-at-use-site" condition, and
3050   // the output of this instruction is not one of its inputs, we'll
3051   // need to fallback to branches instead of conditional ARM instructions.
3052   bool output_overlaps_with_condition_inputs =
3053       !IsBooleanValueOrMaterializedCondition(condition) &&
3054       !out.Equals(first) &&
3055       !out.Equals(second) &&
3056       (condition->GetLocations()->InAt(0).Equals(out) ||
3057        condition->GetLocations()->InAt(1).Equals(out));
3058   DCHECK_IMPLIES(output_overlaps_with_condition_inputs, condition->IsCondition());
3059   Location src;
3060 
3061   if (condition->IsIntConstant()) {
3062     if (condition->AsIntConstant()->IsFalse()) {
3063       src = first;
3064     } else {
3065       src = second;
3066     }
3067 
3068     codegen_->MoveLocation(out, src, type);
3069     return;
3070   }
3071 
3072   if (!DataType::IsFloatingPointType(type) && !output_overlaps_with_condition_inputs) {
3073     bool invert = false;
3074 
3075     if (out.Equals(second)) {
3076       src = first;
3077       invert = true;
3078     } else if (out.Equals(first)) {
3079       src = second;
3080     } else if (second.IsConstant()) {
3081       DCHECK(CanEncodeConstantAs8BitImmediate(second.GetConstant()));
3082       src = second;
3083     } else if (first.IsConstant()) {
3084       DCHECK(CanEncodeConstantAs8BitImmediate(first.GetConstant()));
3085       src = first;
3086       invert = true;
3087     } else {
3088       src = second;
3089     }
3090 
3091     if (CanGenerateConditionalMove(out, src)) {
3092       if (!out.Equals(first) && !out.Equals(second)) {
3093         codegen_->MoveLocation(out, src.Equals(first) ? second : first, type);
3094       }
3095 
3096       std::pair<vixl32::Condition, vixl32::Condition> cond(eq, ne);
3097 
3098       if (IsBooleanValueOrMaterializedCondition(condition)) {
3099         __ Cmp(InputRegisterAt(select, 2), 0);
3100         cond = invert ? std::make_pair(eq, ne) : std::make_pair(ne, eq);
3101       } else {
3102         cond = GenerateTest(condition->AsCondition(), invert, codegen_);
3103       }
3104 
3105       const size_t instr_count = out.IsRegisterPair() ? 4 : 2;
3106       // We use the scope because of the IT block that follows.
3107       ExactAssemblyScope guard(GetVIXLAssembler(),
3108                                instr_count * vixl32::k16BitT32InstructionSizeInBytes,
3109                                CodeBufferCheckScope::kExactSize);
3110 
3111       if (out.IsRegister()) {
3112         __ it(cond.first);
3113         __ mov(cond.first, RegisterFrom(out), OperandFrom(src, type));
3114       } else {
3115         DCHECK(out.IsRegisterPair());
3116 
3117         Operand operand_high(0);
3118         Operand operand_low(0);
3119 
3120         if (src.IsConstant()) {
3121           const int64_t value = Int64ConstantFrom(src);
3122 
3123           operand_high = High32Bits(value);
3124           operand_low = Low32Bits(value);
3125         } else {
3126           DCHECK(src.IsRegisterPair());
3127           operand_high = HighRegisterFrom(src);
3128           operand_low = LowRegisterFrom(src);
3129         }
3130 
3131         __ it(cond.first);
3132         __ mov(cond.first, LowRegisterFrom(out), operand_low);
3133         __ it(cond.first);
3134         __ mov(cond.first, HighRegisterFrom(out), operand_high);
3135       }
3136 
3137       return;
3138     }
3139   }
3140 
3141   vixl32::Label* false_target = nullptr;
3142   vixl32::Label* true_target = nullptr;
3143   vixl32::Label select_end;
3144   vixl32::Label other_case;
3145   vixl32::Label* const target = codegen_->GetFinalLabel(select, &select_end);
3146 
3147   if (out.Equals(second)) {
3148     true_target = target;
3149     src = first;
3150   } else {
3151     false_target = target;
3152     src = second;
3153 
3154     if (!out.Equals(first)) {
3155       if (output_overlaps_with_condition_inputs) {
3156         false_target = &other_case;
3157       } else {
3158         codegen_->MoveLocation(out, first, type);
3159       }
3160     }
3161   }
3162 
3163   GenerateTestAndBranch(select, 2, true_target, false_target, /* far_target= */ false);
3164   codegen_->MoveLocation(out, src, type);
3165   if (output_overlaps_with_condition_inputs) {
3166     __ B(target);
3167     __ Bind(&other_case);
3168     codegen_->MoveLocation(out, first, type);
3169   }
3170 
3171   if (select_end.IsReferenced()) {
3172     __ Bind(&select_end);
3173   }
3174 }
3175 
VisitNop(HNop * nop)3176 void LocationsBuilderARMVIXL::VisitNop(HNop* nop) {
3177   new (GetGraph()->GetAllocator()) LocationSummary(nop);
3178 }
3179 
VisitNop(HNop *)3180 void InstructionCodeGeneratorARMVIXL::VisitNop(HNop*) {
3181   // The environment recording already happened in CodeGenerator::Compile.
3182 }
3183 
IncreaseFrame(size_t adjustment)3184 void CodeGeneratorARMVIXL::IncreaseFrame(size_t adjustment) {
3185   __ Claim(adjustment);
3186   GetAssembler()->cfi().AdjustCFAOffset(adjustment);
3187 }
3188 
DecreaseFrame(size_t adjustment)3189 void CodeGeneratorARMVIXL::DecreaseFrame(size_t adjustment) {
3190   __ Drop(adjustment);
3191   GetAssembler()->cfi().AdjustCFAOffset(-adjustment);
3192 }
3193 
GenerateNop()3194 void CodeGeneratorARMVIXL::GenerateNop() {
3195   __ Nop();
3196 }
3197 
3198 // `temp` is an extra temporary register that is used for some conditions;
3199 // callers may not specify it, in which case the method will use a scratch
3200 // register instead.
GenerateConditionWithZero(IfCondition condition,vixl32::Register out,vixl32::Register in,vixl32::Register temp)3201 void CodeGeneratorARMVIXL::GenerateConditionWithZero(IfCondition condition,
3202                                                      vixl32::Register out,
3203                                                      vixl32::Register in,
3204                                                      vixl32::Register temp) {
3205   switch (condition) {
3206     case kCondEQ:
3207     // x <= 0 iff x == 0 when the comparison is unsigned.
3208     case kCondBE:
3209       if (!temp.IsValid() || (out.IsLow() && !out.Is(in))) {
3210         temp = out;
3211       }
3212 
3213       // Avoid 32-bit instructions if possible; note that `in` and `temp` must be
3214       // different as well.
3215       if (in.IsLow() && temp.IsLow() && !in.Is(temp)) {
3216         // temp = - in; only 0 sets the carry flag.
3217         __ Rsbs(temp, in, 0);
3218 
3219         if (out.Is(in)) {
3220           std::swap(in, temp);
3221         }
3222 
3223         // out = - in + in + carry = carry
3224         __ Adc(out, temp, in);
3225       } else {
3226         // If `in` is 0, then it has 32 leading zeros, and less than that otherwise.
3227         __ Clz(out, in);
3228         // Any number less than 32 logically shifted right by 5 bits results in 0;
3229         // the same operation on 32 yields 1.
3230         __ Lsr(out, out, 5);
3231       }
3232 
3233       break;
3234     case kCondNE:
3235     // x > 0 iff x != 0 when the comparison is unsigned.
3236     case kCondA: {
3237       UseScratchRegisterScope temps(GetVIXLAssembler());
3238 
3239       if (out.Is(in)) {
3240         if (!temp.IsValid() || in.Is(temp)) {
3241           temp = temps.Acquire();
3242         }
3243       } else if (!temp.IsValid() || !temp.IsLow()) {
3244         temp = out;
3245       }
3246 
3247       // temp = in - 1; only 0 does not set the carry flag.
3248       __ Subs(temp, in, 1);
3249       // out = in + ~temp + carry = in + (-(in - 1) - 1) + carry = in - in + 1 - 1 + carry = carry
3250       __ Sbc(out, in, temp);
3251       break;
3252     }
3253     case kCondGE:
3254       __ Mvn(out, in);
3255       in = out;
3256       FALLTHROUGH_INTENDED;
3257     case kCondLT:
3258       // We only care about the sign bit.
3259       __ Lsr(out, in, 31);
3260       break;
3261     case kCondAE:
3262       // Trivially true.
3263       __ Mov(out, 1);
3264       break;
3265     case kCondB:
3266       // Trivially false.
3267       __ Mov(out, 0);
3268       break;
3269     default:
3270       LOG(FATAL) << "Unexpected condition " << condition;
3271       UNREACHABLE();
3272   }
3273 }
3274 
HandleCondition(HCondition * cond)3275 void LocationsBuilderARMVIXL::HandleCondition(HCondition* cond) {
3276   LocationSummary* locations =
3277       new (GetGraph()->GetAllocator()) LocationSummary(cond, LocationSummary::kNoCall);
3278   const DataType::Type type = cond->InputAt(0)->GetType();
3279   if (DataType::IsFloatingPointType(type)) {
3280     locations->SetInAt(0, Location::RequiresFpuRegister());
3281     locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1)));
3282   } else {
3283     locations->SetInAt(0, Location::RequiresRegister());
3284     locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
3285   }
3286   if (!cond->IsEmittedAtUseSite()) {
3287     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3288   }
3289 }
3290 
HandleCondition(HCondition * cond)3291 void InstructionCodeGeneratorARMVIXL::HandleCondition(HCondition* cond) {
3292   if (cond->IsEmittedAtUseSite()) {
3293     return;
3294   }
3295 
3296   const DataType::Type type = cond->GetLeft()->GetType();
3297 
3298   if (DataType::IsFloatingPointType(type)) {
3299     GenerateConditionGeneric(cond, codegen_);
3300     return;
3301   }
3302 
3303   DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
3304 
3305   const IfCondition condition = cond->GetCondition();
3306 
3307   // A condition with only one boolean input, or two boolean inputs without being equality or
3308   // inequality results from transformations done by the instruction simplifier, and is handled
3309   // as a regular condition with integral inputs.
3310   if (type == DataType::Type::kBool &&
3311       cond->GetRight()->GetType() == DataType::Type::kBool &&
3312       (condition == kCondEQ || condition == kCondNE)) {
3313     vixl32::Register left = InputRegisterAt(cond, 0);
3314     const vixl32::Register out = OutputRegister(cond);
3315     const Location right_loc = cond->GetLocations()->InAt(1);
3316 
3317     // The constant case is handled by the instruction simplifier.
3318     DCHECK(!right_loc.IsConstant());
3319 
3320     vixl32::Register right = RegisterFrom(right_loc);
3321 
3322     // Avoid 32-bit instructions if possible.
3323     if (out.Is(right)) {
3324       std::swap(left, right);
3325     }
3326 
3327     __ Eor(out, left, right);
3328 
3329     if (condition == kCondEQ) {
3330       __ Eor(out, out, 1);
3331     }
3332 
3333     return;
3334   }
3335 
3336   GenerateConditionIntegralOrNonPrimitive(cond, codegen_);
3337 }
3338 
VisitEqual(HEqual * comp)3339 void LocationsBuilderARMVIXL::VisitEqual(HEqual* comp) {
3340   HandleCondition(comp);
3341 }
3342 
VisitEqual(HEqual * comp)3343 void InstructionCodeGeneratorARMVIXL::VisitEqual(HEqual* comp) {
3344   HandleCondition(comp);
3345 }
3346 
VisitNotEqual(HNotEqual * comp)3347 void LocationsBuilderARMVIXL::VisitNotEqual(HNotEqual* comp) {
3348   HandleCondition(comp);
3349 }
3350 
VisitNotEqual(HNotEqual * comp)3351 void InstructionCodeGeneratorARMVIXL::VisitNotEqual(HNotEqual* comp) {
3352   HandleCondition(comp);
3353 }
3354 
VisitLessThan(HLessThan * comp)3355 void LocationsBuilderARMVIXL::VisitLessThan(HLessThan* comp) {
3356   HandleCondition(comp);
3357 }
3358 
VisitLessThan(HLessThan * comp)3359 void InstructionCodeGeneratorARMVIXL::VisitLessThan(HLessThan* comp) {
3360   HandleCondition(comp);
3361 }
3362 
VisitLessThanOrEqual(HLessThanOrEqual * comp)3363 void LocationsBuilderARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
3364   HandleCondition(comp);
3365 }
3366 
VisitLessThanOrEqual(HLessThanOrEqual * comp)3367 void InstructionCodeGeneratorARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
3368   HandleCondition(comp);
3369 }
3370 
VisitGreaterThan(HGreaterThan * comp)3371 void LocationsBuilderARMVIXL::VisitGreaterThan(HGreaterThan* comp) {
3372   HandleCondition(comp);
3373 }
3374 
VisitGreaterThan(HGreaterThan * comp)3375 void InstructionCodeGeneratorARMVIXL::VisitGreaterThan(HGreaterThan* comp) {
3376   HandleCondition(comp);
3377 }
3378 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)3379 void LocationsBuilderARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
3380   HandleCondition(comp);
3381 }
3382 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)3383 void InstructionCodeGeneratorARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
3384   HandleCondition(comp);
3385 }
3386 
VisitBelow(HBelow * comp)3387 void LocationsBuilderARMVIXL::VisitBelow(HBelow* comp) {
3388   HandleCondition(comp);
3389 }
3390 
VisitBelow(HBelow * comp)3391 void InstructionCodeGeneratorARMVIXL::VisitBelow(HBelow* comp) {
3392   HandleCondition(comp);
3393 }
3394 
VisitBelowOrEqual(HBelowOrEqual * comp)3395 void LocationsBuilderARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) {
3396   HandleCondition(comp);
3397 }
3398 
VisitBelowOrEqual(HBelowOrEqual * comp)3399 void InstructionCodeGeneratorARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) {
3400   HandleCondition(comp);
3401 }
3402 
VisitAbove(HAbove * comp)3403 void LocationsBuilderARMVIXL::VisitAbove(HAbove* comp) {
3404   HandleCondition(comp);
3405 }
3406 
VisitAbove(HAbove * comp)3407 void InstructionCodeGeneratorARMVIXL::VisitAbove(HAbove* comp) {
3408   HandleCondition(comp);
3409 }
3410 
VisitAboveOrEqual(HAboveOrEqual * comp)3411 void LocationsBuilderARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) {
3412   HandleCondition(comp);
3413 }
3414 
VisitAboveOrEqual(HAboveOrEqual * comp)3415 void InstructionCodeGeneratorARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) {
3416   HandleCondition(comp);
3417 }
3418 
VisitIntConstant(HIntConstant * constant)3419 void LocationsBuilderARMVIXL::VisitIntConstant(HIntConstant* constant) {
3420   LocationSummary* locations =
3421       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3422   locations->SetOut(Location::ConstantLocation(constant));
3423 }
3424 
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)3425 void InstructionCodeGeneratorARMVIXL::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
3426   // Will be generated at use site.
3427 }
3428 
VisitNullConstant(HNullConstant * constant)3429 void LocationsBuilderARMVIXL::VisitNullConstant(HNullConstant* constant) {
3430   LocationSummary* locations =
3431       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3432   locations->SetOut(Location::ConstantLocation(constant));
3433 }
3434 
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)3435 void InstructionCodeGeneratorARMVIXL::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
3436   // Will be generated at use site.
3437 }
3438 
VisitLongConstant(HLongConstant * constant)3439 void LocationsBuilderARMVIXL::VisitLongConstant(HLongConstant* constant) {
3440   LocationSummary* locations =
3441       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3442   locations->SetOut(Location::ConstantLocation(constant));
3443 }
3444 
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)3445 void InstructionCodeGeneratorARMVIXL::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
3446   // Will be generated at use site.
3447 }
3448 
VisitFloatConstant(HFloatConstant * constant)3449 void LocationsBuilderARMVIXL::VisitFloatConstant(HFloatConstant* constant) {
3450   LocationSummary* locations =
3451       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3452   locations->SetOut(Location::ConstantLocation(constant));
3453 }
3454 
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)3455 void InstructionCodeGeneratorARMVIXL::VisitFloatConstant(
3456     HFloatConstant* constant ATTRIBUTE_UNUSED) {
3457   // Will be generated at use site.
3458 }
3459 
VisitDoubleConstant(HDoubleConstant * constant)3460 void LocationsBuilderARMVIXL::VisitDoubleConstant(HDoubleConstant* constant) {
3461   LocationSummary* locations =
3462       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3463   locations->SetOut(Location::ConstantLocation(constant));
3464 }
3465 
VisitDoubleConstant(HDoubleConstant * constant ATTRIBUTE_UNUSED)3466 void InstructionCodeGeneratorARMVIXL::VisitDoubleConstant(
3467     HDoubleConstant* constant ATTRIBUTE_UNUSED) {
3468   // Will be generated at use site.
3469 }
3470 
VisitConstructorFence(HConstructorFence * constructor_fence)3471 void LocationsBuilderARMVIXL::VisitConstructorFence(HConstructorFence* constructor_fence) {
3472   constructor_fence->SetLocations(nullptr);
3473 }
3474 
VisitConstructorFence(HConstructorFence * constructor_fence ATTRIBUTE_UNUSED)3475 void InstructionCodeGeneratorARMVIXL::VisitConstructorFence(
3476     HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
3477   codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
3478 }
3479 
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)3480 void LocationsBuilderARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
3481   memory_barrier->SetLocations(nullptr);
3482 }
3483 
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)3484 void InstructionCodeGeneratorARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
3485   codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
3486 }
3487 
VisitReturnVoid(HReturnVoid * ret)3488 void LocationsBuilderARMVIXL::VisitReturnVoid(HReturnVoid* ret) {
3489   ret->SetLocations(nullptr);
3490 }
3491 
VisitReturnVoid(HReturnVoid * ret ATTRIBUTE_UNUSED)3492 void InstructionCodeGeneratorARMVIXL::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
3493   codegen_->GenerateFrameExit();
3494 }
3495 
VisitReturn(HReturn * ret)3496 void LocationsBuilderARMVIXL::VisitReturn(HReturn* ret) {
3497   LocationSummary* locations =
3498       new (GetGraph()->GetAllocator()) LocationSummary(ret, LocationSummary::kNoCall);
3499   locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType()));
3500 }
3501 
VisitReturn(HReturn * ret)3502 void InstructionCodeGeneratorARMVIXL::VisitReturn(HReturn* ret) {
3503   if (GetGraph()->IsCompilingOsr()) {
3504     // To simplify callers of an OSR method, we put the return value in both
3505     // floating point and core registers.
3506     switch (ret->InputAt(0)->GetType()) {
3507       case DataType::Type::kFloat32:
3508         __ Vmov(r0, s0);
3509         break;
3510       case DataType::Type::kFloat64:
3511         __ Vmov(r0, r1, d0);
3512         break;
3513       default:
3514         break;
3515     }
3516   }
3517   codegen_->GenerateFrameExit();
3518 }
3519 
VisitInvokeUnresolved(HInvokeUnresolved * invoke)3520 void LocationsBuilderARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3521   // The trampoline uses the same calling convention as dex calling conventions,
3522   // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
3523   // the method_idx.
3524   HandleInvoke(invoke);
3525 }
3526 
VisitInvokeUnresolved(HInvokeUnresolved * invoke)3527 void InstructionCodeGeneratorARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3528   codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
3529   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 3);
3530 }
3531 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)3532 void LocationsBuilderARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3533   // Explicit clinit checks triggered by static invokes must have been pruned by
3534   // art::PrepareForRegisterAllocation.
3535   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3536 
3537   IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
3538   if (intrinsic.TryDispatch(invoke)) {
3539     return;
3540   }
3541 
3542   if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
3543     CriticalNativeCallingConventionVisitorARMVIXL calling_convention_visitor(
3544         /*for_register_allocation=*/ true);
3545     CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
3546   } else {
3547     HandleInvoke(invoke);
3548   }
3549 }
3550 
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorARMVIXL * codegen)3551 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARMVIXL* codegen) {
3552   if (invoke->GetLocations()->Intrinsified()) {
3553     IntrinsicCodeGeneratorARMVIXL intrinsic(codegen);
3554     intrinsic.Dispatch(invoke);
3555     return true;
3556   }
3557   return false;
3558 }
3559 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)3560 void InstructionCodeGeneratorARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3561   // Explicit clinit checks triggered by static invokes must have been pruned by
3562   // art::PrepareForRegisterAllocation.
3563   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3564 
3565   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3566     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 4);
3567     return;
3568   }
3569 
3570   LocationSummary* locations = invoke->GetLocations();
3571   codegen_->GenerateStaticOrDirectCall(
3572       invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
3573 
3574   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 5);
3575 }
3576 
HandleInvoke(HInvoke * invoke)3577 void LocationsBuilderARMVIXL::HandleInvoke(HInvoke* invoke) {
3578   InvokeDexCallingConventionVisitorARMVIXL calling_convention_visitor;
3579   CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
3580 }
3581 
VisitInvokeVirtual(HInvokeVirtual * invoke)3582 void LocationsBuilderARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3583   IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
3584   if (intrinsic.TryDispatch(invoke)) {
3585     return;
3586   }
3587 
3588   HandleInvoke(invoke);
3589 }
3590 
VisitInvokeVirtual(HInvokeVirtual * invoke)3591 void InstructionCodeGeneratorARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3592   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3593     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 6);
3594     return;
3595   }
3596 
3597   codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
3598   DCHECK(!codegen_->IsLeafMethod());
3599 
3600   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 7);
3601 }
3602 
VisitInvokeInterface(HInvokeInterface * invoke)3603 void LocationsBuilderARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) {
3604   HandleInvoke(invoke);
3605   // Add the hidden argument.
3606   if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
3607     // We cannot request r12 as it's blocked by the register allocator.
3608     invoke->GetLocations()->SetInAt(invoke->GetNumberOfArguments() - 1, Location::Any());
3609   }
3610 }
3611 
MaybeGenerateInlineCacheCheck(HInstruction * instruction,vixl32::Register klass)3612 void CodeGeneratorARMVIXL::MaybeGenerateInlineCacheCheck(HInstruction* instruction,
3613                                                          vixl32::Register klass) {
3614   DCHECK_EQ(r0.GetCode(), klass.GetCode());
3615   // We know the destination of an intrinsic, so no need to record inline
3616   // caches.
3617   if (!instruction->GetLocations()->Intrinsified() &&
3618       GetGraph()->IsCompilingBaseline() &&
3619       !Runtime::Current()->IsAotCompiler()) {
3620     DCHECK(!instruction->GetEnvironment()->IsFromInlinedInvoke());
3621     ProfilingInfo* info = GetGraph()->GetProfilingInfo();
3622     DCHECK(info != nullptr);
3623     InlineCache* cache = info->GetInlineCache(instruction->GetDexPc());
3624     uint32_t address = reinterpret_cast32<uint32_t>(cache);
3625     vixl32::Label done;
3626     UseScratchRegisterScope temps(GetVIXLAssembler());
3627     temps.Exclude(ip);
3628     __ Mov(r4, address);
3629     __ Ldr(ip, MemOperand(r4, InlineCache::ClassesOffset().Int32Value()));
3630     // Fast path for a monomorphic cache.
3631     __ Cmp(klass, ip);
3632     __ B(eq, &done, /* is_far_target= */ false);
3633     InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc());
3634     __ Bind(&done);
3635   }
3636 }
3637 
VisitInvokeInterface(HInvokeInterface * invoke)3638 void InstructionCodeGeneratorARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) {
3639   // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
3640   LocationSummary* locations = invoke->GetLocations();
3641   vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
3642   Location receiver = locations->InAt(0);
3643   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3644 
3645   DCHECK(!receiver.IsStackSlot());
3646 
3647   // Ensure the pc position is recorded immediately after the `ldr` instruction.
3648   {
3649     ExactAssemblyScope aas(GetVIXLAssembler(),
3650                            vixl32::kMaxInstructionSizeInBytes,
3651                            CodeBufferCheckScope::kMaximumSize);
3652     // /* HeapReference<Class> */ temp = receiver->klass_
3653     __ ldr(temp, MemOperand(RegisterFrom(receiver), class_offset));
3654     codegen_->MaybeRecordImplicitNullCheck(invoke);
3655   }
3656   // Instead of simply (possibly) unpoisoning `temp` here, we should
3657   // emit a read barrier for the previous class reference load.
3658   // However this is not required in practice, as this is an
3659   // intermediate/temporary reference and because the current
3660   // concurrent copying collector keeps the from-space memory
3661   // intact/accessible until the end of the marking phase (the
3662   // concurrent copying collector may not in the future).
3663   GetAssembler()->MaybeUnpoisonHeapReference(temp);
3664 
3665   // If we're compiling baseline, update the inline cache.
3666   codegen_->MaybeGenerateInlineCacheCheck(invoke, temp);
3667 
3668   GetAssembler()->LoadFromOffset(kLoadWord,
3669                                  temp,
3670                                  temp,
3671                                  mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
3672 
3673   uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
3674       invoke->GetImtIndex(), kArmPointerSize));
3675   // temp = temp->GetImtEntryAt(method_offset);
3676   GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset);
3677   uint32_t entry_point =
3678       ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value();
3679   // LR = temp->GetEntryPoint();
3680   GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point);
3681 
3682   {
3683     // Set the hidden (in r12) argument. It is done here, right before a BLX to prevent other
3684     // instruction from clobbering it as they might use r12 as a scratch register.
3685     Location hidden_reg = Location::RegisterLocation(r12.GetCode());
3686     // The VIXL macro assembler may clobber any of the scratch registers that are available to it,
3687     // so it checks if the application is using them (by passing them to the macro assembler
3688     // methods). The following application of UseScratchRegisterScope corrects VIXL's notion of
3689     // what is available, and is the opposite of the standard usage: Instead of requesting a
3690     // temporary location, it imposes an external constraint (i.e. a specific register is reserved
3691     // for the hidden argument). Note that this works even if VIXL needs a scratch register itself
3692     // (to materialize the constant), since the destination register becomes available for such use
3693     // internally for the duration of the macro instruction.
3694     UseScratchRegisterScope temps(GetVIXLAssembler());
3695     temps.Exclude(RegisterFrom(hidden_reg));
3696     if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
3697       Location current_method = locations->InAt(invoke->GetNumberOfArguments() - 1);
3698       if (current_method.IsStackSlot()) {
3699         GetAssembler()->LoadFromOffset(
3700             kLoadWord, RegisterFrom(hidden_reg), sp, current_method.GetStackIndex());
3701       } else {
3702         __ Mov(RegisterFrom(hidden_reg), RegisterFrom(current_method));
3703       }
3704     } else if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) {
3705       // We pass the method from the IMT in case of a conflict. This will ensure
3706       // we go into the runtime to resolve the actual method.
3707       CHECK_NE(temp.GetCode(), lr.GetCode());
3708       __ Mov(RegisterFrom(hidden_reg), temp);
3709     } else {
3710       codegen_->LoadMethod(invoke->GetHiddenArgumentLoadKind(), hidden_reg, invoke);
3711     }
3712   }
3713   {
3714     // Ensure the pc position is recorded immediately after the `blx` instruction.
3715     // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
3716     ExactAssemblyScope aas(GetVIXLAssembler(),
3717                            vixl32::k16BitT32InstructionSizeInBytes,
3718                            CodeBufferCheckScope::kExactSize);
3719     // LR();
3720     __ blx(lr);
3721     codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3722     DCHECK(!codegen_->IsLeafMethod());
3723   }
3724 
3725   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 8);
3726 }
3727 
VisitInvokePolymorphic(HInvokePolymorphic * invoke)3728 void LocationsBuilderARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
3729   IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
3730   if (intrinsic.TryDispatch(invoke)) {
3731     return;
3732   }
3733   HandleInvoke(invoke);
3734 }
3735 
VisitInvokePolymorphic(HInvokePolymorphic * invoke)3736 void InstructionCodeGeneratorARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
3737   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3738     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 9);
3739     return;
3740   }
3741   codegen_->GenerateInvokePolymorphicCall(invoke);
3742   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 10);
3743 }
3744 
VisitInvokeCustom(HInvokeCustom * invoke)3745 void LocationsBuilderARMVIXL::VisitInvokeCustom(HInvokeCustom* invoke) {
3746   HandleInvoke(invoke);
3747 }
3748 
VisitInvokeCustom(HInvokeCustom * invoke)3749 void InstructionCodeGeneratorARMVIXL::VisitInvokeCustom(HInvokeCustom* invoke) {
3750   codegen_->GenerateInvokeCustomCall(invoke);
3751   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 11);
3752 }
3753 
VisitNeg(HNeg * neg)3754 void LocationsBuilderARMVIXL::VisitNeg(HNeg* neg) {
3755   LocationSummary* locations =
3756       new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
3757   switch (neg->GetResultType()) {
3758     case DataType::Type::kInt32: {
3759       locations->SetInAt(0, Location::RequiresRegister());
3760       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3761       break;
3762     }
3763     case DataType::Type::kInt64: {
3764       locations->SetInAt(0, Location::RequiresRegister());
3765       locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3766       break;
3767     }
3768 
3769     case DataType::Type::kFloat32:
3770     case DataType::Type::kFloat64:
3771       locations->SetInAt(0, Location::RequiresFpuRegister());
3772       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3773       break;
3774 
3775     default:
3776       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
3777   }
3778 }
3779 
VisitNeg(HNeg * neg)3780 void InstructionCodeGeneratorARMVIXL::VisitNeg(HNeg* neg) {
3781   LocationSummary* locations = neg->GetLocations();
3782   Location out = locations->Out();
3783   Location in = locations->InAt(0);
3784   switch (neg->GetResultType()) {
3785     case DataType::Type::kInt32:
3786       __ Rsb(OutputRegister(neg), InputRegisterAt(neg, 0), 0);
3787       break;
3788 
3789     case DataType::Type::kInt64:
3790       // out.lo = 0 - in.lo (and update the carry/borrow (C) flag)
3791       __ Rsbs(LowRegisterFrom(out), LowRegisterFrom(in), 0);
3792       // We cannot emit an RSC (Reverse Subtract with Carry)
3793       // instruction here, as it does not exist in the Thumb-2
3794       // instruction set.  We use the following approach
3795       // using SBC and SUB instead.
3796       //
3797       // out.hi = -C
3798       __ Sbc(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(out));
3799       // out.hi = out.hi - in.hi
3800       __ Sub(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(in));
3801       break;
3802 
3803     case DataType::Type::kFloat32:
3804     case DataType::Type::kFloat64:
3805       __ Vneg(OutputVRegister(neg), InputVRegister(neg));
3806       break;
3807 
3808     default:
3809       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
3810   }
3811 }
3812 
VisitTypeConversion(HTypeConversion * conversion)3813 void LocationsBuilderARMVIXL::VisitTypeConversion(HTypeConversion* conversion) {
3814   DataType::Type result_type = conversion->GetResultType();
3815   DataType::Type input_type = conversion->GetInputType();
3816   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
3817       << input_type << " -> " << result_type;
3818 
3819   // The float-to-long, double-to-long and long-to-float type conversions
3820   // rely on a call to the runtime.
3821   LocationSummary::CallKind call_kind =
3822       (((input_type == DataType::Type::kFloat32 || input_type == DataType::Type::kFloat64)
3823         && result_type == DataType::Type::kInt64)
3824        || (input_type == DataType::Type::kInt64 && result_type == DataType::Type::kFloat32))
3825       ? LocationSummary::kCallOnMainOnly
3826       : LocationSummary::kNoCall;
3827   LocationSummary* locations =
3828       new (GetGraph()->GetAllocator()) LocationSummary(conversion, call_kind);
3829 
3830   switch (result_type) {
3831     case DataType::Type::kUint8:
3832     case DataType::Type::kInt8:
3833     case DataType::Type::kUint16:
3834     case DataType::Type::kInt16:
3835       DCHECK(DataType::IsIntegralType(input_type)) << input_type;
3836       locations->SetInAt(0, Location::RequiresRegister());
3837       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3838       break;
3839 
3840     case DataType::Type::kInt32:
3841       switch (input_type) {
3842         case DataType::Type::kInt64:
3843           locations->SetInAt(0, Location::Any());
3844           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3845           break;
3846 
3847         case DataType::Type::kFloat32:
3848           locations->SetInAt(0, Location::RequiresFpuRegister());
3849           locations->SetOut(Location::RequiresRegister());
3850           locations->AddTemp(Location::RequiresFpuRegister());
3851           break;
3852 
3853         case DataType::Type::kFloat64:
3854           locations->SetInAt(0, Location::RequiresFpuRegister());
3855           locations->SetOut(Location::RequiresRegister());
3856           locations->AddTemp(Location::RequiresFpuRegister());
3857           break;
3858 
3859         default:
3860           LOG(FATAL) << "Unexpected type conversion from " << input_type
3861                      << " to " << result_type;
3862       }
3863       break;
3864 
3865     case DataType::Type::kInt64:
3866       switch (input_type) {
3867         case DataType::Type::kBool:
3868         case DataType::Type::kUint8:
3869         case DataType::Type::kInt8:
3870         case DataType::Type::kUint16:
3871         case DataType::Type::kInt16:
3872         case DataType::Type::kInt32:
3873           locations->SetInAt(0, Location::RequiresRegister());
3874           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3875           break;
3876 
3877         case DataType::Type::kFloat32: {
3878           InvokeRuntimeCallingConventionARMVIXL calling_convention;
3879           locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
3880           locations->SetOut(LocationFrom(r0, r1));
3881           break;
3882         }
3883 
3884         case DataType::Type::kFloat64: {
3885           InvokeRuntimeCallingConventionARMVIXL calling_convention;
3886           locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0),
3887                                              calling_convention.GetFpuRegisterAt(1)));
3888           locations->SetOut(LocationFrom(r0, r1));
3889           break;
3890         }
3891 
3892         default:
3893           LOG(FATAL) << "Unexpected type conversion from " << input_type
3894                      << " to " << result_type;
3895       }
3896       break;
3897 
3898     case DataType::Type::kFloat32:
3899       switch (input_type) {
3900         case DataType::Type::kBool:
3901         case DataType::Type::kUint8:
3902         case DataType::Type::kInt8:
3903         case DataType::Type::kUint16:
3904         case DataType::Type::kInt16:
3905         case DataType::Type::kInt32:
3906           locations->SetInAt(0, Location::RequiresRegister());
3907           locations->SetOut(Location::RequiresFpuRegister());
3908           break;
3909 
3910         case DataType::Type::kInt64: {
3911           InvokeRuntimeCallingConventionARMVIXL calling_convention;
3912           locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0),
3913                                              calling_convention.GetRegisterAt(1)));
3914           locations->SetOut(LocationFrom(calling_convention.GetFpuRegisterAt(0)));
3915           break;
3916         }
3917 
3918         case DataType::Type::kFloat64:
3919           locations->SetInAt(0, Location::RequiresFpuRegister());
3920           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3921           break;
3922 
3923         default:
3924           LOG(FATAL) << "Unexpected type conversion from " << input_type
3925                      << " to " << result_type;
3926       }
3927       break;
3928 
3929     case DataType::Type::kFloat64:
3930       switch (input_type) {
3931         case DataType::Type::kBool:
3932         case DataType::Type::kUint8:
3933         case DataType::Type::kInt8:
3934         case DataType::Type::kUint16:
3935         case DataType::Type::kInt16:
3936         case DataType::Type::kInt32:
3937           locations->SetInAt(0, Location::RequiresRegister());
3938           locations->SetOut(Location::RequiresFpuRegister());
3939           break;
3940 
3941         case DataType::Type::kInt64:
3942           locations->SetInAt(0, Location::RequiresRegister());
3943           locations->SetOut(Location::RequiresFpuRegister());
3944           locations->AddTemp(Location::RequiresFpuRegister());
3945           locations->AddTemp(Location::RequiresFpuRegister());
3946           break;
3947 
3948         case DataType::Type::kFloat32:
3949           locations->SetInAt(0, Location::RequiresFpuRegister());
3950           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3951           break;
3952 
3953         default:
3954           LOG(FATAL) << "Unexpected type conversion from " << input_type
3955                      << " to " << result_type;
3956       }
3957       break;
3958 
3959     default:
3960       LOG(FATAL) << "Unexpected type conversion from " << input_type
3961                  << " to " << result_type;
3962   }
3963 }
3964 
VisitTypeConversion(HTypeConversion * conversion)3965 void InstructionCodeGeneratorARMVIXL::VisitTypeConversion(HTypeConversion* conversion) {
3966   LocationSummary* locations = conversion->GetLocations();
3967   Location out = locations->Out();
3968   Location in = locations->InAt(0);
3969   DataType::Type result_type = conversion->GetResultType();
3970   DataType::Type input_type = conversion->GetInputType();
3971   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
3972       << input_type << " -> " << result_type;
3973   switch (result_type) {
3974     case DataType::Type::kUint8:
3975       switch (input_type) {
3976         case DataType::Type::kInt8:
3977         case DataType::Type::kUint16:
3978         case DataType::Type::kInt16:
3979         case DataType::Type::kInt32:
3980           __ Ubfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 8);
3981           break;
3982         case DataType::Type::kInt64:
3983           __ Ubfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 8);
3984           break;
3985 
3986         default:
3987           LOG(FATAL) << "Unexpected type conversion from " << input_type
3988                      << " to " << result_type;
3989       }
3990       break;
3991 
3992     case DataType::Type::kInt8:
3993       switch (input_type) {
3994         case DataType::Type::kUint8:
3995         case DataType::Type::kUint16:
3996         case DataType::Type::kInt16:
3997         case DataType::Type::kInt32:
3998           __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 8);
3999           break;
4000         case DataType::Type::kInt64:
4001           __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 8);
4002           break;
4003 
4004         default:
4005           LOG(FATAL) << "Unexpected type conversion from " << input_type
4006                      << " to " << result_type;
4007       }
4008       break;
4009 
4010     case DataType::Type::kUint16:
4011       switch (input_type) {
4012         case DataType::Type::kInt8:
4013         case DataType::Type::kInt16:
4014         case DataType::Type::kInt32:
4015           __ Ubfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16);
4016           break;
4017         case DataType::Type::kInt64:
4018           __ Ubfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16);
4019           break;
4020 
4021         default:
4022           LOG(FATAL) << "Unexpected type conversion from " << input_type
4023                      << " to " << result_type;
4024       }
4025       break;
4026 
4027     case DataType::Type::kInt16:
4028       switch (input_type) {
4029         case DataType::Type::kUint16:
4030         case DataType::Type::kInt32:
4031           __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16);
4032           break;
4033         case DataType::Type::kInt64:
4034           __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16);
4035           break;
4036 
4037         default:
4038           LOG(FATAL) << "Unexpected type conversion from " << input_type
4039                      << " to " << result_type;
4040       }
4041       break;
4042 
4043     case DataType::Type::kInt32:
4044       switch (input_type) {
4045         case DataType::Type::kInt64:
4046           DCHECK(out.IsRegister());
4047           if (in.IsRegisterPair()) {
4048             __ Mov(OutputRegister(conversion), LowRegisterFrom(in));
4049           } else if (in.IsDoubleStackSlot()) {
4050             GetAssembler()->LoadFromOffset(kLoadWord,
4051                                            OutputRegister(conversion),
4052                                            sp,
4053                                            in.GetStackIndex());
4054           } else {
4055             DCHECK(in.IsConstant());
4056             DCHECK(in.GetConstant()->IsLongConstant());
4057             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
4058             __ Mov(OutputRegister(conversion), static_cast<int32_t>(value));
4059           }
4060           break;
4061 
4062         case DataType::Type::kFloat32: {
4063           vixl32::SRegister temp = LowSRegisterFrom(locations->GetTemp(0));
4064           __ Vcvt(S32, F32, temp, InputSRegisterAt(conversion, 0));
4065           __ Vmov(OutputRegister(conversion), temp);
4066           break;
4067         }
4068 
4069         case DataType::Type::kFloat64: {
4070           vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0));
4071           __ Vcvt(S32, F64, temp_s, DRegisterFrom(in));
4072           __ Vmov(OutputRegister(conversion), temp_s);
4073           break;
4074         }
4075 
4076         default:
4077           LOG(FATAL) << "Unexpected type conversion from " << input_type
4078                      << " to " << result_type;
4079       }
4080       break;
4081 
4082     case DataType::Type::kInt64:
4083       switch (input_type) {
4084         case DataType::Type::kBool:
4085         case DataType::Type::kUint8:
4086         case DataType::Type::kInt8:
4087         case DataType::Type::kUint16:
4088         case DataType::Type::kInt16:
4089         case DataType::Type::kInt32:
4090           DCHECK(out.IsRegisterPair());
4091           DCHECK(in.IsRegister());
4092           __ Mov(LowRegisterFrom(out), InputRegisterAt(conversion, 0));
4093           // Sign extension.
4094           __ Asr(HighRegisterFrom(out), LowRegisterFrom(out), 31);
4095           break;
4096 
4097         case DataType::Type::kFloat32:
4098           codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc());
4099           CheckEntrypointTypes<kQuickF2l, int64_t, float>();
4100           break;
4101 
4102         case DataType::Type::kFloat64:
4103           codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc());
4104           CheckEntrypointTypes<kQuickD2l, int64_t, double>();
4105           break;
4106 
4107         default:
4108           LOG(FATAL) << "Unexpected type conversion from " << input_type
4109                      << " to " << result_type;
4110       }
4111       break;
4112 
4113     case DataType::Type::kFloat32:
4114       switch (input_type) {
4115         case DataType::Type::kBool:
4116         case DataType::Type::kUint8:
4117         case DataType::Type::kInt8:
4118         case DataType::Type::kUint16:
4119         case DataType::Type::kInt16:
4120         case DataType::Type::kInt32:
4121           __ Vmov(OutputSRegister(conversion), InputRegisterAt(conversion, 0));
4122           __ Vcvt(F32, S32, OutputSRegister(conversion), OutputSRegister(conversion));
4123           break;
4124 
4125         case DataType::Type::kInt64:
4126           codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc());
4127           CheckEntrypointTypes<kQuickL2f, float, int64_t>();
4128           break;
4129 
4130         case DataType::Type::kFloat64:
4131           __ Vcvt(F32, F64, OutputSRegister(conversion), DRegisterFrom(in));
4132           break;
4133 
4134         default:
4135           LOG(FATAL) << "Unexpected type conversion from " << input_type
4136                      << " to " << result_type;
4137       }
4138       break;
4139 
4140     case DataType::Type::kFloat64:
4141       switch (input_type) {
4142         case DataType::Type::kBool:
4143         case DataType::Type::kUint8:
4144         case DataType::Type::kInt8:
4145         case DataType::Type::kUint16:
4146         case DataType::Type::kInt16:
4147         case DataType::Type::kInt32:
4148           __ Vmov(LowSRegisterFrom(out), InputRegisterAt(conversion, 0));
4149           __ Vcvt(F64, S32, DRegisterFrom(out), LowSRegisterFrom(out));
4150           break;
4151 
4152         case DataType::Type::kInt64: {
4153           vixl32::Register low = LowRegisterFrom(in);
4154           vixl32::Register high = HighRegisterFrom(in);
4155           vixl32::SRegister out_s = LowSRegisterFrom(out);
4156           vixl32::DRegister out_d = DRegisterFrom(out);
4157           vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0));
4158           vixl32::DRegister temp_d = DRegisterFrom(locations->GetTemp(0));
4159           vixl32::DRegister constant_d = DRegisterFrom(locations->GetTemp(1));
4160 
4161           // temp_d = int-to-double(high)
4162           __ Vmov(temp_s, high);
4163           __ Vcvt(F64, S32, temp_d, temp_s);
4164           // constant_d = k2Pow32EncodingForDouble
4165           __ Vmov(constant_d, bit_cast<double, int64_t>(k2Pow32EncodingForDouble));
4166           // out_d = unsigned-to-double(low)
4167           __ Vmov(out_s, low);
4168           __ Vcvt(F64, U32, out_d, out_s);
4169           // out_d += temp_d * constant_d
4170           __ Vmla(F64, out_d, temp_d, constant_d);
4171           break;
4172         }
4173 
4174         case DataType::Type::kFloat32:
4175           __ Vcvt(F64, F32, DRegisterFrom(out), InputSRegisterAt(conversion, 0));
4176           break;
4177 
4178         default:
4179           LOG(FATAL) << "Unexpected type conversion from " << input_type
4180                      << " to " << result_type;
4181       }
4182       break;
4183 
4184     default:
4185       LOG(FATAL) << "Unexpected type conversion from " << input_type
4186                  << " to " << result_type;
4187   }
4188 }
4189 
VisitAdd(HAdd * add)4190 void LocationsBuilderARMVIXL::VisitAdd(HAdd* add) {
4191   LocationSummary* locations =
4192       new (GetGraph()->GetAllocator()) LocationSummary(add, LocationSummary::kNoCall);
4193   switch (add->GetResultType()) {
4194     case DataType::Type::kInt32: {
4195       locations->SetInAt(0, Location::RequiresRegister());
4196       locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
4197       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4198       break;
4199     }
4200 
4201     case DataType::Type::kInt64: {
4202       locations->SetInAt(0, Location::RequiresRegister());
4203       locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD));
4204       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4205       break;
4206     }
4207 
4208     case DataType::Type::kFloat32:
4209     case DataType::Type::kFloat64: {
4210       locations->SetInAt(0, Location::RequiresFpuRegister());
4211       locations->SetInAt(1, Location::RequiresFpuRegister());
4212       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4213       break;
4214     }
4215 
4216     default:
4217       LOG(FATAL) << "Unexpected add type " << add->GetResultType();
4218   }
4219 }
4220 
VisitAdd(HAdd * add)4221 void InstructionCodeGeneratorARMVIXL::VisitAdd(HAdd* add) {
4222   LocationSummary* locations = add->GetLocations();
4223   Location out = locations->Out();
4224   Location first = locations->InAt(0);
4225   Location second = locations->InAt(1);
4226 
4227   switch (add->GetResultType()) {
4228     case DataType::Type::kInt32: {
4229       __ Add(OutputRegister(add), InputRegisterAt(add, 0), InputOperandAt(add, 1));
4230       }
4231       break;
4232 
4233     case DataType::Type::kInt64: {
4234       if (second.IsConstant()) {
4235         uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
4236         GenerateAddLongConst(out, first, value);
4237       } else {
4238         DCHECK(second.IsRegisterPair());
4239         __ Adds(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second));
4240         __ Adc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second));
4241       }
4242       break;
4243     }
4244 
4245     case DataType::Type::kFloat32:
4246     case DataType::Type::kFloat64:
4247       __ Vadd(OutputVRegister(add), InputVRegisterAt(add, 0), InputVRegisterAt(add, 1));
4248       break;
4249 
4250     default:
4251       LOG(FATAL) << "Unexpected add type " << add->GetResultType();
4252   }
4253 }
4254 
VisitSub(HSub * sub)4255 void LocationsBuilderARMVIXL::VisitSub(HSub* sub) {
4256   LocationSummary* locations =
4257       new (GetGraph()->GetAllocator()) LocationSummary(sub, LocationSummary::kNoCall);
4258   switch (sub->GetResultType()) {
4259     case DataType::Type::kInt32: {
4260       locations->SetInAt(0, Location::RequiresRegister());
4261       locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1)));
4262       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4263       break;
4264     }
4265 
4266     case DataType::Type::kInt64: {
4267       locations->SetInAt(0, Location::RequiresRegister());
4268       locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB));
4269       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4270       break;
4271     }
4272     case DataType::Type::kFloat32:
4273     case DataType::Type::kFloat64: {
4274       locations->SetInAt(0, Location::RequiresFpuRegister());
4275       locations->SetInAt(1, Location::RequiresFpuRegister());
4276       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4277       break;
4278     }
4279     default:
4280       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
4281   }
4282 }
4283 
VisitSub(HSub * sub)4284 void InstructionCodeGeneratorARMVIXL::VisitSub(HSub* sub) {
4285   LocationSummary* locations = sub->GetLocations();
4286   Location out = locations->Out();
4287   Location first = locations->InAt(0);
4288   Location second = locations->InAt(1);
4289   switch (sub->GetResultType()) {
4290     case DataType::Type::kInt32: {
4291       __ Sub(OutputRegister(sub), InputRegisterAt(sub, 0), InputOperandAt(sub, 1));
4292       break;
4293     }
4294 
4295     case DataType::Type::kInt64: {
4296       if (second.IsConstant()) {
4297         uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
4298         GenerateAddLongConst(out, first, -value);
4299       } else {
4300         DCHECK(second.IsRegisterPair());
4301         __ Subs(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second));
4302         __ Sbc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second));
4303       }
4304       break;
4305     }
4306 
4307     case DataType::Type::kFloat32:
4308     case DataType::Type::kFloat64:
4309       __ Vsub(OutputVRegister(sub), InputVRegisterAt(sub, 0), InputVRegisterAt(sub, 1));
4310       break;
4311 
4312     default:
4313       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
4314   }
4315 }
4316 
VisitMul(HMul * mul)4317 void LocationsBuilderARMVIXL::VisitMul(HMul* mul) {
4318   LocationSummary* locations =
4319       new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall);
4320   switch (mul->GetResultType()) {
4321     case DataType::Type::kInt32:
4322     case DataType::Type::kInt64:  {
4323       locations->SetInAt(0, Location::RequiresRegister());
4324       locations->SetInAt(1, Location::RequiresRegister());
4325       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4326       break;
4327     }
4328 
4329     case DataType::Type::kFloat32:
4330     case DataType::Type::kFloat64: {
4331       locations->SetInAt(0, Location::RequiresFpuRegister());
4332       locations->SetInAt(1, Location::RequiresFpuRegister());
4333       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4334       break;
4335     }
4336 
4337     default:
4338       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
4339   }
4340 }
4341 
VisitMul(HMul * mul)4342 void InstructionCodeGeneratorARMVIXL::VisitMul(HMul* mul) {
4343   LocationSummary* locations = mul->GetLocations();
4344   Location out = locations->Out();
4345   Location first = locations->InAt(0);
4346   Location second = locations->InAt(1);
4347   switch (mul->GetResultType()) {
4348     case DataType::Type::kInt32: {
4349       __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
4350       break;
4351     }
4352     case DataType::Type::kInt64: {
4353       vixl32::Register out_hi = HighRegisterFrom(out);
4354       vixl32::Register out_lo = LowRegisterFrom(out);
4355       vixl32::Register in1_hi = HighRegisterFrom(first);
4356       vixl32::Register in1_lo = LowRegisterFrom(first);
4357       vixl32::Register in2_hi = HighRegisterFrom(second);
4358       vixl32::Register in2_lo = LowRegisterFrom(second);
4359 
4360       // Extra checks to protect caused by the existence of R1_R2.
4361       // The algorithm is wrong if out.hi is either in1.lo or in2.lo:
4362       // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2);
4363       DCHECK(!out_hi.Is(in1_lo));
4364       DCHECK(!out_hi.Is(in2_lo));
4365 
4366       // input: in1 - 64 bits, in2 - 64 bits
4367       // output: out
4368       // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
4369       // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
4370       // parts: out.lo = (in1.lo * in2.lo)[31:0]
4371 
4372       UseScratchRegisterScope temps(GetVIXLAssembler());
4373       vixl32::Register temp = temps.Acquire();
4374       // temp <- in1.lo * in2.hi
4375       __ Mul(temp, in1_lo, in2_hi);
4376       // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo
4377       __ Mla(out_hi, in1_hi, in2_lo, temp);
4378       // out.lo <- (in1.lo * in2.lo)[31:0];
4379       __ Umull(out_lo, temp, in1_lo, in2_lo);
4380       // out.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
4381       __ Add(out_hi, out_hi, temp);
4382       break;
4383     }
4384 
4385     case DataType::Type::kFloat32:
4386     case DataType::Type::kFloat64:
4387       __ Vmul(OutputVRegister(mul), InputVRegisterAt(mul, 0), InputVRegisterAt(mul, 1));
4388       break;
4389 
4390     default:
4391       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
4392   }
4393 }
4394 
DivRemOneOrMinusOne(HBinaryOperation * instruction)4395 void InstructionCodeGeneratorARMVIXL::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
4396   DCHECK(instruction->IsDiv() || instruction->IsRem());
4397   DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4398 
4399   Location second = instruction->GetLocations()->InAt(1);
4400   DCHECK(second.IsConstant());
4401 
4402   vixl32::Register out = OutputRegister(instruction);
4403   vixl32::Register dividend = InputRegisterAt(instruction, 0);
4404   int32_t imm = Int32ConstantFrom(second);
4405   DCHECK(imm == 1 || imm == -1);
4406 
4407   if (instruction->IsRem()) {
4408     __ Mov(out, 0);
4409   } else {
4410     if (imm == 1) {
4411       __ Mov(out, dividend);
4412     } else {
4413       __ Rsb(out, dividend, 0);
4414     }
4415   }
4416 }
4417 
DivRemByPowerOfTwo(HBinaryOperation * instruction)4418 void InstructionCodeGeneratorARMVIXL::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
4419   DCHECK(instruction->IsDiv() || instruction->IsRem());
4420   DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4421 
4422   LocationSummary* locations = instruction->GetLocations();
4423   Location second = locations->InAt(1);
4424   DCHECK(second.IsConstant());
4425 
4426   vixl32::Register out = OutputRegister(instruction);
4427   vixl32::Register dividend = InputRegisterAt(instruction, 0);
4428   int32_t imm = Int32ConstantFrom(second);
4429   uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
4430   int ctz_imm = CTZ(abs_imm);
4431 
4432   auto generate_div_code = [this, imm, ctz_imm](vixl32::Register out, vixl32::Register in) {
4433     __ Asr(out, in, ctz_imm);
4434     if (imm < 0) {
4435       __ Rsb(out, out, 0);
4436     }
4437   };
4438 
4439   if (HasNonNegativeOrMinIntInputAt(instruction, 0)) {
4440     // No need to adjust the result for non-negative dividends or the INT32_MIN dividend.
4441     // NOTE: The generated code for HDiv/HRem correctly works for the INT32_MIN dividend:
4442     //   imm == 2
4443     //     HDiv
4444     //      add out, dividend(0x80000000), dividend(0x80000000), lsr #31 => out = 0x80000001
4445     //      asr out, out(0x80000001), #1 => out = 0xc0000000
4446     //      This is the same as 'asr out, dividend(0x80000000), #1'
4447     //
4448     //   imm > 2
4449     //     HDiv
4450     //      asr out, dividend(0x80000000), #31 => out = -1
4451     //      add out, dividend(0x80000000), out(-1), lsr #(32 - ctz_imm) => out = 0b10..01..1,
4452     //          where the number of the rightmost 1s is ctz_imm.
4453     //      asr out, out(0b10..01..1), #ctz_imm => out = 0b1..10..0, where the number of the
4454     //          leftmost 1s is ctz_imm + 1.
4455     //      This is the same as 'asr out, dividend(0x80000000), #ctz_imm'.
4456     //
4457     //   imm == INT32_MIN
4458     //     HDiv
4459     //      asr out, dividend(0x80000000), #31 => out = -1
4460     //      add out, dividend(0x80000000), out(-1), lsr #1 => out = 0xc0000000
4461     //      asr out, out(0xc0000000), #31 => out = -1
4462     //      rsb out, out(-1), #0 => out = 1
4463     //      This is the same as
4464     //        asr out, dividend(0x80000000), #31
4465     //        rsb out, out, #0
4466     //
4467     //
4468     //   INT_MIN % imm must be 0 for any imm of power 2. 'and' and 'ubfx' work only with bits
4469     //   0..30 of a dividend. For INT32_MIN those bits are zeros. So 'and' and 'ubfx' always
4470     //   produce zero.
4471     if (instruction->IsDiv()) {
4472       generate_div_code(out, dividend);
4473     } else {
4474       if (GetVIXLAssembler()->IsModifiedImmediate(abs_imm - 1)) {
4475         __ And(out, dividend, abs_imm - 1);
4476       } else {
4477         __ Ubfx(out, dividend, 0, ctz_imm);
4478       }
4479       return;
4480     }
4481   } else {
4482     vixl32::Register add_right_input = dividend;
4483     if (ctz_imm > 1) {
4484       __ Asr(out, dividend, 31);
4485       add_right_input = out;
4486     }
4487     __ Add(out, dividend, Operand(add_right_input, vixl32::LSR, 32 - ctz_imm));
4488 
4489     if (instruction->IsDiv()) {
4490       generate_div_code(out, out);
4491     } else {
4492       __ Bfc(out, 0, ctz_imm);
4493       __ Sub(out, dividend, out);
4494     }
4495   }
4496 }
4497 
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction)4498 void InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
4499   DCHECK(instruction->IsDiv() || instruction->IsRem());
4500   DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4501 
4502   LocationSummary* locations = instruction->GetLocations();
4503   Location second = locations->InAt(1);
4504   DCHECK(second.IsConstant());
4505 
4506   vixl32::Register out = OutputRegister(instruction);
4507   vixl32::Register dividend = InputRegisterAt(instruction, 0);
4508   vixl32::Register temp1 = RegisterFrom(locations->GetTemp(0));
4509   vixl32::Register temp2 = RegisterFrom(locations->GetTemp(1));
4510   int32_t imm = Int32ConstantFrom(second);
4511 
4512   int64_t magic;
4513   int shift;
4514   CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift);
4515 
4516   auto generate_unsigned_div_code =[this, magic, shift](vixl32::Register out,
4517                                                         vixl32::Register dividend,
4518                                                         vixl32::Register temp1,
4519                                                         vixl32::Register temp2) {
4520     // TODO(VIXL): Change the static cast to Operand::From() after VIXL is fixed.
4521     __ Mov(temp1, static_cast<int32_t>(magic));
4522     if (magic > 0 && shift == 0) {
4523       __ Smull(temp2, out, dividend, temp1);
4524     } else {
4525       __ Smull(temp2, temp1, dividend, temp1);
4526       if (magic < 0) {
4527         // The negative magic M = static_cast<int>(m) means that the multiplier m is greater
4528         // than INT32_MAX. In such a case shift is never 0.
4529         // Proof:
4530         //   m = (2^p + d - 2^p % d) / d, where p = 32 + shift, d > 2
4531         //
4532         //   If shift == 0, m = (2^32 + d - 2^32 % d) / d =
4533         //   = (2^32 + d - (2^32 - (2^32 / d) * d)) / d =
4534         //   = (d + (2^32 / d) * d) / d = 1 + (2^32 / d), here '/' is the integer division.
4535         //
4536         //   1 + (2^32 / d) is decreasing when d is increasing.
4537         //   The maximum is 1 431 655 766, when d == 3. This value is less than INT32_MAX.
4538         //   the minimum is 3, when d = 2^31 -1.
4539         //   So for all values of d in [3, INT32_MAX] m with p == 32 is in [3, INT32_MAX) and
4540         //   is never less than 0.
4541         __ Add(temp1, temp1, dividend);
4542       }
4543       DCHECK_NE(shift, 0);
4544       __ Lsr(out, temp1, shift);
4545     }
4546   };
4547 
4548   if (imm > 0 && HasNonNegativeInputAt(instruction, 0)) {
4549     // No need to adjust the result for a non-negative dividend and a positive divisor.
4550     if (instruction->IsDiv()) {
4551       generate_unsigned_div_code(out, dividend, temp1, temp2);
4552     } else {
4553       generate_unsigned_div_code(temp1, dividend, temp1, temp2);
4554       __ Mov(temp2, imm);
4555       __ Mls(out, temp1, temp2, dividend);
4556     }
4557   } else {
4558     // TODO(VIXL): Change the static cast to Operand::From() after VIXL is fixed.
4559     __ Mov(temp1, static_cast<int32_t>(magic));
4560     __ Smull(temp2, temp1, dividend, temp1);
4561 
4562     if (imm > 0 && magic < 0) {
4563       __ Add(temp1, temp1, dividend);
4564     } else if (imm < 0 && magic > 0) {
4565       __ Sub(temp1, temp1, dividend);
4566     }
4567 
4568     if (shift != 0) {
4569       __ Asr(temp1, temp1, shift);
4570     }
4571 
4572     if (instruction->IsDiv()) {
4573       __ Sub(out, temp1, Operand(temp1, vixl32::Shift(ASR), 31));
4574     } else {
4575       __ Sub(temp1, temp1, Operand(temp1, vixl32::Shift(ASR), 31));
4576       // TODO: Strength reduction for mls.
4577       __ Mov(temp2, imm);
4578       __ Mls(out, temp1, temp2, dividend);
4579     }
4580   }
4581 }
4582 
GenerateDivRemConstantIntegral(HBinaryOperation * instruction)4583 void InstructionCodeGeneratorARMVIXL::GenerateDivRemConstantIntegral(
4584     HBinaryOperation* instruction) {
4585   DCHECK(instruction->IsDiv() || instruction->IsRem());
4586   DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4587 
4588   Location second = instruction->GetLocations()->InAt(1);
4589   DCHECK(second.IsConstant());
4590 
4591   int32_t imm = Int32ConstantFrom(second);
4592   if (imm == 0) {
4593     // Do not generate anything. DivZeroCheck would prevent any code to be executed.
4594   } else if (imm == 1 || imm == -1) {
4595     DivRemOneOrMinusOne(instruction);
4596   } else if (IsPowerOfTwo(AbsOrMin(imm))) {
4597     DivRemByPowerOfTwo(instruction);
4598   } else {
4599     DCHECK(imm <= -2 || imm >= 2);
4600     GenerateDivRemWithAnyConstant(instruction);
4601   }
4602 }
4603 
VisitDiv(HDiv * div)4604 void LocationsBuilderARMVIXL::VisitDiv(HDiv* div) {
4605   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
4606   if (div->GetResultType() == DataType::Type::kInt64) {
4607     // pLdiv runtime call.
4608     call_kind = LocationSummary::kCallOnMainOnly;
4609   } else if (div->GetResultType() == DataType::Type::kInt32 && div->InputAt(1)->IsConstant()) {
4610     // sdiv will be replaced by other instruction sequence.
4611   } else if (div->GetResultType() == DataType::Type::kInt32 &&
4612              !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4613     // pIdivmod runtime call.
4614     call_kind = LocationSummary::kCallOnMainOnly;
4615   }
4616 
4617   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(div, call_kind);
4618 
4619   switch (div->GetResultType()) {
4620     case DataType::Type::kInt32: {
4621       HInstruction* divisor = div->InputAt(1);
4622       if (divisor->IsConstant()) {
4623         locations->SetInAt(0, Location::RequiresRegister());
4624         locations->SetInAt(1, Location::ConstantLocation(divisor));
4625         int32_t value = Int32ConstantFrom(divisor);
4626         Location::OutputOverlap out_overlaps = Location::kNoOutputOverlap;
4627         if (value == 1 || value == 0 || value == -1) {
4628           // No temp register required.
4629         } else if (IsPowerOfTwo(AbsOrMin(value)) &&
4630                    value != 2 &&
4631                    value != -2 &&
4632                    !HasNonNegativeOrMinIntInputAt(div, 0)) {
4633           // The "out" register is used as a temporary, so it overlaps with the inputs.
4634           out_overlaps = Location::kOutputOverlap;
4635         } else {
4636           locations->AddRegisterTemps(2);
4637         }
4638         locations->SetOut(Location::RequiresRegister(), out_overlaps);
4639       } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4640         locations->SetInAt(0, Location::RequiresRegister());
4641         locations->SetInAt(1, Location::RequiresRegister());
4642         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4643       } else {
4644         InvokeRuntimeCallingConventionARMVIXL calling_convention;
4645         locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4646         locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
4647         // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but
4648         //       we only need the former.
4649         locations->SetOut(LocationFrom(r0));
4650       }
4651       break;
4652     }
4653     case DataType::Type::kInt64: {
4654       InvokeRuntimeCallingConventionARMVIXL calling_convention;
4655       locations->SetInAt(0, LocationFrom(
4656           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
4657       locations->SetInAt(1, LocationFrom(
4658           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
4659       locations->SetOut(LocationFrom(r0, r1));
4660       break;
4661     }
4662     case DataType::Type::kFloat32:
4663     case DataType::Type::kFloat64: {
4664       locations->SetInAt(0, Location::RequiresFpuRegister());
4665       locations->SetInAt(1, Location::RequiresFpuRegister());
4666       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4667       break;
4668     }
4669 
4670     default:
4671       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
4672   }
4673 }
4674 
VisitDiv(HDiv * div)4675 void InstructionCodeGeneratorARMVIXL::VisitDiv(HDiv* div) {
4676   Location lhs = div->GetLocations()->InAt(0);
4677   Location rhs = div->GetLocations()->InAt(1);
4678 
4679   switch (div->GetResultType()) {
4680     case DataType::Type::kInt32: {
4681       if (rhs.IsConstant()) {
4682         GenerateDivRemConstantIntegral(div);
4683       } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4684         __ Sdiv(OutputRegister(div), InputRegisterAt(div, 0), InputRegisterAt(div, 1));
4685       } else {
4686         InvokeRuntimeCallingConventionARMVIXL calling_convention;
4687         DCHECK(calling_convention.GetRegisterAt(0).Is(RegisterFrom(lhs)));
4688         DCHECK(calling_convention.GetRegisterAt(1).Is(RegisterFrom(rhs)));
4689         DCHECK(r0.Is(OutputRegister(div)));
4690 
4691         codegen_->InvokeRuntime(kQuickIdivmod, div, div->GetDexPc());
4692         CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
4693       }
4694       break;
4695     }
4696 
4697     case DataType::Type::kInt64: {
4698       InvokeRuntimeCallingConventionARMVIXL calling_convention;
4699       DCHECK(calling_convention.GetRegisterAt(0).Is(LowRegisterFrom(lhs)));
4700       DCHECK(calling_convention.GetRegisterAt(1).Is(HighRegisterFrom(lhs)));
4701       DCHECK(calling_convention.GetRegisterAt(2).Is(LowRegisterFrom(rhs)));
4702       DCHECK(calling_convention.GetRegisterAt(3).Is(HighRegisterFrom(rhs)));
4703       DCHECK(LowRegisterFrom(div->GetLocations()->Out()).Is(r0));
4704       DCHECK(HighRegisterFrom(div->GetLocations()->Out()).Is(r1));
4705 
4706       codegen_->InvokeRuntime(kQuickLdiv, div, div->GetDexPc());
4707       CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
4708       break;
4709     }
4710 
4711     case DataType::Type::kFloat32:
4712     case DataType::Type::kFloat64:
4713       __ Vdiv(OutputVRegister(div), InputVRegisterAt(div, 0), InputVRegisterAt(div, 1));
4714       break;
4715 
4716     default:
4717       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
4718   }
4719 }
4720 
VisitRem(HRem * rem)4721 void LocationsBuilderARMVIXL::VisitRem(HRem* rem) {
4722   DataType::Type type = rem->GetResultType();
4723 
4724   // Most remainders are implemented in the runtime.
4725   LocationSummary::CallKind call_kind = LocationSummary::kCallOnMainOnly;
4726   if (rem->GetResultType() == DataType::Type::kInt32 && rem->InputAt(1)->IsConstant()) {
4727     // sdiv will be replaced by other instruction sequence.
4728     call_kind = LocationSummary::kNoCall;
4729   } else if ((rem->GetResultType() == DataType::Type::kInt32)
4730              && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4731     // Have hardware divide instruction for int, do it with three instructions.
4732     call_kind = LocationSummary::kNoCall;
4733   }
4734 
4735   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind);
4736 
4737   switch (type) {
4738     case DataType::Type::kInt32: {
4739       HInstruction* divisor = rem->InputAt(1);
4740       if (divisor->IsConstant()) {
4741         locations->SetInAt(0, Location::RequiresRegister());
4742         locations->SetInAt(1, Location::ConstantLocation(divisor));
4743         int32_t value = Int32ConstantFrom(divisor);
4744         Location::OutputOverlap out_overlaps = Location::kNoOutputOverlap;
4745         if (value == 1 || value == 0 || value == -1) {
4746           // No temp register required.
4747         } else if (IsPowerOfTwo(AbsOrMin(value)) && !HasNonNegativeOrMinIntInputAt(rem, 0)) {
4748           // The "out" register is used as a temporary, so it overlaps with the inputs.
4749           out_overlaps = Location::kOutputOverlap;
4750         } else {
4751           locations->AddRegisterTemps(2);
4752         }
4753         locations->SetOut(Location::RequiresRegister(), out_overlaps);
4754       } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4755         locations->SetInAt(0, Location::RequiresRegister());
4756         locations->SetInAt(1, Location::RequiresRegister());
4757         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4758         locations->AddTemp(Location::RequiresRegister());
4759       } else {
4760         InvokeRuntimeCallingConventionARMVIXL calling_convention;
4761         locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4762         locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
4763         // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but
4764         //       we only need the latter.
4765         locations->SetOut(LocationFrom(r1));
4766       }
4767       break;
4768     }
4769     case DataType::Type::kInt64: {
4770       InvokeRuntimeCallingConventionARMVIXL calling_convention;
4771       locations->SetInAt(0, LocationFrom(
4772           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
4773       locations->SetInAt(1, LocationFrom(
4774           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
4775       // The runtime helper puts the output in R2,R3.
4776       locations->SetOut(LocationFrom(r2, r3));
4777       break;
4778     }
4779     case DataType::Type::kFloat32: {
4780       InvokeRuntimeCallingConventionARMVIXL calling_convention;
4781       locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
4782       locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
4783       locations->SetOut(LocationFrom(s0));
4784       break;
4785     }
4786 
4787     case DataType::Type::kFloat64: {
4788       InvokeRuntimeCallingConventionARMVIXL calling_convention;
4789       locations->SetInAt(0, LocationFrom(
4790           calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1)));
4791       locations->SetInAt(1, LocationFrom(
4792           calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3)));
4793       locations->SetOut(LocationFrom(s0, s1));
4794       break;
4795     }
4796 
4797     default:
4798       LOG(FATAL) << "Unexpected rem type " << type;
4799   }
4800 }
4801 
VisitRem(HRem * rem)4802 void InstructionCodeGeneratorARMVIXL::VisitRem(HRem* rem) {
4803   LocationSummary* locations = rem->GetLocations();
4804   Location second = locations->InAt(1);
4805 
4806   DataType::Type type = rem->GetResultType();
4807   switch (type) {
4808     case DataType::Type::kInt32: {
4809         vixl32::Register reg1 = InputRegisterAt(rem, 0);
4810         vixl32::Register out_reg = OutputRegister(rem);
4811         if (second.IsConstant()) {
4812           GenerateDivRemConstantIntegral(rem);
4813         } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4814         vixl32::Register reg2 = RegisterFrom(second);
4815         vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
4816 
4817         // temp = reg1 / reg2  (integer division)
4818         // dest = reg1 - temp * reg2
4819         __ Sdiv(temp, reg1, reg2);
4820         __ Mls(out_reg, temp, reg2, reg1);
4821       } else {
4822         InvokeRuntimeCallingConventionARMVIXL calling_convention;
4823         DCHECK(reg1.Is(calling_convention.GetRegisterAt(0)));
4824         DCHECK(RegisterFrom(second).Is(calling_convention.GetRegisterAt(1)));
4825         DCHECK(out_reg.Is(r1));
4826 
4827         codegen_->InvokeRuntime(kQuickIdivmod, rem, rem->GetDexPc());
4828         CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
4829       }
4830       break;
4831     }
4832 
4833     case DataType::Type::kInt64: {
4834       codegen_->InvokeRuntime(kQuickLmod, rem, rem->GetDexPc());
4835         CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
4836       break;
4837     }
4838 
4839     case DataType::Type::kFloat32: {
4840       codegen_->InvokeRuntime(kQuickFmodf, rem, rem->GetDexPc());
4841       CheckEntrypointTypes<kQuickFmodf, float, float, float>();
4842       break;
4843     }
4844 
4845     case DataType::Type::kFloat64: {
4846       codegen_->InvokeRuntime(kQuickFmod, rem, rem->GetDexPc());
4847       CheckEntrypointTypes<kQuickFmod, double, double, double>();
4848       break;
4849     }
4850 
4851     default:
4852       LOG(FATAL) << "Unexpected rem type " << type;
4853   }
4854 }
4855 
CreateMinMaxLocations(ArenaAllocator * allocator,HBinaryOperation * minmax)4856 static void CreateMinMaxLocations(ArenaAllocator* allocator, HBinaryOperation* minmax) {
4857   LocationSummary* locations = new (allocator) LocationSummary(minmax);
4858   switch (minmax->GetResultType()) {
4859     case DataType::Type::kInt32:
4860       locations->SetInAt(0, Location::RequiresRegister());
4861       locations->SetInAt(1, Location::RequiresRegister());
4862       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4863       break;
4864     case DataType::Type::kInt64:
4865       locations->SetInAt(0, Location::RequiresRegister());
4866       locations->SetInAt(1, Location::RequiresRegister());
4867       locations->SetOut(Location::SameAsFirstInput());
4868       break;
4869     case DataType::Type::kFloat32:
4870       locations->SetInAt(0, Location::RequiresFpuRegister());
4871       locations->SetInAt(1, Location::RequiresFpuRegister());
4872       locations->SetOut(Location::SameAsFirstInput());
4873       locations->AddTemp(Location::RequiresRegister());
4874       break;
4875     case DataType::Type::kFloat64:
4876       locations->SetInAt(0, Location::RequiresFpuRegister());
4877       locations->SetInAt(1, Location::RequiresFpuRegister());
4878       locations->SetOut(Location::SameAsFirstInput());
4879       break;
4880     default:
4881       LOG(FATAL) << "Unexpected type for HMinMax " << minmax->GetResultType();
4882   }
4883 }
4884 
GenerateMinMaxInt(LocationSummary * locations,bool is_min)4885 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxInt(LocationSummary* locations, bool is_min) {
4886   Location op1_loc = locations->InAt(0);
4887   Location op2_loc = locations->InAt(1);
4888   Location out_loc = locations->Out();
4889 
4890   vixl32::Register op1 = RegisterFrom(op1_loc);
4891   vixl32::Register op2 = RegisterFrom(op2_loc);
4892   vixl32::Register out = RegisterFrom(out_loc);
4893 
4894   __ Cmp(op1, op2);
4895 
4896   {
4897     ExactAssemblyScope aas(GetVIXLAssembler(),
4898                            3 * kMaxInstructionSizeInBytes,
4899                            CodeBufferCheckScope::kMaximumSize);
4900 
4901     __ ite(is_min ? lt : gt);
4902     __ mov(is_min ? lt : gt, out, op1);
4903     __ mov(is_min ? ge : le, out, op2);
4904   }
4905 }
4906 
GenerateMinMaxLong(LocationSummary * locations,bool is_min)4907 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxLong(LocationSummary* locations, bool is_min) {
4908   Location op1_loc = locations->InAt(0);
4909   Location op2_loc = locations->InAt(1);
4910   Location out_loc = locations->Out();
4911 
4912   // Optimization: don't generate any code if inputs are the same.
4913   if (op1_loc.Equals(op2_loc)) {
4914     DCHECK(out_loc.Equals(op1_loc));  // out_loc is set as SameAsFirstInput() in location builder.
4915     return;
4916   }
4917 
4918   vixl32::Register op1_lo = LowRegisterFrom(op1_loc);
4919   vixl32::Register op1_hi = HighRegisterFrom(op1_loc);
4920   vixl32::Register op2_lo = LowRegisterFrom(op2_loc);
4921   vixl32::Register op2_hi = HighRegisterFrom(op2_loc);
4922   vixl32::Register out_lo = LowRegisterFrom(out_loc);
4923   vixl32::Register out_hi = HighRegisterFrom(out_loc);
4924   UseScratchRegisterScope temps(GetVIXLAssembler());
4925   const vixl32::Register temp = temps.Acquire();
4926 
4927   DCHECK(op1_lo.Is(out_lo));
4928   DCHECK(op1_hi.Is(out_hi));
4929 
4930   // Compare op1 >= op2, or op1 < op2.
4931   __ Cmp(out_lo, op2_lo);
4932   __ Sbcs(temp, out_hi, op2_hi);
4933 
4934   // Now GE/LT condition code is correct for the long comparison.
4935   {
4936     vixl32::ConditionType cond = is_min ? ge : lt;
4937     ExactAssemblyScope it_scope(GetVIXLAssembler(),
4938                                 3 * kMaxInstructionSizeInBytes,
4939                                 CodeBufferCheckScope::kMaximumSize);
4940     __ itt(cond);
4941     __ mov(cond, out_lo, op2_lo);
4942     __ mov(cond, out_hi, op2_hi);
4943   }
4944 }
4945 
GenerateMinMaxFloat(HInstruction * minmax,bool is_min)4946 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxFloat(HInstruction* minmax, bool is_min) {
4947   LocationSummary* locations = minmax->GetLocations();
4948   Location op1_loc = locations->InAt(0);
4949   Location op2_loc = locations->InAt(1);
4950   Location out_loc = locations->Out();
4951 
4952   // Optimization: don't generate any code if inputs are the same.
4953   if (op1_loc.Equals(op2_loc)) {
4954     DCHECK(out_loc.Equals(op1_loc));  // out_loc is set as SameAsFirstInput() in location builder.
4955     return;
4956   }
4957 
4958   vixl32::SRegister op1 = SRegisterFrom(op1_loc);
4959   vixl32::SRegister op2 = SRegisterFrom(op2_loc);
4960   vixl32::SRegister out = SRegisterFrom(out_loc);
4961 
4962   UseScratchRegisterScope temps(GetVIXLAssembler());
4963   const vixl32::Register temp1 = temps.Acquire();
4964   vixl32::Register temp2 = RegisterFrom(locations->GetTemp(0));
4965   vixl32::Label nan, done;
4966   vixl32::Label* final_label = codegen_->GetFinalLabel(minmax, &done);
4967 
4968   DCHECK(op1.Is(out));
4969 
4970   __ Vcmp(op1, op2);
4971   __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
4972   __ B(vs, &nan, /* is_far_target= */ false);  // if un-ordered, go to NaN handling.
4973 
4974   // op1 <> op2
4975   vixl32::ConditionType cond = is_min ? gt : lt;
4976   {
4977     ExactAssemblyScope it_scope(GetVIXLAssembler(),
4978                                 2 * kMaxInstructionSizeInBytes,
4979                                 CodeBufferCheckScope::kMaximumSize);
4980     __ it(cond);
4981     __ vmov(cond, F32, out, op2);
4982   }
4983   // for <>(not equal), we've done min/max calculation.
4984   __ B(ne, final_label, /* is_far_target= */ false);
4985 
4986   // handle op1 == op2, max(+0.0,-0.0), min(+0.0,-0.0).
4987   __ Vmov(temp1, op1);
4988   __ Vmov(temp2, op2);
4989   if (is_min) {
4990     __ Orr(temp1, temp1, temp2);
4991   } else {
4992     __ And(temp1, temp1, temp2);
4993   }
4994   __ Vmov(out, temp1);
4995   __ B(final_label);
4996 
4997   // handle NaN input.
4998   __ Bind(&nan);
4999   __ Movt(temp1, High16Bits(kNanFloat));  // 0x7FC0xxxx is a NaN.
5000   __ Vmov(out, temp1);
5001 
5002   if (done.IsReferenced()) {
5003     __ Bind(&done);
5004   }
5005 }
5006 
GenerateMinMaxDouble(HInstruction * minmax,bool is_min)5007 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxDouble(HInstruction* minmax, bool is_min) {
5008   LocationSummary* locations = minmax->GetLocations();
5009   Location op1_loc = locations->InAt(0);
5010   Location op2_loc = locations->InAt(1);
5011   Location out_loc = locations->Out();
5012 
5013   // Optimization: don't generate any code if inputs are the same.
5014   if (op1_loc.Equals(op2_loc)) {
5015     DCHECK(out_loc.Equals(op1_loc));  // out_loc is set as SameAsFirstInput() in.
5016     return;
5017   }
5018 
5019   vixl32::DRegister op1 = DRegisterFrom(op1_loc);
5020   vixl32::DRegister op2 = DRegisterFrom(op2_loc);
5021   vixl32::DRegister out = DRegisterFrom(out_loc);
5022   vixl32::Label handle_nan_eq, done;
5023   vixl32::Label* final_label = codegen_->GetFinalLabel(minmax, &done);
5024 
5025   DCHECK(op1.Is(out));
5026 
5027   __ Vcmp(op1, op2);
5028   __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
5029   __ B(vs, &handle_nan_eq, /* is_far_target= */ false);  // if un-ordered, go to NaN handling.
5030 
5031   // op1 <> op2
5032   vixl32::ConditionType cond = is_min ? gt : lt;
5033   {
5034     ExactAssemblyScope it_scope(GetVIXLAssembler(),
5035                                 2 * kMaxInstructionSizeInBytes,
5036                                 CodeBufferCheckScope::kMaximumSize);
5037     __ it(cond);
5038     __ vmov(cond, F64, out, op2);
5039   }
5040   // for <>(not equal), we've done min/max calculation.
5041   __ B(ne, final_label, /* is_far_target= */ false);
5042 
5043   // handle op1 == op2, max(+0.0,-0.0).
5044   if (!is_min) {
5045     __ Vand(F64, out, op1, op2);
5046     __ B(final_label);
5047   }
5048 
5049   // handle op1 == op2, min(+0.0,-0.0), NaN input.
5050   __ Bind(&handle_nan_eq);
5051   __ Vorr(F64, out, op1, op2);  // assemble op1/-0.0/NaN.
5052 
5053   if (done.IsReferenced()) {
5054     __ Bind(&done);
5055   }
5056 }
5057 
GenerateMinMax(HBinaryOperation * minmax,bool is_min)5058 void InstructionCodeGeneratorARMVIXL::GenerateMinMax(HBinaryOperation* minmax, bool is_min) {
5059   DataType::Type type = minmax->GetResultType();
5060   switch (type) {
5061     case DataType::Type::kInt32:
5062       GenerateMinMaxInt(minmax->GetLocations(), is_min);
5063       break;
5064     case DataType::Type::kInt64:
5065       GenerateMinMaxLong(minmax->GetLocations(), is_min);
5066       break;
5067     case DataType::Type::kFloat32:
5068       GenerateMinMaxFloat(minmax, is_min);
5069       break;
5070     case DataType::Type::kFloat64:
5071       GenerateMinMaxDouble(minmax, is_min);
5072       break;
5073     default:
5074       LOG(FATAL) << "Unexpected type for HMinMax " << type;
5075   }
5076 }
5077 
VisitMin(HMin * min)5078 void LocationsBuilderARMVIXL::VisitMin(HMin* min) {
5079   CreateMinMaxLocations(GetGraph()->GetAllocator(), min);
5080 }
5081 
VisitMin(HMin * min)5082 void InstructionCodeGeneratorARMVIXL::VisitMin(HMin* min) {
5083   GenerateMinMax(min, /*is_min*/ true);
5084 }
5085 
VisitMax(HMax * max)5086 void LocationsBuilderARMVIXL::VisitMax(HMax* max) {
5087   CreateMinMaxLocations(GetGraph()->GetAllocator(), max);
5088 }
5089 
VisitMax(HMax * max)5090 void InstructionCodeGeneratorARMVIXL::VisitMax(HMax* max) {
5091   GenerateMinMax(max, /*is_min*/ false);
5092 }
5093 
VisitAbs(HAbs * abs)5094 void LocationsBuilderARMVIXL::VisitAbs(HAbs* abs) {
5095   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
5096   switch (abs->GetResultType()) {
5097     case DataType::Type::kInt32:
5098     case DataType::Type::kInt64:
5099       locations->SetInAt(0, Location::RequiresRegister());
5100       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5101       locations->AddTemp(Location::RequiresRegister());
5102       break;
5103     case DataType::Type::kFloat32:
5104     case DataType::Type::kFloat64:
5105       locations->SetInAt(0, Location::RequiresFpuRegister());
5106       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5107       break;
5108     default:
5109       LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
5110   }
5111 }
5112 
VisitAbs(HAbs * abs)5113 void InstructionCodeGeneratorARMVIXL::VisitAbs(HAbs* abs) {
5114   LocationSummary* locations = abs->GetLocations();
5115   switch (abs->GetResultType()) {
5116     case DataType::Type::kInt32: {
5117       vixl32::Register in_reg = RegisterFrom(locations->InAt(0));
5118       vixl32::Register out_reg = RegisterFrom(locations->Out());
5119       vixl32::Register mask = RegisterFrom(locations->GetTemp(0));
5120       __ Asr(mask, in_reg, 31);
5121       __ Add(out_reg, in_reg, mask);
5122       __ Eor(out_reg, out_reg, mask);
5123       break;
5124     }
5125     case DataType::Type::kInt64: {
5126       Location in = locations->InAt(0);
5127       vixl32::Register in_reg_lo = LowRegisterFrom(in);
5128       vixl32::Register in_reg_hi = HighRegisterFrom(in);
5129       Location output = locations->Out();
5130       vixl32::Register out_reg_lo = LowRegisterFrom(output);
5131       vixl32::Register out_reg_hi = HighRegisterFrom(output);
5132       DCHECK(!out_reg_lo.Is(in_reg_hi)) << "Diagonal overlap unexpected.";
5133       vixl32::Register mask = RegisterFrom(locations->GetTemp(0));
5134       __ Asr(mask, in_reg_hi, 31);
5135       __ Adds(out_reg_lo, in_reg_lo, mask);
5136       __ Adc(out_reg_hi, in_reg_hi, mask);
5137       __ Eor(out_reg_lo, out_reg_lo, mask);
5138       __ Eor(out_reg_hi, out_reg_hi, mask);
5139       break;
5140     }
5141     case DataType::Type::kFloat32:
5142     case DataType::Type::kFloat64:
5143       __ Vabs(OutputVRegister(abs), InputVRegisterAt(abs, 0));
5144       break;
5145     default:
5146       LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
5147   }
5148 }
5149 
VisitDivZeroCheck(HDivZeroCheck * instruction)5150 void LocationsBuilderARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) {
5151   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
5152   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
5153 }
5154 
VisitDivZeroCheck(HDivZeroCheck * instruction)5155 void InstructionCodeGeneratorARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) {
5156   DivZeroCheckSlowPathARMVIXL* slow_path =
5157       new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARMVIXL(instruction);
5158   codegen_->AddSlowPath(slow_path);
5159 
5160   LocationSummary* locations = instruction->GetLocations();
5161   Location value = locations->InAt(0);
5162 
5163   switch (instruction->GetType()) {
5164     case DataType::Type::kBool:
5165     case DataType::Type::kUint8:
5166     case DataType::Type::kInt8:
5167     case DataType::Type::kUint16:
5168     case DataType::Type::kInt16:
5169     case DataType::Type::kInt32: {
5170       if (value.IsRegister()) {
5171         __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
5172       } else {
5173         DCHECK(value.IsConstant()) << value;
5174         if (Int32ConstantFrom(value) == 0) {
5175           __ B(slow_path->GetEntryLabel());
5176         }
5177       }
5178       break;
5179     }
5180     case DataType::Type::kInt64: {
5181       if (value.IsRegisterPair()) {
5182         UseScratchRegisterScope temps(GetVIXLAssembler());
5183         vixl32::Register temp = temps.Acquire();
5184         __ Orrs(temp, LowRegisterFrom(value), HighRegisterFrom(value));
5185         __ B(eq, slow_path->GetEntryLabel());
5186       } else {
5187         DCHECK(value.IsConstant()) << value;
5188         if (Int64ConstantFrom(value) == 0) {
5189           __ B(slow_path->GetEntryLabel());
5190         }
5191       }
5192       break;
5193     }
5194     default:
5195       LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
5196   }
5197 }
5198 
HandleIntegerRotate(HRor * ror)5199 void InstructionCodeGeneratorARMVIXL::HandleIntegerRotate(HRor* ror) {
5200   LocationSummary* locations = ror->GetLocations();
5201   vixl32::Register in = InputRegisterAt(ror, 0);
5202   Location rhs = locations->InAt(1);
5203   vixl32::Register out = OutputRegister(ror);
5204 
5205   if (rhs.IsConstant()) {
5206     // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31],
5207     // so map all rotations to a +ve. equivalent in that range.
5208     // (e.g. left *or* right by -2 bits == 30 bits in the same direction.)
5209     uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F;
5210     if (rot) {
5211       // Rotate, mapping left rotations to right equivalents if necessary.
5212       // (e.g. left by 2 bits == right by 30.)
5213       __ Ror(out, in, rot);
5214     } else if (!out.Is(in)) {
5215       __ Mov(out, in);
5216     }
5217   } else {
5218     __ Ror(out, in, RegisterFrom(rhs));
5219   }
5220 }
5221 
5222 // Gain some speed by mapping all Long rotates onto equivalent pairs of Integer
5223 // rotates by swapping input regs (effectively rotating by the first 32-bits of
5224 // a larger rotation) or flipping direction (thus treating larger right/left
5225 // rotations as sub-word sized rotations in the other direction) as appropriate.
HandleLongRotate(HRor * ror)5226 void InstructionCodeGeneratorARMVIXL::HandleLongRotate(HRor* ror) {
5227   LocationSummary* locations = ror->GetLocations();
5228   vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
5229   vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
5230   Location rhs = locations->InAt(1);
5231   vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
5232   vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
5233 
5234   if (rhs.IsConstant()) {
5235     uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant());
5236     // Map all rotations to +ve. equivalents on the interval [0,63].
5237     rot &= kMaxLongShiftDistance;
5238     // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate
5239     // logic below to a simple pair of binary orr.
5240     // (e.g. 34 bits == in_reg swap + 2 bits right.)
5241     if (rot >= kArmBitsPerWord) {
5242       rot -= kArmBitsPerWord;
5243       std::swap(in_reg_hi, in_reg_lo);
5244     }
5245     // Rotate, or mov to out for zero or word size rotations.
5246     if (rot != 0u) {
5247       __ Lsr(out_reg_hi, in_reg_hi, Operand::From(rot));
5248       __ Orr(out_reg_hi, out_reg_hi, Operand(in_reg_lo, ShiftType::LSL, kArmBitsPerWord - rot));
5249       __ Lsr(out_reg_lo, in_reg_lo, Operand::From(rot));
5250       __ Orr(out_reg_lo, out_reg_lo, Operand(in_reg_hi, ShiftType::LSL, kArmBitsPerWord - rot));
5251     } else {
5252       __ Mov(out_reg_lo, in_reg_lo);
5253       __ Mov(out_reg_hi, in_reg_hi);
5254     }
5255   } else {
5256     vixl32::Register shift_right = RegisterFrom(locations->GetTemp(0));
5257     vixl32::Register shift_left = RegisterFrom(locations->GetTemp(1));
5258     vixl32::Label end;
5259     vixl32::Label shift_by_32_plus_shift_right;
5260     vixl32::Label* final_label = codegen_->GetFinalLabel(ror, &end);
5261 
5262     __ And(shift_right, RegisterFrom(rhs), 0x1F);
5263     __ Lsrs(shift_left, RegisterFrom(rhs), 6);
5264     __ Rsb(LeaveFlags, shift_left, shift_right, Operand::From(kArmBitsPerWord));
5265     __ B(cc, &shift_by_32_plus_shift_right, /* is_far_target= */ false);
5266 
5267     // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right).
5268     // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right).
5269     __ Lsl(out_reg_hi, in_reg_hi, shift_left);
5270     __ Lsr(out_reg_lo, in_reg_lo, shift_right);
5271     __ Add(out_reg_hi, out_reg_hi, out_reg_lo);
5272     __ Lsl(out_reg_lo, in_reg_lo, shift_left);
5273     __ Lsr(shift_left, in_reg_hi, shift_right);
5274     __ Add(out_reg_lo, out_reg_lo, shift_left);
5275     __ B(final_label);
5276 
5277     __ Bind(&shift_by_32_plus_shift_right);  // Shift by 32+shift_right.
5278     // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left).
5279     // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left).
5280     __ Lsr(out_reg_hi, in_reg_hi, shift_right);
5281     __ Lsl(out_reg_lo, in_reg_lo, shift_left);
5282     __ Add(out_reg_hi, out_reg_hi, out_reg_lo);
5283     __ Lsr(out_reg_lo, in_reg_lo, shift_right);
5284     __ Lsl(shift_right, in_reg_hi, shift_left);
5285     __ Add(out_reg_lo, out_reg_lo, shift_right);
5286 
5287     if (end.IsReferenced()) {
5288       __ Bind(&end);
5289     }
5290   }
5291 }
5292 
VisitRor(HRor * ror)5293 void LocationsBuilderARMVIXL::VisitRor(HRor* ror) {
5294   LocationSummary* locations =
5295       new (GetGraph()->GetAllocator()) LocationSummary(ror, LocationSummary::kNoCall);
5296   HInstruction* shift = ror->InputAt(1);
5297   switch (ror->GetResultType()) {
5298     case DataType::Type::kInt32: {
5299       locations->SetInAt(0, Location::RequiresRegister());
5300       locations->SetInAt(1, Location::RegisterOrConstant(shift));
5301       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5302       break;
5303     }
5304     case DataType::Type::kInt64: {
5305       locations->SetInAt(0, Location::RequiresRegister());
5306       if (shift->IsConstant()) {
5307         locations->SetInAt(1, Location::ConstantLocation(shift));
5308       } else {
5309         locations->SetInAt(1, Location::RequiresRegister());
5310         locations->AddTemp(Location::RequiresRegister());
5311         locations->AddTemp(Location::RequiresRegister());
5312       }
5313       locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5314       break;
5315     }
5316     default:
5317       LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
5318   }
5319 }
5320 
VisitRor(HRor * ror)5321 void InstructionCodeGeneratorARMVIXL::VisitRor(HRor* ror) {
5322   DataType::Type type = ror->GetResultType();
5323   switch (type) {
5324     case DataType::Type::kInt32: {
5325       HandleIntegerRotate(ror);
5326       break;
5327     }
5328     case DataType::Type::kInt64: {
5329       HandleLongRotate(ror);
5330       break;
5331     }
5332     default:
5333       LOG(FATAL) << "Unexpected operation type " << type;
5334       UNREACHABLE();
5335   }
5336 }
5337 
HandleShift(HBinaryOperation * op)5338 void LocationsBuilderARMVIXL::HandleShift(HBinaryOperation* op) {
5339   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
5340 
5341   LocationSummary* locations =
5342       new (GetGraph()->GetAllocator()) LocationSummary(op, LocationSummary::kNoCall);
5343 
5344   HInstruction* shift = op->InputAt(1);
5345   switch (op->GetResultType()) {
5346     case DataType::Type::kInt32: {
5347       locations->SetInAt(0, Location::RequiresRegister());
5348       if (shift->IsConstant()) {
5349         locations->SetInAt(1, Location::ConstantLocation(shift));
5350         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5351       } else {
5352         locations->SetInAt(1, Location::RequiresRegister());
5353         // Make the output overlap, as it will be used to hold the masked
5354         // second input.
5355         locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5356       }
5357       break;
5358     }
5359     case DataType::Type::kInt64: {
5360       locations->SetInAt(0, Location::RequiresRegister());
5361       if (shift->IsConstant()) {
5362         locations->SetInAt(1, Location::ConstantLocation(shift));
5363         // For simplicity, use kOutputOverlap even though we only require that low registers
5364         // don't clash with high registers which the register allocator currently guarantees.
5365         locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5366       } else {
5367         locations->SetInAt(1, Location::RequiresRegister());
5368         locations->AddTemp(Location::RequiresRegister());
5369         locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5370       }
5371       break;
5372     }
5373     default:
5374       LOG(FATAL) << "Unexpected operation type " << op->GetResultType();
5375   }
5376 }
5377 
HandleShift(HBinaryOperation * op)5378 void InstructionCodeGeneratorARMVIXL::HandleShift(HBinaryOperation* op) {
5379   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
5380 
5381   LocationSummary* locations = op->GetLocations();
5382   Location out = locations->Out();
5383   Location first = locations->InAt(0);
5384   Location second = locations->InAt(1);
5385 
5386   DataType::Type type = op->GetResultType();
5387   switch (type) {
5388     case DataType::Type::kInt32: {
5389       vixl32::Register out_reg = OutputRegister(op);
5390       vixl32::Register first_reg = InputRegisterAt(op, 0);
5391       if (second.IsRegister()) {
5392         vixl32::Register second_reg = RegisterFrom(second);
5393         // ARM doesn't mask the shift count so we need to do it ourselves.
5394         __ And(out_reg, second_reg, kMaxIntShiftDistance);
5395         if (op->IsShl()) {
5396           __ Lsl(out_reg, first_reg, out_reg);
5397         } else if (op->IsShr()) {
5398           __ Asr(out_reg, first_reg, out_reg);
5399         } else {
5400           __ Lsr(out_reg, first_reg, out_reg);
5401         }
5402       } else {
5403         int32_t cst = Int32ConstantFrom(second);
5404         uint32_t shift_value = cst & kMaxIntShiftDistance;
5405         if (shift_value == 0) {  // ARM does not support shifting with 0 immediate.
5406           __ Mov(out_reg, first_reg);
5407         } else if (op->IsShl()) {
5408           __ Lsl(out_reg, first_reg, shift_value);
5409         } else if (op->IsShr()) {
5410           __ Asr(out_reg, first_reg, shift_value);
5411         } else {
5412           __ Lsr(out_reg, first_reg, shift_value);
5413         }
5414       }
5415       break;
5416     }
5417     case DataType::Type::kInt64: {
5418       vixl32::Register o_h = HighRegisterFrom(out);
5419       vixl32::Register o_l = LowRegisterFrom(out);
5420 
5421       vixl32::Register high = HighRegisterFrom(first);
5422       vixl32::Register low = LowRegisterFrom(first);
5423 
5424       if (second.IsRegister()) {
5425         vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
5426 
5427         vixl32::Register second_reg = RegisterFrom(second);
5428 
5429         if (op->IsShl()) {
5430           __ And(o_l, second_reg, kMaxLongShiftDistance);
5431           // Shift the high part
5432           __ Lsl(o_h, high, o_l);
5433           // Shift the low part and `or` what overflew on the high part
5434           __ Rsb(temp, o_l, Operand::From(kArmBitsPerWord));
5435           __ Lsr(temp, low, temp);
5436           __ Orr(o_h, o_h, temp);
5437           // If the shift is > 32 bits, override the high part
5438           __ Subs(temp, o_l, Operand::From(kArmBitsPerWord));
5439           {
5440             ExactAssemblyScope guard(GetVIXLAssembler(),
5441                                      2 * vixl32::kMaxInstructionSizeInBytes,
5442                                      CodeBufferCheckScope::kMaximumSize);
5443             __ it(pl);
5444             __ lsl(pl, o_h, low, temp);
5445           }
5446           // Shift the low part
5447           __ Lsl(o_l, low, o_l);
5448         } else if (op->IsShr()) {
5449           __ And(o_h, second_reg, kMaxLongShiftDistance);
5450           // Shift the low part
5451           __ Lsr(o_l, low, o_h);
5452           // Shift the high part and `or` what underflew on the low part
5453           __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord));
5454           __ Lsl(temp, high, temp);
5455           __ Orr(o_l, o_l, temp);
5456           // If the shift is > 32 bits, override the low part
5457           __ Subs(temp, o_h, Operand::From(kArmBitsPerWord));
5458           {
5459             ExactAssemblyScope guard(GetVIXLAssembler(),
5460                                      2 * vixl32::kMaxInstructionSizeInBytes,
5461                                      CodeBufferCheckScope::kMaximumSize);
5462             __ it(pl);
5463             __ asr(pl, o_l, high, temp);
5464           }
5465           // Shift the high part
5466           __ Asr(o_h, high, o_h);
5467         } else {
5468           __ And(o_h, second_reg, kMaxLongShiftDistance);
5469           // same as Shr except we use `Lsr`s and not `Asr`s
5470           __ Lsr(o_l, low, o_h);
5471           __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord));
5472           __ Lsl(temp, high, temp);
5473           __ Orr(o_l, o_l, temp);
5474           __ Subs(temp, o_h, Operand::From(kArmBitsPerWord));
5475           {
5476             ExactAssemblyScope guard(GetVIXLAssembler(),
5477                                      2 * vixl32::kMaxInstructionSizeInBytes,
5478                                      CodeBufferCheckScope::kMaximumSize);
5479           __ it(pl);
5480           __ lsr(pl, o_l, high, temp);
5481           }
5482           __ Lsr(o_h, high, o_h);
5483         }
5484       } else {
5485         // Register allocator doesn't create partial overlap.
5486         DCHECK(!o_l.Is(high));
5487         DCHECK(!o_h.Is(low));
5488         int32_t cst = Int32ConstantFrom(second);
5489         uint32_t shift_value = cst & kMaxLongShiftDistance;
5490         if (shift_value > 32) {
5491           if (op->IsShl()) {
5492             __ Lsl(o_h, low, shift_value - 32);
5493             __ Mov(o_l, 0);
5494           } else if (op->IsShr()) {
5495             __ Asr(o_l, high, shift_value - 32);
5496             __ Asr(o_h, high, 31);
5497           } else {
5498             __ Lsr(o_l, high, shift_value - 32);
5499             __ Mov(o_h, 0);
5500           }
5501         } else if (shift_value == 32) {
5502           if (op->IsShl()) {
5503             __ Mov(o_h, low);
5504             __ Mov(o_l, 0);
5505           } else if (op->IsShr()) {
5506             __ Mov(o_l, high);
5507             __ Asr(o_h, high, 31);
5508           } else {
5509             __ Mov(o_l, high);
5510             __ Mov(o_h, 0);
5511           }
5512         } else if (shift_value == 1) {
5513           if (op->IsShl()) {
5514             __ Lsls(o_l, low, 1);
5515             __ Adc(o_h, high, high);
5516           } else if (op->IsShr()) {
5517             __ Asrs(o_h, high, 1);
5518             __ Rrx(o_l, low);
5519           } else {
5520             __ Lsrs(o_h, high, 1);
5521             __ Rrx(o_l, low);
5522           }
5523         } else if (shift_value == 0) {
5524           __ Mov(o_l, low);
5525           __ Mov(o_h, high);
5526         } else {
5527           DCHECK(0 < shift_value && shift_value < 32) << shift_value;
5528           if (op->IsShl()) {
5529             __ Lsl(o_h, high, shift_value);
5530             __ Orr(o_h, o_h, Operand(low, ShiftType::LSR, 32 - shift_value));
5531             __ Lsl(o_l, low, shift_value);
5532           } else if (op->IsShr()) {
5533             __ Lsr(o_l, low, shift_value);
5534             __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value));
5535             __ Asr(o_h, high, shift_value);
5536           } else {
5537             __ Lsr(o_l, low, shift_value);
5538             __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value));
5539             __ Lsr(o_h, high, shift_value);
5540           }
5541         }
5542       }
5543       break;
5544     }
5545     default:
5546       LOG(FATAL) << "Unexpected operation type " << type;
5547       UNREACHABLE();
5548   }
5549 }
5550 
VisitShl(HShl * shl)5551 void LocationsBuilderARMVIXL::VisitShl(HShl* shl) {
5552   HandleShift(shl);
5553 }
5554 
VisitShl(HShl * shl)5555 void InstructionCodeGeneratorARMVIXL::VisitShl(HShl* shl) {
5556   HandleShift(shl);
5557 }
5558 
VisitShr(HShr * shr)5559 void LocationsBuilderARMVIXL::VisitShr(HShr* shr) {
5560   HandleShift(shr);
5561 }
5562 
VisitShr(HShr * shr)5563 void InstructionCodeGeneratorARMVIXL::VisitShr(HShr* shr) {
5564   HandleShift(shr);
5565 }
5566 
VisitUShr(HUShr * ushr)5567 void LocationsBuilderARMVIXL::VisitUShr(HUShr* ushr) {
5568   HandleShift(ushr);
5569 }
5570 
VisitUShr(HUShr * ushr)5571 void InstructionCodeGeneratorARMVIXL::VisitUShr(HUShr* ushr) {
5572   HandleShift(ushr);
5573 }
5574 
VisitNewInstance(HNewInstance * instruction)5575 void LocationsBuilderARMVIXL::VisitNewInstance(HNewInstance* instruction) {
5576   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5577       instruction, LocationSummary::kCallOnMainOnly);
5578   InvokeRuntimeCallingConventionARMVIXL calling_convention;
5579   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5580   locations->SetOut(LocationFrom(r0));
5581 }
5582 
VisitNewInstance(HNewInstance * instruction)5583 void InstructionCodeGeneratorARMVIXL::VisitNewInstance(HNewInstance* instruction) {
5584   codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
5585   CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
5586   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 12);
5587 }
5588 
VisitNewArray(HNewArray * instruction)5589 void LocationsBuilderARMVIXL::VisitNewArray(HNewArray* instruction) {
5590   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5591       instruction, LocationSummary::kCallOnMainOnly);
5592   InvokeRuntimeCallingConventionARMVIXL calling_convention;
5593   locations->SetOut(LocationFrom(r0));
5594   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5595   locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
5596 }
5597 
VisitNewArray(HNewArray * instruction)5598 void InstructionCodeGeneratorARMVIXL::VisitNewArray(HNewArray* instruction) {
5599   // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference.
5600   QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction);
5601   codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
5602   CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
5603   DCHECK(!codegen_->IsLeafMethod());
5604   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 13);
5605 }
5606 
VisitParameterValue(HParameterValue * instruction)5607 void LocationsBuilderARMVIXL::VisitParameterValue(HParameterValue* instruction) {
5608   LocationSummary* locations =
5609       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5610   Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
5611   if (location.IsStackSlot()) {
5612     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5613   } else if (location.IsDoubleStackSlot()) {
5614     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5615   }
5616   locations->SetOut(location);
5617 }
5618 
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)5619 void InstructionCodeGeneratorARMVIXL::VisitParameterValue(
5620     HParameterValue* instruction ATTRIBUTE_UNUSED) {
5621   // Nothing to do, the parameter is already at its location.
5622 }
5623 
VisitCurrentMethod(HCurrentMethod * instruction)5624 void LocationsBuilderARMVIXL::VisitCurrentMethod(HCurrentMethod* instruction) {
5625   LocationSummary* locations =
5626       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5627   locations->SetOut(LocationFrom(kMethodRegister));
5628 }
5629 
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)5630 void InstructionCodeGeneratorARMVIXL::VisitCurrentMethod(
5631     HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
5632   // Nothing to do, the method is already at its location.
5633 }
5634 
VisitNot(HNot * not_)5635 void LocationsBuilderARMVIXL::VisitNot(HNot* not_) {
5636   LocationSummary* locations =
5637       new (GetGraph()->GetAllocator()) LocationSummary(not_, LocationSummary::kNoCall);
5638   locations->SetInAt(0, Location::RequiresRegister());
5639   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5640 }
5641 
VisitNot(HNot * not_)5642 void InstructionCodeGeneratorARMVIXL::VisitNot(HNot* not_) {
5643   LocationSummary* locations = not_->GetLocations();
5644   Location out = locations->Out();
5645   Location in = locations->InAt(0);
5646   switch (not_->GetResultType()) {
5647     case DataType::Type::kInt32:
5648       __ Mvn(OutputRegister(not_), InputRegisterAt(not_, 0));
5649       break;
5650 
5651     case DataType::Type::kInt64:
5652       __ Mvn(LowRegisterFrom(out), LowRegisterFrom(in));
5653       __ Mvn(HighRegisterFrom(out), HighRegisterFrom(in));
5654       break;
5655 
5656     default:
5657       LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
5658   }
5659 }
5660 
VisitBooleanNot(HBooleanNot * bool_not)5661 void LocationsBuilderARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) {
5662   LocationSummary* locations =
5663       new (GetGraph()->GetAllocator()) LocationSummary(bool_not, LocationSummary::kNoCall);
5664   locations->SetInAt(0, Location::RequiresRegister());
5665   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5666 }
5667 
VisitBooleanNot(HBooleanNot * bool_not)5668 void InstructionCodeGeneratorARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) {
5669   __ Eor(OutputRegister(bool_not), InputRegister(bool_not), 1);
5670 }
5671 
VisitCompare(HCompare * compare)5672 void LocationsBuilderARMVIXL::VisitCompare(HCompare* compare) {
5673   LocationSummary* locations =
5674       new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall);
5675   switch (compare->InputAt(0)->GetType()) {
5676     case DataType::Type::kBool:
5677     case DataType::Type::kUint8:
5678     case DataType::Type::kInt8:
5679     case DataType::Type::kUint16:
5680     case DataType::Type::kInt16:
5681     case DataType::Type::kInt32:
5682     case DataType::Type::kInt64: {
5683       locations->SetInAt(0, Location::RequiresRegister());
5684       locations->SetInAt(1, Location::RequiresRegister());
5685       // Output overlaps because it is written before doing the low comparison.
5686       locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5687       break;
5688     }
5689     case DataType::Type::kFloat32:
5690     case DataType::Type::kFloat64: {
5691       locations->SetInAt(0, Location::RequiresFpuRegister());
5692       locations->SetInAt(1, ArithmeticZeroOrFpuRegister(compare->InputAt(1)));
5693       locations->SetOut(Location::RequiresRegister());
5694       break;
5695     }
5696     default:
5697       LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
5698   }
5699 }
5700 
VisitCompare(HCompare * compare)5701 void InstructionCodeGeneratorARMVIXL::VisitCompare(HCompare* compare) {
5702   LocationSummary* locations = compare->GetLocations();
5703   vixl32::Register out = OutputRegister(compare);
5704   Location left = locations->InAt(0);
5705   Location right = locations->InAt(1);
5706 
5707   vixl32::Label less, greater, done;
5708   vixl32::Label* final_label = codegen_->GetFinalLabel(compare, &done);
5709   DataType::Type type = compare->InputAt(0)->GetType();
5710   vixl32::Condition less_cond = vixl32::Condition::None();
5711   switch (type) {
5712     case DataType::Type::kBool:
5713     case DataType::Type::kUint8:
5714     case DataType::Type::kInt8:
5715     case DataType::Type::kUint16:
5716     case DataType::Type::kInt16:
5717     case DataType::Type::kInt32: {
5718       // Emit move to `out` before the `Cmp`, as `Mov` might affect the status flags.
5719       __ Mov(out, 0);
5720       __ Cmp(RegisterFrom(left), RegisterFrom(right));  // Signed compare.
5721       less_cond = lt;
5722       break;
5723     }
5724     case DataType::Type::kInt64: {
5725       __ Cmp(HighRegisterFrom(left), HighRegisterFrom(right));  // Signed compare.
5726       __ B(lt, &less, /* is_far_target= */ false);
5727       __ B(gt, &greater, /* is_far_target= */ false);
5728       // Emit move to `out` before the last `Cmp`, as `Mov` might affect the status flags.
5729       __ Mov(out, 0);
5730       __ Cmp(LowRegisterFrom(left), LowRegisterFrom(right));  // Unsigned compare.
5731       less_cond = lo;
5732       break;
5733     }
5734     case DataType::Type::kFloat32:
5735     case DataType::Type::kFloat64: {
5736       __ Mov(out, 0);
5737       GenerateVcmp(compare, codegen_);
5738       // To branch on the FP compare result we transfer FPSCR to APSR (encoded as PC in VMRS).
5739       __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
5740       less_cond = ARMFPCondition(kCondLT, compare->IsGtBias());
5741       break;
5742     }
5743     default:
5744       LOG(FATAL) << "Unexpected compare type " << type;
5745       UNREACHABLE();
5746   }
5747 
5748   __ B(eq, final_label, /* is_far_target= */ false);
5749   __ B(less_cond, &less, /* is_far_target= */ false);
5750 
5751   __ Bind(&greater);
5752   __ Mov(out, 1);
5753   __ B(final_label);
5754 
5755   __ Bind(&less);
5756   __ Mov(out, -1);
5757 
5758   if (done.IsReferenced()) {
5759     __ Bind(&done);
5760   }
5761 }
5762 
VisitPhi(HPhi * instruction)5763 void LocationsBuilderARMVIXL::VisitPhi(HPhi* instruction) {
5764   LocationSummary* locations =
5765       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5766   for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
5767     locations->SetInAt(i, Location::Any());
5768   }
5769   locations->SetOut(Location::Any());
5770 }
5771 
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)5772 void InstructionCodeGeneratorARMVIXL::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
5773   LOG(FATAL) << "Unreachable";
5774 }
5775 
GenerateMemoryBarrier(MemBarrierKind kind)5776 void CodeGeneratorARMVIXL::GenerateMemoryBarrier(MemBarrierKind kind) {
5777   // TODO (ported from quick): revisit ARM barrier kinds.
5778   DmbOptions flavor = DmbOptions::ISH;  // Quiet C++ warnings.
5779   switch (kind) {
5780     case MemBarrierKind::kAnyStore:
5781     case MemBarrierKind::kLoadAny:
5782     case MemBarrierKind::kAnyAny: {
5783       flavor = DmbOptions::ISH;
5784       break;
5785     }
5786     case MemBarrierKind::kStoreStore: {
5787       flavor = DmbOptions::ISHST;
5788       break;
5789     }
5790     default:
5791       LOG(FATAL) << "Unexpected memory barrier " << kind;
5792   }
5793   __ Dmb(flavor);
5794 }
5795 
GenerateWideAtomicLoad(vixl32::Register addr,uint32_t offset,vixl32::Register out_lo,vixl32::Register out_hi)5796 void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicLoad(vixl32::Register addr,
5797                                                              uint32_t offset,
5798                                                              vixl32::Register out_lo,
5799                                                              vixl32::Register out_hi) {
5800   UseScratchRegisterScope temps(GetVIXLAssembler());
5801   if (offset != 0) {
5802     vixl32::Register temp = temps.Acquire();
5803     __ Add(temp, addr, offset);
5804     addr = temp;
5805   }
5806   __ Ldrexd(out_lo, out_hi, MemOperand(addr));
5807 }
5808 
GenerateWideAtomicStore(vixl32::Register addr,uint32_t offset,vixl32::Register value_lo,vixl32::Register value_hi,vixl32::Register temp1,vixl32::Register temp2,HInstruction * instruction)5809 void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicStore(vixl32::Register addr,
5810                                                               uint32_t offset,
5811                                                               vixl32::Register value_lo,
5812                                                               vixl32::Register value_hi,
5813                                                               vixl32::Register temp1,
5814                                                               vixl32::Register temp2,
5815                                                               HInstruction* instruction) {
5816   UseScratchRegisterScope temps(GetVIXLAssembler());
5817   vixl32::Label fail;
5818   if (offset != 0) {
5819     vixl32::Register temp = temps.Acquire();
5820     __ Add(temp, addr, offset);
5821     addr = temp;
5822   }
5823   __ Bind(&fail);
5824   {
5825     // Ensure the pc position is recorded immediately after the `ldrexd` instruction.
5826     ExactAssemblyScope aas(GetVIXLAssembler(),
5827                            vixl32::kMaxInstructionSizeInBytes,
5828                            CodeBufferCheckScope::kMaximumSize);
5829     // We need a load followed by store. (The address used in a STREX instruction must
5830     // be the same as the address in the most recently executed LDREX instruction.)
5831     __ ldrexd(temp1, temp2, MemOperand(addr));
5832     codegen_->MaybeRecordImplicitNullCheck(instruction);
5833   }
5834   __ Strexd(temp1, value_lo, value_hi, MemOperand(addr));
5835   __ CompareAndBranchIfNonZero(temp1, &fail);
5836 }
5837 
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,WriteBarrierKind write_barrier_kind)5838 void LocationsBuilderARMVIXL::HandleFieldSet(HInstruction* instruction,
5839                                              const FieldInfo& field_info,
5840                                              WriteBarrierKind write_barrier_kind) {
5841   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
5842 
5843   LocationSummary* locations =
5844       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5845   locations->SetInAt(0, Location::RequiresRegister());
5846 
5847   DataType::Type field_type = field_info.GetFieldType();
5848   if (DataType::IsFloatingPointType(field_type)) {
5849     locations->SetInAt(1, Location::RequiresFpuRegister());
5850   } else {
5851     locations->SetInAt(1, Location::RequiresRegister());
5852   }
5853 
5854   bool is_wide = field_type == DataType::Type::kInt64 || field_type == DataType::Type::kFloat64;
5855   bool generate_volatile = field_info.IsVolatile()
5856       && is_wide
5857       && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5858   bool needs_write_barrier =
5859       CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
5860   // Temporary registers for the write barrier.
5861   // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark.
5862   if (needs_write_barrier) {
5863     if (write_barrier_kind != WriteBarrierKind::kDontEmit) {
5864       locations->AddTemp(Location::RequiresRegister());
5865       locations->AddTemp(Location::RequiresRegister());
5866     } else if (kPoisonHeapReferences) {
5867       locations->AddTemp(Location::RequiresRegister());
5868     }
5869   } else if (generate_volatile) {
5870     // ARM encoding have some additional constraints for ldrexd/strexd:
5871     // - registers need to be consecutive
5872     // - the first register should be even but not R14.
5873     // We don't test for ARM yet, and the assertion makes sure that we
5874     // revisit this if we ever enable ARM encoding.
5875     DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
5876 
5877     locations->AddTemp(Location::RequiresRegister());
5878     locations->AddTemp(Location::RequiresRegister());
5879     if (field_type == DataType::Type::kFloat64) {
5880       // For doubles we need two more registers to copy the value.
5881       locations->AddTemp(LocationFrom(r2));
5882       locations->AddTemp(LocationFrom(r3));
5883     }
5884   }
5885 }
5886 
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null,WriteBarrierKind write_barrier_kind)5887 void InstructionCodeGeneratorARMVIXL::HandleFieldSet(HInstruction* instruction,
5888                                                      const FieldInfo& field_info,
5889                                                      bool value_can_be_null,
5890                                                      WriteBarrierKind write_barrier_kind) {
5891   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
5892 
5893   LocationSummary* locations = instruction->GetLocations();
5894   vixl32::Register base = InputRegisterAt(instruction, 0);
5895   Location value = locations->InAt(1);
5896   std::optional<vixl::aarch32::Label> pred_is_null;
5897 
5898   bool is_predicated =
5899       instruction->IsInstanceFieldSet() && instruction->AsInstanceFieldSet()->GetIsPredicatedSet();
5900   bool is_volatile = field_info.IsVolatile();
5901   bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5902   DataType::Type field_type = field_info.GetFieldType();
5903   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
5904   bool needs_write_barrier =
5905       CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
5906 
5907   if (is_predicated) {
5908     pred_is_null.emplace();
5909     __ CompareAndBranchIfZero(base, &*pred_is_null, /* is_far_target= */ false);
5910   }
5911 
5912   if (is_volatile) {
5913     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
5914   }
5915 
5916   switch (field_type) {
5917     case DataType::Type::kBool:
5918     case DataType::Type::kUint8:
5919     case DataType::Type::kInt8:
5920     case DataType::Type::kUint16:
5921     case DataType::Type::kInt16:
5922     case DataType::Type::kInt32: {
5923       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5924       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5925       StoreOperandType operand_type = GetStoreOperandType(field_type);
5926       GetAssembler()->StoreToOffset(operand_type, RegisterFrom(value), base, offset);
5927       codegen_->MaybeRecordImplicitNullCheck(instruction);
5928       break;
5929     }
5930 
5931     case DataType::Type::kReference: {
5932       vixl32::Register value_reg = RegisterFrom(value);
5933       if (kPoisonHeapReferences && needs_write_barrier) {
5934         // Note that in the case where `value` is a null reference,
5935         // we do not enter this block, as a null reference does not
5936         // need poisoning.
5937         DCHECK_EQ(field_type, DataType::Type::kReference);
5938         value_reg = RegisterFrom(locations->GetTemp(0));
5939         __ Mov(value_reg, RegisterFrom(value));
5940         GetAssembler()->PoisonHeapReference(value_reg);
5941       }
5942       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5943       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5944       GetAssembler()->StoreToOffset(kStoreWord, value_reg, base, offset);
5945       codegen_->MaybeRecordImplicitNullCheck(instruction);
5946       break;
5947     }
5948 
5949     case DataType::Type::kInt64: {
5950       if (is_volatile && !atomic_ldrd_strd) {
5951         GenerateWideAtomicStore(base,
5952                                 offset,
5953                                 LowRegisterFrom(value),
5954                                 HighRegisterFrom(value),
5955                                 RegisterFrom(locations->GetTemp(0)),
5956                                 RegisterFrom(locations->GetTemp(1)),
5957                                 instruction);
5958       } else {
5959         // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5960         EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5961         GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), base, offset);
5962         codegen_->MaybeRecordImplicitNullCheck(instruction);
5963       }
5964       break;
5965     }
5966 
5967     case DataType::Type::kFloat32: {
5968       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5969       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5970       GetAssembler()->StoreSToOffset(SRegisterFrom(value), base, offset);
5971       codegen_->MaybeRecordImplicitNullCheck(instruction);
5972       break;
5973     }
5974 
5975     case DataType::Type::kFloat64: {
5976       vixl32::DRegister value_reg = DRegisterFrom(value);
5977       if (is_volatile && !atomic_ldrd_strd) {
5978         vixl32::Register value_reg_lo = RegisterFrom(locations->GetTemp(0));
5979         vixl32::Register value_reg_hi = RegisterFrom(locations->GetTemp(1));
5980 
5981         __ Vmov(value_reg_lo, value_reg_hi, value_reg);
5982 
5983         GenerateWideAtomicStore(base,
5984                                 offset,
5985                                 value_reg_lo,
5986                                 value_reg_hi,
5987                                 RegisterFrom(locations->GetTemp(2)),
5988                                 RegisterFrom(locations->GetTemp(3)),
5989                                 instruction);
5990       } else {
5991         // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5992         EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5993         GetAssembler()->StoreDToOffset(value_reg, base, offset);
5994         codegen_->MaybeRecordImplicitNullCheck(instruction);
5995       }
5996       break;
5997     }
5998 
5999     case DataType::Type::kUint32:
6000     case DataType::Type::kUint64:
6001     case DataType::Type::kVoid:
6002       LOG(FATAL) << "Unreachable type " << field_type;
6003       UNREACHABLE();
6004   }
6005 
6006   if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)) &&
6007       write_barrier_kind != WriteBarrierKind::kDontEmit) {
6008     vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
6009     vixl32::Register card = RegisterFrom(locations->GetTemp(1));
6010     codegen_->MarkGCCard(
6011         temp,
6012         card,
6013         base,
6014         RegisterFrom(value),
6015         value_can_be_null && write_barrier_kind == WriteBarrierKind::kEmitWithNullCheck);
6016   }
6017 
6018   if (is_volatile) {
6019     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
6020   }
6021 
6022   if (is_predicated) {
6023     __ Bind(&*pred_is_null);
6024   }
6025 }
6026 
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)6027 void LocationsBuilderARMVIXL::HandleFieldGet(HInstruction* instruction,
6028                                              const FieldInfo& field_info) {
6029   DCHECK(instruction->IsInstanceFieldGet() ||
6030          instruction->IsStaticFieldGet() ||
6031          instruction->IsPredicatedInstanceFieldGet());
6032 
6033   bool object_field_get_with_read_barrier =
6034       gUseReadBarrier && (field_info.GetFieldType() == DataType::Type::kReference);
6035   bool is_predicated = instruction->IsPredicatedInstanceFieldGet();
6036   LocationSummary* locations =
6037       new (GetGraph()->GetAllocator()) LocationSummary(instruction,
6038                                                        object_field_get_with_read_barrier
6039                                                            ? LocationSummary::kCallOnSlowPath
6040                                                            : LocationSummary::kNoCall);
6041   if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
6042     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
6043   }
6044   // Input for object receiver.
6045   locations->SetInAt(is_predicated ? 1 : 0, Location::RequiresRegister());
6046 
6047   bool volatile_for_double = field_info.IsVolatile()
6048       && (field_info.GetFieldType() == DataType::Type::kFloat64)
6049       && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
6050   // The output overlaps in case of volatile long: we don't want the
6051   // code generated by GenerateWideAtomicLoad to overwrite the
6052   // object's location.  Likewise, in the case of an object field get
6053   // with read barriers enabled, we do not want the load to overwrite
6054   // the object's location, as we need it to emit the read barrier.
6055   bool overlap =
6056       (field_info.IsVolatile() && (field_info.GetFieldType() == DataType::Type::kInt64)) ||
6057       object_field_get_with_read_barrier;
6058 
6059   if (DataType::IsFloatingPointType(instruction->GetType())) {
6060     if (is_predicated) {
6061       locations->SetInAt(0, Location::RequiresFpuRegister());
6062       locations->SetOut(Location::SameAsFirstInput());
6063     } else {
6064       locations->SetOut(Location::RequiresFpuRegister());
6065     }
6066   } else {
6067     if (is_predicated) {
6068       locations->SetInAt(0, Location::RequiresRegister());
6069       locations->SetOut(Location::SameAsFirstInput());
6070     } else {
6071       locations->SetOut(Location::RequiresRegister(),
6072                         (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap));
6073     }
6074   }
6075   if (volatile_for_double) {
6076     // ARM encoding have some additional constraints for ldrexd/strexd:
6077     // - registers need to be consecutive
6078     // - the first register should be even but not R14.
6079     // We don't test for ARM yet, and the assertion makes sure that we
6080     // revisit this if we ever enable ARM encoding.
6081     DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
6082     locations->AddTemp(Location::RequiresRegister());
6083     locations->AddTemp(Location::RequiresRegister());
6084   } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
6085     // We need a temporary register for the read barrier load in
6086     // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier()
6087     // only if the offset is too big.
6088     if (field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) {
6089       locations->AddTemp(Location::RequiresRegister());
6090     }
6091   }
6092 }
6093 
ArithmeticZeroOrFpuRegister(HInstruction * input)6094 Location LocationsBuilderARMVIXL::ArithmeticZeroOrFpuRegister(HInstruction* input) {
6095   DCHECK(DataType::IsFloatingPointType(input->GetType())) << input->GetType();
6096   if ((input->IsFloatConstant() && (input->AsFloatConstant()->IsArithmeticZero())) ||
6097       (input->IsDoubleConstant() && (input->AsDoubleConstant()->IsArithmeticZero()))) {
6098     return Location::ConstantLocation(input);
6099   } else {
6100     return Location::RequiresFpuRegister();
6101   }
6102 }
6103 
ArmEncodableConstantOrRegister(HInstruction * constant,Opcode opcode)6104 Location LocationsBuilderARMVIXL::ArmEncodableConstantOrRegister(HInstruction* constant,
6105                                                                  Opcode opcode) {
6106   DCHECK(!DataType::IsFloatingPointType(constant->GetType()));
6107   if (constant->IsConstant() &&
6108       CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) {
6109     return Location::ConstantLocation(constant);
6110   }
6111   return Location::RequiresRegister();
6112 }
6113 
CanEncode32BitConstantAsImmediate(CodeGeneratorARMVIXL * codegen,uint32_t value,Opcode opcode,vixl32::FlagsUpdate flags_update=vixl32::FlagsUpdate::DontCare)6114 static bool CanEncode32BitConstantAsImmediate(
6115     CodeGeneratorARMVIXL* codegen,
6116     uint32_t value,
6117     Opcode opcode,
6118     vixl32::FlagsUpdate flags_update = vixl32::FlagsUpdate::DontCare) {
6119   ArmVIXLAssembler* assembler = codegen->GetAssembler();
6120   if (assembler->ShifterOperandCanHold(opcode, value, flags_update)) {
6121     return true;
6122   }
6123   Opcode neg_opcode = kNoOperand;
6124   uint32_t neg_value = 0;
6125   switch (opcode) {
6126     case AND: neg_opcode = BIC; neg_value = ~value; break;
6127     case ORR: neg_opcode = ORN; neg_value = ~value; break;
6128     case ADD: neg_opcode = SUB; neg_value = -value; break;
6129     case ADC: neg_opcode = SBC; neg_value = ~value; break;
6130     case SUB: neg_opcode = ADD; neg_value = -value; break;
6131     case SBC: neg_opcode = ADC; neg_value = ~value; break;
6132     case MOV: neg_opcode = MVN; neg_value = ~value; break;
6133     default:
6134       return false;
6135   }
6136 
6137   if (assembler->ShifterOperandCanHold(neg_opcode, neg_value, flags_update)) {
6138     return true;
6139   }
6140 
6141   return opcode == AND && IsPowerOfTwo(value + 1);
6142 }
6143 
CanEncodeConstantAsImmediate(HConstant * input_cst,Opcode opcode)6144 bool LocationsBuilderARMVIXL::CanEncodeConstantAsImmediate(HConstant* input_cst, Opcode opcode) {
6145   uint64_t value = static_cast<uint64_t>(Int64FromConstant(input_cst));
6146   if (DataType::Is64BitType(input_cst->GetType())) {
6147     Opcode high_opcode = opcode;
6148     vixl32::FlagsUpdate low_flags_update = vixl32::FlagsUpdate::DontCare;
6149     switch (opcode) {
6150       case SUB:
6151         // Flip the operation to an ADD.
6152         value = -value;
6153         opcode = ADD;
6154         FALLTHROUGH_INTENDED;
6155       case ADD:
6156         if (Low32Bits(value) == 0u) {
6157           return CanEncode32BitConstantAsImmediate(codegen_, High32Bits(value), opcode);
6158         }
6159         high_opcode = ADC;
6160         low_flags_update = vixl32::FlagsUpdate::SetFlags;
6161         break;
6162       default:
6163         break;
6164     }
6165     return CanEncode32BitConstantAsImmediate(codegen_, High32Bits(value), high_opcode) &&
6166            CanEncode32BitConstantAsImmediate(codegen_, Low32Bits(value), opcode, low_flags_update);
6167   } else {
6168     return CanEncode32BitConstantAsImmediate(codegen_, Low32Bits(value), opcode);
6169   }
6170 }
6171 
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)6172 void InstructionCodeGeneratorARMVIXL::HandleFieldGet(HInstruction* instruction,
6173                                                      const FieldInfo& field_info) {
6174   DCHECK(instruction->IsInstanceFieldGet() ||
6175          instruction->IsStaticFieldGet() ||
6176          instruction->IsPredicatedInstanceFieldGet());
6177 
6178   LocationSummary* locations = instruction->GetLocations();
6179   uint32_t receiver_input = instruction->IsPredicatedInstanceFieldGet() ? 1 : 0;
6180   vixl32::Register base = InputRegisterAt(instruction, receiver_input);
6181   Location out = locations->Out();
6182   bool is_volatile = field_info.IsVolatile();
6183   bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
6184   DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
6185   DataType::Type load_type = instruction->GetType();
6186   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
6187 
6188   switch (load_type) {
6189     case DataType::Type::kBool:
6190     case DataType::Type::kUint8:
6191     case DataType::Type::kInt8:
6192     case DataType::Type::kUint16:
6193     case DataType::Type::kInt16:
6194     case DataType::Type::kInt32: {
6195       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6196       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6197       LoadOperandType operand_type = GetLoadOperandType(load_type);
6198       GetAssembler()->LoadFromOffset(operand_type, RegisterFrom(out), base, offset);
6199       codegen_->MaybeRecordImplicitNullCheck(instruction);
6200       break;
6201     }
6202 
6203     case DataType::Type::kReference: {
6204       // /* HeapReference<Object> */ out = *(base + offset)
6205       if (gUseReadBarrier && kUseBakerReadBarrier) {
6206         Location maybe_temp = (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location();
6207         // Note that a potential implicit null check is handled in this
6208         // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier call.
6209         codegen_->GenerateFieldLoadWithBakerReadBarrier(
6210             instruction, out, base, offset, maybe_temp, /* needs_null_check= */ true);
6211         if (is_volatile) {
6212           codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
6213         }
6214       } else {
6215         {
6216           // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6217           EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6218           GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(out), base, offset);
6219           codegen_->MaybeRecordImplicitNullCheck(instruction);
6220         }
6221         if (is_volatile) {
6222           codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
6223         }
6224         // If read barriers are enabled, emit read barriers other than
6225         // Baker's using a slow path (and also unpoison the loaded
6226         // reference, if heap poisoning is enabled).
6227         codegen_->MaybeGenerateReadBarrierSlow(
6228             instruction, out, out, locations->InAt(receiver_input), offset);
6229       }
6230       break;
6231     }
6232 
6233     case DataType::Type::kInt64: {
6234       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6235       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6236       if (is_volatile && !atomic_ldrd_strd) {
6237         GenerateWideAtomicLoad(base, offset, LowRegisterFrom(out), HighRegisterFrom(out));
6238       } else {
6239         GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out), base, offset);
6240       }
6241       codegen_->MaybeRecordImplicitNullCheck(instruction);
6242       break;
6243     }
6244 
6245     case DataType::Type::kFloat32: {
6246       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6247       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6248       GetAssembler()->LoadSFromOffset(SRegisterFrom(out), base, offset);
6249       codegen_->MaybeRecordImplicitNullCheck(instruction);
6250       break;
6251     }
6252 
6253     case DataType::Type::kFloat64: {
6254       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6255       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6256       vixl32::DRegister out_dreg = DRegisterFrom(out);
6257       if (is_volatile && !atomic_ldrd_strd) {
6258         vixl32::Register lo = RegisterFrom(locations->GetTemp(0));
6259         vixl32::Register hi = RegisterFrom(locations->GetTemp(1));
6260         GenerateWideAtomicLoad(base, offset, lo, hi);
6261         codegen_->MaybeRecordImplicitNullCheck(instruction);
6262         __ Vmov(out_dreg, lo, hi);
6263       } else {
6264         GetAssembler()->LoadDFromOffset(out_dreg, base, offset);
6265         codegen_->MaybeRecordImplicitNullCheck(instruction);
6266       }
6267       break;
6268     }
6269 
6270     case DataType::Type::kUint32:
6271     case DataType::Type::kUint64:
6272     case DataType::Type::kVoid:
6273       LOG(FATAL) << "Unreachable type " << load_type;
6274       UNREACHABLE();
6275   }
6276 
6277   if (is_volatile) {
6278     if (load_type == DataType::Type::kReference) {
6279       // Memory barriers, in the case of references, are also handled
6280       // in the previous switch statement.
6281     } else {
6282       codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
6283     }
6284   }
6285 }
6286 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)6287 void LocationsBuilderARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
6288   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetWriteBarrierKind());
6289 }
6290 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)6291 void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
6292   HandleFieldSet(instruction,
6293                  instruction->GetFieldInfo(),
6294                  instruction->GetValueCanBeNull(),
6295                  instruction->GetWriteBarrierKind());
6296 }
6297 
VisitInstanceFieldGet(HInstanceFieldGet * instruction)6298 void LocationsBuilderARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
6299   HandleFieldGet(instruction, instruction->GetFieldInfo());
6300 }
6301 
VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet * instruction)6302 void LocationsBuilderARMVIXL::VisitPredicatedInstanceFieldGet(
6303     HPredicatedInstanceFieldGet* instruction) {
6304   HandleFieldGet(instruction, instruction->GetFieldInfo());
6305 }
6306 
VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet * instruction)6307 void InstructionCodeGeneratorARMVIXL::VisitPredicatedInstanceFieldGet(
6308     HPredicatedInstanceFieldGet* instruction) {
6309   vixl::aarch32::Label finish;
6310   __ CompareAndBranchIfZero(InputRegisterAt(instruction, 1), &finish, false);
6311   HandleFieldGet(instruction, instruction->GetFieldInfo());
6312   __ Bind(&finish);
6313 }
6314 
VisitInstanceFieldGet(HInstanceFieldGet * instruction)6315 void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
6316   HandleFieldGet(instruction, instruction->GetFieldInfo());
6317 }
6318 
VisitStaticFieldGet(HStaticFieldGet * instruction)6319 void LocationsBuilderARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6320   HandleFieldGet(instruction, instruction->GetFieldInfo());
6321 }
6322 
VisitStaticFieldGet(HStaticFieldGet * instruction)6323 void InstructionCodeGeneratorARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6324   HandleFieldGet(instruction, instruction->GetFieldInfo());
6325 }
6326 
VisitStaticFieldSet(HStaticFieldSet * instruction)6327 void LocationsBuilderARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6328   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetWriteBarrierKind());
6329 }
6330 
VisitStaticFieldSet(HStaticFieldSet * instruction)6331 void InstructionCodeGeneratorARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6332   HandleFieldSet(instruction,
6333                  instruction->GetFieldInfo(),
6334                  instruction->GetValueCanBeNull(),
6335                  instruction->GetWriteBarrierKind());
6336 }
6337 
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6338 void LocationsBuilderARMVIXL::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6339   codegen_->CreateStringBuilderAppendLocations(instruction, LocationFrom(r0));
6340 }
6341 
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6342 void InstructionCodeGeneratorARMVIXL::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6343   __ Mov(r0, instruction->GetFormat()->GetValue());
6344   codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc());
6345 }
6346 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6347 void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldGet(
6348     HUnresolvedInstanceFieldGet* instruction) {
6349   FieldAccessCallingConventionARMVIXL calling_convention;
6350   codegen_->CreateUnresolvedFieldLocationSummary(
6351       instruction, instruction->GetFieldType(), calling_convention);
6352 }
6353 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6354 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldGet(
6355     HUnresolvedInstanceFieldGet* instruction) {
6356   FieldAccessCallingConventionARMVIXL calling_convention;
6357   codegen_->GenerateUnresolvedFieldAccess(instruction,
6358                                           instruction->GetFieldType(),
6359                                           instruction->GetFieldIndex(),
6360                                           instruction->GetDexPc(),
6361                                           calling_convention);
6362 }
6363 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6364 void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldSet(
6365     HUnresolvedInstanceFieldSet* instruction) {
6366   FieldAccessCallingConventionARMVIXL calling_convention;
6367   codegen_->CreateUnresolvedFieldLocationSummary(
6368       instruction, instruction->GetFieldType(), calling_convention);
6369 }
6370 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6371 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldSet(
6372     HUnresolvedInstanceFieldSet* instruction) {
6373   FieldAccessCallingConventionARMVIXL calling_convention;
6374   codegen_->GenerateUnresolvedFieldAccess(instruction,
6375                                           instruction->GetFieldType(),
6376                                           instruction->GetFieldIndex(),
6377                                           instruction->GetDexPc(),
6378                                           calling_convention);
6379 }
6380 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6381 void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldGet(
6382     HUnresolvedStaticFieldGet* instruction) {
6383   FieldAccessCallingConventionARMVIXL calling_convention;
6384   codegen_->CreateUnresolvedFieldLocationSummary(
6385       instruction, instruction->GetFieldType(), calling_convention);
6386 }
6387 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6388 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldGet(
6389     HUnresolvedStaticFieldGet* instruction) {
6390   FieldAccessCallingConventionARMVIXL calling_convention;
6391   codegen_->GenerateUnresolvedFieldAccess(instruction,
6392                                           instruction->GetFieldType(),
6393                                           instruction->GetFieldIndex(),
6394                                           instruction->GetDexPc(),
6395                                           calling_convention);
6396 }
6397 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6398 void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldSet(
6399     HUnresolvedStaticFieldSet* instruction) {
6400   FieldAccessCallingConventionARMVIXL calling_convention;
6401   codegen_->CreateUnresolvedFieldLocationSummary(
6402       instruction, instruction->GetFieldType(), calling_convention);
6403 }
6404 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6405 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldSet(
6406     HUnresolvedStaticFieldSet* instruction) {
6407   FieldAccessCallingConventionARMVIXL calling_convention;
6408   codegen_->GenerateUnresolvedFieldAccess(instruction,
6409                                           instruction->GetFieldType(),
6410                                           instruction->GetFieldIndex(),
6411                                           instruction->GetDexPc(),
6412                                           calling_convention);
6413 }
6414 
VisitNullCheck(HNullCheck * instruction)6415 void LocationsBuilderARMVIXL::VisitNullCheck(HNullCheck* instruction) {
6416   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
6417   locations->SetInAt(0, Location::RequiresRegister());
6418 }
6419 
GenerateImplicitNullCheck(HNullCheck * instruction)6420 void CodeGeneratorARMVIXL::GenerateImplicitNullCheck(HNullCheck* instruction) {
6421   if (CanMoveNullCheckToUser(instruction)) {
6422     return;
6423   }
6424 
6425   UseScratchRegisterScope temps(GetVIXLAssembler());
6426   // Ensure the pc position is recorded immediately after the `ldr` instruction.
6427   ExactAssemblyScope aas(GetVIXLAssembler(),
6428                          vixl32::kMaxInstructionSizeInBytes,
6429                          CodeBufferCheckScope::kMaximumSize);
6430   __ ldr(temps.Acquire(), MemOperand(InputRegisterAt(instruction, 0)));
6431   RecordPcInfo(instruction, instruction->GetDexPc());
6432 }
6433 
GenerateExplicitNullCheck(HNullCheck * instruction)6434 void CodeGeneratorARMVIXL::GenerateExplicitNullCheck(HNullCheck* instruction) {
6435   NullCheckSlowPathARMVIXL* slow_path =
6436       new (GetScopedAllocator()) NullCheckSlowPathARMVIXL(instruction);
6437   AddSlowPath(slow_path);
6438   __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
6439 }
6440 
VisitNullCheck(HNullCheck * instruction)6441 void InstructionCodeGeneratorARMVIXL::VisitNullCheck(HNullCheck* instruction) {
6442   codegen_->GenerateNullCheck(instruction);
6443 }
6444 
LoadFromShiftedRegOffset(DataType::Type type,Location out_loc,vixl32::Register base,vixl32::Register reg_index,vixl32::Condition cond)6445 void CodeGeneratorARMVIXL::LoadFromShiftedRegOffset(DataType::Type type,
6446                                                     Location out_loc,
6447                                                     vixl32::Register base,
6448                                                     vixl32::Register reg_index,
6449                                                     vixl32::Condition cond) {
6450   uint32_t shift_count = DataType::SizeShift(type);
6451   MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count);
6452 
6453   switch (type) {
6454     case DataType::Type::kBool:
6455     case DataType::Type::kUint8:
6456       __ Ldrb(cond, RegisterFrom(out_loc), mem_address);
6457       break;
6458     case DataType::Type::kInt8:
6459       __ Ldrsb(cond, RegisterFrom(out_loc), mem_address);
6460       break;
6461     case DataType::Type::kUint16:
6462       __ Ldrh(cond, RegisterFrom(out_loc), mem_address);
6463       break;
6464     case DataType::Type::kInt16:
6465       __ Ldrsh(cond, RegisterFrom(out_loc), mem_address);
6466       break;
6467     case DataType::Type::kReference:
6468     case DataType::Type::kInt32:
6469       __ Ldr(cond, RegisterFrom(out_loc), mem_address);
6470       break;
6471     // T32 doesn't support LoadFromShiftedRegOffset mem address mode for these types.
6472     case DataType::Type::kInt64:
6473     case DataType::Type::kFloat32:
6474     case DataType::Type::kFloat64:
6475     default:
6476       LOG(FATAL) << "Unreachable type " << type;
6477       UNREACHABLE();
6478   }
6479 }
6480 
StoreToShiftedRegOffset(DataType::Type type,Location loc,vixl32::Register base,vixl32::Register reg_index,vixl32::Condition cond)6481 void CodeGeneratorARMVIXL::StoreToShiftedRegOffset(DataType::Type type,
6482                                                    Location loc,
6483                                                    vixl32::Register base,
6484                                                    vixl32::Register reg_index,
6485                                                    vixl32::Condition cond) {
6486   uint32_t shift_count = DataType::SizeShift(type);
6487   MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count);
6488 
6489   switch (type) {
6490     case DataType::Type::kBool:
6491     case DataType::Type::kUint8:
6492     case DataType::Type::kInt8:
6493       __ Strb(cond, RegisterFrom(loc), mem_address);
6494       break;
6495     case DataType::Type::kUint16:
6496     case DataType::Type::kInt16:
6497       __ Strh(cond, RegisterFrom(loc), mem_address);
6498       break;
6499     case DataType::Type::kReference:
6500     case DataType::Type::kInt32:
6501       __ Str(cond, RegisterFrom(loc), mem_address);
6502       break;
6503     // T32 doesn't support StoreToShiftedRegOffset mem address mode for these types.
6504     case DataType::Type::kInt64:
6505     case DataType::Type::kFloat32:
6506     case DataType::Type::kFloat64:
6507     default:
6508       LOG(FATAL) << "Unreachable type " << type;
6509       UNREACHABLE();
6510   }
6511 }
6512 
VisitArrayGet(HArrayGet * instruction)6513 void LocationsBuilderARMVIXL::VisitArrayGet(HArrayGet* instruction) {
6514   bool object_array_get_with_read_barrier =
6515       gUseReadBarrier && (instruction->GetType() == DataType::Type::kReference);
6516   LocationSummary* locations =
6517       new (GetGraph()->GetAllocator()) LocationSummary(instruction,
6518                                                        object_array_get_with_read_barrier
6519                                                            ? LocationSummary::kCallOnSlowPath
6520                                                            : LocationSummary::kNoCall);
6521   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
6522     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
6523   }
6524   locations->SetInAt(0, Location::RequiresRegister());
6525   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
6526   if (DataType::IsFloatingPointType(instruction->GetType())) {
6527     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6528   } else {
6529     // The output overlaps in the case of an object array get with
6530     // read barriers enabled: we do not want the move to overwrite the
6531     // array's location, as we need it to emit the read barrier.
6532     locations->SetOut(
6533         Location::RequiresRegister(),
6534         object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
6535   }
6536   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
6537     if (instruction->GetIndex()->IsConstant()) {
6538       // Array loads with constant index are treated as field loads.
6539       // We need a temporary register for the read barrier load in
6540       // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier()
6541       // only if the offset is too big.
6542       uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
6543       uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue();
6544       offset += index << DataType::SizeShift(DataType::Type::kReference);
6545       if (offset >= kReferenceLoadMinFarOffset) {
6546         locations->AddTemp(Location::RequiresRegister());
6547       }
6548     } else {
6549       // We need a non-scratch temporary for the array data pointer in
6550       // CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier().
6551       locations->AddTemp(Location::RequiresRegister());
6552     }
6553   } else if (mirror::kUseStringCompression && instruction->IsStringCharAt()) {
6554     // Also need a temporary for String compression feature.
6555     locations->AddTemp(Location::RequiresRegister());
6556   }
6557 }
6558 
VisitArrayGet(HArrayGet * instruction)6559 void InstructionCodeGeneratorARMVIXL::VisitArrayGet(HArrayGet* instruction) {
6560   LocationSummary* locations = instruction->GetLocations();
6561   Location obj_loc = locations->InAt(0);
6562   vixl32::Register obj = InputRegisterAt(instruction, 0);
6563   Location index = locations->InAt(1);
6564   Location out_loc = locations->Out();
6565   uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
6566   DataType::Type type = instruction->GetType();
6567   const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
6568                                         instruction->IsStringCharAt();
6569   HInstruction* array_instr = instruction->GetArray();
6570   bool has_intermediate_address = array_instr->IsIntermediateAddress();
6571 
6572   switch (type) {
6573     case DataType::Type::kBool:
6574     case DataType::Type::kUint8:
6575     case DataType::Type::kInt8:
6576     case DataType::Type::kUint16:
6577     case DataType::Type::kInt16:
6578     case DataType::Type::kInt32: {
6579       vixl32::Register length;
6580       if (maybe_compressed_char_at) {
6581         length = RegisterFrom(locations->GetTemp(0));
6582         uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
6583         // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6584         EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6585         GetAssembler()->LoadFromOffset(kLoadWord, length, obj, count_offset);
6586         codegen_->MaybeRecordImplicitNullCheck(instruction);
6587       }
6588       if (index.IsConstant()) {
6589         int32_t const_index = Int32ConstantFrom(index);
6590         if (maybe_compressed_char_at) {
6591           vixl32::Label uncompressed_load, done;
6592           vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
6593           __ Lsrs(length, length, 1u);  // LSRS has a 16-bit encoding, TST (immediate) does not.
6594           static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
6595                         "Expecting 0=compressed, 1=uncompressed");
6596           __ B(cs, &uncompressed_load, /* is_far_target= */ false);
6597           GetAssembler()->LoadFromOffset(kLoadUnsignedByte,
6598                                          RegisterFrom(out_loc),
6599                                          obj,
6600                                          data_offset + const_index);
6601           __ B(final_label);
6602           __ Bind(&uncompressed_load);
6603           GetAssembler()->LoadFromOffset(GetLoadOperandType(DataType::Type::kUint16),
6604                                          RegisterFrom(out_loc),
6605                                          obj,
6606                                          data_offset + (const_index << 1));
6607           if (done.IsReferenced()) {
6608             __ Bind(&done);
6609           }
6610         } else {
6611           uint32_t full_offset = data_offset + (const_index << DataType::SizeShift(type));
6612 
6613           // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6614           EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6615           LoadOperandType load_type = GetLoadOperandType(type);
6616           GetAssembler()->LoadFromOffset(load_type, RegisterFrom(out_loc), obj, full_offset);
6617           codegen_->MaybeRecordImplicitNullCheck(instruction);
6618         }
6619       } else {
6620         UseScratchRegisterScope temps(GetVIXLAssembler());
6621         vixl32::Register temp = temps.Acquire();
6622 
6623         if (has_intermediate_address) {
6624           // We do not need to compute the intermediate address from the array: the
6625           // input instruction has done it already. See the comment in
6626           // `TryExtractArrayAccessAddress()`.
6627           if (kIsDebugBuild) {
6628             HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
6629             DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
6630           }
6631           temp = obj;
6632         } else {
6633           __ Add(temp, obj, data_offset);
6634         }
6635         if (maybe_compressed_char_at) {
6636           vixl32::Label uncompressed_load, done;
6637           vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
6638           __ Lsrs(length, length, 1u);  // LSRS has a 16-bit encoding, TST (immediate) does not.
6639           static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
6640                         "Expecting 0=compressed, 1=uncompressed");
6641           __ B(cs, &uncompressed_load, /* is_far_target= */ false);
6642           __ Ldrb(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 0));
6643           __ B(final_label);
6644           __ Bind(&uncompressed_load);
6645           __ Ldrh(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 1));
6646           if (done.IsReferenced()) {
6647             __ Bind(&done);
6648           }
6649         } else {
6650           // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6651           EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6652           codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index));
6653           codegen_->MaybeRecordImplicitNullCheck(instruction);
6654         }
6655       }
6656       break;
6657     }
6658 
6659     case DataType::Type::kReference: {
6660       // The read barrier instrumentation of object ArrayGet
6661       // instructions does not support the HIntermediateAddress
6662       // instruction.
6663       DCHECK(!(has_intermediate_address && gUseReadBarrier));
6664 
6665       static_assert(
6666           sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
6667           "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
6668       // /* HeapReference<Object> */ out =
6669       //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
6670       if (gUseReadBarrier && kUseBakerReadBarrier) {
6671         // Note that a potential implicit null check is handled in this
6672         // CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier call.
6673         DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
6674         if (index.IsConstant()) {
6675           // Array load with a constant index can be treated as a field load.
6676           Location maybe_temp =
6677               (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location();
6678           data_offset += Int32ConstantFrom(index) << DataType::SizeShift(type);
6679           codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6680                                                           out_loc,
6681                                                           obj,
6682                                                           data_offset,
6683                                                           maybe_temp,
6684                                                           /* needs_null_check= */ false);
6685         } else {
6686           Location temp = locations->GetTemp(0);
6687           codegen_->GenerateArrayLoadWithBakerReadBarrier(
6688               out_loc, obj, data_offset, index, temp, /* needs_null_check= */ false);
6689         }
6690       } else {
6691         vixl32::Register out = OutputRegister(instruction);
6692         if (index.IsConstant()) {
6693           size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6694           {
6695             // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6696             EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6697             GetAssembler()->LoadFromOffset(kLoadWord, out, obj, offset);
6698             codegen_->MaybeRecordImplicitNullCheck(instruction);
6699           }
6700           // If read barriers are enabled, emit read barriers other than
6701           // Baker's using a slow path (and also unpoison the loaded
6702           // reference, if heap poisoning is enabled).
6703           codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
6704         } else {
6705           UseScratchRegisterScope temps(GetVIXLAssembler());
6706           vixl32::Register temp = temps.Acquire();
6707 
6708           if (has_intermediate_address) {
6709             // We do not need to compute the intermediate address from the array: the
6710             // input instruction has done it already. See the comment in
6711             // `TryExtractArrayAccessAddress()`.
6712             if (kIsDebugBuild) {
6713               HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
6714               DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
6715             }
6716             temp = obj;
6717           } else {
6718             __ Add(temp, obj, data_offset);
6719           }
6720           {
6721             // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6722             EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6723             codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index));
6724             temps.Close();
6725             codegen_->MaybeRecordImplicitNullCheck(instruction);
6726           }
6727           // If read barriers are enabled, emit read barriers other than
6728           // Baker's using a slow path (and also unpoison the loaded
6729           // reference, if heap poisoning is enabled).
6730           codegen_->MaybeGenerateReadBarrierSlow(
6731               instruction, out_loc, out_loc, obj_loc, data_offset, index);
6732         }
6733       }
6734       break;
6735     }
6736 
6737     case DataType::Type::kInt64: {
6738       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6739       // As two macro instructions can be emitted the max size is doubled.
6740       EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6741       if (index.IsConstant()) {
6742         size_t offset =
6743             (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6744         GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), obj, offset);
6745       } else {
6746         UseScratchRegisterScope temps(GetVIXLAssembler());
6747         vixl32::Register temp = temps.Acquire();
6748         __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6749         GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), temp, data_offset);
6750       }
6751       codegen_->MaybeRecordImplicitNullCheck(instruction);
6752       break;
6753     }
6754 
6755     case DataType::Type::kFloat32: {
6756       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6757       // As two macro instructions can be emitted the max size is doubled.
6758       EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6759       vixl32::SRegister out = SRegisterFrom(out_loc);
6760       if (index.IsConstant()) {
6761         size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6762         GetAssembler()->LoadSFromOffset(out, obj, offset);
6763       } else {
6764         UseScratchRegisterScope temps(GetVIXLAssembler());
6765         vixl32::Register temp = temps.Acquire();
6766         __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4));
6767         GetAssembler()->LoadSFromOffset(out, temp, data_offset);
6768       }
6769       codegen_->MaybeRecordImplicitNullCheck(instruction);
6770       break;
6771     }
6772 
6773     case DataType::Type::kFloat64: {
6774       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6775       // As two macro instructions can be emitted the max size is doubled.
6776       EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6777       if (index.IsConstant()) {
6778         size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6779         GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), obj, offset);
6780       } else {
6781         UseScratchRegisterScope temps(GetVIXLAssembler());
6782         vixl32::Register temp = temps.Acquire();
6783         __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6784         GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), temp, data_offset);
6785       }
6786       codegen_->MaybeRecordImplicitNullCheck(instruction);
6787       break;
6788     }
6789 
6790     case DataType::Type::kUint32:
6791     case DataType::Type::kUint64:
6792     case DataType::Type::kVoid:
6793       LOG(FATAL) << "Unreachable type " << type;
6794       UNREACHABLE();
6795   }
6796 }
6797 
VisitArraySet(HArraySet * instruction)6798 void LocationsBuilderARMVIXL::VisitArraySet(HArraySet* instruction) {
6799   DataType::Type value_type = instruction->GetComponentType();
6800 
6801   bool needs_write_barrier =
6802       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
6803   bool needs_type_check = instruction->NeedsTypeCheck();
6804 
6805   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6806       instruction,
6807       needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall);
6808 
6809   locations->SetInAt(0, Location::RequiresRegister());
6810   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
6811   if (DataType::IsFloatingPointType(value_type)) {
6812     locations->SetInAt(2, Location::RequiresFpuRegister());
6813   } else {
6814     locations->SetInAt(2, Location::RequiresRegister());
6815   }
6816   if (needs_write_barrier) {
6817     // Temporary registers for the write barrier or register poisoning.
6818     // TODO(solanes): We could reduce the temp usage but it requires some non-trivial refactoring of
6819     // InstructionCodeGeneratorARMVIXL::VisitArraySet.
6820     locations->AddTemp(Location::RequiresRegister());
6821     locations->AddTemp(Location::RequiresRegister());
6822   }
6823 }
6824 
VisitArraySet(HArraySet * instruction)6825 void InstructionCodeGeneratorARMVIXL::VisitArraySet(HArraySet* instruction) {
6826   LocationSummary* locations = instruction->GetLocations();
6827   vixl32::Register array = InputRegisterAt(instruction, 0);
6828   Location index = locations->InAt(1);
6829   DataType::Type value_type = instruction->GetComponentType();
6830   bool needs_type_check = instruction->NeedsTypeCheck();
6831   bool needs_write_barrier =
6832       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
6833   uint32_t data_offset =
6834       mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value();
6835   Location value_loc = locations->InAt(2);
6836   HInstruction* array_instr = instruction->GetArray();
6837   bool has_intermediate_address = array_instr->IsIntermediateAddress();
6838 
6839   switch (value_type) {
6840     case DataType::Type::kBool:
6841     case DataType::Type::kUint8:
6842     case DataType::Type::kInt8:
6843     case DataType::Type::kUint16:
6844     case DataType::Type::kInt16:
6845     case DataType::Type::kInt32: {
6846       if (index.IsConstant()) {
6847         int32_t const_index = Int32ConstantFrom(index);
6848         uint32_t full_offset =
6849             data_offset + (const_index << DataType::SizeShift(value_type));
6850         StoreOperandType store_type = GetStoreOperandType(value_type);
6851         // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6852         EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6853         GetAssembler()->StoreToOffset(store_type, RegisterFrom(value_loc), array, full_offset);
6854         codegen_->MaybeRecordImplicitNullCheck(instruction);
6855       } else {
6856         UseScratchRegisterScope temps(GetVIXLAssembler());
6857         vixl32::Register temp = temps.Acquire();
6858 
6859         if (has_intermediate_address) {
6860           // We do not need to compute the intermediate address from the array: the
6861           // input instruction has done it already. See the comment in
6862           // `TryExtractArrayAccessAddress()`.
6863           if (kIsDebugBuild) {
6864             HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
6865             DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
6866           }
6867           temp = array;
6868         } else {
6869           __ Add(temp, array, data_offset);
6870         }
6871         // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6872         EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6873         codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index));
6874         codegen_->MaybeRecordImplicitNullCheck(instruction);
6875       }
6876       break;
6877     }
6878 
6879     case DataType::Type::kReference: {
6880       vixl32::Register value = RegisterFrom(value_loc);
6881       // TryExtractArrayAccessAddress optimization is never applied for non-primitive ArraySet.
6882       // See the comment in instruction_simplifier_shared.cc.
6883       DCHECK(!has_intermediate_address);
6884 
6885       if (instruction->InputAt(2)->IsNullConstant()) {
6886         // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6887         // As two macro instructions can be emitted the max size is doubled.
6888         EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6889         // Just setting null.
6890         if (index.IsConstant()) {
6891           size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6892           GetAssembler()->StoreToOffset(kStoreWord, value, array, offset);
6893         } else {
6894           DCHECK(index.IsRegister()) << index;
6895           UseScratchRegisterScope temps(GetVIXLAssembler());
6896           vixl32::Register temp = temps.Acquire();
6897           __ Add(temp, array, data_offset);
6898           codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index));
6899         }
6900         codegen_->MaybeRecordImplicitNullCheck(instruction);
6901         DCHECK(!needs_write_barrier);
6902         DCHECK(!needs_type_check);
6903         break;
6904       }
6905 
6906       DCHECK(needs_write_barrier);
6907       Location temp1_loc = locations->GetTemp(0);
6908       vixl32::Register temp1 = RegisterFrom(temp1_loc);
6909       Location temp2_loc = locations->GetTemp(1);
6910       vixl32::Register temp2 = RegisterFrom(temp2_loc);
6911 
6912       bool can_value_be_null = instruction->GetValueCanBeNull();
6913       vixl32::Label do_store;
6914       if (can_value_be_null) {
6915         __ CompareAndBranchIfZero(value, &do_store, /* is_far_target= */ false);
6916       }
6917 
6918       SlowPathCodeARMVIXL* slow_path = nullptr;
6919       if (needs_type_check) {
6920         slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARMVIXL(instruction);
6921         codegen_->AddSlowPath(slow_path);
6922 
6923         const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6924         const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6925         const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6926 
6927         // Note that when read barriers are enabled, the type checks
6928         // are performed without read barriers.  This is fine, even in
6929         // the case where a class object is in the from-space after
6930         // the flip, as a comparison involving such a type would not
6931         // produce a false positive; it may of course produce a false
6932         // negative, in which case we would take the ArraySet slow
6933         // path.
6934 
6935         {
6936           // Ensure we record the pc position immediately after the `ldr` instruction.
6937           ExactAssemblyScope aas(GetVIXLAssembler(),
6938                                  vixl32::kMaxInstructionSizeInBytes,
6939                                  CodeBufferCheckScope::kMaximumSize);
6940           // /* HeapReference<Class> */ temp1 = array->klass_
6941           __ ldr(temp1, MemOperand(array, class_offset));
6942           codegen_->MaybeRecordImplicitNullCheck(instruction);
6943         }
6944         GetAssembler()->MaybeUnpoisonHeapReference(temp1);
6945 
6946         // /* HeapReference<Class> */ temp1 = temp1->component_type_
6947         GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
6948         // /* HeapReference<Class> */ temp2 = value->klass_
6949         GetAssembler()->LoadFromOffset(kLoadWord, temp2, value, class_offset);
6950         // If heap poisoning is enabled, no need to unpoison `temp1`
6951         // nor `temp2`, as we are comparing two poisoned references.
6952         __ Cmp(temp1, temp2);
6953 
6954         if (instruction->StaticTypeOfArrayIsObjectArray()) {
6955           vixl32::Label do_put;
6956           __ B(eq, &do_put, /* is_far_target= */ false);
6957           // If heap poisoning is enabled, the `temp1` reference has
6958           // not been unpoisoned yet; unpoison it now.
6959           GetAssembler()->MaybeUnpoisonHeapReference(temp1);
6960 
6961           // /* HeapReference<Class> */ temp1 = temp1->super_class_
6962           GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
6963           // If heap poisoning is enabled, no need to unpoison
6964           // `temp1`, as we are comparing against null below.
6965           __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel());
6966           __ Bind(&do_put);
6967         } else {
6968           __ B(ne, slow_path->GetEntryLabel());
6969         }
6970       }
6971 
6972       if (instruction->GetWriteBarrierKind() != WriteBarrierKind::kDontEmit) {
6973         DCHECK_EQ(instruction->GetWriteBarrierKind(), WriteBarrierKind::kEmitNoNullCheck)
6974             << " Already null checked so we shouldn't do it again.";
6975         codegen_->MarkGCCard(temp1, temp2, array, value, /* emit_null_check= */ false);
6976       }
6977 
6978       if (can_value_be_null) {
6979         DCHECK(do_store.IsReferenced());
6980         __ Bind(&do_store);
6981       }
6982 
6983       vixl32::Register source = value;
6984       if (kPoisonHeapReferences) {
6985         // Note that in the case where `value` is a null reference,
6986         // we do not enter this block, as a null reference does not
6987         // need poisoning.
6988         DCHECK_EQ(value_type, DataType::Type::kReference);
6989         __ Mov(temp1, value);
6990         GetAssembler()->PoisonHeapReference(temp1);
6991         source = temp1;
6992       }
6993 
6994       {
6995         // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6996         // As two macro instructions can be emitted the max size is doubled.
6997         EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6998         if (index.IsConstant()) {
6999           size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
7000           GetAssembler()->StoreToOffset(kStoreWord, source, array, offset);
7001         } else {
7002           DCHECK(index.IsRegister()) << index;
7003 
7004           UseScratchRegisterScope temps(GetVIXLAssembler());
7005           vixl32::Register temp = temps.Acquire();
7006           __ Add(temp, array, data_offset);
7007           codegen_->StoreToShiftedRegOffset(value_type,
7008                                             LocationFrom(source),
7009                                             temp,
7010                                             RegisterFrom(index));
7011         }
7012 
7013         if (can_value_be_null || !needs_type_check) {
7014           codegen_->MaybeRecordImplicitNullCheck(instruction);
7015         }
7016       }
7017 
7018       if (slow_path != nullptr) {
7019         __ Bind(slow_path->GetExitLabel());
7020       }
7021 
7022       break;
7023     }
7024 
7025     case DataType::Type::kInt64: {
7026       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
7027       // As two macro instructions can be emitted the max size is doubled.
7028       EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
7029       Location value = locations->InAt(2);
7030       if (index.IsConstant()) {
7031         size_t offset =
7032             (Int32ConstantFrom(index) << TIMES_8) + data_offset;
7033         GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), array, offset);
7034       } else {
7035         UseScratchRegisterScope temps(GetVIXLAssembler());
7036         vixl32::Register temp = temps.Acquire();
7037         __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
7038         GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), temp, data_offset);
7039       }
7040       codegen_->MaybeRecordImplicitNullCheck(instruction);
7041       break;
7042     }
7043 
7044     case DataType::Type::kFloat32: {
7045       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
7046       // As two macro instructions can be emitted the max size is doubled.
7047       EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
7048       Location value = locations->InAt(2);
7049       DCHECK(value.IsFpuRegister());
7050       if (index.IsConstant()) {
7051         size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
7052         GetAssembler()->StoreSToOffset(SRegisterFrom(value), array, offset);
7053       } else {
7054         UseScratchRegisterScope temps(GetVIXLAssembler());
7055         vixl32::Register temp = temps.Acquire();
7056         __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4));
7057         GetAssembler()->StoreSToOffset(SRegisterFrom(value), temp, data_offset);
7058       }
7059       codegen_->MaybeRecordImplicitNullCheck(instruction);
7060       break;
7061     }
7062 
7063     case DataType::Type::kFloat64: {
7064       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
7065       // As two macro instructions can be emitted the max size is doubled.
7066       EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
7067       Location value = locations->InAt(2);
7068       DCHECK(value.IsFpuRegisterPair());
7069       if (index.IsConstant()) {
7070         size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset;
7071         GetAssembler()->StoreDToOffset(DRegisterFrom(value), array, offset);
7072       } else {
7073         UseScratchRegisterScope temps(GetVIXLAssembler());
7074         vixl32::Register temp = temps.Acquire();
7075         __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
7076         GetAssembler()->StoreDToOffset(DRegisterFrom(value), temp, data_offset);
7077       }
7078       codegen_->MaybeRecordImplicitNullCheck(instruction);
7079       break;
7080     }
7081 
7082     case DataType::Type::kUint32:
7083     case DataType::Type::kUint64:
7084     case DataType::Type::kVoid:
7085       LOG(FATAL) << "Unreachable type " << value_type;
7086       UNREACHABLE();
7087   }
7088 }
7089 
VisitArrayLength(HArrayLength * instruction)7090 void LocationsBuilderARMVIXL::VisitArrayLength(HArrayLength* instruction) {
7091   LocationSummary* locations =
7092       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
7093   locations->SetInAt(0, Location::RequiresRegister());
7094   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
7095 }
7096 
VisitArrayLength(HArrayLength * instruction)7097 void InstructionCodeGeneratorARMVIXL::VisitArrayLength(HArrayLength* instruction) {
7098   uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
7099   vixl32::Register obj = InputRegisterAt(instruction, 0);
7100   vixl32::Register out = OutputRegister(instruction);
7101   {
7102     ExactAssemblyScope aas(GetVIXLAssembler(),
7103                            vixl32::kMaxInstructionSizeInBytes,
7104                            CodeBufferCheckScope::kMaximumSize);
7105     __ ldr(out, MemOperand(obj, offset));
7106     codegen_->MaybeRecordImplicitNullCheck(instruction);
7107   }
7108   // Mask out compression flag from String's array length.
7109   if (mirror::kUseStringCompression && instruction->IsStringLength()) {
7110     __ Lsr(out, out, 1u);
7111   }
7112 }
7113 
VisitIntermediateAddress(HIntermediateAddress * instruction)7114 void LocationsBuilderARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) {
7115   LocationSummary* locations =
7116       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
7117 
7118   locations->SetInAt(0, Location::RequiresRegister());
7119   locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetOffset()));
7120   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
7121 }
7122 
VisitIntermediateAddress(HIntermediateAddress * instruction)7123 void InstructionCodeGeneratorARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) {
7124   vixl32::Register out = OutputRegister(instruction);
7125   vixl32::Register first = InputRegisterAt(instruction, 0);
7126   Location second = instruction->GetLocations()->InAt(1);
7127 
7128   if (second.IsRegister()) {
7129     __ Add(out, first, RegisterFrom(second));
7130   } else {
7131     __ Add(out, first, Int32ConstantFrom(second));
7132   }
7133 }
7134 
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)7135 void LocationsBuilderARMVIXL::VisitIntermediateAddressIndex(
7136     HIntermediateAddressIndex* instruction) {
7137   LOG(FATAL) << "Unreachable " << instruction->GetId();
7138 }
7139 
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)7140 void InstructionCodeGeneratorARMVIXL::VisitIntermediateAddressIndex(
7141     HIntermediateAddressIndex* instruction) {
7142   LOG(FATAL) << "Unreachable " << instruction->GetId();
7143 }
7144 
VisitBoundsCheck(HBoundsCheck * instruction)7145 void LocationsBuilderARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) {
7146   RegisterSet caller_saves = RegisterSet::Empty();
7147   InvokeRuntimeCallingConventionARMVIXL calling_convention;
7148   caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
7149   caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(1)));
7150   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
7151 
7152   HInstruction* index = instruction->InputAt(0);
7153   HInstruction* length = instruction->InputAt(1);
7154   // If both index and length are constants we can statically check the bounds. But if at least one
7155   // of them is not encodable ArmEncodableConstantOrRegister will create
7156   // Location::RequiresRegister() which is not desired to happen. Instead we create constant
7157   // locations.
7158   bool both_const = index->IsConstant() && length->IsConstant();
7159   locations->SetInAt(0, both_const
7160       ? Location::ConstantLocation(index)
7161       : ArmEncodableConstantOrRegister(index, CMP));
7162   locations->SetInAt(1, both_const
7163       ? Location::ConstantLocation(length)
7164       : ArmEncodableConstantOrRegister(length, CMP));
7165 }
7166 
VisitBoundsCheck(HBoundsCheck * instruction)7167 void InstructionCodeGeneratorARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) {
7168   LocationSummary* locations = instruction->GetLocations();
7169   Location index_loc = locations->InAt(0);
7170   Location length_loc = locations->InAt(1);
7171 
7172   if (length_loc.IsConstant()) {
7173     int32_t length = Int32ConstantFrom(length_loc);
7174     if (index_loc.IsConstant()) {
7175       // BCE will remove the bounds check if we are guaranteed to pass.
7176       int32_t index = Int32ConstantFrom(index_loc);
7177       if (index < 0 || index >= length) {
7178         SlowPathCodeARMVIXL* slow_path =
7179             new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARMVIXL(instruction);
7180         codegen_->AddSlowPath(slow_path);
7181         __ B(slow_path->GetEntryLabel());
7182       } else {
7183         // Some optimization after BCE may have generated this, and we should not
7184         // generate a bounds check if it is a valid range.
7185       }
7186       return;
7187     }
7188 
7189     SlowPathCodeARMVIXL* slow_path =
7190         new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARMVIXL(instruction);
7191     __ Cmp(RegisterFrom(index_loc), length);
7192     codegen_->AddSlowPath(slow_path);
7193     __ B(hs, slow_path->GetEntryLabel());
7194   } else {
7195     SlowPathCodeARMVIXL* slow_path =
7196         new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARMVIXL(instruction);
7197     __ Cmp(RegisterFrom(length_loc), InputOperandAt(instruction, 0));
7198     codegen_->AddSlowPath(slow_path);
7199     __ B(ls, slow_path->GetEntryLabel());
7200   }
7201 }
7202 
MarkGCCard(vixl32::Register temp,vixl32::Register card,vixl32::Register object,vixl32::Register value,bool emit_null_check)7203 void CodeGeneratorARMVIXL::MarkGCCard(vixl32::Register temp,
7204                                       vixl32::Register card,
7205                                       vixl32::Register object,
7206                                       vixl32::Register value,
7207                                       bool emit_null_check) {
7208   vixl32::Label is_null;
7209   if (emit_null_check) {
7210     __ CompareAndBranchIfZero(value, &is_null, /* is_far_target=*/ false);
7211   }
7212   // Load the address of the card table into `card`.
7213   GetAssembler()->LoadFromOffset(
7214       kLoadWord, card, tr, Thread::CardTableOffset<kArmPointerSize>().Int32Value());
7215   // Calculate the offset (in the card table) of the card corresponding to
7216   // `object`.
7217   __ Lsr(temp, object, Operand::From(gc::accounting::CardTable::kCardShift));
7218   // Write the `art::gc::accounting::CardTable::kCardDirty` value into the
7219   // `object`'s card.
7220   //
7221   // Register `card` contains the address of the card table. Note that the card
7222   // table's base is biased during its creation so that it always starts at an
7223   // address whose least-significant byte is equal to `kCardDirty` (see
7224   // art::gc::accounting::CardTable::Create). Therefore the STRB instruction
7225   // below writes the `kCardDirty` (byte) value into the `object`'s card
7226   // (located at `card + object >> kCardShift`).
7227   //
7228   // This dual use of the value in register `card` (1. to calculate the location
7229   // of the card to mark; and 2. to load the `kCardDirty` value) saves a load
7230   // (no need to explicitly load `kCardDirty` as an immediate value).
7231   __ Strb(card, MemOperand(card, temp));
7232   if (emit_null_check) {
7233     __ Bind(&is_null);
7234   }
7235 }
7236 
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)7237 void LocationsBuilderARMVIXL::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
7238   LOG(FATAL) << "Unreachable";
7239 }
7240 
VisitParallelMove(HParallelMove * instruction)7241 void InstructionCodeGeneratorARMVIXL::VisitParallelMove(HParallelMove* instruction) {
7242   if (instruction->GetNext()->IsSuspendCheck() &&
7243       instruction->GetBlock()->GetLoopInformation() != nullptr) {
7244     HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
7245     // The back edge will generate the suspend check.
7246     codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
7247   }
7248 
7249   codegen_->GetMoveResolver()->EmitNativeCode(instruction);
7250 }
7251 
VisitSuspendCheck(HSuspendCheck * instruction)7252 void LocationsBuilderARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) {
7253   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
7254       instruction, LocationSummary::kCallOnSlowPath);
7255   locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
7256 }
7257 
VisitSuspendCheck(HSuspendCheck * instruction)7258 void InstructionCodeGeneratorARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) {
7259   HBasicBlock* block = instruction->GetBlock();
7260   if (block->GetLoopInformation() != nullptr) {
7261     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
7262     // The back edge will generate the suspend check.
7263     return;
7264   }
7265   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
7266     // The goto will generate the suspend check.
7267     return;
7268   }
7269   GenerateSuspendCheck(instruction, nullptr);
7270   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 14);
7271 }
7272 
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)7273 void InstructionCodeGeneratorARMVIXL::GenerateSuspendCheck(HSuspendCheck* instruction,
7274                                                            HBasicBlock* successor) {
7275   SuspendCheckSlowPathARMVIXL* slow_path =
7276       down_cast<SuspendCheckSlowPathARMVIXL*>(instruction->GetSlowPath());
7277   if (slow_path == nullptr) {
7278     slow_path =
7279         new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARMVIXL(instruction, successor);
7280     instruction->SetSlowPath(slow_path);
7281     codegen_->AddSlowPath(slow_path);
7282     if (successor != nullptr) {
7283       DCHECK(successor->IsLoopHeader());
7284     }
7285   } else {
7286     DCHECK_EQ(slow_path->GetSuccessor(), successor);
7287   }
7288 
7289   UseScratchRegisterScope temps(GetVIXLAssembler());
7290   vixl32::Register temp = temps.Acquire();
7291   GetAssembler()->LoadFromOffset(
7292       kLoadWord, temp, tr, Thread::ThreadFlagsOffset<kArmPointerSize>().Int32Value());
7293   __ Tst(temp, Thread::SuspendOrCheckpointRequestFlags());
7294   if (successor == nullptr) {
7295     __ B(ne, slow_path->GetEntryLabel());
7296     __ Bind(slow_path->GetReturnLabel());
7297   } else {
7298     __ B(eq, codegen_->GetLabelOf(successor));
7299     __ B(slow_path->GetEntryLabel());
7300   }
7301 }
7302 
GetAssembler() const7303 ArmVIXLAssembler* ParallelMoveResolverARMVIXL::GetAssembler() const {
7304   return codegen_->GetAssembler();
7305 }
7306 
EmitMove(size_t index)7307 void ParallelMoveResolverARMVIXL::EmitMove(size_t index) {
7308   UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
7309   MoveOperands* move = moves_[index];
7310   Location source = move->GetSource();
7311   Location destination = move->GetDestination();
7312 
7313   if (source.IsRegister()) {
7314     if (destination.IsRegister()) {
7315       __ Mov(RegisterFrom(destination), RegisterFrom(source));
7316     } else if (destination.IsFpuRegister()) {
7317       __ Vmov(SRegisterFrom(destination), RegisterFrom(source));
7318     } else {
7319       DCHECK(destination.IsStackSlot());
7320       GetAssembler()->StoreToOffset(kStoreWord,
7321                                     RegisterFrom(source),
7322                                     sp,
7323                                     destination.GetStackIndex());
7324     }
7325   } else if (source.IsStackSlot()) {
7326     if (destination.IsRegister()) {
7327       GetAssembler()->LoadFromOffset(kLoadWord,
7328                                      RegisterFrom(destination),
7329                                      sp,
7330                                      source.GetStackIndex());
7331     } else if (destination.IsFpuRegister()) {
7332       GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex());
7333     } else {
7334       DCHECK(destination.IsStackSlot());
7335       vixl32::Register temp = temps.Acquire();
7336       GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex());
7337       GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7338     }
7339   } else if (source.IsFpuRegister()) {
7340     if (destination.IsRegister()) {
7341       __ Vmov(RegisterFrom(destination), SRegisterFrom(source));
7342     } else if (destination.IsFpuRegister()) {
7343       __ Vmov(SRegisterFrom(destination), SRegisterFrom(source));
7344     } else {
7345       DCHECK(destination.IsStackSlot());
7346       GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex());
7347     }
7348   } else if (source.IsDoubleStackSlot()) {
7349     if (destination.IsDoubleStackSlot()) {
7350       vixl32::DRegister temp = temps.AcquireD();
7351       GetAssembler()->LoadDFromOffset(temp, sp, source.GetStackIndex());
7352       GetAssembler()->StoreDToOffset(temp, sp, destination.GetStackIndex());
7353     } else if (destination.IsRegisterPair()) {
7354       DCHECK(ExpectedPairLayout(destination));
7355       GetAssembler()->LoadFromOffset(
7356           kLoadWordPair, LowRegisterFrom(destination), sp, source.GetStackIndex());
7357     } else {
7358       DCHECK(destination.IsFpuRegisterPair()) << destination;
7359       GetAssembler()->LoadDFromOffset(DRegisterFrom(destination), sp, source.GetStackIndex());
7360     }
7361   } else if (source.IsRegisterPair()) {
7362     if (destination.IsRegisterPair()) {
7363       __ Mov(LowRegisterFrom(destination), LowRegisterFrom(source));
7364       __ Mov(HighRegisterFrom(destination), HighRegisterFrom(source));
7365     } else if (destination.IsFpuRegisterPair()) {
7366       __ Vmov(DRegisterFrom(destination), LowRegisterFrom(source), HighRegisterFrom(source));
7367     } else {
7368       DCHECK(destination.IsDoubleStackSlot()) << destination;
7369       DCHECK(ExpectedPairLayout(source));
7370       GetAssembler()->StoreToOffset(kStoreWordPair,
7371                                     LowRegisterFrom(source),
7372                                     sp,
7373                                     destination.GetStackIndex());
7374     }
7375   } else if (source.IsFpuRegisterPair()) {
7376     if (destination.IsRegisterPair()) {
7377       __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), DRegisterFrom(source));
7378     } else if (destination.IsFpuRegisterPair()) {
7379       __ Vmov(DRegisterFrom(destination), DRegisterFrom(source));
7380     } else {
7381       DCHECK(destination.IsDoubleStackSlot()) << destination;
7382       GetAssembler()->StoreDToOffset(DRegisterFrom(source), sp, destination.GetStackIndex());
7383     }
7384   } else {
7385     DCHECK(source.IsConstant()) << source;
7386     HConstant* constant = source.GetConstant();
7387     if (constant->IsIntConstant() || constant->IsNullConstant()) {
7388       int32_t value = CodeGenerator::GetInt32ValueOf(constant);
7389       if (destination.IsRegister()) {
7390         __ Mov(RegisterFrom(destination), value);
7391       } else {
7392         DCHECK(destination.IsStackSlot());
7393         vixl32::Register temp = temps.Acquire();
7394         __ Mov(temp, value);
7395         GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7396       }
7397     } else if (constant->IsLongConstant()) {
7398       int64_t value = Int64ConstantFrom(source);
7399       if (destination.IsRegisterPair()) {
7400         __ Mov(LowRegisterFrom(destination), Low32Bits(value));
7401         __ Mov(HighRegisterFrom(destination), High32Bits(value));
7402       } else {
7403         DCHECK(destination.IsDoubleStackSlot()) << destination;
7404         vixl32::Register temp = temps.Acquire();
7405         __ Mov(temp, Low32Bits(value));
7406         GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7407         __ Mov(temp, High32Bits(value));
7408         GetAssembler()->StoreToOffset(kStoreWord,
7409                                       temp,
7410                                       sp,
7411                                       destination.GetHighStackIndex(kArmWordSize));
7412       }
7413     } else if (constant->IsDoubleConstant()) {
7414       double value = constant->AsDoubleConstant()->GetValue();
7415       if (destination.IsFpuRegisterPair()) {
7416         __ Vmov(DRegisterFrom(destination), value);
7417       } else {
7418         DCHECK(destination.IsDoubleStackSlot()) << destination;
7419         uint64_t int_value = bit_cast<uint64_t, double>(value);
7420         vixl32::Register temp = temps.Acquire();
7421         __ Mov(temp, Low32Bits(int_value));
7422         GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7423         __ Mov(temp, High32Bits(int_value));
7424         GetAssembler()->StoreToOffset(kStoreWord,
7425                                       temp,
7426                                       sp,
7427                                       destination.GetHighStackIndex(kArmWordSize));
7428       }
7429     } else {
7430       DCHECK(constant->IsFloatConstant()) << constant->DebugName();
7431       float value = constant->AsFloatConstant()->GetValue();
7432       if (destination.IsFpuRegister()) {
7433         __ Vmov(SRegisterFrom(destination), value);
7434       } else {
7435         DCHECK(destination.IsStackSlot());
7436         vixl32::Register temp = temps.Acquire();
7437         __ Mov(temp, bit_cast<int32_t, float>(value));
7438         GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7439       }
7440     }
7441   }
7442 }
7443 
Exchange(vixl32::Register reg,int mem)7444 void ParallelMoveResolverARMVIXL::Exchange(vixl32::Register reg, int mem) {
7445   UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
7446   vixl32::Register temp = temps.Acquire();
7447   __ Mov(temp, reg);
7448   GetAssembler()->LoadFromOffset(kLoadWord, reg, sp, mem);
7449   GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem);
7450 }
7451 
Exchange(int mem1,int mem2)7452 void ParallelMoveResolverARMVIXL::Exchange(int mem1, int mem2) {
7453   // TODO(VIXL32): Double check the performance of this implementation.
7454   UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
7455   vixl32::Register temp1 = temps.Acquire();
7456   ScratchRegisterScope ensure_scratch(
7457       this, temp1.GetCode(), r0.GetCode(), codegen_->GetNumberOfCoreRegisters());
7458   vixl32::Register temp2(ensure_scratch.GetRegister());
7459 
7460   int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0;
7461   GetAssembler()->LoadFromOffset(kLoadWord, temp1, sp, mem1 + stack_offset);
7462   GetAssembler()->LoadFromOffset(kLoadWord, temp2, sp, mem2 + stack_offset);
7463   GetAssembler()->StoreToOffset(kStoreWord, temp1, sp, mem2 + stack_offset);
7464   GetAssembler()->StoreToOffset(kStoreWord, temp2, sp, mem1 + stack_offset);
7465 }
7466 
EmitSwap(size_t index)7467 void ParallelMoveResolverARMVIXL::EmitSwap(size_t index) {
7468   MoveOperands* move = moves_[index];
7469   Location source = move->GetSource();
7470   Location destination = move->GetDestination();
7471   UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
7472 
7473   if (source.IsRegister() && destination.IsRegister()) {
7474     vixl32::Register temp = temps.Acquire();
7475     DCHECK(!RegisterFrom(source).Is(temp));
7476     DCHECK(!RegisterFrom(destination).Is(temp));
7477     __ Mov(temp, RegisterFrom(destination));
7478     __ Mov(RegisterFrom(destination), RegisterFrom(source));
7479     __ Mov(RegisterFrom(source), temp);
7480   } else if (source.IsRegister() && destination.IsStackSlot()) {
7481     Exchange(RegisterFrom(source), destination.GetStackIndex());
7482   } else if (source.IsStackSlot() && destination.IsRegister()) {
7483     Exchange(RegisterFrom(destination), source.GetStackIndex());
7484   } else if (source.IsStackSlot() && destination.IsStackSlot()) {
7485     Exchange(source.GetStackIndex(), destination.GetStackIndex());
7486   } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
7487     vixl32::Register temp = temps.Acquire();
7488     __ Vmov(temp, SRegisterFrom(source));
7489     __ Vmov(SRegisterFrom(source), SRegisterFrom(destination));
7490     __ Vmov(SRegisterFrom(destination), temp);
7491   } else if (source.IsRegisterPair() && destination.IsRegisterPair()) {
7492     vixl32::DRegister temp = temps.AcquireD();
7493     __ Vmov(temp, LowRegisterFrom(source), HighRegisterFrom(source));
7494     __ Mov(LowRegisterFrom(source), LowRegisterFrom(destination));
7495     __ Mov(HighRegisterFrom(source), HighRegisterFrom(destination));
7496     __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), temp);
7497   } else if (source.IsRegisterPair() || destination.IsRegisterPair()) {
7498     vixl32::Register low_reg = LowRegisterFrom(source.IsRegisterPair() ? source : destination);
7499     int mem = source.IsRegisterPair() ? destination.GetStackIndex() : source.GetStackIndex();
7500     DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination));
7501     vixl32::DRegister temp = temps.AcquireD();
7502     __ Vmov(temp, low_reg, vixl32::Register(low_reg.GetCode() + 1));
7503     GetAssembler()->LoadFromOffset(kLoadWordPair, low_reg, sp, mem);
7504     GetAssembler()->StoreDToOffset(temp, sp, mem);
7505   } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) {
7506     vixl32::DRegister first = DRegisterFrom(source);
7507     vixl32::DRegister second = DRegisterFrom(destination);
7508     vixl32::DRegister temp = temps.AcquireD();
7509     __ Vmov(temp, first);
7510     __ Vmov(first, second);
7511     __ Vmov(second, temp);
7512   } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) {
7513     vixl32::DRegister reg = source.IsFpuRegisterPair()
7514         ? DRegisterFrom(source)
7515         : DRegisterFrom(destination);
7516     int mem = source.IsFpuRegisterPair()
7517         ? destination.GetStackIndex()
7518         : source.GetStackIndex();
7519     vixl32::DRegister temp = temps.AcquireD();
7520     __ Vmov(temp, reg);
7521     GetAssembler()->LoadDFromOffset(reg, sp, mem);
7522     GetAssembler()->StoreDToOffset(temp, sp, mem);
7523   } else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
7524     vixl32::SRegister reg = source.IsFpuRegister()
7525         ? SRegisterFrom(source)
7526         : SRegisterFrom(destination);
7527     int mem = source.IsFpuRegister()
7528         ? destination.GetStackIndex()
7529         : source.GetStackIndex();
7530     vixl32::Register temp = temps.Acquire();
7531     __ Vmov(temp, reg);
7532     GetAssembler()->LoadSFromOffset(reg, sp, mem);
7533     GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem);
7534   } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
7535     vixl32::DRegister temp1 = temps.AcquireD();
7536     vixl32::DRegister temp2 = temps.AcquireD();
7537     __ Vldr(temp1, MemOperand(sp, source.GetStackIndex()));
7538     __ Vldr(temp2, MemOperand(sp, destination.GetStackIndex()));
7539     __ Vstr(temp1, MemOperand(sp, destination.GetStackIndex()));
7540     __ Vstr(temp2, MemOperand(sp, source.GetStackIndex()));
7541   } else {
7542     LOG(FATAL) << "Unimplemented" << source << " <-> " << destination;
7543   }
7544 }
7545 
SpillScratch(int reg)7546 void ParallelMoveResolverARMVIXL::SpillScratch(int reg) {
7547   __ Push(vixl32::Register(reg));
7548 }
7549 
RestoreScratch(int reg)7550 void ParallelMoveResolverARMVIXL::RestoreScratch(int reg) {
7551   __ Pop(vixl32::Register(reg));
7552 }
7553 
GetSupportedLoadClassKind(HLoadClass::LoadKind desired_class_load_kind)7554 HLoadClass::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadClassKind(
7555     HLoadClass::LoadKind desired_class_load_kind) {
7556   switch (desired_class_load_kind) {
7557     case HLoadClass::LoadKind::kInvalid:
7558       LOG(FATAL) << "UNREACHABLE";
7559       UNREACHABLE();
7560     case HLoadClass::LoadKind::kReferrersClass:
7561       break;
7562     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
7563     case HLoadClass::LoadKind::kBootImageRelRo:
7564     case HLoadClass::LoadKind::kBssEntry:
7565     case HLoadClass::LoadKind::kBssEntryPublic:
7566     case HLoadClass::LoadKind::kBssEntryPackage:
7567       DCHECK(!GetCompilerOptions().IsJitCompiler());
7568       break;
7569     case HLoadClass::LoadKind::kJitBootImageAddress:
7570     case HLoadClass::LoadKind::kJitTableAddress:
7571       DCHECK(GetCompilerOptions().IsJitCompiler());
7572       break;
7573     case HLoadClass::LoadKind::kRuntimeCall:
7574       break;
7575   }
7576   return desired_class_load_kind;
7577 }
7578 
VisitLoadClass(HLoadClass * cls)7579 void LocationsBuilderARMVIXL::VisitLoadClass(HLoadClass* cls) {
7580   HLoadClass::LoadKind load_kind = cls->GetLoadKind();
7581   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
7582     InvokeRuntimeCallingConventionARMVIXL calling_convention;
7583     CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
7584         cls,
7585         LocationFrom(calling_convention.GetRegisterAt(0)),
7586         LocationFrom(r0));
7587     DCHECK(calling_convention.GetRegisterAt(0).Is(r0));
7588     return;
7589   }
7590   DCHECK_EQ(cls->NeedsAccessCheck(),
7591             load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
7592                 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
7593 
7594   const bool requires_read_barrier = gUseReadBarrier && !cls->IsInBootImage();
7595   LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
7596       ? LocationSummary::kCallOnSlowPath
7597       : LocationSummary::kNoCall;
7598   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind);
7599   if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
7600     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
7601   }
7602 
7603   if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
7604     locations->SetInAt(0, Location::RequiresRegister());
7605   }
7606   locations->SetOut(Location::RequiresRegister());
7607   if (load_kind == HLoadClass::LoadKind::kBssEntry) {
7608     if (!gUseReadBarrier || kUseBakerReadBarrier) {
7609       // Rely on the type resolution or initialization and marking to save everything we need.
7610       locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
7611     } else {
7612       // For non-Baker read barrier we have a temp-clobbering call.
7613     }
7614   }
7615 }
7616 
7617 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
7618 // move.
VisitLoadClass(HLoadClass * cls)7619 void InstructionCodeGeneratorARMVIXL::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
7620   HLoadClass::LoadKind load_kind = cls->GetLoadKind();
7621   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
7622     codegen_->GenerateLoadClassRuntimeCall(cls);
7623     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 15);
7624     return;
7625   }
7626   DCHECK_EQ(cls->NeedsAccessCheck(),
7627             load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
7628                 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
7629 
7630   LocationSummary* locations = cls->GetLocations();
7631   Location out_loc = locations->Out();
7632   vixl32::Register out = OutputRegister(cls);
7633 
7634   const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
7635       ? kWithoutReadBarrier
7636       : gCompilerReadBarrierOption;
7637   bool generate_null_check = false;
7638   switch (load_kind) {
7639     case HLoadClass::LoadKind::kReferrersClass: {
7640       DCHECK(!cls->CanCallRuntime());
7641       DCHECK(!cls->MustGenerateClinitCheck());
7642       // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
7643       vixl32::Register current_method = InputRegisterAt(cls, 0);
7644       codegen_->GenerateGcRootFieldLoad(cls,
7645                                         out_loc,
7646                                         current_method,
7647                                         ArtMethod::DeclaringClassOffset().Int32Value(),
7648                                         read_barrier_option);
7649       break;
7650     }
7651     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
7652       DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
7653              codegen_->GetCompilerOptions().IsBootImageExtension());
7654       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
7655       CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7656           codegen_->NewBootImageTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
7657       codegen_->EmitMovwMovtPlaceholder(labels, out);
7658       break;
7659     }
7660     case HLoadClass::LoadKind::kBootImageRelRo: {
7661       DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
7662       uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(cls);
7663       codegen_->LoadBootImageRelRoEntry(out, boot_image_offset);
7664       break;
7665     }
7666     case HLoadClass::LoadKind::kBssEntry:
7667     case HLoadClass::LoadKind::kBssEntryPublic:
7668     case HLoadClass::LoadKind::kBssEntryPackage: {
7669       CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = codegen_->NewTypeBssEntryPatch(cls);
7670       codegen_->EmitMovwMovtPlaceholder(labels, out);
7671       // All aligned loads are implicitly atomic consume operations on ARM.
7672       codegen_->GenerateGcRootFieldLoad(cls, out_loc, out, /*offset=*/ 0, read_barrier_option);
7673       generate_null_check = true;
7674       break;
7675     }
7676     case HLoadClass::LoadKind::kJitBootImageAddress: {
7677       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
7678       uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get());
7679       DCHECK_NE(address, 0u);
7680       __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address));
7681       break;
7682     }
7683     case HLoadClass::LoadKind::kJitTableAddress: {
7684       __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
7685                                                        cls->GetTypeIndex(),
7686                                                        cls->GetClass()));
7687       // /* GcRoot<mirror::Class> */ out = *out
7688       codegen_->GenerateGcRootFieldLoad(cls, out_loc, out, /*offset=*/ 0, read_barrier_option);
7689       break;
7690     }
7691     case HLoadClass::LoadKind::kRuntimeCall:
7692     case HLoadClass::LoadKind::kInvalid:
7693       LOG(FATAL) << "UNREACHABLE";
7694       UNREACHABLE();
7695   }
7696 
7697   if (generate_null_check || cls->MustGenerateClinitCheck()) {
7698     DCHECK(cls->CanCallRuntime());
7699     LoadClassSlowPathARMVIXL* slow_path =
7700         new (codegen_->GetScopedAllocator()) LoadClassSlowPathARMVIXL(cls, cls);
7701     codegen_->AddSlowPath(slow_path);
7702     if (generate_null_check) {
7703       __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
7704     }
7705     if (cls->MustGenerateClinitCheck()) {
7706       GenerateClassInitializationCheck(slow_path, out);
7707     } else {
7708       __ Bind(slow_path->GetExitLabel());
7709     }
7710     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 16);
7711   }
7712 }
7713 
VisitLoadMethodHandle(HLoadMethodHandle * load)7714 void LocationsBuilderARMVIXL::VisitLoadMethodHandle(HLoadMethodHandle* load) {
7715   InvokeRuntimeCallingConventionARMVIXL calling_convention;
7716   Location location = LocationFrom(calling_convention.GetRegisterAt(0));
7717   CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location);
7718 }
7719 
VisitLoadMethodHandle(HLoadMethodHandle * load)7720 void InstructionCodeGeneratorARMVIXL::VisitLoadMethodHandle(HLoadMethodHandle* load) {
7721   codegen_->GenerateLoadMethodHandleRuntimeCall(load);
7722 }
7723 
VisitLoadMethodType(HLoadMethodType * load)7724 void LocationsBuilderARMVIXL::VisitLoadMethodType(HLoadMethodType* load) {
7725   InvokeRuntimeCallingConventionARMVIXL calling_convention;
7726   Location location = LocationFrom(calling_convention.GetRegisterAt(0));
7727   CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location);
7728 }
7729 
VisitLoadMethodType(HLoadMethodType * load)7730 void InstructionCodeGeneratorARMVIXL::VisitLoadMethodType(HLoadMethodType* load) {
7731   codegen_->GenerateLoadMethodTypeRuntimeCall(load);
7732 }
7733 
VisitClinitCheck(HClinitCheck * check)7734 void LocationsBuilderARMVIXL::VisitClinitCheck(HClinitCheck* check) {
7735   LocationSummary* locations =
7736       new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
7737   locations->SetInAt(0, Location::RequiresRegister());
7738   if (check->HasUses()) {
7739     locations->SetOut(Location::SameAsFirstInput());
7740   }
7741   // Rely on the type initialization to save everything we need.
7742   locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
7743 }
7744 
VisitClinitCheck(HClinitCheck * check)7745 void InstructionCodeGeneratorARMVIXL::VisitClinitCheck(HClinitCheck* check) {
7746   // We assume the class is not null.
7747   LoadClassSlowPathARMVIXL* slow_path =
7748       new (codegen_->GetScopedAllocator()) LoadClassSlowPathARMVIXL(check->GetLoadClass(), check);
7749   codegen_->AddSlowPath(slow_path);
7750   GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
7751 }
7752 
GenerateClassInitializationCheck(LoadClassSlowPathARMVIXL * slow_path,vixl32::Register class_reg)7753 void InstructionCodeGeneratorARMVIXL::GenerateClassInitializationCheck(
7754     LoadClassSlowPathARMVIXL* slow_path, vixl32::Register class_reg) {
7755   UseScratchRegisterScope temps(GetVIXLAssembler());
7756   vixl32::Register temp = temps.Acquire();
7757   __ Ldrb(temp, MemOperand(class_reg, status_byte_offset));
7758   __ Cmp(temp, shifted_visibly_initialized_value);
7759   __ B(lo, slow_path->GetEntryLabel());
7760   __ Bind(slow_path->GetExitLabel());
7761 }
7762 
GenerateBitstringTypeCheckCompare(HTypeCheckInstruction * check,vixl32::Register temp,vixl32::FlagsUpdate flags_update)7763 void InstructionCodeGeneratorARMVIXL::GenerateBitstringTypeCheckCompare(
7764     HTypeCheckInstruction* check,
7765     vixl32::Register temp,
7766     vixl32::FlagsUpdate flags_update) {
7767   uint32_t path_to_root = check->GetBitstringPathToRoot();
7768   uint32_t mask = check->GetBitstringMask();
7769   DCHECK(IsPowerOfTwo(mask + 1));
7770   size_t mask_bits = WhichPowerOf2(mask + 1);
7771 
7772   // Note that HInstanceOf shall check for zero value in `temp` but HCheckCast needs
7773   // the Z flag for BNE. This is indicated by the `flags_update` parameter.
7774   if (mask_bits == 16u) {
7775     // Load only the bitstring part of the status word.
7776     __ Ldrh(temp, MemOperand(temp, mirror::Class::StatusOffset().Int32Value()));
7777     // Check if the bitstring bits are equal to `path_to_root`.
7778     if (flags_update == SetFlags) {
7779       __ Cmp(temp, path_to_root);
7780     } else {
7781       __ Sub(temp, temp, path_to_root);
7782     }
7783   } else {
7784     // /* uint32_t */ temp = temp->status_
7785     __ Ldr(temp, MemOperand(temp, mirror::Class::StatusOffset().Int32Value()));
7786     if (GetAssembler()->ShifterOperandCanHold(SUB, path_to_root)) {
7787       // Compare the bitstring bits using SUB.
7788       __ Sub(temp, temp, path_to_root);
7789       // Shift out bits that do not contribute to the comparison.
7790       __ Lsl(flags_update, temp, temp, dchecked_integral_cast<uint32_t>(32u - mask_bits));
7791     } else if (IsUint<16>(path_to_root)) {
7792       if (temp.IsLow()) {
7793         // Note: Optimized for size but contains one more dependent instruction than necessary.
7794         //       MOVW+SUB(register) would be 8 bytes unless we find a low-reg temporary but the
7795         //       macro assembler would use the high reg IP for the constant by default.
7796         // Compare the bitstring bits using SUB.
7797         __ Sub(temp, temp, path_to_root & 0x00ffu);  // 16-bit SUB (immediate) T2
7798         __ Sub(temp, temp, path_to_root & 0xff00u);  // 32-bit SUB (immediate) T3
7799         // Shift out bits that do not contribute to the comparison.
7800         __ Lsl(flags_update, temp, temp, dchecked_integral_cast<uint32_t>(32u - mask_bits));
7801       } else {
7802         // Extract the bitstring bits.
7803         __ Ubfx(temp, temp, 0, mask_bits);
7804         // Check if the bitstring bits are equal to `path_to_root`.
7805         if (flags_update == SetFlags) {
7806           __ Cmp(temp, path_to_root);
7807         } else {
7808           __ Sub(temp, temp, path_to_root);
7809         }
7810       }
7811     } else {
7812       // Shift out bits that do not contribute to the comparison.
7813       __ Lsl(temp, temp, dchecked_integral_cast<uint32_t>(32u - mask_bits));
7814       // Check if the shifted bitstring bits are equal to `path_to_root << (32u - mask_bits)`.
7815       if (flags_update == SetFlags) {
7816         __ Cmp(temp, path_to_root << (32u - mask_bits));
7817       } else {
7818         __ Sub(temp, temp, path_to_root << (32u - mask_bits));
7819       }
7820     }
7821   }
7822 }
7823 
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)7824 HLoadString::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadStringKind(
7825     HLoadString::LoadKind desired_string_load_kind) {
7826   switch (desired_string_load_kind) {
7827     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
7828     case HLoadString::LoadKind::kBootImageRelRo:
7829     case HLoadString::LoadKind::kBssEntry:
7830       DCHECK(!GetCompilerOptions().IsJitCompiler());
7831       break;
7832     case HLoadString::LoadKind::kJitBootImageAddress:
7833     case HLoadString::LoadKind::kJitTableAddress:
7834       DCHECK(GetCompilerOptions().IsJitCompiler());
7835       break;
7836     case HLoadString::LoadKind::kRuntimeCall:
7837       break;
7838   }
7839   return desired_string_load_kind;
7840 }
7841 
VisitLoadString(HLoadString * load)7842 void LocationsBuilderARMVIXL::VisitLoadString(HLoadString* load) {
7843   LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
7844   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind);
7845   HLoadString::LoadKind load_kind = load->GetLoadKind();
7846   if (load_kind == HLoadString::LoadKind::kRuntimeCall) {
7847     locations->SetOut(LocationFrom(r0));
7848   } else {
7849     locations->SetOut(Location::RequiresRegister());
7850     if (load_kind == HLoadString::LoadKind::kBssEntry) {
7851       if (!gUseReadBarrier || kUseBakerReadBarrier) {
7852         // Rely on the pResolveString and marking to save everything we need, including temps.
7853         locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
7854       } else {
7855         // For non-Baker read barrier we have a temp-clobbering call.
7856       }
7857     }
7858   }
7859 }
7860 
7861 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
7862 // move.
VisitLoadString(HLoadString * load)7863 void InstructionCodeGeneratorARMVIXL::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
7864   LocationSummary* locations = load->GetLocations();
7865   Location out_loc = locations->Out();
7866   vixl32::Register out = OutputRegister(load);
7867   HLoadString::LoadKind load_kind = load->GetLoadKind();
7868 
7869   switch (load_kind) {
7870     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
7871       DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
7872              codegen_->GetCompilerOptions().IsBootImageExtension());
7873       CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7874           codegen_->NewBootImageStringPatch(load->GetDexFile(), load->GetStringIndex());
7875       codegen_->EmitMovwMovtPlaceholder(labels, out);
7876       return;
7877     }
7878     case HLoadString::LoadKind::kBootImageRelRo: {
7879       DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
7880       uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(load);
7881       codegen_->LoadBootImageRelRoEntry(out, boot_image_offset);
7882       return;
7883     }
7884     case HLoadString::LoadKind::kBssEntry: {
7885       CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7886           codegen_->NewStringBssEntryPatch(load->GetDexFile(), load->GetStringIndex());
7887       codegen_->EmitMovwMovtPlaceholder(labels, out);
7888       // All aligned loads are implicitly atomic consume operations on ARM.
7889       codegen_->GenerateGcRootFieldLoad(
7890           load, out_loc, out, /*offset=*/ 0, gCompilerReadBarrierOption);
7891       LoadStringSlowPathARMVIXL* slow_path =
7892           new (codegen_->GetScopedAllocator()) LoadStringSlowPathARMVIXL(load);
7893       codegen_->AddSlowPath(slow_path);
7894       __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
7895       __ Bind(slow_path->GetExitLabel());
7896       codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 17);
7897       return;
7898     }
7899     case HLoadString::LoadKind::kJitBootImageAddress: {
7900       uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get());
7901       DCHECK_NE(address, 0u);
7902       __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address));
7903       return;
7904     }
7905     case HLoadString::LoadKind::kJitTableAddress: {
7906       __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
7907                                                         load->GetStringIndex(),
7908                                                         load->GetString()));
7909       // /* GcRoot<mirror::String> */ out = *out
7910       codegen_->GenerateGcRootFieldLoad(
7911           load, out_loc, out, /*offset=*/ 0, gCompilerReadBarrierOption);
7912       return;
7913     }
7914     default:
7915       break;
7916   }
7917 
7918   // TODO: Re-add the compiler code to do string dex cache lookup again.
7919   DCHECK_EQ(load->GetLoadKind(), HLoadString::LoadKind::kRuntimeCall);
7920   InvokeRuntimeCallingConventionARMVIXL calling_convention;
7921   __ Mov(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_);
7922   codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
7923   CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
7924   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 18);
7925 }
7926 
GetExceptionTlsOffset()7927 static int32_t GetExceptionTlsOffset() {
7928   return Thread::ExceptionOffset<kArmPointerSize>().Int32Value();
7929 }
7930 
VisitLoadException(HLoadException * load)7931 void LocationsBuilderARMVIXL::VisitLoadException(HLoadException* load) {
7932   LocationSummary* locations =
7933       new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall);
7934   locations->SetOut(Location::RequiresRegister());
7935 }
7936 
VisitLoadException(HLoadException * load)7937 void InstructionCodeGeneratorARMVIXL::VisitLoadException(HLoadException* load) {
7938   vixl32::Register out = OutputRegister(load);
7939   GetAssembler()->LoadFromOffset(kLoadWord, out, tr, GetExceptionTlsOffset());
7940 }
7941 
7942 
VisitClearException(HClearException * clear)7943 void LocationsBuilderARMVIXL::VisitClearException(HClearException* clear) {
7944   new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall);
7945 }
7946 
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)7947 void InstructionCodeGeneratorARMVIXL::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
7948   UseScratchRegisterScope temps(GetVIXLAssembler());
7949   vixl32::Register temp = temps.Acquire();
7950   __ Mov(temp, 0);
7951   GetAssembler()->StoreToOffset(kStoreWord, temp, tr, GetExceptionTlsOffset());
7952 }
7953 
VisitThrow(HThrow * instruction)7954 void LocationsBuilderARMVIXL::VisitThrow(HThrow* instruction) {
7955   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
7956       instruction, LocationSummary::kCallOnMainOnly);
7957   InvokeRuntimeCallingConventionARMVIXL calling_convention;
7958   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
7959 }
7960 
VisitThrow(HThrow * instruction)7961 void InstructionCodeGeneratorARMVIXL::VisitThrow(HThrow* instruction) {
7962   codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
7963   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
7964 }
7965 
7966 // Temp is used for read barrier.
NumberOfInstanceOfTemps(TypeCheckKind type_check_kind)7967 static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
7968   if (gUseReadBarrier &&
7969        (kUseBakerReadBarrier ||
7970           type_check_kind == TypeCheckKind::kAbstractClassCheck ||
7971           type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
7972           type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
7973     return 1;
7974   }
7975   return 0;
7976 }
7977 
7978 // Interface case has 3 temps, one for holding the number of interfaces, one for the current
7979 // interface pointer, one for loading the current interface.
7980 // The other checks have one temp for loading the object's class.
NumberOfCheckCastTemps(TypeCheckKind type_check_kind)7981 static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
7982   if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
7983     return 3;
7984   }
7985   return 1 + NumberOfInstanceOfTemps(type_check_kind);
7986 }
7987 
VisitInstanceOf(HInstanceOf * instruction)7988 void LocationsBuilderARMVIXL::VisitInstanceOf(HInstanceOf* instruction) {
7989   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
7990   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7991   bool baker_read_barrier_slow_path = false;
7992   switch (type_check_kind) {
7993     case TypeCheckKind::kExactCheck:
7994     case TypeCheckKind::kAbstractClassCheck:
7995     case TypeCheckKind::kClassHierarchyCheck:
7996     case TypeCheckKind::kArrayObjectCheck: {
7997       bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction);
7998       call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
7999       baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier;
8000       break;
8001     }
8002     case TypeCheckKind::kArrayCheck:
8003     case TypeCheckKind::kUnresolvedCheck:
8004     case TypeCheckKind::kInterfaceCheck:
8005       call_kind = LocationSummary::kCallOnSlowPath;
8006       break;
8007     case TypeCheckKind::kBitstringCheck:
8008       break;
8009   }
8010 
8011   LocationSummary* locations =
8012       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
8013   if (baker_read_barrier_slow_path) {
8014     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
8015   }
8016   locations->SetInAt(0, Location::RequiresRegister());
8017   if (type_check_kind == TypeCheckKind::kBitstringCheck) {
8018     locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)));
8019     locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)));
8020     locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)));
8021   } else {
8022     locations->SetInAt(1, Location::RequiresRegister());
8023   }
8024   // The "out" register is used as a temporary, so it overlaps with the inputs.
8025   // Note that TypeCheckSlowPathARM uses this register too.
8026   locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
8027   locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
8028 }
8029 
VisitInstanceOf(HInstanceOf * instruction)8030 void InstructionCodeGeneratorARMVIXL::VisitInstanceOf(HInstanceOf* instruction) {
8031   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
8032   LocationSummary* locations = instruction->GetLocations();
8033   Location obj_loc = locations->InAt(0);
8034   vixl32::Register obj = InputRegisterAt(instruction, 0);
8035   vixl32::Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
8036       ? vixl32::Register()
8037       : InputRegisterAt(instruction, 1);
8038   Location out_loc = locations->Out();
8039   vixl32::Register out = OutputRegister(instruction);
8040   const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
8041   DCHECK_LE(num_temps, 1u);
8042   Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
8043   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
8044   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
8045   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
8046   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
8047   vixl32::Label done;
8048   vixl32::Label* const final_label = codegen_->GetFinalLabel(instruction, &done);
8049   SlowPathCodeARMVIXL* slow_path = nullptr;
8050 
8051   // Return 0 if `obj` is null.
8052   // avoid null check if we know obj is not null.
8053   if (instruction->MustDoNullCheck()) {
8054     DCHECK(!out.Is(obj));
8055     __ Mov(out, 0);
8056     __ CompareAndBranchIfZero(obj, final_label, /* is_far_target= */ false);
8057   }
8058 
8059   switch (type_check_kind) {
8060     case TypeCheckKind::kExactCheck: {
8061       ReadBarrierOption read_barrier_option =
8062           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
8063       // /* HeapReference<Class> */ out = obj->klass_
8064       GenerateReferenceLoadTwoRegisters(instruction,
8065                                         out_loc,
8066                                         obj_loc,
8067                                         class_offset,
8068                                         maybe_temp_loc,
8069                                         read_barrier_option);
8070       // Classes must be equal for the instanceof to succeed.
8071       __ Cmp(out, cls);
8072       // We speculatively set the result to false without changing the condition
8073       // flags, which allows us to avoid some branching later.
8074       __ Mov(LeaveFlags, out, 0);
8075 
8076       // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
8077       // we check that the output is in a low register, so that a 16-bit MOV
8078       // encoding can be used.
8079       if (out.IsLow()) {
8080         // We use the scope because of the IT block that follows.
8081         ExactAssemblyScope guard(GetVIXLAssembler(),
8082                                  2 * vixl32::k16BitT32InstructionSizeInBytes,
8083                                  CodeBufferCheckScope::kExactSize);
8084 
8085         __ it(eq);
8086         __ mov(eq, out, 1);
8087       } else {
8088         __ B(ne, final_label, /* is_far_target= */ false);
8089         __ Mov(out, 1);
8090       }
8091 
8092       break;
8093     }
8094 
8095     case TypeCheckKind::kAbstractClassCheck: {
8096       ReadBarrierOption read_barrier_option =
8097           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
8098       // /* HeapReference<Class> */ out = obj->klass_
8099       GenerateReferenceLoadTwoRegisters(instruction,
8100                                         out_loc,
8101                                         obj_loc,
8102                                         class_offset,
8103                                         maybe_temp_loc,
8104                                         read_barrier_option);
8105       // If the class is abstract, we eagerly fetch the super class of the
8106       // object to avoid doing a comparison we know will fail.
8107       vixl32::Label loop;
8108       __ Bind(&loop);
8109       // /* HeapReference<Class> */ out = out->super_class_
8110       GenerateReferenceLoadOneRegister(instruction,
8111                                        out_loc,
8112                                        super_offset,
8113                                        maybe_temp_loc,
8114                                        read_barrier_option);
8115       // If `out` is null, we use it for the result, and jump to the final label.
8116       __ CompareAndBranchIfZero(out, final_label, /* is_far_target= */ false);
8117       __ Cmp(out, cls);
8118       __ B(ne, &loop, /* is_far_target= */ false);
8119       __ Mov(out, 1);
8120       break;
8121     }
8122 
8123     case TypeCheckKind::kClassHierarchyCheck: {
8124       ReadBarrierOption read_barrier_option =
8125           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
8126       // /* HeapReference<Class> */ out = obj->klass_
8127       GenerateReferenceLoadTwoRegisters(instruction,
8128                                         out_loc,
8129                                         obj_loc,
8130                                         class_offset,
8131                                         maybe_temp_loc,
8132                                         read_barrier_option);
8133       // Walk over the class hierarchy to find a match.
8134       vixl32::Label loop, success;
8135       __ Bind(&loop);
8136       __ Cmp(out, cls);
8137       __ B(eq, &success, /* is_far_target= */ false);
8138       // /* HeapReference<Class> */ out = out->super_class_
8139       GenerateReferenceLoadOneRegister(instruction,
8140                                        out_loc,
8141                                        super_offset,
8142                                        maybe_temp_loc,
8143                                        read_barrier_option);
8144       // This is essentially a null check, but it sets the condition flags to the
8145       // proper value for the code that follows the loop, i.e. not `eq`.
8146       __ Cmp(out, 1);
8147       __ B(hs, &loop, /* is_far_target= */ false);
8148 
8149       // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
8150       // we check that the output is in a low register, so that a 16-bit MOV
8151       // encoding can be used.
8152       if (out.IsLow()) {
8153         // If `out` is null, we use it for the result, and the condition flags
8154         // have already been set to `ne`, so the IT block that comes afterwards
8155         // (and which handles the successful case) turns into a NOP (instead of
8156         // overwriting `out`).
8157         __ Bind(&success);
8158 
8159         // We use the scope because of the IT block that follows.
8160         ExactAssemblyScope guard(GetVIXLAssembler(),
8161                                  2 * vixl32::k16BitT32InstructionSizeInBytes,
8162                                  CodeBufferCheckScope::kExactSize);
8163 
8164         // There is only one branch to the `success` label (which is bound to this
8165         // IT block), and it has the same condition, `eq`, so in that case the MOV
8166         // is executed.
8167         __ it(eq);
8168         __ mov(eq, out, 1);
8169       } else {
8170         // If `out` is null, we use it for the result, and jump to the final label.
8171         __ B(final_label);
8172         __ Bind(&success);
8173         __ Mov(out, 1);
8174       }
8175 
8176       break;
8177     }
8178 
8179     case TypeCheckKind::kArrayObjectCheck: {
8180       ReadBarrierOption read_barrier_option =
8181           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
8182       // /* HeapReference<Class> */ out = obj->klass_
8183       GenerateReferenceLoadTwoRegisters(instruction,
8184                                         out_loc,
8185                                         obj_loc,
8186                                         class_offset,
8187                                         maybe_temp_loc,
8188                                         read_barrier_option);
8189       // Do an exact check.
8190       vixl32::Label exact_check;
8191       __ Cmp(out, cls);
8192       __ B(eq, &exact_check, /* is_far_target= */ false);
8193       // Otherwise, we need to check that the object's class is a non-primitive array.
8194       // /* HeapReference<Class> */ out = out->component_type_
8195       GenerateReferenceLoadOneRegister(instruction,
8196                                        out_loc,
8197                                        component_offset,
8198                                        maybe_temp_loc,
8199                                        read_barrier_option);
8200       // If `out` is null, we use it for the result, and jump to the final label.
8201       __ CompareAndBranchIfZero(out, final_label, /* is_far_target= */ false);
8202       GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
8203       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
8204       __ Cmp(out, 0);
8205       // We speculatively set the result to false without changing the condition
8206       // flags, which allows us to avoid some branching later.
8207       __ Mov(LeaveFlags, out, 0);
8208 
8209       // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
8210       // we check that the output is in a low register, so that a 16-bit MOV
8211       // encoding can be used.
8212       if (out.IsLow()) {
8213         __ Bind(&exact_check);
8214 
8215         // We use the scope because of the IT block that follows.
8216         ExactAssemblyScope guard(GetVIXLAssembler(),
8217                                  2 * vixl32::k16BitT32InstructionSizeInBytes,
8218                                  CodeBufferCheckScope::kExactSize);
8219 
8220         __ it(eq);
8221         __ mov(eq, out, 1);
8222       } else {
8223         __ B(ne, final_label, /* is_far_target= */ false);
8224         __ Bind(&exact_check);
8225         __ Mov(out, 1);
8226       }
8227 
8228       break;
8229     }
8230 
8231     case TypeCheckKind::kArrayCheck: {
8232       // No read barrier since the slow path will retry upon failure.
8233       // /* HeapReference<Class> */ out = obj->klass_
8234       GenerateReferenceLoadTwoRegisters(instruction,
8235                                         out_loc,
8236                                         obj_loc,
8237                                         class_offset,
8238                                         maybe_temp_loc,
8239                                         kWithoutReadBarrier);
8240       __ Cmp(out, cls);
8241       DCHECK(locations->OnlyCallsOnSlowPath());
8242       slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARMVIXL(
8243           instruction, /* is_fatal= */ false);
8244       codegen_->AddSlowPath(slow_path);
8245       __ B(ne, slow_path->GetEntryLabel());
8246       __ Mov(out, 1);
8247       break;
8248     }
8249 
8250     case TypeCheckKind::kUnresolvedCheck:
8251     case TypeCheckKind::kInterfaceCheck: {
8252       // Note that we indeed only call on slow path, but we always go
8253       // into the slow path for the unresolved and interface check
8254       // cases.
8255       //
8256       // We cannot directly call the InstanceofNonTrivial runtime
8257       // entry point without resorting to a type checking slow path
8258       // here (i.e. by calling InvokeRuntime directly), as it would
8259       // require to assign fixed registers for the inputs of this
8260       // HInstanceOf instruction (following the runtime calling
8261       // convention), which might be cluttered by the potential first
8262       // read barrier emission at the beginning of this method.
8263       //
8264       // TODO: Introduce a new runtime entry point taking the object
8265       // to test (instead of its class) as argument, and let it deal
8266       // with the read barrier issues. This will let us refactor this
8267       // case of the `switch` code as it was previously (with a direct
8268       // call to the runtime not using a type checking slow path).
8269       // This should also be beneficial for the other cases above.
8270       DCHECK(locations->OnlyCallsOnSlowPath());
8271       slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARMVIXL(
8272           instruction, /* is_fatal= */ false);
8273       codegen_->AddSlowPath(slow_path);
8274       __ B(slow_path->GetEntryLabel());
8275       break;
8276     }
8277 
8278     case TypeCheckKind::kBitstringCheck: {
8279       // /* HeapReference<Class> */ temp = obj->klass_
8280       GenerateReferenceLoadTwoRegisters(instruction,
8281                                         out_loc,
8282                                         obj_loc,
8283                                         class_offset,
8284                                         maybe_temp_loc,
8285                                         kWithoutReadBarrier);
8286 
8287       GenerateBitstringTypeCheckCompare(instruction, out, DontCare);
8288       // If `out` is a low reg and we would have another low reg temp, we could
8289       // optimize this as RSBS+ADC, see GenerateConditionWithZero().
8290       //
8291       // Also, in some cases when `out` is a low reg and we're loading a constant to IP
8292       // it would make sense to use CMP+MOV+IT+MOV instead of SUB+CLZ+LSR as the code size
8293       // would be the same and we would have fewer direct data dependencies.
8294       codegen_->GenerateConditionWithZero(kCondEQ, out, out);  // CLZ+LSR
8295       break;
8296     }
8297   }
8298 
8299   if (done.IsReferenced()) {
8300     __ Bind(&done);
8301   }
8302 
8303   if (slow_path != nullptr) {
8304     __ Bind(slow_path->GetExitLabel());
8305   }
8306 }
8307 
VisitCheckCast(HCheckCast * instruction)8308 void LocationsBuilderARMVIXL::VisitCheckCast(HCheckCast* instruction) {
8309   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
8310   LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction);
8311   LocationSummary* locations =
8312       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
8313   locations->SetInAt(0, Location::RequiresRegister());
8314   if (type_check_kind == TypeCheckKind::kBitstringCheck) {
8315     locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)));
8316     locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)));
8317     locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)));
8318   } else {
8319     locations->SetInAt(1, Location::RequiresRegister());
8320   }
8321   locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
8322 }
8323 
VisitCheckCast(HCheckCast * instruction)8324 void InstructionCodeGeneratorARMVIXL::VisitCheckCast(HCheckCast* instruction) {
8325   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
8326   LocationSummary* locations = instruction->GetLocations();
8327   Location obj_loc = locations->InAt(0);
8328   vixl32::Register obj = InputRegisterAt(instruction, 0);
8329   vixl32::Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
8330       ? vixl32::Register()
8331       : InputRegisterAt(instruction, 1);
8332   Location temp_loc = locations->GetTemp(0);
8333   vixl32::Register temp = RegisterFrom(temp_loc);
8334   const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
8335   DCHECK_LE(num_temps, 3u);
8336   Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
8337   Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
8338   const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
8339   const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
8340   const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
8341   const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
8342   const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
8343   const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
8344   const uint32_t object_array_data_offset =
8345       mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
8346 
8347   bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction);
8348   SlowPathCodeARMVIXL* type_check_slow_path =
8349       new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARMVIXL(
8350           instruction, is_type_check_slow_path_fatal);
8351   codegen_->AddSlowPath(type_check_slow_path);
8352 
8353   vixl32::Label done;
8354   vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
8355   // Avoid null check if we know obj is not null.
8356   if (instruction->MustDoNullCheck()) {
8357     __ CompareAndBranchIfZero(obj, final_label, /* is_far_target= */ false);
8358   }
8359 
8360   switch (type_check_kind) {
8361     case TypeCheckKind::kExactCheck:
8362     case TypeCheckKind::kArrayCheck: {
8363       // /* HeapReference<Class> */ temp = obj->klass_
8364       GenerateReferenceLoadTwoRegisters(instruction,
8365                                         temp_loc,
8366                                         obj_loc,
8367                                         class_offset,
8368                                         maybe_temp2_loc,
8369                                         kWithoutReadBarrier);
8370 
8371       __ Cmp(temp, cls);
8372       // Jump to slow path for throwing the exception or doing a
8373       // more involved array check.
8374       __ B(ne, type_check_slow_path->GetEntryLabel());
8375       break;
8376     }
8377 
8378     case TypeCheckKind::kAbstractClassCheck: {
8379       // /* HeapReference<Class> */ temp = obj->klass_
8380       GenerateReferenceLoadTwoRegisters(instruction,
8381                                         temp_loc,
8382                                         obj_loc,
8383                                         class_offset,
8384                                         maybe_temp2_loc,
8385                                         kWithoutReadBarrier);
8386 
8387       // If the class is abstract, we eagerly fetch the super class of the
8388       // object to avoid doing a comparison we know will fail.
8389       vixl32::Label loop;
8390       __ Bind(&loop);
8391       // /* HeapReference<Class> */ temp = temp->super_class_
8392       GenerateReferenceLoadOneRegister(instruction,
8393                                        temp_loc,
8394                                        super_offset,
8395                                        maybe_temp2_loc,
8396                                        kWithoutReadBarrier);
8397 
8398       // If the class reference currently in `temp` is null, jump to the slow path to throw the
8399       // exception.
8400       __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
8401 
8402       // Otherwise, compare the classes.
8403       __ Cmp(temp, cls);
8404       __ B(ne, &loop, /* is_far_target= */ false);
8405       break;
8406     }
8407 
8408     case TypeCheckKind::kClassHierarchyCheck: {
8409       // /* HeapReference<Class> */ temp = obj->klass_
8410       GenerateReferenceLoadTwoRegisters(instruction,
8411                                         temp_loc,
8412                                         obj_loc,
8413                                         class_offset,
8414                                         maybe_temp2_loc,
8415                                         kWithoutReadBarrier);
8416 
8417       // Walk over the class hierarchy to find a match.
8418       vixl32::Label loop;
8419       __ Bind(&loop);
8420       __ Cmp(temp, cls);
8421       __ B(eq, final_label, /* is_far_target= */ false);
8422 
8423       // /* HeapReference<Class> */ temp = temp->super_class_
8424       GenerateReferenceLoadOneRegister(instruction,
8425                                        temp_loc,
8426                                        super_offset,
8427                                        maybe_temp2_loc,
8428                                        kWithoutReadBarrier);
8429 
8430       // If the class reference currently in `temp` is null, jump to the slow path to throw the
8431       // exception.
8432       __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
8433       // Otherwise, jump to the beginning of the loop.
8434       __ B(&loop);
8435       break;
8436     }
8437 
8438     case TypeCheckKind::kArrayObjectCheck:  {
8439       // /* HeapReference<Class> */ temp = obj->klass_
8440       GenerateReferenceLoadTwoRegisters(instruction,
8441                                         temp_loc,
8442                                         obj_loc,
8443                                         class_offset,
8444                                         maybe_temp2_loc,
8445                                         kWithoutReadBarrier);
8446 
8447       // Do an exact check.
8448       __ Cmp(temp, cls);
8449       __ B(eq, final_label, /* is_far_target= */ false);
8450 
8451       // Otherwise, we need to check that the object's class is a non-primitive array.
8452       // /* HeapReference<Class> */ temp = temp->component_type_
8453       GenerateReferenceLoadOneRegister(instruction,
8454                                        temp_loc,
8455                                        component_offset,
8456                                        maybe_temp2_loc,
8457                                        kWithoutReadBarrier);
8458       // If the component type is null, jump to the slow path to throw the exception.
8459       __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
8460       // Otherwise,the object is indeed an array, jump to label `check_non_primitive_component_type`
8461       // to further check that this component type is not a primitive type.
8462       GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
8463       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
8464       __ CompareAndBranchIfNonZero(temp, type_check_slow_path->GetEntryLabel());
8465       break;
8466     }
8467 
8468     case TypeCheckKind::kUnresolvedCheck:
8469       // We always go into the type check slow path for the unresolved check case.
8470       // We cannot directly call the CheckCast runtime entry point
8471       // without resorting to a type checking slow path here (i.e. by
8472       // calling InvokeRuntime directly), as it would require to
8473       // assign fixed registers for the inputs of this HInstanceOf
8474       // instruction (following the runtime calling convention), which
8475       // might be cluttered by the potential first read barrier
8476       // emission at the beginning of this method.
8477 
8478       __ B(type_check_slow_path->GetEntryLabel());
8479       break;
8480 
8481     case TypeCheckKind::kInterfaceCheck: {
8482       // Avoid read barriers to improve performance of the fast path. We can not get false
8483       // positives by doing this.
8484       // /* HeapReference<Class> */ temp = obj->klass_
8485       GenerateReferenceLoadTwoRegisters(instruction,
8486                                         temp_loc,
8487                                         obj_loc,
8488                                         class_offset,
8489                                         maybe_temp2_loc,
8490                                         kWithoutReadBarrier);
8491 
8492       // /* HeapReference<Class> */ temp = temp->iftable_
8493       GenerateReferenceLoadTwoRegisters(instruction,
8494                                         temp_loc,
8495                                         temp_loc,
8496                                         iftable_offset,
8497                                         maybe_temp2_loc,
8498                                         kWithoutReadBarrier);
8499       // Iftable is never null.
8500       __ Ldr(RegisterFrom(maybe_temp2_loc), MemOperand(temp, array_length_offset));
8501       // Loop through the iftable and check if any class matches.
8502       vixl32::Label start_loop;
8503       __ Bind(&start_loop);
8504       __ CompareAndBranchIfZero(RegisterFrom(maybe_temp2_loc),
8505                                 type_check_slow_path->GetEntryLabel());
8506       __ Ldr(RegisterFrom(maybe_temp3_loc), MemOperand(temp, object_array_data_offset));
8507       GetAssembler()->MaybeUnpoisonHeapReference(RegisterFrom(maybe_temp3_loc));
8508       // Go to next interface.
8509       __ Add(temp, temp, Operand::From(2 * kHeapReferenceSize));
8510       __ Sub(RegisterFrom(maybe_temp2_loc), RegisterFrom(maybe_temp2_loc), 2);
8511       // Compare the classes and continue the loop if they do not match.
8512       __ Cmp(cls, RegisterFrom(maybe_temp3_loc));
8513       __ B(ne, &start_loop, /* is_far_target= */ false);
8514       break;
8515     }
8516 
8517     case TypeCheckKind::kBitstringCheck: {
8518       // /* HeapReference<Class> */ temp = obj->klass_
8519       GenerateReferenceLoadTwoRegisters(instruction,
8520                                         temp_loc,
8521                                         obj_loc,
8522                                         class_offset,
8523                                         maybe_temp2_loc,
8524                                         kWithoutReadBarrier);
8525 
8526       GenerateBitstringTypeCheckCompare(instruction, temp, SetFlags);
8527       __ B(ne, type_check_slow_path->GetEntryLabel());
8528       break;
8529     }
8530   }
8531   if (done.IsReferenced()) {
8532     __ Bind(&done);
8533   }
8534 
8535   __ Bind(type_check_slow_path->GetExitLabel());
8536 }
8537 
VisitMonitorOperation(HMonitorOperation * instruction)8538 void LocationsBuilderARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) {
8539   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
8540       instruction, LocationSummary::kCallOnMainOnly);
8541   InvokeRuntimeCallingConventionARMVIXL calling_convention;
8542   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
8543 }
8544 
VisitMonitorOperation(HMonitorOperation * instruction)8545 void InstructionCodeGeneratorARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) {
8546   codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
8547                           instruction,
8548                           instruction->GetDexPc());
8549   if (instruction->IsEnter()) {
8550     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
8551   } else {
8552     CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
8553   }
8554   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 19);
8555 }
8556 
VisitAnd(HAnd * instruction)8557 void LocationsBuilderARMVIXL::VisitAnd(HAnd* instruction) {
8558   HandleBitwiseOperation(instruction, AND);
8559 }
8560 
VisitOr(HOr * instruction)8561 void LocationsBuilderARMVIXL::VisitOr(HOr* instruction) {
8562   HandleBitwiseOperation(instruction, ORR);
8563 }
8564 
VisitXor(HXor * instruction)8565 void LocationsBuilderARMVIXL::VisitXor(HXor* instruction) {
8566   HandleBitwiseOperation(instruction, EOR);
8567 }
8568 
HandleBitwiseOperation(HBinaryOperation * instruction,Opcode opcode)8569 void LocationsBuilderARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) {
8570   LocationSummary* locations =
8571       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
8572   DCHECK(instruction->GetResultType() == DataType::Type::kInt32
8573          || instruction->GetResultType() == DataType::Type::kInt64);
8574   // Note: GVN reorders commutative operations to have the constant on the right hand side.
8575   locations->SetInAt(0, Location::RequiresRegister());
8576   locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode));
8577   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8578 }
8579 
VisitAnd(HAnd * instruction)8580 void InstructionCodeGeneratorARMVIXL::VisitAnd(HAnd* instruction) {
8581   HandleBitwiseOperation(instruction);
8582 }
8583 
VisitOr(HOr * instruction)8584 void InstructionCodeGeneratorARMVIXL::VisitOr(HOr* instruction) {
8585   HandleBitwiseOperation(instruction);
8586 }
8587 
VisitXor(HXor * instruction)8588 void InstructionCodeGeneratorARMVIXL::VisitXor(HXor* instruction) {
8589   HandleBitwiseOperation(instruction);
8590 }
8591 
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instruction)8592 void LocationsBuilderARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
8593   LocationSummary* locations =
8594       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
8595   DCHECK(instruction->GetResultType() == DataType::Type::kInt32
8596          || instruction->GetResultType() == DataType::Type::kInt64);
8597 
8598   locations->SetInAt(0, Location::RequiresRegister());
8599   locations->SetInAt(1, Location::RequiresRegister());
8600   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8601 }
8602 
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instruction)8603 void InstructionCodeGeneratorARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
8604   LocationSummary* locations = instruction->GetLocations();
8605   Location first = locations->InAt(0);
8606   Location second = locations->InAt(1);
8607   Location out = locations->Out();
8608 
8609   if (instruction->GetResultType() == DataType::Type::kInt32) {
8610     vixl32::Register first_reg = RegisterFrom(first);
8611     vixl32::Register second_reg = RegisterFrom(second);
8612     vixl32::Register out_reg = RegisterFrom(out);
8613 
8614     switch (instruction->GetOpKind()) {
8615       case HInstruction::kAnd:
8616         __ Bic(out_reg, first_reg, second_reg);
8617         break;
8618       case HInstruction::kOr:
8619         __ Orn(out_reg, first_reg, second_reg);
8620         break;
8621       // There is no EON on arm.
8622       case HInstruction::kXor:
8623       default:
8624         LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
8625         UNREACHABLE();
8626     }
8627     return;
8628 
8629   } else {
8630     DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
8631     vixl32::Register first_low = LowRegisterFrom(first);
8632     vixl32::Register first_high = HighRegisterFrom(first);
8633     vixl32::Register second_low = LowRegisterFrom(second);
8634     vixl32::Register second_high = HighRegisterFrom(second);
8635     vixl32::Register out_low = LowRegisterFrom(out);
8636     vixl32::Register out_high = HighRegisterFrom(out);
8637 
8638     switch (instruction->GetOpKind()) {
8639       case HInstruction::kAnd:
8640         __ Bic(out_low, first_low, second_low);
8641         __ Bic(out_high, first_high, second_high);
8642         break;
8643       case HInstruction::kOr:
8644         __ Orn(out_low, first_low, second_low);
8645         __ Orn(out_high, first_high, second_high);
8646         break;
8647       // There is no EON on arm.
8648       case HInstruction::kXor:
8649       default:
8650         LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
8651         UNREACHABLE();
8652     }
8653   }
8654 }
8655 
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)8656 void LocationsBuilderARMVIXL::VisitDataProcWithShifterOp(
8657     HDataProcWithShifterOp* instruction) {
8658   DCHECK(instruction->GetType() == DataType::Type::kInt32 ||
8659          instruction->GetType() == DataType::Type::kInt64);
8660   LocationSummary* locations =
8661       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
8662   const bool overlap = instruction->GetType() == DataType::Type::kInt64 &&
8663                        HDataProcWithShifterOp::IsExtensionOp(instruction->GetOpKind());
8664 
8665   locations->SetInAt(0, Location::RequiresRegister());
8666   locations->SetInAt(1, Location::RequiresRegister());
8667   locations->SetOut(Location::RequiresRegister(),
8668                     overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap);
8669 }
8670 
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)8671 void InstructionCodeGeneratorARMVIXL::VisitDataProcWithShifterOp(
8672     HDataProcWithShifterOp* instruction) {
8673   const LocationSummary* const locations = instruction->GetLocations();
8674   const HInstruction::InstructionKind kind = instruction->GetInstrKind();
8675   const HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
8676 
8677   if (instruction->GetType() == DataType::Type::kInt32) {
8678     const vixl32::Register first = InputRegisterAt(instruction, 0);
8679     const vixl32::Register output = OutputRegister(instruction);
8680     const vixl32::Register second = instruction->InputAt(1)->GetType() == DataType::Type::kInt64
8681         ? LowRegisterFrom(locations->InAt(1))
8682         : InputRegisterAt(instruction, 1);
8683 
8684     if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
8685       DCHECK_EQ(kind, HInstruction::kAdd);
8686 
8687       switch (op_kind) {
8688         case HDataProcWithShifterOp::kUXTB:
8689           __ Uxtab(output, first, second);
8690           break;
8691         case HDataProcWithShifterOp::kUXTH:
8692           __ Uxtah(output, first, second);
8693           break;
8694         case HDataProcWithShifterOp::kSXTB:
8695           __ Sxtab(output, first, second);
8696           break;
8697         case HDataProcWithShifterOp::kSXTH:
8698           __ Sxtah(output, first, second);
8699           break;
8700         default:
8701           LOG(FATAL) << "Unexpected operation kind: " << op_kind;
8702           UNREACHABLE();
8703       }
8704     } else {
8705       GenerateDataProcInstruction(kind,
8706                                   output,
8707                                   first,
8708                                   Operand(second,
8709                                           ShiftFromOpKind(op_kind),
8710                                           instruction->GetShiftAmount()),
8711                                   codegen_);
8712     }
8713   } else {
8714     DCHECK_EQ(instruction->GetType(), DataType::Type::kInt64);
8715 
8716     if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
8717       const vixl32::Register second = InputRegisterAt(instruction, 1);
8718 
8719       DCHECK(!LowRegisterFrom(locations->Out()).Is(second));
8720       GenerateDataProc(kind,
8721                        locations->Out(),
8722                        locations->InAt(0),
8723                        second,
8724                        Operand(second, ShiftType::ASR, 31),
8725                        codegen_);
8726     } else {
8727       GenerateLongDataProc(instruction, codegen_);
8728     }
8729   }
8730 }
8731 
8732 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
GenerateAndConst(vixl32::Register out,vixl32::Register first,uint32_t value)8733 void InstructionCodeGeneratorARMVIXL::GenerateAndConst(vixl32::Register out,
8734                                                        vixl32::Register first,
8735                                                        uint32_t value) {
8736   // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier).
8737   if (value == 0xffffffffu) {
8738     if (!out.Is(first)) {
8739       __ Mov(out, first);
8740     }
8741     return;
8742   }
8743   if (value == 0u) {
8744     __ Mov(out, 0);
8745     return;
8746   }
8747   if (GetAssembler()->ShifterOperandCanHold(AND, value)) {
8748     __ And(out, first, value);
8749   } else if (GetAssembler()->ShifterOperandCanHold(BIC, ~value)) {
8750     __ Bic(out, first, ~value);
8751   } else {
8752     DCHECK(IsPowerOfTwo(value + 1));
8753     __ Ubfx(out, first, 0, WhichPowerOf2(value + 1));
8754   }
8755 }
8756 
8757 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
GenerateOrrConst(vixl32::Register out,vixl32::Register first,uint32_t value)8758 void InstructionCodeGeneratorARMVIXL::GenerateOrrConst(vixl32::Register out,
8759                                                        vixl32::Register first,
8760                                                        uint32_t value) {
8761   // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier).
8762   if (value == 0u) {
8763     if (!out.Is(first)) {
8764       __ Mov(out, first);
8765     }
8766     return;
8767   }
8768   if (value == 0xffffffffu) {
8769     __ Mvn(out, 0);
8770     return;
8771   }
8772   if (GetAssembler()->ShifterOperandCanHold(ORR, value)) {
8773     __ Orr(out, first, value);
8774   } else {
8775     DCHECK(GetAssembler()->ShifterOperandCanHold(ORN, ~value));
8776     __ Orn(out, first, ~value);
8777   }
8778 }
8779 
8780 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
GenerateEorConst(vixl32::Register out,vixl32::Register first,uint32_t value)8781 void InstructionCodeGeneratorARMVIXL::GenerateEorConst(vixl32::Register out,
8782                                                        vixl32::Register first,
8783                                                        uint32_t value) {
8784   // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier).
8785   if (value == 0u) {
8786     if (!out.Is(first)) {
8787       __ Mov(out, first);
8788     }
8789     return;
8790   }
8791   __ Eor(out, first, value);
8792 }
8793 
GenerateAddLongConst(Location out,Location first,uint64_t value)8794 void InstructionCodeGeneratorARMVIXL::GenerateAddLongConst(Location out,
8795                                                            Location first,
8796                                                            uint64_t value) {
8797   vixl32::Register out_low = LowRegisterFrom(out);
8798   vixl32::Register out_high = HighRegisterFrom(out);
8799   vixl32::Register first_low = LowRegisterFrom(first);
8800   vixl32::Register first_high = HighRegisterFrom(first);
8801   uint32_t value_low = Low32Bits(value);
8802   uint32_t value_high = High32Bits(value);
8803   if (value_low == 0u) {
8804     if (!out_low.Is(first_low)) {
8805       __ Mov(out_low, first_low);
8806     }
8807     __ Add(out_high, first_high, value_high);
8808     return;
8809   }
8810   __ Adds(out_low, first_low, value_low);
8811   if (GetAssembler()->ShifterOperandCanHold(ADC, value_high)) {
8812     __ Adc(out_high, first_high, value_high);
8813   } else {
8814     DCHECK(GetAssembler()->ShifterOperandCanHold(SBC, ~value_high));
8815     __ Sbc(out_high, first_high, ~value_high);
8816   }
8817 }
8818 
HandleBitwiseOperation(HBinaryOperation * instruction)8819 void InstructionCodeGeneratorARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction) {
8820   LocationSummary* locations = instruction->GetLocations();
8821   Location first = locations->InAt(0);
8822   Location second = locations->InAt(1);
8823   Location out = locations->Out();
8824 
8825   if (second.IsConstant()) {
8826     uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
8827     uint32_t value_low = Low32Bits(value);
8828     if (instruction->GetResultType() == DataType::Type::kInt32) {
8829       vixl32::Register first_reg = InputRegisterAt(instruction, 0);
8830       vixl32::Register out_reg = OutputRegister(instruction);
8831       if (instruction->IsAnd()) {
8832         GenerateAndConst(out_reg, first_reg, value_low);
8833       } else if (instruction->IsOr()) {
8834         GenerateOrrConst(out_reg, first_reg, value_low);
8835       } else {
8836         DCHECK(instruction->IsXor());
8837         GenerateEorConst(out_reg, first_reg, value_low);
8838       }
8839     } else {
8840       DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
8841       uint32_t value_high = High32Bits(value);
8842       vixl32::Register first_low = LowRegisterFrom(first);
8843       vixl32::Register first_high = HighRegisterFrom(first);
8844       vixl32::Register out_low = LowRegisterFrom(out);
8845       vixl32::Register out_high = HighRegisterFrom(out);
8846       if (instruction->IsAnd()) {
8847         GenerateAndConst(out_low, first_low, value_low);
8848         GenerateAndConst(out_high, first_high, value_high);
8849       } else if (instruction->IsOr()) {
8850         GenerateOrrConst(out_low, first_low, value_low);
8851         GenerateOrrConst(out_high, first_high, value_high);
8852       } else {
8853         DCHECK(instruction->IsXor());
8854         GenerateEorConst(out_low, first_low, value_low);
8855         GenerateEorConst(out_high, first_high, value_high);
8856       }
8857     }
8858     return;
8859   }
8860 
8861   if (instruction->GetResultType() == DataType::Type::kInt32) {
8862     vixl32::Register first_reg = InputRegisterAt(instruction, 0);
8863     vixl32::Register second_reg = InputRegisterAt(instruction, 1);
8864     vixl32::Register out_reg = OutputRegister(instruction);
8865     if (instruction->IsAnd()) {
8866       __ And(out_reg, first_reg, second_reg);
8867     } else if (instruction->IsOr()) {
8868       __ Orr(out_reg, first_reg, second_reg);
8869     } else {
8870       DCHECK(instruction->IsXor());
8871       __ Eor(out_reg, first_reg, second_reg);
8872     }
8873   } else {
8874     DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
8875     vixl32::Register first_low = LowRegisterFrom(first);
8876     vixl32::Register first_high = HighRegisterFrom(first);
8877     vixl32::Register second_low = LowRegisterFrom(second);
8878     vixl32::Register second_high = HighRegisterFrom(second);
8879     vixl32::Register out_low = LowRegisterFrom(out);
8880     vixl32::Register out_high = HighRegisterFrom(out);
8881     if (instruction->IsAnd()) {
8882       __ And(out_low, first_low, second_low);
8883       __ And(out_high, first_high, second_high);
8884     } else if (instruction->IsOr()) {
8885       __ Orr(out_low, first_low, second_low);
8886       __ Orr(out_high, first_high, second_high);
8887     } else {
8888       DCHECK(instruction->IsXor());
8889       __ Eor(out_low, first_low, second_low);
8890       __ Eor(out_high, first_high, second_high);
8891     }
8892   }
8893 }
8894 
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)8895 void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadOneRegister(
8896     HInstruction* instruction,
8897     Location out,
8898     uint32_t offset,
8899     Location maybe_temp,
8900     ReadBarrierOption read_barrier_option) {
8901   vixl32::Register out_reg = RegisterFrom(out);
8902   if (read_barrier_option == kWithReadBarrier) {
8903     CHECK(gUseReadBarrier);
8904     DCHECK(maybe_temp.IsRegister()) << maybe_temp;
8905     if (kUseBakerReadBarrier) {
8906       // Load with fast path based Baker's read barrier.
8907       // /* HeapReference<Object> */ out = *(out + offset)
8908       codegen_->GenerateFieldLoadWithBakerReadBarrier(
8909           instruction, out, out_reg, offset, maybe_temp, /* needs_null_check= */ false);
8910     } else {
8911       // Load with slow path based read barrier.
8912       // Save the value of `out` into `maybe_temp` before overwriting it
8913       // in the following move operation, as we will need it for the
8914       // read barrier below.
8915       __ Mov(RegisterFrom(maybe_temp), out_reg);
8916       // /* HeapReference<Object> */ out = *(out + offset)
8917       GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
8918       codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
8919     }
8920   } else {
8921     // Plain load with no read barrier.
8922     // /* HeapReference<Object> */ out = *(out + offset)
8923     GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
8924     GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
8925   }
8926 }
8927 
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)8928 void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadTwoRegisters(
8929     HInstruction* instruction,
8930     Location out,
8931     Location obj,
8932     uint32_t offset,
8933     Location maybe_temp,
8934     ReadBarrierOption read_barrier_option) {
8935   vixl32::Register out_reg = RegisterFrom(out);
8936   vixl32::Register obj_reg = RegisterFrom(obj);
8937   if (read_barrier_option == kWithReadBarrier) {
8938     CHECK(gUseReadBarrier);
8939     if (kUseBakerReadBarrier) {
8940       DCHECK(maybe_temp.IsRegister()) << maybe_temp;
8941       // Load with fast path based Baker's read barrier.
8942       // /* HeapReference<Object> */ out = *(obj + offset)
8943       codegen_->GenerateFieldLoadWithBakerReadBarrier(
8944           instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check= */ false);
8945     } else {
8946       // Load with slow path based read barrier.
8947       // /* HeapReference<Object> */ out = *(obj + offset)
8948       GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
8949       codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
8950     }
8951   } else {
8952     // Plain load with no read barrier.
8953     // /* HeapReference<Object> */ out = *(obj + offset)
8954     GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
8955     GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
8956   }
8957 }
8958 
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,vixl32::Register obj,uint32_t offset,ReadBarrierOption read_barrier_option)8959 void CodeGeneratorARMVIXL::GenerateGcRootFieldLoad(
8960     HInstruction* instruction,
8961     Location root,
8962     vixl32::Register obj,
8963     uint32_t offset,
8964     ReadBarrierOption read_barrier_option) {
8965   vixl32::Register root_reg = RegisterFrom(root);
8966   if (read_barrier_option == kWithReadBarrier) {
8967     DCHECK(gUseReadBarrier);
8968     if (kUseBakerReadBarrier) {
8969       // Fast path implementation of art::ReadBarrier::BarrierForRoot when
8970       // Baker's read barrier are used.
8971 
8972       // Query `art::Thread::Current()->GetIsGcMarking()` (stored in
8973       // the Marking Register) to decide whether we need to enter
8974       // the slow path to mark the GC root.
8975       //
8976       // We use shared thunks for the slow path; shared within the method
8977       // for JIT, across methods for AOT. That thunk checks the reference
8978       // and jumps to the entrypoint if needed.
8979       //
8980       //     lr = &return_address;
8981       //     GcRoot<mirror::Object> root = *(obj+offset);  // Original reference load.
8982       //     if (mr) {  // Thread::Current()->GetIsGcMarking()
8983       //       goto gc_root_thunk<root_reg>(lr)
8984       //     }
8985       //   return_address:
8986 
8987       UseScratchRegisterScope temps(GetVIXLAssembler());
8988       temps.Exclude(ip);
8989       bool narrow = CanEmitNarrowLdr(root_reg, obj, offset);
8990       uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode(), narrow);
8991 
8992       size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u) + /* LDR */ (narrow ? 1u : 0u);
8993       size_t wide_instructions = /* ADR+CMP+LDR+BNE */ 4u - narrow_instructions;
8994       size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
8995                           narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
8996       ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
8997       vixl32::Label return_address;
8998       EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
8999       __ cmp(mr, Operand(0));
9000       // Currently the offset is always within range. If that changes,
9001       // we shall have to split the load the same way as for fields.
9002       DCHECK_LT(offset, kReferenceLoadMinFarOffset);
9003       ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
9004       __ ldr(EncodingSize(narrow ? Narrow : Wide), root_reg, MemOperand(obj, offset));
9005       EmitBakerReadBarrierBne(custom_data);
9006       __ bind(&return_address);
9007       DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
9008                 narrow ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_OFFSET
9009                        : BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_WIDE_OFFSET);
9010     } else {
9011       // GC root loaded through a slow path for read barriers other
9012       // than Baker's.
9013       // /* GcRoot<mirror::Object>* */ root = obj + offset
9014       __ Add(root_reg, obj, offset);
9015       // /* mirror::Object* */ root = root->Read()
9016       GenerateReadBarrierForRootSlow(instruction, root, root);
9017     }
9018   } else {
9019     // Plain GC root load with no read barrier.
9020     // /* GcRoot<mirror::Object> */ root = *(obj + offset)
9021     GetAssembler()->LoadFromOffset(kLoadWord, root_reg, obj, offset);
9022     // Note that GC roots are not affected by heap poisoning, thus we
9023     // do not have to unpoison `root_reg` here.
9024   }
9025   MaybeGenerateMarkingRegisterCheck(/* code= */ 20);
9026 }
9027 
GenerateIntrinsicCasMoveWithBakerReadBarrier(vixl::aarch32::Register marked_old_value,vixl::aarch32::Register old_value)9028 void CodeGeneratorARMVIXL::GenerateIntrinsicCasMoveWithBakerReadBarrier(
9029     vixl::aarch32::Register marked_old_value,
9030     vixl::aarch32::Register old_value) {
9031   DCHECK(gUseReadBarrier);
9032   DCHECK(kUseBakerReadBarrier);
9033 
9034   // Similar to the Baker RB path in GenerateGcRootFieldLoad(), with a MOV instead of LDR.
9035   // For low registers, we can reuse the GC root narrow entrypoint, for high registers
9036   // we use a specialized entrypoint because the register bits are 8-11 instead of 12-15.
9037   bool narrow_mov = marked_old_value.IsLow();
9038   uint32_t custom_data = narrow_mov
9039       ? EncodeBakerReadBarrierGcRootData(marked_old_value.GetCode(), /*narrow=*/ true)
9040       : EncodeBakerReadBarrierIntrinsicCasData(marked_old_value.GetCode());
9041 
9042   size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u) + /* MOV */ (narrow_mov ? 1u : 0u);
9043   size_t wide_instructions = /* ADR+CMP+MOV+BNE */ 4u - narrow_instructions;
9044   size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
9045                       narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
9046   ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
9047   vixl32::Label return_address;
9048   EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
9049   __ cmp(mr, Operand(0));
9050   ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
9051   __ mov(EncodingSize(narrow_mov ? Narrow : Wide), marked_old_value, old_value);
9052   EmitBakerReadBarrierBne(custom_data);
9053   __ bind(&return_address);
9054   DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
9055             narrow_mov
9056                 ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_OFFSET
9057                 : BAKER_MARK_INTROSPECTION_INTRINSIC_CAS_MOV_OFFSET);
9058 }
9059 
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl32::Register obj,const vixl32::MemOperand & src,bool needs_null_check)9060 void CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
9061                                                                  Location ref,
9062                                                                  vixl32::Register obj,
9063                                                                  const vixl32::MemOperand& src,
9064                                                                  bool needs_null_check) {
9065   DCHECK(gUseReadBarrier);
9066   DCHECK(kUseBakerReadBarrier);
9067 
9068   // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
9069   // Marking Register) to decide whether we need to enter the slow
9070   // path to mark the reference. Then, in the slow path, check the
9071   // gray bit in the lock word of the reference's holder (`obj`) to
9072   // decide whether to mark `ref` or not.
9073   //
9074   // We use shared thunks for the slow path; shared within the method
9075   // for JIT, across methods for AOT. That thunk checks the holder
9076   // and jumps to the entrypoint if needed. If the holder is not gray,
9077   // it creates a fake dependency and returns to the LDR instruction.
9078   //
9079   //     lr = &gray_return_address;
9080   //     if (mr) {  // Thread::Current()->GetIsGcMarking()
9081   //       goto field_thunk<holder_reg, base_reg>(lr)
9082   //     }
9083   //   not_gray_return_address:
9084   //     // Original reference load. If the offset is too large to fit
9085   //     // into LDR, we use an adjusted base register here.
9086   //     HeapReference<mirror::Object> reference = *(obj+offset);
9087   //   gray_return_address:
9088 
9089   DCHECK(src.GetAddrMode() == vixl32::Offset);
9090   DCHECK_ALIGNED(src.GetOffsetImmediate(), sizeof(mirror::HeapReference<mirror::Object>));
9091   vixl32::Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
9092   bool narrow = CanEmitNarrowLdr(ref_reg, src.GetBaseRegister(), src.GetOffsetImmediate());
9093 
9094   UseScratchRegisterScope temps(GetVIXLAssembler());
9095   temps.Exclude(ip);
9096   uint32_t custom_data =
9097       EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode(), narrow);
9098 
9099   {
9100     size_t narrow_instructions =
9101         /* CMP */ (mr.IsLow() ? 1u : 0u) +
9102         /* LDR+unpoison? */ (narrow ? (kPoisonHeapReferences ? 2u : 1u) : 0u);
9103     size_t wide_instructions =
9104         /* ADR+CMP+LDR+BNE+unpoison? */ (kPoisonHeapReferences ? 5u : 4u) - narrow_instructions;
9105     size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
9106                         narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
9107     ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
9108     vixl32::Label return_address;
9109     EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
9110     __ cmp(mr, Operand(0));
9111     EmitBakerReadBarrierBne(custom_data);
9112     ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
9113     __ ldr(EncodingSize(narrow ? Narrow : Wide), ref_reg, src);
9114     if (needs_null_check) {
9115       MaybeRecordImplicitNullCheck(instruction);
9116     }
9117     // Note: We need a specific width for the unpoisoning NEG.
9118     if (kPoisonHeapReferences) {
9119       if (narrow) {
9120         // The only 16-bit encoding is T1 which sets flags outside IT block (i.e. RSBS, not RSB).
9121         __ rsbs(EncodingSize(Narrow), ref_reg, ref_reg, Operand(0));
9122       } else {
9123         __ rsb(EncodingSize(Wide), ref_reg, ref_reg, Operand(0));
9124       }
9125     }
9126     __ bind(&return_address);
9127     DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
9128               narrow ? BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_OFFSET
9129                      : BAKER_MARK_INTROSPECTION_FIELD_LDR_WIDE_OFFSET);
9130   }
9131   MaybeGenerateMarkingRegisterCheck(/* code= */ 21, /* temp_loc= */ LocationFrom(ip));
9132 }
9133 
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl32::Register obj,uint32_t offset,Location maybe_temp,bool needs_null_check)9134 void CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
9135                                                                  Location ref,
9136                                                                  vixl32::Register obj,
9137                                                                  uint32_t offset,
9138                                                                  Location maybe_temp,
9139                                                                  bool needs_null_check) {
9140   DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>));
9141   vixl32::Register base = obj;
9142   if (offset >= kReferenceLoadMinFarOffset) {
9143     base = RegisterFrom(maybe_temp);
9144     static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2.");
9145     __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u)));
9146     offset &= (kReferenceLoadMinFarOffset - 1u);
9147   }
9148   GenerateFieldLoadWithBakerReadBarrier(
9149       instruction, ref, obj, MemOperand(base, offset), needs_null_check);
9150 }
9151 
GenerateArrayLoadWithBakerReadBarrier(Location ref,vixl32::Register obj,uint32_t data_offset,Location index,Location temp,bool needs_null_check)9152 void CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier(Location ref,
9153                                                                  vixl32::Register obj,
9154                                                                  uint32_t data_offset,
9155                                                                  Location index,
9156                                                                  Location temp,
9157                                                                  bool needs_null_check) {
9158   DCHECK(gUseReadBarrier);
9159   DCHECK(kUseBakerReadBarrier);
9160 
9161   static_assert(
9162       sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
9163       "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
9164   ScaleFactor scale_factor = TIMES_4;
9165 
9166   // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
9167   // Marking Register) to decide whether we need to enter the slow
9168   // path to mark the reference. Then, in the slow path, check the
9169   // gray bit in the lock word of the reference's holder (`obj`) to
9170   // decide whether to mark `ref` or not.
9171   //
9172   // We use shared thunks for the slow path; shared within the method
9173   // for JIT, across methods for AOT. That thunk checks the holder
9174   // and jumps to the entrypoint if needed. If the holder is not gray,
9175   // it creates a fake dependency and returns to the LDR instruction.
9176   //
9177   //     lr = &gray_return_address;
9178   //     if (mr) {  // Thread::Current()->GetIsGcMarking()
9179   //       goto array_thunk<base_reg>(lr)
9180   //     }
9181   //   not_gray_return_address:
9182   //     // Original reference load. If the offset is too large to fit
9183   //     // into LDR, we use an adjusted base register here.
9184   //     HeapReference<mirror::Object> reference = data[index];
9185   //   gray_return_address:
9186 
9187   DCHECK(index.IsValid());
9188   vixl32::Register index_reg = RegisterFrom(index, DataType::Type::kInt32);
9189   vixl32::Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
9190   vixl32::Register data_reg = RegisterFrom(temp, DataType::Type::kInt32);  // Raw pointer.
9191 
9192   UseScratchRegisterScope temps(GetVIXLAssembler());
9193   temps.Exclude(ip);
9194   uint32_t custom_data = EncodeBakerReadBarrierArrayData(data_reg.GetCode());
9195 
9196   __ Add(data_reg, obj, Operand(data_offset));
9197   {
9198     size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u);
9199     size_t wide_instructions =
9200         /* ADR+CMP+BNE+LDR+unpoison? */ (kPoisonHeapReferences ? 5u : 4u) - narrow_instructions;
9201     size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
9202                         narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
9203     ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
9204     vixl32::Label return_address;
9205     EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
9206     __ cmp(mr, Operand(0));
9207     EmitBakerReadBarrierBne(custom_data);
9208     ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
9209     __ ldr(ref_reg, MemOperand(data_reg, index_reg, vixl32::LSL, scale_factor));
9210     DCHECK(!needs_null_check);  // The thunk cannot handle the null check.
9211     // Note: We need a Wide NEG for the unpoisoning.
9212     if (kPoisonHeapReferences) {
9213       __ rsb(EncodingSize(Wide), ref_reg, ref_reg, Operand(0));
9214     }
9215     __ bind(&return_address);
9216     DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
9217               BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET);
9218   }
9219   MaybeGenerateMarkingRegisterCheck(/* code= */ 22, /* temp_loc= */ LocationFrom(ip));
9220 }
9221 
MaybeGenerateMarkingRegisterCheck(int code,Location temp_loc)9222 void CodeGeneratorARMVIXL::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) {
9223   // The following condition is a compile-time one, so it does not have a run-time cost.
9224   if (kIsDebugBuild && gUseReadBarrier && kUseBakerReadBarrier) {
9225     // The following condition is a run-time one; it is executed after the
9226     // previous compile-time test, to avoid penalizing non-debug builds.
9227     if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) {
9228       UseScratchRegisterScope temps(GetVIXLAssembler());
9229       vixl32::Register temp = temp_loc.IsValid() ? RegisterFrom(temp_loc) : temps.Acquire();
9230       GetAssembler()->GenerateMarkingRegisterCheck(temp,
9231                                                    kMarkingRegisterCheckBreakCodeBaseCode + code);
9232     }
9233   }
9234 }
9235 
AddReadBarrierSlowPath(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)9236 SlowPathCodeARMVIXL* CodeGeneratorARMVIXL::AddReadBarrierSlowPath(HInstruction* instruction,
9237                                                                   Location out,
9238                                                                   Location ref,
9239                                                                   Location obj,
9240                                                                   uint32_t offset,
9241                                                                   Location index) {
9242   SlowPathCodeARMVIXL* slow_path = new (GetScopedAllocator())
9243       ReadBarrierForHeapReferenceSlowPathARMVIXL(instruction, out, ref, obj, offset, index);
9244   AddSlowPath(slow_path);
9245   return slow_path;
9246 }
9247 
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)9248 void CodeGeneratorARMVIXL::GenerateReadBarrierSlow(HInstruction* instruction,
9249                                                    Location out,
9250                                                    Location ref,
9251                                                    Location obj,
9252                                                    uint32_t offset,
9253                                                    Location index) {
9254   DCHECK(gUseReadBarrier);
9255 
9256   // Insert a slow path based read barrier *after* the reference load.
9257   //
9258   // If heap poisoning is enabled, the unpoisoning of the loaded
9259   // reference will be carried out by the runtime within the slow
9260   // path.
9261   //
9262   // Note that `ref` currently does not get unpoisoned (when heap
9263   // poisoning is enabled), which is alright as the `ref` argument is
9264   // not used by the artReadBarrierSlow entry point.
9265   //
9266   // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
9267   SlowPathCodeARMVIXL* slow_path =
9268       AddReadBarrierSlowPath(instruction, out, ref, obj, offset, index);
9269 
9270   __ B(slow_path->GetEntryLabel());
9271   __ Bind(slow_path->GetExitLabel());
9272 }
9273 
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)9274 void CodeGeneratorARMVIXL::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
9275                                                         Location out,
9276                                                         Location ref,
9277                                                         Location obj,
9278                                                         uint32_t offset,
9279                                                         Location index) {
9280   if (gUseReadBarrier) {
9281     // Baker's read barriers shall be handled by the fast path
9282     // (CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier).
9283     DCHECK(!kUseBakerReadBarrier);
9284     // If heap poisoning is enabled, unpoisoning will be taken care of
9285     // by the runtime within the slow path.
9286     GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
9287   } else if (kPoisonHeapReferences) {
9288     GetAssembler()->UnpoisonHeapReference(RegisterFrom(out));
9289   }
9290 }
9291 
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)9292 void CodeGeneratorARMVIXL::GenerateReadBarrierForRootSlow(HInstruction* instruction,
9293                                                           Location out,
9294                                                           Location root) {
9295   DCHECK(gUseReadBarrier);
9296 
9297   // Insert a slow path based read barrier *after* the GC root load.
9298   //
9299   // Note that GC roots are not affected by heap poisoning, so we do
9300   // not need to do anything special for this here.
9301   SlowPathCodeARMVIXL* slow_path =
9302       new (GetScopedAllocator()) ReadBarrierForRootSlowPathARMVIXL(instruction, out, root);
9303   AddSlowPath(slow_path);
9304 
9305   __ B(slow_path->GetEntryLabel());
9306   __ Bind(slow_path->GetExitLabel());
9307 }
9308 
9309 // Check if the desired_dispatch_info is supported. If it is, return it,
9310 // otherwise return a fall-back info that should be used instead.
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,ArtMethod * method)9311 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARMVIXL::GetSupportedInvokeStaticOrDirectDispatch(
9312     const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
9313     ArtMethod* method) {
9314   if (method->IsIntrinsic() &&
9315       desired_dispatch_info.code_ptr_location == CodePtrLocation::kCallCriticalNative) {
9316     // As a work-around for soft-float native ABI interfering with type checks, we are
9317     // inserting fake calls to Float.floatToRawIntBits() or Double.doubleToRawLongBits()
9318     // when a float or double argument is passed in core registers but we cannot do that
9319     // for actual intrinsic implementations that expect them in FP registers. Therefore
9320     // we do not use `kCallCriticalNative` for intrinsics with FP arguments; if they are
9321     // properly intrinsified, the dispatch type does not matter anyway.
9322     ScopedObjectAccess soa(Thread::Current());
9323     uint32_t shorty_len;
9324     const char* shorty = method->GetShorty(&shorty_len);
9325     for (uint32_t i = 1; i != shorty_len; ++i) {
9326       if (shorty[i] == 'D' || shorty[i] == 'F') {
9327         HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info;
9328         dispatch_info.code_ptr_location = CodePtrLocation::kCallArtMethod;
9329         return dispatch_info;
9330       }
9331     }
9332   }
9333   return desired_dispatch_info;
9334 }
9335 
9336 
LoadMethod(MethodLoadKind load_kind,Location temp,HInvoke * invoke)9337 void CodeGeneratorARMVIXL::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) {
9338   switch (load_kind) {
9339     case MethodLoadKind::kBootImageLinkTimePcRelative: {
9340       DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
9341       PcRelativePatchInfo* labels = NewBootImageMethodPatch(invoke->GetResolvedMethodReference());
9342       vixl32::Register temp_reg = RegisterFrom(temp);
9343       EmitMovwMovtPlaceholder(labels, temp_reg);
9344       break;
9345     }
9346     case MethodLoadKind::kBootImageRelRo: {
9347       uint32_t boot_image_offset = GetBootImageOffset(invoke);
9348       LoadBootImageRelRoEntry(RegisterFrom(temp), boot_image_offset);
9349       break;
9350     }
9351     case MethodLoadKind::kBssEntry: {
9352       PcRelativePatchInfo* labels = NewMethodBssEntryPatch(invoke->GetMethodReference());
9353       vixl32::Register temp_reg = RegisterFrom(temp);
9354       EmitMovwMovtPlaceholder(labels, temp_reg);
9355       // All aligned loads are implicitly atomic consume operations on ARM.
9356       GetAssembler()->LoadFromOffset(kLoadWord, temp_reg, temp_reg, /* offset*/ 0);
9357       break;
9358     }
9359     case MethodLoadKind::kJitDirectAddress: {
9360       __ Mov(RegisterFrom(temp), Operand::From(invoke->GetResolvedMethod()));
9361       break;
9362     }
9363     case MethodLoadKind::kRuntimeCall: {
9364       // Test situation, don't do anything.
9365       break;
9366     }
9367     default: {
9368       LOG(FATAL) << "Load kind should have already been handled " << load_kind;
9369       UNREACHABLE();
9370     }
9371   }
9372 }
9373 
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)9374 void CodeGeneratorARMVIXL::GenerateStaticOrDirectCall(
9375     HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
9376   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
9377   switch (invoke->GetMethodLoadKind()) {
9378     case MethodLoadKind::kStringInit: {
9379       uint32_t offset =
9380           GetThreadOffset<kArmPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
9381       // temp = thread->string_init_entrypoint
9382       GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(temp), tr, offset);
9383       break;
9384     }
9385     case MethodLoadKind::kRecursive: {
9386       callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex());
9387       break;
9388     }
9389     case MethodLoadKind::kRuntimeCall: {
9390       GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
9391       return;  // No code pointer retrieval; the runtime performs the call directly.
9392     }
9393     case MethodLoadKind::kBootImageLinkTimePcRelative:
9394       // Note: Unlike arm64, x86 and x86-64, we do not avoid the materialization of method
9395       // pointer for kCallCriticalNative because it would not save us an instruction from
9396       // the current sequence MOVW+MOVT+ADD(pc)+LDR+BL. The ADD(pc) separates the patched
9397       // offset instructions MOVW+MOVT from the entrypoint load, so they cannot be fused.
9398       FALLTHROUGH_INTENDED;
9399     default: {
9400       LoadMethod(invoke->GetMethodLoadKind(), temp, invoke);
9401       break;
9402     }
9403   }
9404 
9405   auto call_code_pointer_member = [&](MemberOffset offset) {
9406     // LR = callee_method->member;
9407     GetAssembler()->LoadFromOffset(kLoadWord, lr, RegisterFrom(callee_method), offset.Int32Value());
9408     {
9409       // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
9410       // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
9411       ExactAssemblyScope aas(GetVIXLAssembler(),
9412                              vixl32::k16BitT32InstructionSizeInBytes,
9413                              CodeBufferCheckScope::kExactSize);
9414       // LR()
9415       __ blx(lr);
9416       RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
9417     }
9418   };
9419   switch (invoke->GetCodePtrLocation()) {
9420     case CodePtrLocation::kCallSelf:
9421       {
9422         DCHECK(!GetGraph()->HasShouldDeoptimizeFlag());
9423         // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
9424         ExactAssemblyScope aas(GetVIXLAssembler(),
9425                                vixl32::k32BitT32InstructionSizeInBytes,
9426                                CodeBufferCheckScope::kMaximumSize);
9427         __ bl(GetFrameEntryLabel());
9428         RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
9429       }
9430       break;
9431     case CodePtrLocation::kCallCriticalNative: {
9432       size_t out_frame_size =
9433           PrepareCriticalNativeCall<CriticalNativeCallingConventionVisitorARMVIXL,
9434                                     kAapcsStackAlignment,
9435                                     GetCriticalNativeDirectCallFrameSize>(invoke);
9436       call_code_pointer_member(ArtMethod::EntryPointFromJniOffset(kArmPointerSize));
9437       // Move the result when needed due to native and managed ABI mismatch.
9438       switch (invoke->GetType()) {
9439         case DataType::Type::kFloat32:
9440           __ Vmov(s0, r0);
9441           break;
9442         case DataType::Type::kFloat64:
9443           __ Vmov(d0, r0, r1);
9444           break;
9445         case DataType::Type::kBool:
9446         case DataType::Type::kInt8:
9447         case DataType::Type::kUint16:
9448         case DataType::Type::kInt16:
9449         case DataType::Type::kInt32:
9450         case DataType::Type::kInt64:
9451         case DataType::Type::kVoid:
9452           break;
9453         default:
9454           DCHECK(false) << invoke->GetType();
9455           break;
9456       }
9457       if (out_frame_size != 0u) {
9458         DecreaseFrame(out_frame_size);
9459       }
9460       break;
9461     }
9462     case CodePtrLocation::kCallArtMethod:
9463       call_code_pointer_member(ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize));
9464       break;
9465   }
9466 
9467   DCHECK(!IsLeafMethod());
9468 }
9469 
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_location,SlowPathCode * slow_path)9470 void CodeGeneratorARMVIXL::GenerateVirtualCall(
9471     HInvokeVirtual* invoke, Location temp_location, SlowPathCode* slow_path) {
9472   vixl32::Register temp = RegisterFrom(temp_location);
9473   uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
9474       invoke->GetVTableIndex(), kArmPointerSize).Uint32Value();
9475 
9476   // Use the calling convention instead of the location of the receiver, as
9477   // intrinsics may have put the receiver in a different register. In the intrinsics
9478   // slow path, the arguments have been moved to the right place, so here we are
9479   // guaranteed that the receiver is the first register of the calling convention.
9480   InvokeDexCallingConventionARMVIXL calling_convention;
9481   vixl32::Register receiver = calling_convention.GetRegisterAt(0);
9482   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
9483   {
9484     // Make sure the pc is recorded immediately after the `ldr` instruction.
9485     ExactAssemblyScope aas(GetVIXLAssembler(),
9486                            vixl32::kMaxInstructionSizeInBytes,
9487                            CodeBufferCheckScope::kMaximumSize);
9488     // /* HeapReference<Class> */ temp = receiver->klass_
9489     __ ldr(temp, MemOperand(receiver, class_offset));
9490     MaybeRecordImplicitNullCheck(invoke);
9491   }
9492   // Instead of simply (possibly) unpoisoning `temp` here, we should
9493   // emit a read barrier for the previous class reference load.
9494   // However this is not required in practice, as this is an
9495   // intermediate/temporary reference and because the current
9496   // concurrent copying collector keeps the from-space memory
9497   // intact/accessible until the end of the marking phase (the
9498   // concurrent copying collector may not in the future).
9499   GetAssembler()->MaybeUnpoisonHeapReference(temp);
9500 
9501   // If we're compiling baseline, update the inline cache.
9502   MaybeGenerateInlineCacheCheck(invoke, temp);
9503 
9504   // temp = temp->GetMethodAt(method_offset);
9505   uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
9506       kArmPointerSize).Int32Value();
9507   GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset);
9508   // LR = temp->GetEntryPoint();
9509   GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point);
9510   {
9511     // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
9512     // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
9513     ExactAssemblyScope aas(GetVIXLAssembler(),
9514                            vixl32::k16BitT32InstructionSizeInBytes,
9515                            CodeBufferCheckScope::kExactSize);
9516     // LR();
9517     __ blx(lr);
9518     RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
9519   }
9520 }
9521 
NewBootImageIntrinsicPatch(uint32_t intrinsic_data)9522 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageIntrinsicPatch(
9523     uint32_t intrinsic_data) {
9524   return NewPcRelativePatch(/* dex_file= */ nullptr, intrinsic_data, &boot_image_other_patches_);
9525 }
9526 
NewBootImageRelRoPatch(uint32_t boot_image_offset)9527 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageRelRoPatch(
9528     uint32_t boot_image_offset) {
9529   return NewPcRelativePatch(/* dex_file= */ nullptr,
9530                             boot_image_offset,
9531                             &boot_image_other_patches_);
9532 }
9533 
NewBootImageMethodPatch(MethodReference target_method)9534 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageMethodPatch(
9535     MethodReference target_method) {
9536   return NewPcRelativePatch(
9537       target_method.dex_file, target_method.index, &boot_image_method_patches_);
9538 }
9539 
NewMethodBssEntryPatch(MethodReference target_method)9540 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewMethodBssEntryPatch(
9541     MethodReference target_method) {
9542   return NewPcRelativePatch(
9543       target_method.dex_file, target_method.index, &method_bss_entry_patches_);
9544 }
9545 
NewBootImageTypePatch(const DexFile & dex_file,dex::TypeIndex type_index)9546 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageTypePatch(
9547     const DexFile& dex_file, dex::TypeIndex type_index) {
9548   return NewPcRelativePatch(&dex_file, type_index.index_, &boot_image_type_patches_);
9549 }
9550 
NewTypeBssEntryPatch(HLoadClass * load_class)9551 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewTypeBssEntryPatch(
9552     HLoadClass* load_class) {
9553   const DexFile& dex_file = load_class->GetDexFile();
9554   dex::TypeIndex type_index = load_class->GetTypeIndex();
9555   ArenaDeque<PcRelativePatchInfo>* patches = nullptr;
9556   switch (load_class->GetLoadKind()) {
9557     case HLoadClass::LoadKind::kBssEntry:
9558       patches = &type_bss_entry_patches_;
9559       break;
9560     case HLoadClass::LoadKind::kBssEntryPublic:
9561       patches = &public_type_bss_entry_patches_;
9562       break;
9563     case HLoadClass::LoadKind::kBssEntryPackage:
9564       patches = &package_type_bss_entry_patches_;
9565       break;
9566     default:
9567       LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind();
9568       UNREACHABLE();
9569   }
9570   return NewPcRelativePatch(&dex_file, type_index.index_, patches);
9571 }
9572 
NewBootImageStringPatch(const DexFile & dex_file,dex::StringIndex string_index)9573 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageStringPatch(
9574     const DexFile& dex_file, dex::StringIndex string_index) {
9575   return NewPcRelativePatch(&dex_file, string_index.index_, &boot_image_string_patches_);
9576 }
9577 
NewStringBssEntryPatch(const DexFile & dex_file,dex::StringIndex string_index)9578 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewStringBssEntryPatch(
9579     const DexFile& dex_file, dex::StringIndex string_index) {
9580   return NewPcRelativePatch(&dex_file, string_index.index_, &string_bss_entry_patches_);
9581 }
9582 
NewPcRelativePatch(const DexFile * dex_file,uint32_t offset_or_index,ArenaDeque<PcRelativePatchInfo> * patches)9583 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativePatch(
9584     const DexFile* dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) {
9585   patches->emplace_back(dex_file, offset_or_index);
9586   return &patches->back();
9587 }
9588 
EmitEntrypointThunkCall(ThreadOffset32 entrypoint_offset)9589 void CodeGeneratorARMVIXL::EmitEntrypointThunkCall(ThreadOffset32 entrypoint_offset) {
9590   DCHECK(!__ AllowMacroInstructions());  // In ExactAssemblyScope.
9591   DCHECK(!GetCompilerOptions().IsJitCompiler());
9592   call_entrypoint_patches_.emplace_back(/*dex_file*/ nullptr, entrypoint_offset.Uint32Value());
9593   vixl::aarch32::Label* bl_label = &call_entrypoint_patches_.back().label;
9594   __ bind(bl_label);
9595   vixl32::Label placeholder_label;
9596   __ bl(&placeholder_label);  // Placeholder, patched at link-time.
9597   __ bind(&placeholder_label);
9598 }
9599 
EmitBakerReadBarrierBne(uint32_t custom_data)9600 void CodeGeneratorARMVIXL::EmitBakerReadBarrierBne(uint32_t custom_data) {
9601   DCHECK(!__ AllowMacroInstructions());  // In ExactAssemblyScope.
9602   if (GetCompilerOptions().IsJitCompiler()) {
9603     auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data);
9604     vixl::aarch32::Label* slow_path_entry = &it->second.label;
9605     __ b(ne, EncodingSize(Wide), slow_path_entry);
9606   } else {
9607     baker_read_barrier_patches_.emplace_back(custom_data);
9608     vixl::aarch32::Label* patch_label = &baker_read_barrier_patches_.back().label;
9609     __ bind(patch_label);
9610     vixl32::Label placeholder_label;
9611     __ b(ne, EncodingSize(Wide), &placeholder_label);  // Placeholder, patched at link-time.
9612     __ bind(&placeholder_label);
9613   }
9614 }
9615 
DeduplicateBootImageAddressLiteral(uint32_t address)9616 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateBootImageAddressLiteral(uint32_t address) {
9617   return DeduplicateUint32Literal(address, &uint32_literals_);
9618 }
9619 
DeduplicateJitStringLiteral(const DexFile & dex_file,dex::StringIndex string_index,Handle<mirror::String> handle)9620 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitStringLiteral(
9621     const DexFile& dex_file,
9622     dex::StringIndex string_index,
9623     Handle<mirror::String> handle) {
9624   ReserveJitStringRoot(StringReference(&dex_file, string_index), handle);
9625   return jit_string_patches_.GetOrCreate(
9626       StringReference(&dex_file, string_index),
9627       [this]() {
9628         return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u);
9629       });
9630 }
9631 
DeduplicateJitClassLiteral(const DexFile & dex_file,dex::TypeIndex type_index,Handle<mirror::Class> handle)9632 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitClassLiteral(const DexFile& dex_file,
9633                                                       dex::TypeIndex type_index,
9634                                                       Handle<mirror::Class> handle) {
9635   ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle);
9636   return jit_class_patches_.GetOrCreate(
9637       TypeReference(&dex_file, type_index),
9638       [this]() {
9639         return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u);
9640       });
9641 }
9642 
LoadBootImageRelRoEntry(vixl32::Register reg,uint32_t boot_image_offset)9643 void CodeGeneratorARMVIXL::LoadBootImageRelRoEntry(vixl32::Register reg,
9644                                                    uint32_t boot_image_offset) {
9645   CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = NewBootImageRelRoPatch(boot_image_offset);
9646   EmitMovwMovtPlaceholder(labels, reg);
9647   __ Ldr(reg, MemOperand(reg, /*offset=*/ 0));
9648 }
9649 
LoadBootImageAddress(vixl32::Register reg,uint32_t boot_image_reference)9650 void CodeGeneratorARMVIXL::LoadBootImageAddress(vixl32::Register reg,
9651                                                 uint32_t boot_image_reference) {
9652   if (GetCompilerOptions().IsBootImage()) {
9653     CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
9654         NewBootImageIntrinsicPatch(boot_image_reference);
9655     EmitMovwMovtPlaceholder(labels, reg);
9656   } else if (GetCompilerOptions().GetCompilePic()) {
9657     LoadBootImageRelRoEntry(reg, boot_image_reference);
9658   } else {
9659     DCHECK(GetCompilerOptions().IsJitCompiler());
9660     gc::Heap* heap = Runtime::Current()->GetHeap();
9661     DCHECK(!heap->GetBootImageSpaces().empty());
9662     uintptr_t address =
9663         reinterpret_cast<uintptr_t>(heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference);
9664     __ Ldr(reg, DeduplicateBootImageAddressLiteral(dchecked_integral_cast<uint32_t>(address)));
9665   }
9666 }
9667 
LoadTypeForBootImageIntrinsic(vixl::aarch32::Register reg,TypeReference target_type)9668 void CodeGeneratorARMVIXL::LoadTypeForBootImageIntrinsic(vixl::aarch32::Register reg,
9669                                                          TypeReference target_type) {
9670   // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative.
9671   DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
9672   PcRelativePatchInfo* labels =
9673       NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex());
9674   EmitMovwMovtPlaceholder(labels, reg);
9675 }
9676 
LoadIntrinsicDeclaringClass(vixl32::Register reg,HInvoke * invoke)9677 void CodeGeneratorARMVIXL::LoadIntrinsicDeclaringClass(vixl32::Register reg, HInvoke* invoke) {
9678   DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone);
9679   if (GetCompilerOptions().IsBootImage()) {
9680     MethodReference target_method = invoke->GetResolvedMethodReference();
9681     dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_;
9682     LoadTypeForBootImageIntrinsic(reg, TypeReference(target_method.dex_file, type_idx));
9683   } else {
9684     uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke);
9685     LoadBootImageAddress(reg, boot_image_offset);
9686   }
9687 }
9688 
LoadClassRootForIntrinsic(vixl::aarch32::Register reg,ClassRoot class_root)9689 void CodeGeneratorARMVIXL::LoadClassRootForIntrinsic(vixl::aarch32::Register reg,
9690                                                      ClassRoot class_root) {
9691   if (GetCompilerOptions().IsBootImage()) {
9692     ScopedObjectAccess soa(Thread::Current());
9693     ObjPtr<mirror::Class> klass = GetClassRoot(class_root);
9694     TypeReference target_type(&klass->GetDexFile(), klass->GetDexTypeIndex());
9695     LoadTypeForBootImageIntrinsic(reg, target_type);
9696   } else {
9697     uint32_t boot_image_offset = GetBootImageOffset(class_root);
9698     LoadBootImageAddress(reg, boot_image_offset);
9699   }
9700 }
9701 
9702 template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo> & infos,ArenaVector<linker::LinkerPatch> * linker_patches)9703 inline void CodeGeneratorARMVIXL::EmitPcRelativeLinkerPatches(
9704     const ArenaDeque<PcRelativePatchInfo>& infos,
9705     ArenaVector<linker::LinkerPatch>* linker_patches) {
9706   for (const PcRelativePatchInfo& info : infos) {
9707     const DexFile* dex_file = info.target_dex_file;
9708     size_t offset_or_index = info.offset_or_index;
9709     DCHECK(info.add_pc_label.IsBound());
9710     uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.GetLocation());
9711     // Add MOVW patch.
9712     DCHECK(info.movw_label.IsBound());
9713     uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.GetLocation());
9714     linker_patches->push_back(Factory(movw_offset, dex_file, add_pc_offset, offset_or_index));
9715     // Add MOVT patch.
9716     DCHECK(info.movt_label.IsBound());
9717     uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.GetLocation());
9718     linker_patches->push_back(Factory(movt_offset, dex_file, add_pc_offset, offset_or_index));
9719   }
9720 }
9721 
9722 template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)>
NoDexFileAdapter(size_t literal_offset,const DexFile * target_dex_file,uint32_t pc_insn_offset,uint32_t boot_image_offset)9723 linker::LinkerPatch NoDexFileAdapter(size_t literal_offset,
9724                                      const DexFile* target_dex_file,
9725                                      uint32_t pc_insn_offset,
9726                                      uint32_t boot_image_offset) {
9727   DCHECK(target_dex_file == nullptr);  // Unused for these patches, should be null.
9728   return Factory(literal_offset, pc_insn_offset, boot_image_offset);
9729 }
9730 
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches)9731 void CodeGeneratorARMVIXL::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
9732   DCHECK(linker_patches->empty());
9733   size_t size =
9734       /* MOVW+MOVT for each entry */ 2u * boot_image_method_patches_.size() +
9735       /* MOVW+MOVT for each entry */ 2u * method_bss_entry_patches_.size() +
9736       /* MOVW+MOVT for each entry */ 2u * boot_image_type_patches_.size() +
9737       /* MOVW+MOVT for each entry */ 2u * type_bss_entry_patches_.size() +
9738       /* MOVW+MOVT for each entry */ 2u * public_type_bss_entry_patches_.size() +
9739       /* MOVW+MOVT for each entry */ 2u * package_type_bss_entry_patches_.size() +
9740       /* MOVW+MOVT for each entry */ 2u * boot_image_string_patches_.size() +
9741       /* MOVW+MOVT for each entry */ 2u * string_bss_entry_patches_.size() +
9742       /* MOVW+MOVT for each entry */ 2u * boot_image_other_patches_.size() +
9743       call_entrypoint_patches_.size() +
9744       baker_read_barrier_patches_.size();
9745   linker_patches->reserve(size);
9746   if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
9747     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
9748         boot_image_method_patches_, linker_patches);
9749     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
9750         boot_image_type_patches_, linker_patches);
9751     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
9752         boot_image_string_patches_, linker_patches);
9753   } else {
9754     DCHECK(boot_image_method_patches_.empty());
9755     DCHECK(boot_image_type_patches_.empty());
9756     DCHECK(boot_image_string_patches_.empty());
9757   }
9758   if (GetCompilerOptions().IsBootImage()) {
9759     EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>(
9760         boot_image_other_patches_, linker_patches);
9761   } else {
9762     EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>(
9763         boot_image_other_patches_, linker_patches);
9764   }
9765   EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
9766       method_bss_entry_patches_, linker_patches);
9767   EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
9768       type_bss_entry_patches_, linker_patches);
9769   EmitPcRelativeLinkerPatches<linker::LinkerPatch::PublicTypeBssEntryPatch>(
9770       public_type_bss_entry_patches_, linker_patches);
9771   EmitPcRelativeLinkerPatches<linker::LinkerPatch::PackageTypeBssEntryPatch>(
9772       package_type_bss_entry_patches_, linker_patches);
9773   EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
9774       string_bss_entry_patches_, linker_patches);
9775   for (const PatchInfo<vixl32::Label>& info : call_entrypoint_patches_) {
9776     DCHECK(info.target_dex_file == nullptr);
9777     linker_patches->push_back(linker::LinkerPatch::CallEntrypointPatch(
9778         info.label.GetLocation(), info.offset_or_index));
9779   }
9780   for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
9781     linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch(
9782         info.label.GetLocation(), info.custom_data));
9783   }
9784   DCHECK_EQ(size, linker_patches->size());
9785 }
9786 
NeedsThunkCode(const linker::LinkerPatch & patch) const9787 bool CodeGeneratorARMVIXL::NeedsThunkCode(const linker::LinkerPatch& patch) const {
9788   return patch.GetType() == linker::LinkerPatch::Type::kCallEntrypoint ||
9789          patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch ||
9790          patch.GetType() == linker::LinkerPatch::Type::kCallRelative;
9791 }
9792 
EmitThunkCode(const linker::LinkerPatch & patch,ArenaVector<uint8_t> * code,std::string * debug_name)9793 void CodeGeneratorARMVIXL::EmitThunkCode(const linker::LinkerPatch& patch,
9794                                          /*out*/ ArenaVector<uint8_t>* code,
9795                                          /*out*/ std::string* debug_name) {
9796   arm::ArmVIXLAssembler assembler(GetGraph()->GetAllocator());
9797   switch (patch.GetType()) {
9798     case linker::LinkerPatch::Type::kCallRelative: {
9799       // The thunk just uses the entry point in the ArtMethod. This works even for calls
9800       // to the generic JNI and interpreter trampolines.
9801       MemberOffset offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize);
9802       assembler.LoadFromOffset(arm::kLoadWord, vixl32::pc, vixl32::r0, offset.Int32Value());
9803       assembler.GetVIXLAssembler()->Bkpt(0);
9804       if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
9805         *debug_name = "MethodCallThunk";
9806       }
9807       break;
9808     }
9809     case linker::LinkerPatch::Type::kCallEntrypoint: {
9810       assembler.LoadFromOffset(arm::kLoadWord, vixl32::pc, tr, patch.EntrypointOffset());
9811       assembler.GetVIXLAssembler()->Bkpt(0);
9812       if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
9813         *debug_name = "EntrypointCallThunk_" + std::to_string(patch.EntrypointOffset());
9814       }
9815       break;
9816     }
9817     case linker::LinkerPatch::Type::kBakerReadBarrierBranch: {
9818       DCHECK_EQ(patch.GetBakerCustomValue2(), 0u);
9819       CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name);
9820       break;
9821     }
9822     default:
9823       LOG(FATAL) << "Unexpected patch type " << patch.GetType();
9824       UNREACHABLE();
9825   }
9826 
9827   // Ensure we emit the literal pool if any.
9828   assembler.FinalizeCode();
9829   code->resize(assembler.CodeSize());
9830   MemoryRegion code_region(code->data(), code->size());
9831   assembler.FinalizeInstructions(code_region);
9832 }
9833 
DeduplicateUint32Literal(uint32_t value,Uint32ToLiteralMap * map)9834 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateUint32Literal(
9835     uint32_t value,
9836     Uint32ToLiteralMap* map) {
9837   return map->GetOrCreate(
9838       value,
9839       [this, value]() {
9840         return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ value);
9841       });
9842 }
9843 
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)9844 void LocationsBuilderARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
9845   LocationSummary* locations =
9846       new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall);
9847   locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
9848                      Location::RequiresRegister());
9849   locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
9850   locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
9851   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
9852 }
9853 
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)9854 void InstructionCodeGeneratorARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
9855   vixl32::Register res = OutputRegister(instr);
9856   vixl32::Register accumulator =
9857       InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
9858   vixl32::Register mul_left =
9859       InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
9860   vixl32::Register mul_right =
9861       InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
9862 
9863   if (instr->GetOpKind() == HInstruction::kAdd) {
9864     __ Mla(res, mul_left, mul_right, accumulator);
9865   } else {
9866     __ Mls(res, mul_left, mul_right, accumulator);
9867   }
9868 }
9869 
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)9870 void LocationsBuilderARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
9871   // Nothing to do, this should be removed during prepare for register allocator.
9872   LOG(FATAL) << "Unreachable";
9873 }
9874 
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)9875 void InstructionCodeGeneratorARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
9876   // Nothing to do, this should be removed during prepare for register allocator.
9877   LOG(FATAL) << "Unreachable";
9878 }
9879 
9880 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)9881 void LocationsBuilderARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) {
9882   LocationSummary* locations =
9883       new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
9884   locations->SetInAt(0, Location::RequiresRegister());
9885   if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold &&
9886       codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) {
9887     locations->AddTemp(Location::RequiresRegister());  // We need a temp for the table base.
9888     if (switch_instr->GetStartValue() != 0) {
9889       locations->AddTemp(Location::RequiresRegister());  // We need a temp for the bias.
9890     }
9891   }
9892 }
9893 
9894 // TODO(VIXL): Investigate and reach the parity with old arm codegen.
VisitPackedSwitch(HPackedSwitch * switch_instr)9895 void InstructionCodeGeneratorARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) {
9896   int32_t lower_bound = switch_instr->GetStartValue();
9897   uint32_t num_entries = switch_instr->GetNumEntries();
9898   LocationSummary* locations = switch_instr->GetLocations();
9899   vixl32::Register value_reg = InputRegisterAt(switch_instr, 0);
9900   HBasicBlock* default_block = switch_instr->GetDefaultBlock();
9901 
9902   if (num_entries <= kPackedSwitchCompareJumpThreshold ||
9903       !codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) {
9904     // Create a series of compare/jumps.
9905     UseScratchRegisterScope temps(GetVIXLAssembler());
9906     vixl32::Register temp_reg = temps.Acquire();
9907     // Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store
9908     // the immediate, because IP is used as the destination register. For the other
9909     // AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant,
9910     // and they can be encoded in the instruction without making use of IP register.
9911     __ Adds(temp_reg, value_reg, -lower_bound);
9912 
9913     const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
9914     // Jump to successors[0] if value == lower_bound.
9915     __ B(eq, codegen_->GetLabelOf(successors[0]));
9916     int32_t last_index = 0;
9917     for (; num_entries - last_index > 2; last_index += 2) {
9918       __ Adds(temp_reg, temp_reg, -2);
9919       // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
9920       __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
9921       // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
9922       __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
9923     }
9924     if (num_entries - last_index == 2) {
9925       // The last missing case_value.
9926       __ Cmp(temp_reg, 1);
9927       __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
9928     }
9929 
9930     // And the default for any other value.
9931     if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
9932       __ B(codegen_->GetLabelOf(default_block));
9933     }
9934   } else {
9935     // Create a table lookup.
9936     vixl32::Register table_base = RegisterFrom(locations->GetTemp(0));
9937 
9938     JumpTableARMVIXL* jump_table = codegen_->CreateJumpTable(switch_instr);
9939 
9940     // Remove the bias.
9941     vixl32::Register key_reg;
9942     if (lower_bound != 0) {
9943       key_reg = RegisterFrom(locations->GetTemp(1));
9944       __ Sub(key_reg, value_reg, lower_bound);
9945     } else {
9946       key_reg = value_reg;
9947     }
9948 
9949     // Check whether the value is in the table, jump to default block if not.
9950     __ Cmp(key_reg, num_entries - 1);
9951     __ B(hi, codegen_->GetLabelOf(default_block));
9952 
9953     UseScratchRegisterScope temps(GetVIXLAssembler());
9954     vixl32::Register jump_offset = temps.Acquire();
9955 
9956     // Load jump offset from the table.
9957     {
9958       const size_t jump_size = switch_instr->GetNumEntries() * sizeof(int32_t);
9959       ExactAssemblyScope aas(GetVIXLAssembler(),
9960                              (vixl32::kMaxInstructionSizeInBytes * 4) + jump_size,
9961                              CodeBufferCheckScope::kMaximumSize);
9962       __ adr(table_base, jump_table->GetTableStartLabel());
9963       __ ldr(jump_offset, MemOperand(table_base, key_reg, vixl32::LSL, 2));
9964 
9965       // Jump to target block by branching to table_base(pc related) + offset.
9966       vixl32::Register target_address = table_base;
9967       __ add(target_address, table_base, jump_offset);
9968       __ bx(target_address);
9969 
9970       jump_table->EmitTable(codegen_);
9971     }
9972   }
9973 }
9974 
9975 // Copy the result of a call into the given target.
MoveFromReturnRegister(Location trg,DataType::Type type)9976 void CodeGeneratorARMVIXL::MoveFromReturnRegister(Location trg, DataType::Type type) {
9977   if (!trg.IsValid()) {
9978     DCHECK_EQ(type, DataType::Type::kVoid);
9979     return;
9980   }
9981 
9982   DCHECK_NE(type, DataType::Type::kVoid);
9983 
9984   Location return_loc = InvokeDexCallingConventionVisitorARMVIXL().GetReturnLocation(type);
9985   if (return_loc.Equals(trg)) {
9986     return;
9987   }
9988 
9989   // Let the parallel move resolver take care of all of this.
9990   HParallelMove parallel_move(GetGraph()->GetAllocator());
9991   parallel_move.AddMove(return_loc, trg, type, nullptr);
9992   GetMoveResolver()->EmitNativeCode(&parallel_move);
9993 }
9994 
VisitClassTableGet(HClassTableGet * instruction)9995 void LocationsBuilderARMVIXL::VisitClassTableGet(HClassTableGet* instruction) {
9996   LocationSummary* locations =
9997       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
9998   locations->SetInAt(0, Location::RequiresRegister());
9999   locations->SetOut(Location::RequiresRegister());
10000 }
10001 
VisitClassTableGet(HClassTableGet * instruction)10002 void InstructionCodeGeneratorARMVIXL::VisitClassTableGet(HClassTableGet* instruction) {
10003   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
10004     uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
10005         instruction->GetIndex(), kArmPointerSize).SizeValue();
10006     GetAssembler()->LoadFromOffset(kLoadWord,
10007                                    OutputRegister(instruction),
10008                                    InputRegisterAt(instruction, 0),
10009                                    method_offset);
10010   } else {
10011     uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
10012         instruction->GetIndex(), kArmPointerSize));
10013     GetAssembler()->LoadFromOffset(kLoadWord,
10014                                    OutputRegister(instruction),
10015                                    InputRegisterAt(instruction, 0),
10016                                    mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
10017     GetAssembler()->LoadFromOffset(kLoadWord,
10018                                    OutputRegister(instruction),
10019                                    OutputRegister(instruction),
10020                                    method_offset);
10021   }
10022 }
10023 
PatchJitRootUse(uint8_t * code,const uint8_t * roots_data,VIXLUInt32Literal * literal,uint64_t index_in_table)10024 static void PatchJitRootUse(uint8_t* code,
10025                             const uint8_t* roots_data,
10026                             VIXLUInt32Literal* literal,
10027                             uint64_t index_in_table) {
10028   DCHECK(literal->IsBound());
10029   uint32_t literal_offset = literal->GetLocation();
10030   uintptr_t address =
10031       reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
10032   uint8_t* data = code + literal_offset;
10033   reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address);
10034 }
10035 
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)10036 void CodeGeneratorARMVIXL::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
10037   for (const auto& entry : jit_string_patches_) {
10038     const StringReference& string_reference = entry.first;
10039     VIXLUInt32Literal* table_entry_literal = entry.second;
10040     uint64_t index_in_table = GetJitStringRootIndex(string_reference);
10041     PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
10042   }
10043   for (const auto& entry : jit_class_patches_) {
10044     const TypeReference& type_reference = entry.first;
10045     VIXLUInt32Literal* table_entry_literal = entry.second;
10046     uint64_t index_in_table = GetJitClassRootIndex(type_reference);
10047     PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
10048   }
10049 }
10050 
EmitMovwMovtPlaceholder(CodeGeneratorARMVIXL::PcRelativePatchInfo * labels,vixl32::Register out)10051 void CodeGeneratorARMVIXL::EmitMovwMovtPlaceholder(
10052     CodeGeneratorARMVIXL::PcRelativePatchInfo* labels,
10053     vixl32::Register out) {
10054   ExactAssemblyScope aas(GetVIXLAssembler(),
10055                          3 * vixl32::kMaxInstructionSizeInBytes,
10056                          CodeBufferCheckScope::kMaximumSize);
10057   // TODO(VIXL): Think about using mov instead of movw.
10058   __ bind(&labels->movw_label);
10059   __ movw(out, /* operand= */ 0u);
10060   __ bind(&labels->movt_label);
10061   __ movt(out, /* operand= */ 0u);
10062   __ bind(&labels->add_pc_label);
10063   __ add(out, out, pc);
10064 }
10065 
10066 #undef __
10067 #undef QUICK_ENTRY_POINT
10068 #undef TODO_VIXL32
10069 
10070 #define __ assembler.GetVIXLAssembler()->
10071 
EmitGrayCheckAndFastPath(ArmVIXLAssembler & assembler,vixl32::Register base_reg,vixl32::MemOperand & lock_word,vixl32::Label * slow_path,int32_t raw_ldr_offset,vixl32::Label * throw_npe=nullptr)10072 static void EmitGrayCheckAndFastPath(ArmVIXLAssembler& assembler,
10073                                      vixl32::Register base_reg,
10074                                      vixl32::MemOperand& lock_word,
10075                                      vixl32::Label* slow_path,
10076                                      int32_t raw_ldr_offset,
10077                                      vixl32::Label* throw_npe = nullptr) {
10078   // Load the lock word containing the rb_state.
10079   __ Ldr(ip, lock_word);
10080   // Given the numeric representation, it's enough to check the low bit of the rb_state.
10081   static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
10082   static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
10083   __ Tst(ip, Operand(LockWord::kReadBarrierStateMaskShifted));
10084   __ B(ne, slow_path, /* is_far_target= */ false);
10085   // To throw NPE, we return to the fast path; the artificial dependence below does not matter.
10086   if (throw_npe != nullptr) {
10087     __ Bind(throw_npe);
10088   }
10089   __ Add(lr, lr, raw_ldr_offset);
10090   // Introduce a dependency on the lock_word including rb_state,
10091   // to prevent load-load reordering, and without using
10092   // a memory barrier (which would be more expensive).
10093   __ Add(base_reg, base_reg, Operand(ip, LSR, 32));
10094   __ Bx(lr);          // And return back to the function.
10095   // Note: The fake dependency is unnecessary for the slow path.
10096 }
10097 
10098 // Load the read barrier introspection entrypoint in register `entrypoint`
LoadReadBarrierMarkIntrospectionEntrypoint(ArmVIXLAssembler & assembler)10099 static vixl32::Register LoadReadBarrierMarkIntrospectionEntrypoint(ArmVIXLAssembler& assembler) {
10100   // The register where the read barrier introspection entrypoint is loaded
10101   // is the marking register. We clobber it here and the entrypoint restores it to 1.
10102   vixl32::Register entrypoint = mr;
10103   // entrypoint = Thread::Current()->pReadBarrierMarkReg12, i.e. pReadBarrierMarkIntrospection.
10104   DCHECK_EQ(ip.GetCode(), 12u);
10105   const int32_t entry_point_offset =
10106       Thread::ReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ip.GetCode());
10107   __ Ldr(entrypoint, MemOperand(tr, entry_point_offset));
10108   return entrypoint;
10109 }
10110 
CompileBakerReadBarrierThunk(ArmVIXLAssembler & assembler,uint32_t encoded_data,std::string * debug_name)10111 void CodeGeneratorARMVIXL::CompileBakerReadBarrierThunk(ArmVIXLAssembler& assembler,
10112                                                         uint32_t encoded_data,
10113                                                         /*out*/ std::string* debug_name) {
10114   BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
10115   switch (kind) {
10116     case BakerReadBarrierKind::kField: {
10117       vixl32::Register base_reg(BakerReadBarrierFirstRegField::Decode(encoded_data));
10118       CheckValidReg(base_reg.GetCode());
10119       vixl32::Register holder_reg(BakerReadBarrierSecondRegField::Decode(encoded_data));
10120       CheckValidReg(holder_reg.GetCode());
10121       BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
10122       UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
10123       temps.Exclude(ip);
10124       // In the case of a field load, if `base_reg` differs from
10125       // `holder_reg`, the offset was too large and we must have emitted (during the construction
10126       // of the HIR graph, see `art::HInstructionBuilder::BuildInstanceFieldAccess`) and preserved
10127       // (see `art::PrepareForRegisterAllocation::VisitNullCheck`) an explicit null check before
10128       // the load. Otherwise, for implicit null checks, we need to null-check the holder as we do
10129       // not necessarily do that check before going to the thunk.
10130       vixl32::Label throw_npe_label;
10131       vixl32::Label* throw_npe = nullptr;
10132       if (GetCompilerOptions().GetImplicitNullChecks() && holder_reg.Is(base_reg)) {
10133         throw_npe = &throw_npe_label;
10134         __ CompareAndBranchIfZero(holder_reg, throw_npe, /* is_far_target= */ false);
10135       }
10136       // Check if the holder is gray and, if not, add fake dependency to the base register
10137       // and return to the LDR instruction to load the reference. Otherwise, use introspection
10138       // to load the reference and call the entrypoint that performs further checks on the
10139       // reference and marks it if needed.
10140       vixl32::Label slow_path;
10141       MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
10142       const int32_t raw_ldr_offset = (width == BakerReadBarrierWidth::kWide)
10143           ? BAKER_MARK_INTROSPECTION_FIELD_LDR_WIDE_OFFSET
10144           : BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_OFFSET;
10145       EmitGrayCheckAndFastPath(
10146           assembler, base_reg, lock_word, &slow_path, raw_ldr_offset, throw_npe);
10147       __ Bind(&slow_path);
10148       const int32_t ldr_offset = /* Thumb state adjustment (LR contains Thumb state). */ -1 +
10149                                  raw_ldr_offset;
10150       vixl32::Register ep_reg = LoadReadBarrierMarkIntrospectionEntrypoint(assembler);
10151       if (width == BakerReadBarrierWidth::kWide) {
10152         MemOperand ldr_half_address(lr, ldr_offset + 2);
10153         __ Ldrh(ip, ldr_half_address);        // Load the LDR immediate half-word with "Rt | imm12".
10154         __ Ubfx(ip, ip, 0, 12);               // Extract the offset imm12.
10155         __ Ldr(ip, MemOperand(base_reg, ip));   // Load the reference.
10156       } else {
10157         MemOperand ldr_address(lr, ldr_offset);
10158         __ Ldrh(ip, ldr_address);             // Load the LDR immediate, encoding T1.
10159         __ Add(ep_reg,                        // Adjust the entrypoint address to the entrypoint
10160                ep_reg,                        // for narrow LDR.
10161                Operand(BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_ENTRYPOINT_OFFSET));
10162         __ Ubfx(ip, ip, 6, 5);                // Extract the imm5, i.e. offset / 4.
10163         __ Ldr(ip, MemOperand(base_reg, ip, LSL, 2));   // Load the reference.
10164       }
10165       // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
10166       __ Bx(ep_reg);                          // Jump to the entrypoint.
10167       break;
10168     }
10169     case BakerReadBarrierKind::kArray: {
10170       vixl32::Register base_reg(BakerReadBarrierFirstRegField::Decode(encoded_data));
10171       CheckValidReg(base_reg.GetCode());
10172       DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
10173                 BakerReadBarrierSecondRegField::Decode(encoded_data));
10174       DCHECK(BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide);
10175       UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
10176       temps.Exclude(ip);
10177       vixl32::Label slow_path;
10178       int32_t data_offset =
10179           mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value();
10180       MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset);
10181       DCHECK_LT(lock_word.GetOffsetImmediate(), 0);
10182       const int32_t raw_ldr_offset = BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET;
10183       EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, raw_ldr_offset);
10184       __ Bind(&slow_path);
10185       const int32_t ldr_offset = /* Thumb state adjustment (LR contains Thumb state). */ -1 +
10186                                  raw_ldr_offset;
10187       MemOperand ldr_address(lr, ldr_offset + 2);
10188       __ Ldrb(ip, ldr_address);               // Load the LDR (register) byte with "00 | imm2 | Rm",
10189                                               // i.e. Rm+32 because the scale in imm2 is 2.
10190       vixl32::Register ep_reg = LoadReadBarrierMarkIntrospectionEntrypoint(assembler);
10191       __ Bfi(ep_reg, ip, 3, 6);               // Insert ip to the entrypoint address to create
10192                                               // a switch case target based on the index register.
10193       __ Mov(ip, base_reg);                   // Move the base register to ip0.
10194       __ Bx(ep_reg);                          // Jump to the entrypoint's array switch case.
10195       break;
10196     }
10197     case BakerReadBarrierKind::kGcRoot:
10198     case BakerReadBarrierKind::kIntrinsicCas: {
10199       // Check if the reference needs to be marked and if so (i.e. not null, not marked yet
10200       // and it does not have a forwarding address), call the correct introspection entrypoint;
10201       // otherwise return the reference (or the extracted forwarding address).
10202       // There is no gray bit check for GC roots.
10203       vixl32::Register root_reg(BakerReadBarrierFirstRegField::Decode(encoded_data));
10204       CheckValidReg(root_reg.GetCode());
10205       DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
10206                 BakerReadBarrierSecondRegField::Decode(encoded_data));
10207       BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
10208       UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
10209       temps.Exclude(ip);
10210       vixl32::Label return_label, not_marked, forwarding_address;
10211       __ CompareAndBranchIfZero(root_reg, &return_label, /* is_far_target= */ false);
10212       MemOperand lock_word(root_reg, mirror::Object::MonitorOffset().Int32Value());
10213       __ Ldr(ip, lock_word);
10214       __ Tst(ip, LockWord::kMarkBitStateMaskShifted);
10215       __ B(eq, &not_marked);
10216       __ Bind(&return_label);
10217       __ Bx(lr);
10218       __ Bind(&not_marked);
10219       static_assert(LockWord::kStateShift == 30 && LockWord::kStateForwardingAddress == 3,
10220                     "To use 'CMP ip, #modified-immediate; BHS', we need the lock word state in "
10221                     " the highest bits and the 'forwarding address' state to have all bits set");
10222       __ Cmp(ip, Operand(0xc0000000));
10223       __ B(hs, &forwarding_address);
10224       vixl32::Register ep_reg = LoadReadBarrierMarkIntrospectionEntrypoint(assembler);
10225       // Adjust the art_quick_read_barrier_mark_introspection address
10226       // in kBakerCcEntrypointRegister to one of
10227       //     art_quick_read_barrier_mark_introspection_{gc_roots_{wide,narrow},intrinsic_cas}.
10228       if (kind == BakerReadBarrierKind::kIntrinsicCas) {
10229         DCHECK(width == BakerReadBarrierWidth::kWide);
10230         DCHECK(!root_reg.IsLow());
10231       }
10232       int32_t entrypoint_offset =
10233           (kind == BakerReadBarrierKind::kGcRoot)
10234               ? (width == BakerReadBarrierWidth::kWide)
10235                   ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_WIDE_ENTRYPOINT_OFFSET
10236                   : BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_ENTRYPOINT_OFFSET
10237               : BAKER_MARK_INTROSPECTION_INTRINSIC_CAS_ENTRYPOINT_OFFSET;
10238       __ Add(ep_reg, ep_reg, Operand(entrypoint_offset));
10239       __ Mov(ip, root_reg);
10240       __ Bx(ep_reg);
10241       __ Bind(&forwarding_address);
10242       __ Lsl(root_reg, ip, LockWord::kForwardingAddressShift);
10243       __ Bx(lr);
10244       break;
10245     }
10246     default:
10247       LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
10248       UNREACHABLE();
10249   }
10250 
10251   // For JIT, the slow path is considered part of the compiled method,
10252   // so JIT should pass null as `debug_name`.
10253   DCHECK_IMPLIES(GetCompilerOptions().IsJitCompiler(), debug_name == nullptr);
10254   if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
10255     std::ostringstream oss;
10256     oss << "BakerReadBarrierThunk";
10257     switch (kind) {
10258       case BakerReadBarrierKind::kField:
10259         oss << "Field";
10260         if (BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide) {
10261           oss << "Wide";
10262         }
10263         oss << "_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
10264             << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
10265         break;
10266       case BakerReadBarrierKind::kArray:
10267         oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
10268         DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
10269                   BakerReadBarrierSecondRegField::Decode(encoded_data));
10270         DCHECK(BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide);
10271         break;
10272       case BakerReadBarrierKind::kGcRoot:
10273         oss << "GcRoot";
10274         if (BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide) {
10275           oss << "Wide";
10276         }
10277         oss << "_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
10278         DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
10279                   BakerReadBarrierSecondRegField::Decode(encoded_data));
10280         break;
10281       case BakerReadBarrierKind::kIntrinsicCas:
10282         oss << "IntrinsicCas_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
10283         DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
10284                   BakerReadBarrierSecondRegField::Decode(encoded_data));
10285         DCHECK(BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide);
10286         break;
10287     }
10288     *debug_name = oss.str();
10289   }
10290 }
10291 
10292 #undef __
10293 
10294 }  // namespace arm
10295 }  // namespace art
10296