1 /*
2 * Copyright (c) 2019, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <stdint.h>
13
14 #include "av1/common/blockd.h"
15 #include "config/aom_config.h"
16 #include "config/aom_scale_rtcd.h"
17
18 #include "aom/aom_codec.h"
19 #include "aom/aom_encoder.h"
20
21 #if CONFIG_MISMATCH_DEBUG
22 #include "aom_util/debug_util.h"
23 #endif // CONFIG_MISMATCH_DEBUG
24
25 #include "av1/common/av1_common_int.h"
26 #include "av1/common/reconinter.h"
27
28 #include "av1/encoder/encoder.h"
29 #include "av1/encoder/encode_strategy.h"
30 #include "av1/encoder/encodeframe.h"
31 #include "av1/encoder/encoder_alloc.h"
32 #include "av1/encoder/firstpass.h"
33 #include "av1/encoder/gop_structure.h"
34 #include "av1/encoder/pass2_strategy.h"
35 #include "av1/encoder/temporal_filter.h"
36 #if CONFIG_THREE_PASS
37 #include "av1/encoder/thirdpass.h"
38 #endif // CONFIG_THREE_PASS
39 #include "av1/encoder/tpl_model.h"
40
41 #if CONFIG_TUNE_VMAF
42 #include "av1/encoder/tune_vmaf.h"
43 #endif
44
45 #define TEMPORAL_FILTER_KEY_FRAME (CONFIG_REALTIME_ONLY ? 0 : 1)
46
set_refresh_frame_flags(RefreshFrameInfo * const refresh_frame,bool refresh_gf,bool refresh_bwdref,bool refresh_arf)47 static INLINE void set_refresh_frame_flags(
48 RefreshFrameInfo *const refresh_frame, bool refresh_gf, bool refresh_bwdref,
49 bool refresh_arf) {
50 refresh_frame->golden_frame = refresh_gf;
51 refresh_frame->bwd_ref_frame = refresh_bwdref;
52 refresh_frame->alt_ref_frame = refresh_arf;
53 }
54
av1_configure_buffer_updates(AV1_COMP * const cpi,RefreshFrameInfo * const refresh_frame,const FRAME_UPDATE_TYPE type,const REFBUF_STATE refbuf_state,int force_refresh_all)55 void av1_configure_buffer_updates(AV1_COMP *const cpi,
56 RefreshFrameInfo *const refresh_frame,
57 const FRAME_UPDATE_TYPE type,
58 const REFBUF_STATE refbuf_state,
59 int force_refresh_all) {
60 // NOTE(weitinglin): Should we define another function to take care of
61 // cpi->rc.is_$Source_Type to make this function as it is in the comment?
62 const ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags =
63 &cpi->ext_flags.refresh_frame;
64 cpi->rc.is_src_frame_alt_ref = 0;
65
66 switch (type) {
67 case KF_UPDATE:
68 set_refresh_frame_flags(refresh_frame, true, true, true);
69 break;
70
71 case LF_UPDATE:
72 set_refresh_frame_flags(refresh_frame, false, false, false);
73 break;
74
75 case GF_UPDATE:
76 set_refresh_frame_flags(refresh_frame, true, false, false);
77 break;
78
79 case OVERLAY_UPDATE:
80 if (refbuf_state == REFBUF_RESET)
81 set_refresh_frame_flags(refresh_frame, true, true, true);
82 else
83 set_refresh_frame_flags(refresh_frame, true, false, false);
84
85 cpi->rc.is_src_frame_alt_ref = 1;
86 break;
87
88 case ARF_UPDATE:
89 // NOTE: BWDREF does not get updated along with ALTREF_FRAME.
90 if (refbuf_state == REFBUF_RESET)
91 set_refresh_frame_flags(refresh_frame, true, true, true);
92 else
93 set_refresh_frame_flags(refresh_frame, false, false, true);
94
95 break;
96
97 case INTNL_OVERLAY_UPDATE:
98 set_refresh_frame_flags(refresh_frame, false, false, false);
99 cpi->rc.is_src_frame_alt_ref = 1;
100 break;
101
102 case INTNL_ARF_UPDATE:
103 set_refresh_frame_flags(refresh_frame, false, true, false);
104 break;
105
106 default: assert(0); break;
107 }
108
109 if (ext_refresh_frame_flags->update_pending &&
110 (!is_stat_generation_stage(cpi))) {
111 set_refresh_frame_flags(refresh_frame,
112 ext_refresh_frame_flags->golden_frame,
113 ext_refresh_frame_flags->bwd_ref_frame,
114 ext_refresh_frame_flags->alt_ref_frame);
115 GF_GROUP *gf_group = &cpi->ppi->gf_group;
116 if (ext_refresh_frame_flags->golden_frame)
117 gf_group->update_type[cpi->gf_frame_index] = GF_UPDATE;
118 if (ext_refresh_frame_flags->alt_ref_frame)
119 gf_group->update_type[cpi->gf_frame_index] = ARF_UPDATE;
120 if (ext_refresh_frame_flags->bwd_ref_frame)
121 gf_group->update_type[cpi->gf_frame_index] = INTNL_ARF_UPDATE;
122 }
123
124 if (force_refresh_all)
125 set_refresh_frame_flags(refresh_frame, true, true, true);
126 }
127
set_additional_frame_flags(const AV1_COMMON * const cm,unsigned int * const frame_flags)128 static void set_additional_frame_flags(const AV1_COMMON *const cm,
129 unsigned int *const frame_flags) {
130 if (frame_is_intra_only(cm)) {
131 *frame_flags |= FRAMEFLAGS_INTRAONLY;
132 }
133 if (frame_is_sframe(cm)) {
134 *frame_flags |= FRAMEFLAGS_SWITCH;
135 }
136 if (cm->features.error_resilient_mode) {
137 *frame_flags |= FRAMEFLAGS_ERROR_RESILIENT;
138 }
139 }
140
set_ext_overrides(AV1_COMMON * const cm,EncodeFrameParams * const frame_params,ExternalFlags * const ext_flags)141 static void set_ext_overrides(AV1_COMMON *const cm,
142 EncodeFrameParams *const frame_params,
143 ExternalFlags *const ext_flags) {
144 // Overrides the defaults with the externally supplied values with
145 // av1_update_reference() and av1_update_entropy() calls
146 // Note: The overrides are valid only for the next frame passed
147 // to av1_encode_lowlevel()
148
149 if (ext_flags->use_s_frame) {
150 frame_params->frame_type = S_FRAME;
151 }
152
153 if (ext_flags->refresh_frame_context_pending) {
154 cm->features.refresh_frame_context = ext_flags->refresh_frame_context;
155 ext_flags->refresh_frame_context_pending = 0;
156 }
157 cm->features.allow_ref_frame_mvs = ext_flags->use_ref_frame_mvs;
158
159 frame_params->error_resilient_mode = ext_flags->use_error_resilient;
160 // A keyframe is already error resilient and keyframes with
161 // error_resilient_mode interferes with the use of show_existing_frame
162 // when forward reference keyframes are enabled.
163 frame_params->error_resilient_mode &= frame_params->frame_type != KEY_FRAME;
164 // For bitstream conformance, s-frames must be error-resilient
165 frame_params->error_resilient_mode |= frame_params->frame_type == S_FRAME;
166 }
167
choose_primary_ref_frame(AV1_COMP * const cpi,const EncodeFrameParams * const frame_params)168 static int choose_primary_ref_frame(
169 AV1_COMP *const cpi, const EncodeFrameParams *const frame_params) {
170 const AV1_COMMON *const cm = &cpi->common;
171
172 const int intra_only = frame_params->frame_type == KEY_FRAME ||
173 frame_params->frame_type == INTRA_ONLY_FRAME;
174 if (intra_only || frame_params->error_resilient_mode ||
175 cpi->ext_flags.use_primary_ref_none) {
176 return PRIMARY_REF_NONE;
177 }
178
179 #if !CONFIG_REALTIME_ONLY
180 if (cpi->use_ducky_encode) {
181 int wanted_fb = cpi->ppi->gf_group.primary_ref_idx[cpi->gf_frame_index];
182 for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
183 if (get_ref_frame_map_idx(cm, ref_frame) == wanted_fb)
184 return ref_frame - LAST_FRAME;
185 }
186
187 return PRIMARY_REF_NONE;
188 }
189 #endif // !CONFIG_REALTIME_ONLY
190
191 // In large scale case, always use Last frame's frame contexts.
192 // Note(yunqing): In other cases, primary_ref_frame is chosen based on
193 // cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index], which also controls
194 // frame bit allocation.
195 if (cm->tiles.large_scale) return (LAST_FRAME - LAST_FRAME);
196
197 if (cpi->ppi->use_svc || cpi->ppi->rtc_ref.set_ref_frame_config)
198 return av1_svc_primary_ref_frame(cpi);
199
200 // Find the most recent reference frame with the same reference type as the
201 // current frame
202 const int current_ref_type = get_current_frame_ref_type(cpi);
203 int wanted_fb = cpi->ppi->fb_of_context_type[current_ref_type];
204 #if CONFIG_FPMT_TEST
205 if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
206 GF_GROUP *const gf_group = &cpi->ppi->gf_group;
207 if (gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE) {
208 int frame_level = gf_group->frame_parallel_level[cpi->gf_frame_index];
209 // Book keep wanted_fb of frame_parallel_level 1 frame in an FP2 set.
210 if (frame_level == 1) {
211 cpi->wanted_fb = wanted_fb;
212 }
213 // Use the wanted_fb of level 1 frame in an FP2 for a level 2 frame in the
214 // set.
215 if (frame_level == 2 &&
216 gf_group->update_type[cpi->gf_frame_index - 1] == INTNL_ARF_UPDATE) {
217 assert(gf_group->frame_parallel_level[cpi->gf_frame_index - 1] == 1);
218 wanted_fb = cpi->wanted_fb;
219 }
220 }
221 }
222 #endif // CONFIG_FPMT_TEST
223 int primary_ref_frame = PRIMARY_REF_NONE;
224 for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
225 if (get_ref_frame_map_idx(cm, ref_frame) == wanted_fb) {
226 primary_ref_frame = ref_frame - LAST_FRAME;
227 }
228 }
229
230 return primary_ref_frame;
231 }
232
adjust_frame_rate(AV1_COMP * cpi,int64_t ts_start,int64_t ts_end)233 static void adjust_frame_rate(AV1_COMP *cpi, int64_t ts_start, int64_t ts_end) {
234 TimeStamps *time_stamps = &cpi->time_stamps;
235 int64_t this_duration;
236 int step = 0;
237
238 // Clear down mmx registers
239
240 if (cpi->ppi->use_svc && cpi->svc.spatial_layer_id > 0) {
241 cpi->framerate = cpi->svc.base_framerate;
242 av1_rc_update_framerate(cpi, cpi->common.width, cpi->common.height);
243 return;
244 }
245
246 if (ts_start == time_stamps->first_ts_start) {
247 this_duration = ts_end - ts_start;
248 step = 1;
249 } else {
250 int64_t last_duration =
251 time_stamps->prev_ts_end - time_stamps->prev_ts_start;
252
253 this_duration = ts_end - time_stamps->prev_ts_end;
254
255 // do a step update if the duration changes by 10%
256 if (last_duration)
257 step = (int)((this_duration - last_duration) * 10 / last_duration);
258 }
259
260 if (this_duration) {
261 if (step) {
262 cpi->new_framerate = 10000000.0 / this_duration;
263 av1_new_framerate(cpi, cpi->new_framerate);
264 } else {
265 // Average this frame's rate into the last second's average
266 // frame rate. If we haven't seen 1 second yet, then average
267 // over the whole interval seen.
268 const double interval =
269 AOMMIN((double)(ts_end - time_stamps->first_ts_start), 10000000.0);
270 double avg_duration = 10000000.0 / cpi->framerate;
271 avg_duration *= (interval - avg_duration + this_duration);
272 avg_duration /= interval;
273 cpi->new_framerate = (10000000.0 / avg_duration);
274 // For parallel frames update cpi->framerate with new_framerate
275 // during av1_post_encode_updates()
276 double framerate =
277 (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
278 ? cpi->framerate
279 : cpi->new_framerate;
280 av1_new_framerate(cpi, framerate);
281 }
282 }
283
284 time_stamps->prev_ts_start = ts_start;
285 time_stamps->prev_ts_end = ts_end;
286 }
287
288 // Determine whether there is a forced keyframe pending in the lookahead buffer
is_forced_keyframe_pending(struct lookahead_ctx * lookahead,const int up_to_index,const COMPRESSOR_STAGE compressor_stage)289 int is_forced_keyframe_pending(struct lookahead_ctx *lookahead,
290 const int up_to_index,
291 const COMPRESSOR_STAGE compressor_stage) {
292 for (int i = 0; i <= up_to_index; i++) {
293 const struct lookahead_entry *e =
294 av1_lookahead_peek(lookahead, i, compressor_stage);
295 if (e == NULL) {
296 // We have reached the end of the lookahead buffer and not early-returned
297 // so there isn't a forced key-frame pending.
298 return -1;
299 } else if (e->flags == AOM_EFLAG_FORCE_KF) {
300 return i;
301 } else {
302 continue;
303 }
304 }
305 return -1; // Never reached
306 }
307
308 // Check if we should encode an ARF or internal ARF. If not, try a LAST
309 // Do some setup associated with the chosen source
310 // temporal_filtered, flush, and frame_update_type are outputs.
311 // Return the frame source, or NULL if we couldn't find one
choose_frame_source(AV1_COMP * const cpi,int * const flush,int * pop_lookahead,struct lookahead_entry ** last_source,int * const show_frame)312 static struct lookahead_entry *choose_frame_source(
313 AV1_COMP *const cpi, int *const flush, int *pop_lookahead,
314 struct lookahead_entry **last_source, int *const show_frame) {
315 AV1_COMMON *const cm = &cpi->common;
316 const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
317 struct lookahead_entry *source = NULL;
318
319 // Source index in lookahead buffer.
320 int src_index = gf_group->arf_src_offset[cpi->gf_frame_index];
321
322 // TODO(Aasaipriya): Forced key frames need to be fixed when rc_mode != AOM_Q
323 if (src_index &&
324 (is_forced_keyframe_pending(cpi->ppi->lookahead, src_index,
325 cpi->compressor_stage) != -1) &&
326 cpi->oxcf.rc_cfg.mode != AOM_Q && !is_stat_generation_stage(cpi)) {
327 src_index = 0;
328 *flush = 1;
329 }
330
331 // If the current frame is arf, then we should not pop from the lookahead
332 // buffer. If the current frame is not arf, then pop it. This assumes the
333 // first frame in the GF group is not arf. May need to change if it is not
334 // true.
335 *pop_lookahead = (src_index == 0);
336 // If this is a key frame and keyframe filtering is enabled with overlay,
337 // then do not pop.
338 if (*pop_lookahead && cpi->oxcf.kf_cfg.enable_keyframe_filtering > 1 &&
339 gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE &&
340 !is_stat_generation_stage(cpi) && cpi->ppi->lookahead) {
341 if (cpi->ppi->lookahead->read_ctxs[cpi->compressor_stage].sz &&
342 (*flush ||
343 cpi->ppi->lookahead->read_ctxs[cpi->compressor_stage].sz ==
344 cpi->ppi->lookahead->read_ctxs[cpi->compressor_stage].pop_sz)) {
345 *pop_lookahead = 0;
346 }
347 }
348
349 // LAP stage does not have ARFs or forward key-frames,
350 // hence, always pop_lookahead here.
351 if (is_stat_generation_stage(cpi)) {
352 *pop_lookahead = 1;
353 src_index = 0;
354 }
355
356 *show_frame = *pop_lookahead;
357
358 #if CONFIG_FPMT_TEST
359 if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_ENCODE) {
360 #else
361 {
362 #endif // CONFIG_FPMT_TEST
363 // Future frame in parallel encode set
364 if (gf_group->src_offset[cpi->gf_frame_index] != 0 &&
365 !is_stat_generation_stage(cpi))
366 src_index = gf_group->src_offset[cpi->gf_frame_index];
367 }
368 if (*show_frame) {
369 // show frame, pop from buffer
370 // Get last frame source.
371 if (cm->current_frame.frame_number > 0) {
372 *last_source = av1_lookahead_peek(cpi->ppi->lookahead, src_index - 1,
373 cpi->compressor_stage);
374 }
375 // Read in the source frame.
376 source = av1_lookahead_peek(cpi->ppi->lookahead, src_index,
377 cpi->compressor_stage);
378 } else {
379 // no show frames are arf frames
380 source = av1_lookahead_peek(cpi->ppi->lookahead, src_index,
381 cpi->compressor_stage);
382 if (source != NULL) {
383 cm->showable_frame = 1;
384 }
385 }
386 return source;
387 }
388
389 // Don't allow a show_existing_frame to coincide with an error resilient or
390 // S-Frame. An exception can be made in the case of a keyframe, since it does
391 // not depend on any previous frames.
392 static int allow_show_existing(const AV1_COMP *const cpi,
393 unsigned int frame_flags) {
394 if (cpi->common.current_frame.frame_number == 0) return 0;
395
396 const struct lookahead_entry *lookahead_src =
397 av1_lookahead_peek(cpi->ppi->lookahead, 0, cpi->compressor_stage);
398 if (lookahead_src == NULL) return 1;
399
400 const int is_error_resilient =
401 cpi->oxcf.tool_cfg.error_resilient_mode ||
402 (lookahead_src->flags & AOM_EFLAG_ERROR_RESILIENT);
403 const int is_s_frame = cpi->oxcf.kf_cfg.enable_sframe ||
404 (lookahead_src->flags & AOM_EFLAG_SET_S_FRAME);
405 const int is_key_frame =
406 (cpi->rc.frames_to_key == 0) || (frame_flags & FRAMEFLAGS_KEY);
407 return !(is_error_resilient || is_s_frame) || is_key_frame;
408 }
409
410 // Update frame_flags to tell the encoder's caller what sort of frame was
411 // encoded.
412 static void update_frame_flags(const AV1_COMMON *const cm,
413 const RefreshFrameInfo *const refresh_frame,
414 unsigned int *frame_flags) {
415 if (encode_show_existing_frame(cm)) {
416 *frame_flags &= ~(uint32_t)FRAMEFLAGS_GOLDEN;
417 *frame_flags &= ~(uint32_t)FRAMEFLAGS_BWDREF;
418 *frame_flags &= ~(uint32_t)FRAMEFLAGS_ALTREF;
419 *frame_flags &= ~(uint32_t)FRAMEFLAGS_KEY;
420 return;
421 }
422
423 if (refresh_frame->golden_frame) {
424 *frame_flags |= FRAMEFLAGS_GOLDEN;
425 } else {
426 *frame_flags &= ~(uint32_t)FRAMEFLAGS_GOLDEN;
427 }
428
429 if (refresh_frame->alt_ref_frame) {
430 *frame_flags |= FRAMEFLAGS_ALTREF;
431 } else {
432 *frame_flags &= ~(uint32_t)FRAMEFLAGS_ALTREF;
433 }
434
435 if (refresh_frame->bwd_ref_frame) {
436 *frame_flags |= FRAMEFLAGS_BWDREF;
437 } else {
438 *frame_flags &= ~(uint32_t)FRAMEFLAGS_BWDREF;
439 }
440
441 if (cm->current_frame.frame_type == KEY_FRAME) {
442 *frame_flags |= FRAMEFLAGS_KEY;
443 } else {
444 *frame_flags &= ~(uint32_t)FRAMEFLAGS_KEY;
445 }
446 }
447
448 #define DUMP_REF_FRAME_IMAGES 0
449
450 #if DUMP_REF_FRAME_IMAGES == 1
451 static int dump_one_image(AV1_COMMON *cm,
452 const YV12_BUFFER_CONFIG *const ref_buf,
453 char *file_name) {
454 int h;
455 FILE *f_ref = NULL;
456
457 if (ref_buf == NULL) {
458 printf("Frame data buffer is NULL.\n");
459 return AOM_CODEC_MEM_ERROR;
460 }
461
462 if ((f_ref = fopen(file_name, "wb")) == NULL) {
463 printf("Unable to open file %s to write.\n", file_name);
464 return AOM_CODEC_MEM_ERROR;
465 }
466
467 // --- Y ---
468 for (h = 0; h < cm->height; ++h) {
469 fwrite(&ref_buf->y_buffer[h * ref_buf->y_stride], 1, cm->width, f_ref);
470 }
471 // --- U ---
472 for (h = 0; h < (cm->height >> 1); ++h) {
473 fwrite(&ref_buf->u_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1),
474 f_ref);
475 }
476 // --- V ---
477 for (h = 0; h < (cm->height >> 1); ++h) {
478 fwrite(&ref_buf->v_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1),
479 f_ref);
480 }
481
482 fclose(f_ref);
483
484 return AOM_CODEC_OK;
485 }
486
487 static void dump_ref_frame_images(AV1_COMP *cpi) {
488 AV1_COMMON *const cm = &cpi->common;
489 MV_REFERENCE_FRAME ref_frame;
490
491 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
492 char file_name[256] = "";
493 snprintf(file_name, sizeof(file_name), "/tmp/enc_F%d_ref_%d.yuv",
494 cm->current_frame.frame_number, ref_frame);
495 dump_one_image(cm, get_ref_frame_yv12_buf(cpi, ref_frame), file_name);
496 }
497 }
498 #endif // DUMP_REF_FRAME_IMAGES == 1
499
500 int av1_get_refresh_ref_frame_map(int refresh_frame_flags) {
501 int ref_map_index;
502
503 for (ref_map_index = 0; ref_map_index < REF_FRAMES; ++ref_map_index)
504 if ((refresh_frame_flags >> ref_map_index) & 1) break;
505
506 if (ref_map_index == REF_FRAMES) ref_map_index = INVALID_IDX;
507 return ref_map_index;
508 }
509
510 static int get_free_ref_map_index(RefFrameMapPair ref_map_pairs[REF_FRAMES]) {
511 for (int idx = 0; idx < REF_FRAMES; ++idx)
512 if (ref_map_pairs[idx].disp_order == -1) return idx;
513 return INVALID_IDX;
514 }
515
516 static int get_refresh_idx(RefFrameMapPair ref_frame_map_pairs[REF_FRAMES],
517 int update_arf, GF_GROUP *gf_group, int gf_index,
518 int enable_refresh_skip, int cur_frame_disp) {
519 int arf_count = 0;
520 int oldest_arf_order = INT32_MAX;
521 int oldest_arf_idx = -1;
522
523 int oldest_frame_order = INT32_MAX;
524 int oldest_idx = -1;
525
526 for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) {
527 RefFrameMapPair ref_pair = ref_frame_map_pairs[map_idx];
528 if (ref_pair.disp_order == -1) continue;
529 const int frame_order = ref_pair.disp_order;
530 const int reference_frame_level = ref_pair.pyr_level;
531 // Keep future frames and three closest previous frames in output order.
532 if (frame_order > cur_frame_disp - 3) continue;
533
534 if (enable_refresh_skip) {
535 int skip_frame = 0;
536 // Prevent refreshing a frame in gf_group->skip_frame_refresh.
537 for (int i = 0; i < REF_FRAMES; i++) {
538 int frame_to_skip = gf_group->skip_frame_refresh[gf_index][i];
539 if (frame_to_skip == INVALID_IDX) break;
540 if (frame_order == frame_to_skip) {
541 skip_frame = 1;
542 break;
543 }
544 }
545 if (skip_frame) continue;
546 }
547
548 // Keep track of the oldest level 1 frame if the current frame is also level
549 // 1.
550 if (reference_frame_level == 1) {
551 // If there are more than 2 level 1 frames in the reference list,
552 // discard the oldest.
553 if (frame_order < oldest_arf_order) {
554 oldest_arf_order = frame_order;
555 oldest_arf_idx = map_idx;
556 }
557 arf_count++;
558 continue;
559 }
560
561 // Update the overall oldest reference frame.
562 if (frame_order < oldest_frame_order) {
563 oldest_frame_order = frame_order;
564 oldest_idx = map_idx;
565 }
566 }
567 if (update_arf && arf_count > 2) return oldest_arf_idx;
568 if (oldest_idx >= 0) return oldest_idx;
569 if (oldest_arf_idx >= 0) return oldest_arf_idx;
570 if (oldest_idx == -1) {
571 assert(arf_count > 2 && enable_refresh_skip);
572 return oldest_arf_idx;
573 }
574 assert(0 && "No valid refresh index found");
575 return -1;
576 }
577
578 // Computes the reference refresh index for INTNL_ARF_UPDATE frame.
579 int av1_calc_refresh_idx_for_intnl_arf(
580 AV1_COMP *cpi, RefFrameMapPair ref_frame_map_pairs[REF_FRAMES],
581 int gf_index) {
582 GF_GROUP *const gf_group = &cpi->ppi->gf_group;
583
584 // Search for the open slot to store the current frame.
585 int free_fb_index = get_free_ref_map_index(ref_frame_map_pairs);
586
587 // Use a free slot if available.
588 if (free_fb_index != INVALID_IDX) {
589 return free_fb_index;
590 } else {
591 int enable_refresh_skip = !is_one_pass_rt_params(cpi);
592 int refresh_idx =
593 get_refresh_idx(ref_frame_map_pairs, 0, gf_group, gf_index,
594 enable_refresh_skip, gf_group->display_idx[gf_index]);
595 return refresh_idx;
596 }
597 }
598
599 int av1_get_refresh_frame_flags(
600 const AV1_COMP *const cpi, const EncodeFrameParams *const frame_params,
601 FRAME_UPDATE_TYPE frame_update_type, int gf_index, int cur_disp_order,
602 RefFrameMapPair ref_frame_map_pairs[REF_FRAMES]) {
603 const AV1_COMMON *const cm = &cpi->common;
604 const ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags =
605 &cpi->ext_flags.refresh_frame;
606
607 GF_GROUP *gf_group = &cpi->ppi->gf_group;
608 if (gf_group->refbuf_state[gf_index] == REFBUF_RESET)
609 return SELECT_ALL_BUF_SLOTS;
610
611 // TODO(jingning): Deprecate the following operations.
612 // Switch frames and shown key-frames overwrite all reference slots
613 if (frame_params->frame_type == S_FRAME) return SELECT_ALL_BUF_SLOTS;
614
615 // show_existing_frames don't actually send refresh_frame_flags so set the
616 // flags to 0 to keep things consistent.
617 if (frame_params->show_existing_frame) return 0;
618
619 const RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref;
620 if (is_frame_droppable(rtc_ref, ext_refresh_frame_flags)) return 0;
621
622 #if !CONFIG_REALTIME_ONLY
623 if (cpi->use_ducky_encode &&
624 cpi->ducky_encode_info.frame_info.gop_mode == DUCKY_ENCODE_GOP_MODE_RCL) {
625 int new_fb_map_idx = cpi->ppi->gf_group.update_ref_idx[gf_index];
626 if (new_fb_map_idx == INVALID_IDX) return 0;
627 return 1 << new_fb_map_idx;
628 }
629 #endif // !CONFIG_REALTIME_ONLY
630
631 int refresh_mask = 0;
632 if (ext_refresh_frame_flags->update_pending) {
633 if (rtc_ref->set_ref_frame_config ||
634 use_rtc_reference_structure_one_layer(cpi)) {
635 for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) {
636 int ref_frame_map_idx = rtc_ref->ref_idx[i];
637 refresh_mask |= rtc_ref->refresh[ref_frame_map_idx]
638 << ref_frame_map_idx;
639 }
640 return refresh_mask;
641 }
642 // Unfortunately the encoder interface reflects the old refresh_*_frame
643 // flags so we have to replicate the old refresh_frame_flags logic here in
644 // order to preserve the behaviour of the flag overrides.
645 int ref_frame_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME);
646 if (ref_frame_map_idx != INVALID_IDX)
647 refresh_mask |= ext_refresh_frame_flags->last_frame << ref_frame_map_idx;
648
649 ref_frame_map_idx = get_ref_frame_map_idx(cm, EXTREF_FRAME);
650 if (ref_frame_map_idx != INVALID_IDX)
651 refresh_mask |= ext_refresh_frame_flags->bwd_ref_frame
652 << ref_frame_map_idx;
653
654 ref_frame_map_idx = get_ref_frame_map_idx(cm, ALTREF2_FRAME);
655 if (ref_frame_map_idx != INVALID_IDX)
656 refresh_mask |= ext_refresh_frame_flags->alt2_ref_frame
657 << ref_frame_map_idx;
658
659 if (frame_update_type == OVERLAY_UPDATE) {
660 ref_frame_map_idx = get_ref_frame_map_idx(cm, ALTREF_FRAME);
661 if (ref_frame_map_idx != INVALID_IDX)
662 refresh_mask |= ext_refresh_frame_flags->golden_frame
663 << ref_frame_map_idx;
664 } else {
665 ref_frame_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
666 if (ref_frame_map_idx != INVALID_IDX)
667 refresh_mask |= ext_refresh_frame_flags->golden_frame
668 << ref_frame_map_idx;
669
670 ref_frame_map_idx = get_ref_frame_map_idx(cm, ALTREF_FRAME);
671 if (ref_frame_map_idx != INVALID_IDX)
672 refresh_mask |= ext_refresh_frame_flags->alt_ref_frame
673 << ref_frame_map_idx;
674 }
675 return refresh_mask;
676 }
677
678 // Search for the open slot to store the current frame.
679 int free_fb_index = get_free_ref_map_index(ref_frame_map_pairs);
680
681 // No refresh necessary for these frame types.
682 if (frame_update_type == OVERLAY_UPDATE ||
683 frame_update_type == INTNL_OVERLAY_UPDATE)
684 return refresh_mask;
685
686 // If there is an open slot, refresh that one instead of replacing a
687 // reference.
688 if (free_fb_index != INVALID_IDX) {
689 refresh_mask = 1 << free_fb_index;
690 return refresh_mask;
691 }
692 const int enable_refresh_skip = !is_one_pass_rt_params(cpi);
693 const int update_arf = frame_update_type == ARF_UPDATE;
694 const int refresh_idx =
695 get_refresh_idx(ref_frame_map_pairs, update_arf, &cpi->ppi->gf_group,
696 gf_index, enable_refresh_skip, cur_disp_order);
697 return 1 << refresh_idx;
698 }
699
700 #if !CONFIG_REALTIME_ONLY
701 void setup_mi(AV1_COMP *const cpi, YV12_BUFFER_CONFIG *src) {
702 AV1_COMMON *const cm = &cpi->common;
703 const int num_planes = av1_num_planes(cm);
704 MACROBLOCK *const x = &cpi->td.mb;
705 MACROBLOCKD *const xd = &x->e_mbd;
706
707 av1_setup_src_planes(x, src, 0, 0, num_planes, cm->seq_params->sb_size);
708
709 av1_setup_block_planes(xd, cm->seq_params->subsampling_x,
710 cm->seq_params->subsampling_y, num_planes);
711
712 set_mi_offsets(&cm->mi_params, xd, 0, 0);
713 }
714
715 // Apply temporal filtering to source frames and encode the filtered frame.
716 // If the current frame does not require filtering, this function is identical
717 // to av1_encode() except that tpl is not performed.
718 static int denoise_and_encode(AV1_COMP *const cpi, uint8_t *const dest,
719 EncodeFrameInput *const frame_input,
720 EncodeFrameParams *const frame_params,
721 EncodeFrameResults *const frame_results) {
722 #if CONFIG_COLLECT_COMPONENT_TIMING
723 if (cpi->oxcf.pass == 2) start_timing(cpi, denoise_and_encode_time);
724 #endif
725 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
726 AV1_COMMON *const cm = &cpi->common;
727 GF_GROUP *const gf_group = &cpi->ppi->gf_group;
728 FRAME_UPDATE_TYPE update_type =
729 get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
730 const int is_second_arf =
731 av1_gop_is_second_arf(gf_group, cpi->gf_frame_index);
732
733 // Decide whether to apply temporal filtering to the source frame.
734 int apply_filtering =
735 av1_is_temporal_filter_on(oxcf) && !is_stat_generation_stage(cpi);
736 if (update_type != KF_UPDATE && update_type != ARF_UPDATE && !is_second_arf) {
737 apply_filtering = 0;
738 }
739 if (apply_filtering) {
740 if (frame_params->frame_type == KEY_FRAME) {
741 // TODO(angiebird): Move the noise level check to av1_tf_info_filtering.
742 // Decide whether it is allowed to perform key frame filtering
743 int allow_kf_filtering = oxcf->kf_cfg.enable_keyframe_filtering &&
744 !frame_params->show_existing_frame &&
745 !is_lossless_requested(&oxcf->rc_cfg);
746 if (allow_kf_filtering) {
747 const double y_noise_level = av1_estimate_noise_from_single_plane(
748 frame_input->source, 0, cm->seq_params->bit_depth,
749 NOISE_ESTIMATION_EDGE_THRESHOLD);
750 apply_filtering = y_noise_level > 0;
751 } else {
752 apply_filtering = 0;
753 }
754 // If we are doing kf filtering, set up a few things.
755 if (apply_filtering) {
756 av1_setup_past_independence(cm);
757 }
758 } else if (is_second_arf) {
759 apply_filtering = cpi->sf.hl_sf.second_alt_ref_filtering;
760 }
761 }
762
763 #if CONFIG_COLLECT_COMPONENT_TIMING
764 if (cpi->oxcf.pass == 2) start_timing(cpi, apply_filtering_time);
765 #endif
766 // Save the pointer to the original source image.
767 YV12_BUFFER_CONFIG *source_buffer = frame_input->source;
768 // apply filtering to frame
769 if (apply_filtering) {
770 int show_existing_alt_ref = 0;
771 FRAME_DIFF frame_diff;
772 int top_index = 0;
773 int bottom_index = 0;
774 const int q_index = av1_rc_pick_q_and_bounds(
775 cpi, cpi->oxcf.frm_dim_cfg.width, cpi->oxcf.frm_dim_cfg.height,
776 cpi->gf_frame_index, &bottom_index, &top_index);
777
778 // TODO(bohanli): figure out why we need frame_type in cm here.
779 cm->current_frame.frame_type = frame_params->frame_type;
780 if (update_type == KF_UPDATE || update_type == ARF_UPDATE) {
781 YV12_BUFFER_CONFIG *tf_buf = av1_tf_info_get_filtered_buf(
782 &cpi->ppi->tf_info, cpi->gf_frame_index, &frame_diff);
783 if (tf_buf != NULL) {
784 frame_input->source = tf_buf;
785 show_existing_alt_ref = av1_check_show_filtered_frame(
786 tf_buf, &frame_diff, q_index, cm->seq_params->bit_depth);
787 if (show_existing_alt_ref) {
788 cpi->common.showable_frame |= 1;
789 }
790 }
791 if (gf_group->frame_type[cpi->gf_frame_index] != KEY_FRAME) {
792 cpi->ppi->show_existing_alt_ref = show_existing_alt_ref;
793 }
794 }
795
796 if (is_second_arf) {
797 // Allocate the memory for tf_buf_second_arf buffer, only when it is
798 // required.
799 int ret = aom_realloc_frame_buffer(
800 &cpi->ppi->tf_info.tf_buf_second_arf, oxcf->frm_dim_cfg.width,
801 oxcf->frm_dim_cfg.height, cm->seq_params->subsampling_x,
802 cm->seq_params->subsampling_y, cm->seq_params->use_highbitdepth,
803 cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL,
804 NULL, cpi->oxcf.tool_cfg.enable_global_motion, 0);
805 if (ret)
806 aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
807 "Failed to allocate tf_buf_second_arf");
808
809 YV12_BUFFER_CONFIG *tf_buf_second_arf =
810 &cpi->ppi->tf_info.tf_buf_second_arf;
811 // We didn't apply temporal filtering for second arf ahead in
812 // av1_tf_info_filtering().
813 const int arf_src_index = gf_group->arf_src_offset[cpi->gf_frame_index];
814 // Right now, we are still using tf_buf_second_arf due to
815 // implementation complexity.
816 // TODO(angiebird): Reuse tf_info->tf_buf here.
817 av1_temporal_filter(cpi, arf_src_index, cpi->gf_frame_index, &frame_diff,
818 tf_buf_second_arf);
819 show_existing_alt_ref = av1_check_show_filtered_frame(
820 tf_buf_second_arf, &frame_diff, q_index, cm->seq_params->bit_depth);
821 if (show_existing_alt_ref) {
822 aom_extend_frame_borders(tf_buf_second_arf, av1_num_planes(cm));
823 frame_input->source = tf_buf_second_arf;
824 }
825 // Currently INTNL_ARF_UPDATE only do show_existing.
826 cpi->common.showable_frame |= 1;
827 }
828
829 // Copy source metadata to the temporal filtered frame
830 if (source_buffer->metadata &&
831 aom_copy_metadata_to_frame_buffer(frame_input->source,
832 source_buffer->metadata)) {
833 aom_internal_error(
834 cm->error, AOM_CODEC_MEM_ERROR,
835 "Failed to copy source metadata to the temporal filtered frame");
836 }
837 }
838 #if CONFIG_COLLECT_COMPONENT_TIMING
839 if (cpi->oxcf.pass == 2) end_timing(cpi, apply_filtering_time);
840 #endif
841
842 int set_mv_params = frame_params->frame_type == KEY_FRAME ||
843 update_type == ARF_UPDATE || update_type == GF_UPDATE;
844 cm->show_frame = frame_params->show_frame;
845 cm->current_frame.frame_type = frame_params->frame_type;
846 // TODO(bohanli): Why is this? what part of it is necessary?
847 av1_set_frame_size(cpi, cm->width, cm->height);
848 if (set_mv_params) av1_set_mv_search_params(cpi);
849
850 #if CONFIG_RD_COMMAND
851 if (frame_params->frame_type == KEY_FRAME) {
852 char filepath[] = "rd_command.txt";
853 av1_read_rd_command(filepath, &cpi->rd_command);
854 }
855 #endif // CONFIG_RD_COMMAND
856 if (cpi->gf_frame_index == 0 && !is_stat_generation_stage(cpi)) {
857 // perform tpl after filtering
858 int allow_tpl =
859 oxcf->gf_cfg.lag_in_frames > 1 && oxcf->algo_cfg.enable_tpl_model;
860 if (gf_group->size > MAX_LENGTH_TPL_FRAME_STATS) {
861 allow_tpl = 0;
862 }
863 if (frame_params->frame_type == KEY_FRAME) {
864 // TODO(angiebird): handle disable_filtered_key_tpl properly
865 allow_tpl = allow_tpl && !cpi->sf.tpl_sf.disable_filtered_key_tpl;
866 } else {
867 // In rare case, it's possible to have non ARF/GF update_type here.
868 // We should set allow_tpl to zero in the situation
869 allow_tpl =
870 allow_tpl && (update_type == ARF_UPDATE || update_type == GF_UPDATE ||
871 (cpi->use_ducky_encode &&
872 cpi->ducky_encode_info.frame_info.gop_mode ==
873 DUCKY_ENCODE_GOP_MODE_RCL));
874 }
875
876 if (allow_tpl) {
877 if (!cpi->skip_tpl_setup_stats) {
878 av1_tpl_preload_rc_estimate(cpi, frame_params);
879 av1_tpl_setup_stats(cpi, 0, frame_params);
880 #if CONFIG_BITRATE_ACCURACY && !CONFIG_THREE_PASS
881 assert(cpi->gf_frame_index == 0);
882 av1_vbr_rc_update_q_index_list(&cpi->vbr_rc_info, &cpi->ppi->tpl_data,
883 gf_group, cm->seq_params->bit_depth);
884 #endif
885 }
886 } else {
887 av1_init_tpl_stats(&cpi->ppi->tpl_data);
888 }
889 #if CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
890 if (cpi->oxcf.pass == AOM_RC_SECOND_PASS &&
891 cpi->second_pass_log_stream != NULL) {
892 TPL_INFO *tpl_info;
893 AOM_CHECK_MEM_ERROR(cm->error, tpl_info, aom_malloc(sizeof(*tpl_info)));
894 av1_pack_tpl_info(tpl_info, gf_group, &cpi->ppi->tpl_data);
895 av1_write_tpl_info(tpl_info, cpi->second_pass_log_stream,
896 cpi->common.error);
897 aom_free(tpl_info);
898 }
899 #endif // CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
900 }
901
902 if (av1_encode(cpi, dest, frame_input, frame_params, frame_results) !=
903 AOM_CODEC_OK) {
904 return AOM_CODEC_ERROR;
905 }
906
907 // Set frame_input source to true source for psnr calculation.
908 if (apply_filtering && is_psnr_calc_enabled(cpi)) {
909 cpi->source = av1_realloc_and_scale_if_required(
910 cm, source_buffer, &cpi->scaled_source, cm->features.interp_filter, 0,
911 false, true, cpi->oxcf.border_in_pixels,
912 cpi->oxcf.tool_cfg.enable_global_motion);
913 cpi->unscaled_source = source_buffer;
914 }
915 #if CONFIG_COLLECT_COMPONENT_TIMING
916 if (cpi->oxcf.pass == 2) end_timing(cpi, denoise_and_encode_time);
917 #endif
918 return AOM_CODEC_OK;
919 }
920 #endif // !CONFIG_REALTIME_ONLY
921
922 /*!\cond */
923 // Struct to keep track of relevant reference frame data.
924 typedef struct {
925 int map_idx;
926 int disp_order;
927 int pyr_level;
928 int used;
929 } RefBufMapData;
930 /*!\endcond */
931
932 // Comparison function to sort reference frames in ascending display order.
933 static int compare_map_idx_pair_asc(const void *a, const void *b) {
934 if (((RefBufMapData *)a)->disp_order == ((RefBufMapData *)b)->disp_order) {
935 return 0;
936 } else if (((const RefBufMapData *)a)->disp_order >
937 ((const RefBufMapData *)b)->disp_order) {
938 return 1;
939 } else {
940 return -1;
941 }
942 }
943
944 // Checks to see if a particular reference frame is already in the reference
945 // frame map.
946 static int is_in_ref_map(RefBufMapData *map, int disp_order, int n_frames) {
947 for (int i = 0; i < n_frames; i++) {
948 if (disp_order == map[i].disp_order) return 1;
949 }
950 return 0;
951 }
952
953 // Add a reference buffer index to a named reference slot.
954 static void add_ref_to_slot(RefBufMapData *ref, int *const remapped_ref_idx,
955 int frame) {
956 remapped_ref_idx[frame - LAST_FRAME] = ref->map_idx;
957 ref->used = 1;
958 }
959
960 // Threshold dictating when we are allowed to start considering
961 // leaving lowest level frames unmapped.
962 #define LOW_LEVEL_FRAMES_TR 5
963
964 // Find which reference buffer should be left out of the named mapping.
965 // This is because there are 8 reference buffers and only 7 named slots.
966 static void set_unmapped_ref(RefBufMapData *buffer_map, int n_bufs,
967 int n_min_level_refs, int min_level,
968 int cur_frame_disp) {
969 int max_dist = 0;
970 int unmapped_idx = -1;
971 if (n_bufs <= ALTREF_FRAME) return;
972 for (int i = 0; i < n_bufs; i++) {
973 if (buffer_map[i].used) continue;
974 if (buffer_map[i].pyr_level != min_level ||
975 n_min_level_refs >= LOW_LEVEL_FRAMES_TR) {
976 int dist = abs(cur_frame_disp - buffer_map[i].disp_order);
977 if (dist > max_dist) {
978 max_dist = dist;
979 unmapped_idx = i;
980 }
981 }
982 }
983 assert(unmapped_idx >= 0 && "Unmapped reference not found");
984 buffer_map[unmapped_idx].used = 1;
985 }
986
987 void av1_get_ref_frames(RefFrameMapPair ref_frame_map_pairs[REF_FRAMES],
988 int cur_frame_disp, const AV1_COMP *cpi, int gf_index,
989 int is_parallel_encode,
990 int remapped_ref_idx[REF_FRAMES]) {
991 int buf_map_idx = 0;
992
993 // Initialize reference frame mappings.
994 for (int i = 0; i < REF_FRAMES; ++i) remapped_ref_idx[i] = INVALID_IDX;
995
996 #if !CONFIG_REALTIME_ONLY
997 if (cpi->use_ducky_encode &&
998 cpi->ducky_encode_info.frame_info.gop_mode == DUCKY_ENCODE_GOP_MODE_RCL) {
999 int valid_rf_idx = 0;
1000 for (int rf = LAST_FRAME; rf < REF_FRAMES; ++rf) {
1001 if (cpi->ppi->gf_group.ref_frame_list[gf_index][rf] != INVALID_IDX) {
1002 remapped_ref_idx[rf - LAST_FRAME] =
1003 cpi->ppi->gf_group.ref_frame_list[gf_index][rf];
1004 valid_rf_idx = remapped_ref_idx[rf - LAST_FRAME];
1005 }
1006 }
1007
1008 for (int i = 0; i < REF_FRAMES; ++i) {
1009 if (remapped_ref_idx[i] == INVALID_IDX)
1010 remapped_ref_idx[i] = valid_rf_idx;
1011 }
1012
1013 return;
1014 }
1015 #endif // !CONFIG_REALTIME_ONLY
1016
1017 RefBufMapData buffer_map[REF_FRAMES];
1018 int n_bufs = 0;
1019 memset(buffer_map, 0, REF_FRAMES * sizeof(buffer_map[0]));
1020 int min_level = MAX_ARF_LAYERS;
1021 int max_level = 0;
1022 GF_GROUP *gf_group = &cpi->ppi->gf_group;
1023 int skip_ref_unmapping = 0;
1024 int is_one_pass_rt = is_one_pass_rt_params(cpi);
1025
1026 // Go through current reference buffers and store display order, pyr level,
1027 // and map index.
1028 for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) {
1029 // Get reference frame buffer.
1030 RefFrameMapPair ref_pair = ref_frame_map_pairs[map_idx];
1031 if (ref_pair.disp_order == -1) continue;
1032 const int frame_order = ref_pair.disp_order;
1033 // Avoid duplicates.
1034 if (is_in_ref_map(buffer_map, frame_order, n_bufs)) continue;
1035 const int reference_frame_level = ref_pair.pyr_level;
1036
1037 // Keep track of the lowest and highest levels that currently exist.
1038 if (reference_frame_level < min_level) min_level = reference_frame_level;
1039 if (reference_frame_level > max_level) max_level = reference_frame_level;
1040
1041 buffer_map[n_bufs].map_idx = map_idx;
1042 buffer_map[n_bufs].disp_order = frame_order;
1043 buffer_map[n_bufs].pyr_level = reference_frame_level;
1044 buffer_map[n_bufs].used = 0;
1045 n_bufs++;
1046 }
1047
1048 // Sort frames in ascending display order.
1049 qsort(buffer_map, n_bufs, sizeof(buffer_map[0]), compare_map_idx_pair_asc);
1050
1051 int n_min_level_refs = 0;
1052 int closest_past_ref = -1;
1053 int golden_idx = -1;
1054 int altref_idx = -1;
1055
1056 // Find the GOLDEN_FRAME and BWDREF_FRAME.
1057 // Also collect various stats about the reference frames for the remaining
1058 // mappings.
1059 for (int i = n_bufs - 1; i >= 0; i--) {
1060 if (buffer_map[i].pyr_level == min_level) {
1061 // Keep track of the number of lowest level frames.
1062 n_min_level_refs++;
1063 if (buffer_map[i].disp_order < cur_frame_disp && golden_idx == -1 &&
1064 remapped_ref_idx[GOLDEN_FRAME - LAST_FRAME] == INVALID_IDX) {
1065 // Save index for GOLDEN.
1066 golden_idx = i;
1067 } else if (buffer_map[i].disp_order > cur_frame_disp &&
1068 altref_idx == -1 &&
1069 remapped_ref_idx[ALTREF_FRAME - LAST_FRAME] == INVALID_IDX) {
1070 // Save index for ALTREF.
1071 altref_idx = i;
1072 }
1073 } else if (buffer_map[i].disp_order == cur_frame_disp) {
1074 // Map the BWDREF_FRAME if this is the show_existing_frame.
1075 add_ref_to_slot(&buffer_map[i], remapped_ref_idx, BWDREF_FRAME);
1076 }
1077
1078 // During parallel encodes of lower layer frames, exclude the first frame
1079 // (frame_parallel_level 1) from being used for the reference assignment of
1080 // the second frame (frame_parallel_level 2).
1081 if (!is_one_pass_rt && gf_group->frame_parallel_level[gf_index] == 2 &&
1082 gf_group->frame_parallel_level[gf_index - 1] == 1 &&
1083 gf_group->update_type[gf_index - 1] == INTNL_ARF_UPDATE) {
1084 assert(gf_group->update_type[gf_index] == INTNL_ARF_UPDATE);
1085 #if CONFIG_FPMT_TEST
1086 is_parallel_encode = (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_ENCODE)
1087 ? is_parallel_encode
1088 : 0;
1089 #endif // CONFIG_FPMT_TEST
1090 // If parallel cpis are active, use ref_idx_to_skip, else, use display
1091 // index.
1092 assert(IMPLIES(is_parallel_encode, cpi->ref_idx_to_skip != INVALID_IDX));
1093 assert(IMPLIES(!is_parallel_encode,
1094 gf_group->skip_frame_as_ref[gf_index] != INVALID_IDX));
1095 buffer_map[i].used = is_parallel_encode
1096 ? (buffer_map[i].map_idx == cpi->ref_idx_to_skip)
1097 : (buffer_map[i].disp_order ==
1098 gf_group->skip_frame_as_ref[gf_index]);
1099 // In case a ref frame is excluded from being used during assignment,
1100 // skip the call to set_unmapped_ref(). Applicable in steady state.
1101 if (buffer_map[i].used) skip_ref_unmapping = 1;
1102 }
1103
1104 // Keep track of where the frames change from being past frames to future
1105 // frames.
1106 if (buffer_map[i].disp_order < cur_frame_disp && closest_past_ref < 0)
1107 closest_past_ref = i;
1108 }
1109
1110 // Do not map GOLDEN and ALTREF based on their pyramid level if all reference
1111 // frames have the same level.
1112 if (n_min_level_refs <= n_bufs) {
1113 // Map the GOLDEN_FRAME.
1114 if (golden_idx > -1)
1115 add_ref_to_slot(&buffer_map[golden_idx], remapped_ref_idx, GOLDEN_FRAME);
1116 // Map the ALTREF_FRAME.
1117 if (altref_idx > -1)
1118 add_ref_to_slot(&buffer_map[altref_idx], remapped_ref_idx, ALTREF_FRAME);
1119 }
1120
1121 // Find the buffer to be excluded from the mapping.
1122 if (!skip_ref_unmapping)
1123 set_unmapped_ref(buffer_map, n_bufs, n_min_level_refs, min_level,
1124 cur_frame_disp);
1125
1126 // Place past frames in LAST_FRAME, LAST2_FRAME, and LAST3_FRAME.
1127 for (int frame = LAST_FRAME; frame < GOLDEN_FRAME; frame++) {
1128 // Continue if the current ref slot is already full.
1129 if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue;
1130 // Find the next unmapped reference buffer
1131 // in decreasing ouptut order relative to current picture.
1132 int next_buf_max = 0;
1133 int next_disp_order = INT_MIN;
1134 for (buf_map_idx = n_bufs - 1; buf_map_idx >= 0; buf_map_idx--) {
1135 if (!buffer_map[buf_map_idx].used &&
1136 buffer_map[buf_map_idx].disp_order < cur_frame_disp &&
1137 buffer_map[buf_map_idx].disp_order > next_disp_order) {
1138 next_disp_order = buffer_map[buf_map_idx].disp_order;
1139 next_buf_max = buf_map_idx;
1140 }
1141 }
1142 buf_map_idx = next_buf_max;
1143 if (buf_map_idx < 0) break;
1144 if (buffer_map[buf_map_idx].used) break;
1145 add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame);
1146 }
1147
1148 // Place future frames (if there are any) in BWDREF_FRAME and ALTREF2_FRAME.
1149 for (int frame = BWDREF_FRAME; frame < REF_FRAMES; frame++) {
1150 // Continue if the current ref slot is already full.
1151 if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue;
1152 // Find the next unmapped reference buffer
1153 // in increasing ouptut order relative to current picture.
1154 int next_buf_max = 0;
1155 int next_disp_order = INT_MAX;
1156 for (buf_map_idx = n_bufs - 1; buf_map_idx >= 0; buf_map_idx--) {
1157 if (!buffer_map[buf_map_idx].used &&
1158 buffer_map[buf_map_idx].disp_order > cur_frame_disp &&
1159 buffer_map[buf_map_idx].disp_order < next_disp_order) {
1160 next_disp_order = buffer_map[buf_map_idx].disp_order;
1161 next_buf_max = buf_map_idx;
1162 }
1163 }
1164 buf_map_idx = next_buf_max;
1165 if (buf_map_idx < 0) break;
1166 if (buffer_map[buf_map_idx].used) break;
1167 add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame);
1168 }
1169
1170 // Place remaining past frames.
1171 buf_map_idx = closest_past_ref;
1172 for (int frame = LAST_FRAME; frame < REF_FRAMES; frame++) {
1173 // Continue if the current ref slot is already full.
1174 if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue;
1175 // Find the next unmapped reference buffer.
1176 for (; buf_map_idx >= 0; buf_map_idx--) {
1177 if (!buffer_map[buf_map_idx].used) break;
1178 }
1179 if (buf_map_idx < 0) break;
1180 if (buffer_map[buf_map_idx].used) break;
1181 add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame);
1182 }
1183
1184 // Place remaining future frames.
1185 buf_map_idx = n_bufs - 1;
1186 for (int frame = ALTREF_FRAME; frame >= LAST_FRAME; frame--) {
1187 // Continue if the current ref slot is already full.
1188 if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue;
1189 // Find the next unmapped reference buffer.
1190 for (; buf_map_idx > closest_past_ref; buf_map_idx--) {
1191 if (!buffer_map[buf_map_idx].used) break;
1192 }
1193 if (buf_map_idx < 0) break;
1194 if (buffer_map[buf_map_idx].used) break;
1195 add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame);
1196 }
1197
1198 // Fill any slots that are empty (should only happen for the first 7 frames).
1199 for (int i = 0; i < REF_FRAMES; ++i)
1200 if (remapped_ref_idx[i] == INVALID_IDX) remapped_ref_idx[i] = 0;
1201 }
1202
1203 int av1_encode_strategy(AV1_COMP *const cpi, size_t *const size,
1204 uint8_t *const dest, unsigned int *frame_flags,
1205 int64_t *const time_stamp, int64_t *const time_end,
1206 const aom_rational64_t *const timestamp_ratio,
1207 int *const pop_lookahead, int flush) {
1208 AV1EncoderConfig *const oxcf = &cpi->oxcf;
1209 AV1_COMMON *const cm = &cpi->common;
1210 GF_GROUP *gf_group = &cpi->ppi->gf_group;
1211 ExternalFlags *const ext_flags = &cpi->ext_flags;
1212 GFConfig *const gf_cfg = &oxcf->gf_cfg;
1213
1214 EncodeFrameInput frame_input;
1215 EncodeFrameParams frame_params;
1216 EncodeFrameResults frame_results;
1217 memset(&frame_input, 0, sizeof(frame_input));
1218 memset(&frame_params, 0, sizeof(frame_params));
1219 memset(&frame_results, 0, sizeof(frame_results));
1220
1221 #if CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
1222 VBR_RATECTRL_INFO *vbr_rc_info = &cpi->vbr_rc_info;
1223 if (oxcf->pass == AOM_RC_THIRD_PASS && vbr_rc_info->ready == 0) {
1224 THIRD_PASS_FRAME_INFO frame_info[MAX_THIRD_PASS_BUF];
1225 av1_open_second_pass_log(cpi, 1);
1226 FILE *second_pass_log_stream = cpi->second_pass_log_stream;
1227 fseek(second_pass_log_stream, 0, SEEK_END);
1228 size_t file_size = ftell(second_pass_log_stream);
1229 rewind(second_pass_log_stream);
1230 size_t read_size = 0;
1231 while (read_size < file_size) {
1232 THIRD_PASS_GOP_INFO gop_info;
1233 struct aom_internal_error_info *error = cpi->common.error;
1234 // Read in GOP information from the second pass file.
1235 av1_read_second_pass_gop_info(second_pass_log_stream, &gop_info, error);
1236 TPL_INFO *tpl_info;
1237 AOM_CHECK_MEM_ERROR(cm->error, tpl_info, aom_malloc(sizeof(*tpl_info)));
1238 av1_read_tpl_info(tpl_info, second_pass_log_stream, error);
1239 // Read in per-frame info from second-pass encoding
1240 av1_read_second_pass_per_frame_info(second_pass_log_stream, frame_info,
1241 gop_info.num_frames, error);
1242 av1_vbr_rc_append_tpl_info(vbr_rc_info, tpl_info);
1243 read_size = ftell(second_pass_log_stream);
1244 aom_free(tpl_info);
1245 }
1246 av1_close_second_pass_log(cpi);
1247 if (cpi->oxcf.rc_cfg.mode == AOM_Q) {
1248 vbr_rc_info->base_q_index = cpi->oxcf.rc_cfg.cq_level;
1249 av1_vbr_rc_compute_q_indices(
1250 vbr_rc_info->base_q_index, vbr_rc_info->total_frame_count,
1251 vbr_rc_info->qstep_ratio_list, cm->seq_params->bit_depth,
1252 vbr_rc_info->q_index_list);
1253 } else {
1254 vbr_rc_info->base_q_index = av1_vbr_rc_info_estimate_base_q(
1255 vbr_rc_info->total_bit_budget, cm->seq_params->bit_depth,
1256 vbr_rc_info->scale_factors, vbr_rc_info->total_frame_count,
1257 vbr_rc_info->update_type_list, vbr_rc_info->qstep_ratio_list,
1258 vbr_rc_info->txfm_stats_list, vbr_rc_info->q_index_list, NULL);
1259 }
1260 vbr_rc_info->ready = 1;
1261 #if CONFIG_RATECTRL_LOG
1262 rc_log_record_chunk_info(&cpi->rc_log, vbr_rc_info->base_q_index,
1263 vbr_rc_info->total_frame_count);
1264 #endif // CONFIG_RATECTRL_LOG
1265 }
1266 #endif // CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
1267
1268 // Check if we need to stuff more src frames
1269 if (flush == 0) {
1270 int srcbuf_size =
1271 av1_lookahead_depth(cpi->ppi->lookahead, cpi->compressor_stage);
1272 int pop_size =
1273 av1_lookahead_pop_sz(cpi->ppi->lookahead, cpi->compressor_stage);
1274
1275 // Continue buffering look ahead buffer.
1276 if (srcbuf_size < pop_size) return -1;
1277 }
1278
1279 if (!av1_lookahead_peek(cpi->ppi->lookahead, 0, cpi->compressor_stage)) {
1280 #if !CONFIG_REALTIME_ONLY
1281 if (flush && oxcf->pass == AOM_RC_FIRST_PASS &&
1282 !cpi->ppi->twopass.first_pass_done) {
1283 av1_end_first_pass(cpi); /* get last stats packet */
1284 cpi->ppi->twopass.first_pass_done = 1;
1285 }
1286 #endif
1287 return -1;
1288 }
1289
1290 // TODO(sarahparker) finish bit allocation for one pass pyramid
1291 if (has_no_stats_stage(cpi)) {
1292 gf_cfg->gf_max_pyr_height =
1293 AOMMIN(gf_cfg->gf_max_pyr_height, USE_ALTREF_FOR_ONE_PASS);
1294 gf_cfg->gf_min_pyr_height =
1295 AOMMIN(gf_cfg->gf_min_pyr_height, gf_cfg->gf_max_pyr_height);
1296 }
1297
1298 // Allocation of mi buffers.
1299 alloc_mb_mode_info_buffers(cpi);
1300
1301 cpi->skip_tpl_setup_stats = 0;
1302 #if !CONFIG_REALTIME_ONLY
1303 if (oxcf->pass != AOM_RC_FIRST_PASS) {
1304 TplParams *const tpl_data = &cpi->ppi->tpl_data;
1305 if (tpl_data->tpl_stats_pool[0] == NULL) {
1306 av1_setup_tpl_buffers(cpi->ppi, &cm->mi_params, oxcf->frm_dim_cfg.width,
1307 oxcf->frm_dim_cfg.height, 0,
1308 oxcf->gf_cfg.lag_in_frames);
1309 }
1310 }
1311 cpi->twopass_frame.this_frame = NULL;
1312 const int use_one_pass_rt_params = is_one_pass_rt_params(cpi);
1313 if (!use_one_pass_rt_params && !is_stat_generation_stage(cpi)) {
1314 #if CONFIG_COLLECT_COMPONENT_TIMING
1315 start_timing(cpi, av1_get_second_pass_params_time);
1316 #endif
1317
1318 // Initialise frame_level_rate_correction_factors with value previous
1319 // to the parallel frames.
1320 if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
1321 for (int i = 0; i < RATE_FACTOR_LEVELS; i++) {
1322 cpi->rc.frame_level_rate_correction_factors[i] =
1323 #if CONFIG_FPMT_TEST
1324 (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE)
1325 ? cpi->ppi->p_rc.temp_rate_correction_factors[i]
1326 :
1327 #endif // CONFIG_FPMT_TEST
1328 cpi->ppi->p_rc.rate_correction_factors[i];
1329 }
1330 }
1331
1332 // copy mv_stats from ppi to frame_level cpi.
1333 cpi->mv_stats = cpi->ppi->mv_stats;
1334 av1_get_second_pass_params(cpi, &frame_params, *frame_flags);
1335 #if CONFIG_COLLECT_COMPONENT_TIMING
1336 end_timing(cpi, av1_get_second_pass_params_time);
1337 #endif
1338 }
1339 #endif
1340
1341 if (!is_stat_generation_stage(cpi)) {
1342 // TODO(jingning): fwd key frame always uses show existing frame?
1343 if (gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE &&
1344 gf_group->refbuf_state[cpi->gf_frame_index] == REFBUF_RESET) {
1345 frame_params.show_existing_frame = 1;
1346 } else {
1347 frame_params.show_existing_frame =
1348 (cpi->ppi->show_existing_alt_ref &&
1349 gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) ||
1350 gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE;
1351 }
1352 frame_params.show_existing_frame &= allow_show_existing(cpi, *frame_flags);
1353
1354 // Reset show_existing_alt_ref decision to 0 after it is used.
1355 if (gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) {
1356 cpi->ppi->show_existing_alt_ref = 0;
1357 }
1358 } else {
1359 frame_params.show_existing_frame = 0;
1360 }
1361
1362 struct lookahead_entry *source = NULL;
1363 struct lookahead_entry *last_source = NULL;
1364 if (frame_params.show_existing_frame) {
1365 source = av1_lookahead_peek(cpi->ppi->lookahead, 0, cpi->compressor_stage);
1366 *pop_lookahead = 1;
1367 frame_params.show_frame = 1;
1368 } else {
1369 source = choose_frame_source(cpi, &flush, pop_lookahead, &last_source,
1370 &frame_params.show_frame);
1371 }
1372
1373 if (source == NULL) { // If no source was found, we can't encode a frame.
1374 #if !CONFIG_REALTIME_ONLY
1375 if (flush && oxcf->pass == AOM_RC_FIRST_PASS &&
1376 !cpi->ppi->twopass.first_pass_done) {
1377 av1_end_first_pass(cpi); /* get last stats packet */
1378 cpi->ppi->twopass.first_pass_done = 1;
1379 }
1380 #endif
1381 return -1;
1382 }
1383
1384 // reset src_offset to allow actual encode call for this frame to get its
1385 // source.
1386 gf_group->src_offset[cpi->gf_frame_index] = 0;
1387
1388 // Source may be changed if temporal filtered later.
1389 frame_input.source = &source->img;
1390 if (cpi->ppi->use_svc && last_source != NULL)
1391 av1_svc_set_last_source(cpi, &frame_input, &last_source->img);
1392 else
1393 frame_input.last_source = last_source != NULL ? &last_source->img : NULL;
1394 frame_input.ts_duration = source->ts_end - source->ts_start;
1395 // Save unfiltered source. It is used in av1_get_second_pass_params().
1396 cpi->unfiltered_source = frame_input.source;
1397
1398 *time_stamp = source->ts_start;
1399 *time_end = source->ts_end;
1400 if (source->ts_start < cpi->time_stamps.first_ts_start) {
1401 cpi->time_stamps.first_ts_start = source->ts_start;
1402 cpi->time_stamps.prev_ts_end = source->ts_start;
1403 }
1404
1405 av1_apply_encoding_flags(cpi, source->flags);
1406 *frame_flags = (source->flags & AOM_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0;
1407
1408 #if CONFIG_FPMT_TEST
1409 if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
1410 if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
1411 cpi->framerate = cpi->temp_framerate;
1412 }
1413 }
1414 #endif // CONFIG_FPMT_TEST
1415
1416 // Shown frames and arf-overlay frames need frame-rate considering
1417 if (frame_params.show_frame)
1418 adjust_frame_rate(cpi, source->ts_start, source->ts_end);
1419
1420 if (!frame_params.show_existing_frame) {
1421 if (cpi->film_grain_table) {
1422 cm->cur_frame->film_grain_params_present = aom_film_grain_table_lookup(
1423 cpi->film_grain_table, *time_stamp, *time_end, 0 /* =erase */,
1424 &cm->film_grain_params);
1425 } else {
1426 cm->cur_frame->film_grain_params_present =
1427 cm->seq_params->film_grain_params_present;
1428 }
1429 // only one operating point supported now
1430 const int64_t pts64 = ticks_to_timebase_units(timestamp_ratio, *time_stamp);
1431 if (pts64 < 0 || pts64 > UINT32_MAX) return AOM_CODEC_ERROR;
1432
1433 cm->frame_presentation_time = (uint32_t)pts64;
1434 }
1435
1436 #if CONFIG_COLLECT_COMPONENT_TIMING
1437 start_timing(cpi, av1_get_one_pass_rt_params_time);
1438 #endif
1439 #if CONFIG_REALTIME_ONLY
1440 av1_get_one_pass_rt_params(cpi, &frame_params.frame_type, &frame_input,
1441 *frame_flags);
1442 if (use_rtc_reference_structure_one_layer(cpi))
1443 av1_set_rtc_reference_structure_one_layer(cpi, cpi->gf_frame_index == 0);
1444 #else
1445 if (use_one_pass_rt_params) {
1446 av1_get_one_pass_rt_params(cpi, &frame_params.frame_type, &frame_input,
1447 *frame_flags);
1448 if (use_rtc_reference_structure_one_layer(cpi))
1449 av1_set_rtc_reference_structure_one_layer(cpi, cpi->gf_frame_index == 0);
1450 }
1451 #endif
1452 #if CONFIG_COLLECT_COMPONENT_TIMING
1453 end_timing(cpi, av1_get_one_pass_rt_params_time);
1454 #endif
1455
1456 FRAME_UPDATE_TYPE frame_update_type =
1457 get_frame_update_type(gf_group, cpi->gf_frame_index);
1458
1459 if (frame_params.show_existing_frame &&
1460 frame_params.frame_type != KEY_FRAME) {
1461 // Force show-existing frames to be INTER, except forward keyframes
1462 frame_params.frame_type = INTER_FRAME;
1463 }
1464
1465 // Per-frame encode speed. In theory this can vary, but things may have
1466 // been written assuming speed-level will not change within a sequence, so
1467 // this parameter should be used with caution.
1468 frame_params.speed = oxcf->speed;
1469
1470 #if !CONFIG_REALTIME_ONLY
1471 // Set forced key frames when necessary. For two-pass encoding / lap mode,
1472 // this is already handled by av1_get_second_pass_params. However when no
1473 // stats are available, we still need to check if the new frame is a keyframe.
1474 // For one pass rt, this is already checked in av1_get_one_pass_rt_params.
1475 if (!use_one_pass_rt_params &&
1476 (is_stat_generation_stage(cpi) || has_no_stats_stage(cpi))) {
1477 // Current frame is coded as a key-frame for any of the following cases:
1478 // 1) First frame of a video
1479 // 2) For all-intra frame encoding
1480 // 3) When a key-frame is forced
1481 const int kf_requested =
1482 (cm->current_frame.frame_number == 0 ||
1483 oxcf->kf_cfg.key_freq_max == 0 || (*frame_flags & FRAMEFLAGS_KEY));
1484 if (kf_requested && frame_update_type != OVERLAY_UPDATE &&
1485 frame_update_type != INTNL_OVERLAY_UPDATE) {
1486 frame_params.frame_type = KEY_FRAME;
1487 } else if (is_stat_generation_stage(cpi)) {
1488 // For stats generation, set the frame type to inter here.
1489 frame_params.frame_type = INTER_FRAME;
1490 }
1491 }
1492 #endif
1493
1494 // Work out some encoding parameters specific to the pass:
1495 if (has_no_stats_stage(cpi) && oxcf->q_cfg.aq_mode == CYCLIC_REFRESH_AQ) {
1496 av1_cyclic_refresh_update_parameters(cpi);
1497 } else if (is_stat_generation_stage(cpi)) {
1498 cpi->td.mb.e_mbd.lossless[0] = is_lossless_requested(&oxcf->rc_cfg);
1499 } else if (is_stat_consumption_stage(cpi)) {
1500 #if CONFIG_MISMATCH_DEBUG
1501 mismatch_move_frame_idx_w();
1502 #endif
1503 #if TXCOEFF_COST_TIMER
1504 cm->txcoeff_cost_timer = 0;
1505 cm->txcoeff_cost_count = 0;
1506 #endif
1507 }
1508
1509 if (!is_stat_generation_stage(cpi))
1510 set_ext_overrides(cm, &frame_params, ext_flags);
1511
1512 // Shown keyframes and S frames refresh all reference buffers
1513 const int force_refresh_all =
1514 ((frame_params.frame_type == KEY_FRAME && frame_params.show_frame) ||
1515 frame_params.frame_type == S_FRAME) &&
1516 !frame_params.show_existing_frame;
1517
1518 av1_configure_buffer_updates(
1519 cpi, &frame_params.refresh_frame, frame_update_type,
1520 gf_group->refbuf_state[cpi->gf_frame_index], force_refresh_all);
1521
1522 if (!is_stat_generation_stage(cpi)) {
1523 const YV12_BUFFER_CONFIG *ref_frame_buf[INTER_REFS_PER_FRAME];
1524
1525 RefFrameMapPair ref_frame_map_pairs[REF_FRAMES];
1526 init_ref_map_pair(cpi, ref_frame_map_pairs);
1527 const int order_offset = gf_group->arf_src_offset[cpi->gf_frame_index];
1528 const int cur_frame_disp =
1529 cpi->common.current_frame.frame_number + order_offset;
1530
1531 int get_ref_frames = 0;
1532 #if CONFIG_FPMT_TEST
1533 get_ref_frames =
1534 (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 1 : 0;
1535 #endif // CONFIG_FPMT_TEST
1536 if (get_ref_frames ||
1537 gf_group->frame_parallel_level[cpi->gf_frame_index] == 0) {
1538 if (!ext_flags->refresh_frame.update_pending) {
1539 av1_get_ref_frames(ref_frame_map_pairs, cur_frame_disp, cpi,
1540 cpi->gf_frame_index, 1, cm->remapped_ref_idx);
1541 } else if (cpi->ppi->rtc_ref.set_ref_frame_config ||
1542 use_rtc_reference_structure_one_layer(cpi)) {
1543 for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++)
1544 cm->remapped_ref_idx[i] = cpi->ppi->rtc_ref.ref_idx[i];
1545 }
1546 }
1547
1548 // Get the reference frames
1549 bool has_ref_frames = false;
1550 for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
1551 const RefCntBuffer *ref_frame =
1552 get_ref_frame_buf(cm, ref_frame_priority_order[i]);
1553 ref_frame_buf[i] = ref_frame != NULL ? &ref_frame->buf : NULL;
1554 if (ref_frame != NULL) has_ref_frames = true;
1555 }
1556 if (!has_ref_frames && (frame_params.frame_type == INTER_FRAME ||
1557 frame_params.frame_type == S_FRAME)) {
1558 return AOM_CODEC_ERROR;
1559 }
1560
1561 // Work out which reference frame slots may be used.
1562 frame_params.ref_frame_flags =
1563 get_ref_frame_flags(&cpi->sf, is_one_pass_rt_params(cpi), ref_frame_buf,
1564 ext_flags->ref_frame_flags);
1565
1566 // Set primary_ref_frame of non-reference frames as PRIMARY_REF_NONE.
1567 if (cpi->ppi->gf_group.is_frame_non_ref[cpi->gf_frame_index]) {
1568 frame_params.primary_ref_frame = PRIMARY_REF_NONE;
1569 } else {
1570 frame_params.primary_ref_frame =
1571 choose_primary_ref_frame(cpi, &frame_params);
1572 }
1573
1574 frame_params.order_offset = gf_group->arf_src_offset[cpi->gf_frame_index];
1575
1576 // Call av1_get_refresh_frame_flags() if refresh index not available.
1577 if (!cpi->refresh_idx_available) {
1578 frame_params.refresh_frame_flags = av1_get_refresh_frame_flags(
1579 cpi, &frame_params, frame_update_type, cpi->gf_frame_index,
1580 cur_frame_disp, ref_frame_map_pairs);
1581 } else {
1582 assert(cpi->ref_refresh_index != INVALID_IDX);
1583 frame_params.refresh_frame_flags = (1 << cpi->ref_refresh_index);
1584 }
1585
1586 // Make the frames marked as is_frame_non_ref to non-reference frames.
1587 if (gf_group->is_frame_non_ref[cpi->gf_frame_index])
1588 frame_params.refresh_frame_flags = 0;
1589
1590 frame_params.existing_fb_idx_to_show = INVALID_IDX;
1591 // Find the frame buffer to show based on display order.
1592 if (frame_params.show_existing_frame) {
1593 for (int frame = 0; frame < REF_FRAMES; frame++) {
1594 const RefCntBuffer *const buf = cm->ref_frame_map[frame];
1595 if (buf == NULL) continue;
1596 const int frame_order = (int)buf->display_order_hint;
1597 if (frame_order == cur_frame_disp)
1598 frame_params.existing_fb_idx_to_show = frame;
1599 }
1600 }
1601 }
1602
1603 // The way frame_params->remapped_ref_idx is setup is a placeholder.
1604 // Currently, reference buffer assignment is done by update_ref_frame_map()
1605 // which is called by high-level strategy AFTER encoding a frame. It
1606 // modifies cm->remapped_ref_idx. If you want to use an alternative method
1607 // to determine reference buffer assignment, just put your assignments into
1608 // frame_params->remapped_ref_idx here and they will be used when encoding
1609 // this frame. If frame_params->remapped_ref_idx is setup independently of
1610 // cm->remapped_ref_idx then update_ref_frame_map() will have no effect.
1611 memcpy(frame_params.remapped_ref_idx, cm->remapped_ref_idx,
1612 REF_FRAMES * sizeof(*cm->remapped_ref_idx));
1613
1614 cpi->td.mb.rdmult_delta_qindex = cpi->td.mb.delta_qindex = 0;
1615
1616 if (!frame_params.show_existing_frame) {
1617 cm->quant_params.using_qmatrix = oxcf->q_cfg.using_qm;
1618 }
1619
1620 #if CONFIG_REALTIME_ONLY
1621 if (av1_encode(cpi, dest, &frame_input, &frame_params, &frame_results) !=
1622 AOM_CODEC_OK) {
1623 return AOM_CODEC_ERROR;
1624 }
1625 #else
1626 if (has_no_stats_stage(cpi) && oxcf->mode == REALTIME &&
1627 gf_cfg->lag_in_frames == 0) {
1628 if (av1_encode(cpi, dest, &frame_input, &frame_params, &frame_results) !=
1629 AOM_CODEC_OK) {
1630 return AOM_CODEC_ERROR;
1631 }
1632 } else if (denoise_and_encode(cpi, dest, &frame_input, &frame_params,
1633 &frame_results) != AOM_CODEC_OK) {
1634 return AOM_CODEC_ERROR;
1635 }
1636 #endif // CONFIG_REALTIME_ONLY
1637
1638 // This is used in rtc temporal filter case. Use true source in the PSNR
1639 // calculation.
1640 if (is_psnr_calc_enabled(cpi) && cpi->sf.rt_sf.use_rtc_tf &&
1641 cpi->common.current_frame.frame_type != KEY_FRAME) {
1642 assert(cpi->orig_source.buffer_alloc_sz > 0);
1643 cpi->source = &cpi->orig_source;
1644 }
1645
1646 if (!is_stat_generation_stage(cpi)) {
1647 // First pass doesn't modify reference buffer assignment or produce frame
1648 // flags
1649 update_frame_flags(&cpi->common, &cpi->refresh_frame, frame_flags);
1650 set_additional_frame_flags(cm, frame_flags);
1651 }
1652
1653 #if !CONFIG_REALTIME_ONLY
1654 #if TXCOEFF_COST_TIMER
1655 if (!is_stat_generation_stage(cpi)) {
1656 cm->cum_txcoeff_cost_timer += cm->txcoeff_cost_timer;
1657 fprintf(stderr,
1658 "\ntxb coeff cost block number: %ld, frame time: %ld, cum time %ld "
1659 "in us\n",
1660 cm->txcoeff_cost_count, cm->txcoeff_cost_timer,
1661 cm->cum_txcoeff_cost_timer);
1662 }
1663 #endif
1664 #endif // !CONFIG_REALTIME_ONLY
1665
1666 #if CONFIG_TUNE_VMAF
1667 if (!is_stat_generation_stage(cpi) &&
1668 (oxcf->tune_cfg.tuning >= AOM_TUNE_VMAF_WITH_PREPROCESSING &&
1669 oxcf->tune_cfg.tuning <= AOM_TUNE_VMAF_NEG_MAX_GAIN)) {
1670 av1_update_vmaf_curve(cpi);
1671 }
1672 #endif
1673
1674 // Unpack frame_results:
1675 *size = frame_results.size;
1676
1677 // Leave a signal for a higher level caller about if this frame is droppable
1678 if (*size > 0) {
1679 cpi->droppable =
1680 is_frame_droppable(&cpi->ppi->rtc_ref, &ext_flags->refresh_frame);
1681 }
1682
1683 // For SVC: keep track of the (unscaled) source corresponding to the
1684 // refresh of LAST reference (base temporal layer- TL0). Copy only for the
1685 // top spatial enhancement layer so all spatial layers of the next
1686 // superframe have last_source to be aligned with previous TL0 superframe.
1687 // Avoid cases where resolution changes for unscaled source (top spatial
1688 // layer).
1689 if (cpi->ppi->use_svc &&
1690 cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1 &&
1691 cpi->svc.temporal_layer_id == 0 &&
1692 cpi->unscaled_source->y_width == cpi->svc.source_last_TL0.y_width &&
1693 cpi->unscaled_source->y_height == cpi->svc.source_last_TL0.y_height) {
1694 aom_yv12_copy_y(cpi->unscaled_source, &cpi->svc.source_last_TL0);
1695 aom_yv12_copy_u(cpi->unscaled_source, &cpi->svc.source_last_TL0);
1696 aom_yv12_copy_v(cpi->unscaled_source, &cpi->svc.source_last_TL0);
1697 }
1698
1699 return AOM_CODEC_OK;
1700 }
1701