1 /*
2 * Copyright (c) 2017-2022 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
25 #include "arm_compute/core/Helpers.h"
26 #include "support/ToolchainSupport.h"
27
28 #include <cmath>
29 #include <limits>
30 #include <numeric>
31
32 namespace arm_compute
33 {
34 namespace quantization
35 {
36 constexpr int64_t fixed_point_one_Q0 = (1LL << 31);
37 constexpr float epsilon = 0.00001f;
38
calculate_quantized_multiplier(float multiplier,int32_t * quant_multiplier,int32_t * shift,bool ignore_epsilon)39 Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon)
40 {
41 if(multiplier >= 1.f)
42 {
43 Status status = calculate_quantized_multiplier_greater_than_one(multiplier, quant_multiplier, shift);
44 *shift *= -1;
45 return status;
46 }
47 else
48 {
49 return calculate_quantized_multiplier_less_than_one(multiplier, quant_multiplier, shift, ignore_epsilon);
50 }
51 }
52
calculate_quantized_multiplier_less_than_one(float multiplier,int32_t * quant_multiplier,int32_t * right_shift,bool ignore_epsilon)53 Status calculate_quantized_multiplier_less_than_one(float multiplier,
54 int32_t *quant_multiplier,
55 int32_t *right_shift,
56 bool ignore_epsilon)
57 {
58 const float internal_epsilon = ignore_epsilon ? 0.0f : epsilon;
59
60 ARM_COMPUTE_RETURN_ERROR_ON(quant_multiplier == nullptr);
61 ARM_COMPUTE_RETURN_ERROR_ON(right_shift == nullptr);
62 ARM_COMPUTE_RETURN_ERROR_ON(multiplier < -internal_epsilon);
63 ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f + internal_epsilon);
64
65 int shift_exp = 0;
66 const double q = std::frexp(multiplier, &shift_exp);
67 *right_shift = -1 * shift_exp;
68 auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
69 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
70 if(q_fixed == fixed_point_one_Q0)
71 {
72 q_fixed /= 2;
73 --*right_shift;
74 }
75
76 if(ignore_epsilon && *right_shift > 31)
77 {
78 *right_shift = 0;
79 q_fixed = 0;
80 }
81
82 ARM_COMPUTE_RETURN_ERROR_ON(*right_shift < 0);
83 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
84 *quant_multiplier = static_cast<int32_t>(q_fixed);
85
86 return Status{};
87 }
88
calculate_quantized_multiplier_greater_than_one(float multiplier,int32_t * quantized_multiplier,int32_t * left_shift)89 Status calculate_quantized_multiplier_greater_than_one(float multiplier,
90 int32_t *quantized_multiplier,
91 int32_t *left_shift)
92 {
93 ARM_COMPUTE_RETURN_ERROR_ON(quantized_multiplier == nullptr);
94 ARM_COMPUTE_RETURN_ERROR_ON(left_shift == nullptr);
95 ARM_COMPUTE_RETURN_ERROR_ON(multiplier < 1.f);
96
97 int shift_exp = 0;
98 const double q = std::frexp(multiplier, &shift_exp);
99 *left_shift = shift_exp;
100 auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
101 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
102 if(q_fixed == fixed_point_one_Q0)
103 {
104 q_fixed /= 2;
105 ++*left_shift;
106 }
107 ARM_COMPUTE_RETURN_ERROR_ON(*left_shift < 0);
108 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
109 *quantized_multiplier = static_cast<int32_t>(q_fixed);
110
111 return Status{};
112 }
113
calculate_quantized_multipliers(const QuantizationInfo & iq_info,const QuantizationInfo & wq_info,const QuantizationInfo & oq_info,GEMMLowpOutputStageInfo & stage_info)114 arm_compute::Status calculate_quantized_multipliers(const QuantizationInfo &iq_info,
115 const QuantizationInfo &wq_info,
116 const QuantizationInfo &oq_info,
117 GEMMLowpOutputStageInfo &stage_info)
118 {
119 ARM_COMPUTE_RETURN_ERROR_ON(iq_info.scale().empty());
120 ARM_COMPUTE_RETURN_ERROR_ON(wq_info.scale().empty());
121 ARM_COMPUTE_RETURN_ERROR_ON(oq_info.scale().empty());
122
123 const unsigned int size = wq_info.scale().size();
124
125 auto &quant_multipliers = stage_info.gemmlowp_multipliers;
126 auto &quant_shifts = stage_info.gemmlowp_shifts;
127 quant_multipliers.resize(size);
128 quant_shifts.resize(size);
129
130 const auto &w_scales = wq_info.scale();
131 const float i_scale = iq_info.scale().at(0);
132 const float o_scale = oq_info.scale().at(0);
133
134 for(unsigned int i = 0; i < size; ++i)
135 {
136 const float multiplier = i_scale * w_scales[i] / o_scale;
137 int32_t quant_multiplier = 0;
138 int32_t quant_shift = 0;
139 ARM_COMPUTE_RETURN_ON_ERROR(calculate_quantized_multiplier(multiplier, &quant_multiplier, &quant_shift));
140 quant_multipliers[i] = quant_multiplier;
141 quant_shifts[i] = quant_shift;
142 }
143
144 // Legacy part
145 stage_info.gemmlowp_shift = quant_shifts[0];
146 stage_info.gemmlowp_multiplier = quant_multipliers[0];
147
148 return Status{};
149 }
150
get_min_max_values_from_quantized_data_type(DataType data_type)151 std::pair<int, int> get_min_max_values_from_quantized_data_type(DataType data_type)
152 {
153 int min_quant_val = 0;
154 int max_quant_val = 0;
155 switch(data_type)
156 {
157 case DataType::QASYMM8:
158 min_quant_val = std::numeric_limits<uint8_t>::min();
159 max_quant_val = std::numeric_limits<uint8_t>::max();
160 break;
161 case DataType::QSYMM8:
162 case DataType::QASYMM8_SIGNED:
163 min_quant_val = std::numeric_limits<int8_t>::min();
164 max_quant_val = std::numeric_limits<int8_t>::max();
165 break;
166 case DataType::QASYMM16:
167 min_quant_val = std::numeric_limits<uint16_t>::min();
168 max_quant_val = std::numeric_limits<uint16_t>::max();
169 break;
170 case DataType::QSYMM16:
171 min_quant_val = std::numeric_limits<int16_t>::min();
172 max_quant_val = std::numeric_limits<int16_t>::max();
173 break;
174 default:
175 ARM_COMPUTE_ERROR("Unsupported data type");
176 }
177 return std::make_pair(min_quant_val, max_quant_val);
178 }
compute_quantized_multipliers_and_shifts(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * output,int32_t * output_multipliers_ptr,int32_t * output_shifts_ptr)179 void compute_quantized_multipliers_and_shifts(const ITensorInfo *input,
180 const ITensorInfo *weights,
181 const ITensorInfo *output,
182 int32_t *output_multipliers_ptr,
183 int32_t *output_shifts_ptr)
184 {
185 const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
186 const QuantizationInfo wq_info = weights->quantization_info();
187 const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
188
189 const unsigned int num_filters = wq_info.scale().size();
190
191 for(unsigned int i = 0; i < num_filters; ++i)
192 {
193 int32_t output_multiplier = 0;
194 int32_t output_shift = 0;
195 const float multiplier = iq_info.scale * wq_info.scale()[i] / oq_info.scale;
196 calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
197
198 output_multipliers_ptr[i] = output_multiplier;
199 output_shifts_ptr[i] = output_shift;
200 }
201 }
202
saturating_rounding_doubling_highmul(int32_t a,int32_t b)203 int32_t saturating_rounding_doubling_highmul(int32_t a, int32_t b)
204 {
205 bool overflow = a == b && a == std::numeric_limits<int32_t>::min();
206 int64_t a_64(a);
207 int64_t b_64(b);
208 int64_t ab_64 = a_64 * b_64;
209 const bool is_positive_or_zero =
210 a == 0 || b == 0 ||
211 (std::signbit(static_cast<double>(a)) == std::signbit(static_cast<double>(b)));
212 int32_t nudge = is_positive_or_zero ? (1 << 30) : (1 - (1 << 30));
213 int32_t ab_x2_high32 = static_cast<int32_t>((ab_64 + nudge) / (1ll << 31));
214 return overflow ? std::numeric_limits<int32_t>::max() : ab_x2_high32;
215 }
216
rounding_divide_by_pow2(int32_t x,int exponent)217 inline int32_t rounding_divide_by_pow2(int32_t x, int exponent)
218 {
219 const int32_t mask = (1 << exponent) - 1;
220 const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0);
221 return (x >> exponent) + ((x & mask) > threshold ? 1 : 0);
222 }
223
multiply_by_quantized_multiplier(int32_t input,int32_t qmul,int32_t shift)224 int32_t multiply_by_quantized_multiplier(int32_t input, int32_t qmul, int32_t shift)
225 {
226 const auto left_shift = shift > 0 ? shift : 0;
227 const auto right_shift = shift > 0 ? 0 : -shift;
228 return rounding_divide_by_pow2(saturating_rounding_doubling_highmul(input * (1 << left_shift), qmul), right_shift);
229 }
230
saturating_rounding_multiply_by_pow2(int32_t exponent,int32_t v)231 int32_t saturating_rounding_multiply_by_pow2(int32_t exponent, int32_t v)
232 {
233 if(exponent == 0)
234 {
235 return v;
236 }
237 else if(exponent < 0)
238 {
239 return rounding_divide_by_pow2(v, -exponent);
240 }
241 else
242 {
243 constexpr auto min = std::numeric_limits<int32_t>::min();
244 constexpr auto max = std::numeric_limits<int32_t>::max();
245 const auto width = sizeof(int32_t) * 8;
246
247 const int32_t threshold = ((1 << (width - 1 - exponent)) - 1);
248 bool pos_mask = v > threshold;
249 bool neg_mask = v < -threshold;
250 int32_t result = v << exponent;
251 result = pos_mask ? max : result;
252 result = neg_mask ? min : result;
253 return result;
254 }
255 }
256
get_invsqrt_quantized_multiplier_exp(int32_t input,int32_t reverse_shift,int32_t & output_inv_sqrt,int32_t & output_shift)257 void get_invsqrt_quantized_multiplier_exp(int32_t input, int32_t reverse_shift, int32_t &output_inv_sqrt, int32_t &output_shift)
258 {
259 ARM_COMPUTE_ERROR_ON(input < 0);
260
261 if(input <= 1)
262 {
263 // dealing the inputs (0 and 1) separately to avoid overflow
264 output_inv_sqrt = std::numeric_limits<std::int32_t>::max();
265 output_shift = 0;
266 return;
267 }
268
269 // prepare input for fixed point operation and compute shift value
270 output_shift = 11;
271 while(input >= (1 << 29))
272 {
273 input /= 4;
274 ++output_shift;
275 }
276
277 const uint32_t max_left_shift_bits = __builtin_clz(static_cast<uint32_t>(input)) - 1;
278 const uint32_t max_left_shift_bits_pairs = max_left_shift_bits / 2;
279 const uint32_t left_shift_bit_pairs = max_left_shift_bits_pairs - 1;
280 output_shift -= left_shift_bit_pairs;
281 input <<= 2 * left_shift_bit_pairs;
282
283 // Calculation in fixed point domain with 3 integer bits.
284 using FixedPointRawType = int32_t;
285 constexpr uint32_t fixedpoint_position = 3;
286 constexpr uint32_t fixedpoint_int_position = sizeof(FixedPointRawType) * 8 - 1 - fixedpoint_position;
287 using FixedPoint3 = FixedPointRawType;
288 using FixedPoint0 = FixedPointRawType;
289
290 // fixed point representation of input divided by 2 and 1.5 for Newton-Raphson iteration
291 const FixedPoint3 fixedpoint_input = (input >> 1);
292 const FixedPoint3 fixedpoint_half_input = rounding_divide_by_pow2(fixedpoint_input, 1);
293 const FixedPoint3 fixedpoint_half_three = (0x1 << fixedpoint_int_position) + (0x1 << (fixedpoint_int_position - 1));
294
295 // initial guess (1) in fixed point representation
296 FixedPoint3 x = 0x1 << fixedpoint_int_position;
297
298 // multiplication of two fixed point numbers, defined for readability
299 auto fixed_point_mul = [](FixedPointRawType a, FixedPointRawType b) -> FixedPointRawType
300 {
301 return saturating_rounding_doubling_highmul(a, b);
302 };
303
304 // rescaling of fixed point to have dst_bit integer bits, defined for readability
305 auto fixed_point_rescale = [](FixedPointRawType a, uint32_t src_bit, uint32_t dst_bit) -> FixedPointRawType
306 {
307 const uint32_t exponent = src_bit - dst_bit;
308 return saturating_rounding_multiply_by_pow2(exponent, a);
309 };
310
311 // 5 iterations of Newton-Raphson method for inverse square root - 1.5 * x_n = input/2 * (x_n)^3
312 constexpr int32_t num_iteration = 5;
313 for(int32_t i = 0; i < num_iteration; ++i)
314 {
315 const auto x3 = fixed_point_rescale(fixed_point_mul(fixed_point_mul(x, x), x), 9, fixedpoint_position);
316 x = fixed_point_rescale(fixed_point_mul(fixedpoint_half_three, x) - fixed_point_mul(fixedpoint_half_input, x3), 6, fixedpoint_position);
317 }
318
319 // fixed point representation of sqrt(1/2)
320 const FixedPoint0 fixedpoint_half_sqrt_2 = 1518500250;
321 x = fixed_point_mul(fixedpoint_half_sqrt_2, x);
322 output_inv_sqrt = x;
323 if(output_shift < 0)
324 {
325 output_inv_sqrt <<= -output_shift;
326 output_shift = 0;
327 }
328 // convert right shift to left shift
329 output_shift *= reverse_shift;
330 }
331 } // quantization
332 } // arm_compute
333