• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
25 #include "arm_compute/core/Helpers.h"
26 #include "support/ToolchainSupport.h"
27 
28 #include <cmath>
29 #include <limits>
30 #include <numeric>
31 
32 namespace arm_compute
33 {
34 namespace quantization
35 {
36 constexpr int64_t fixed_point_one_Q0 = (1LL << 31);
37 constexpr float   epsilon            = 0.00001f;
38 
calculate_quantized_multiplier(float multiplier,int32_t * quant_multiplier,int32_t * shift,bool ignore_epsilon)39 Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon)
40 {
41     if(multiplier >= 1.f)
42     {
43         Status status = calculate_quantized_multiplier_greater_than_one(multiplier, quant_multiplier, shift);
44         *shift *= -1;
45         return status;
46     }
47     else
48     {
49         return calculate_quantized_multiplier_less_than_one(multiplier, quant_multiplier, shift, ignore_epsilon);
50     }
51 }
52 
calculate_quantized_multiplier_less_than_one(float multiplier,int32_t * quant_multiplier,int32_t * right_shift,bool ignore_epsilon)53 Status calculate_quantized_multiplier_less_than_one(float    multiplier,
54                                                     int32_t *quant_multiplier,
55                                                     int32_t *right_shift,
56                                                     bool     ignore_epsilon)
57 {
58     const float internal_epsilon = ignore_epsilon ? 0.0f : epsilon;
59 
60     ARM_COMPUTE_RETURN_ERROR_ON(quant_multiplier == nullptr);
61     ARM_COMPUTE_RETURN_ERROR_ON(right_shift == nullptr);
62     ARM_COMPUTE_RETURN_ERROR_ON(multiplier < -internal_epsilon);
63     ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f + internal_epsilon);
64 
65     int          shift_exp = 0;
66     const double q         = std::frexp(multiplier, &shift_exp);
67     *right_shift           = -1 * shift_exp;
68     auto q_fixed           = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
69     ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
70     if(q_fixed == fixed_point_one_Q0)
71     {
72         q_fixed /= 2;
73         --*right_shift;
74     }
75 
76     if(ignore_epsilon && *right_shift > 31)
77     {
78         *right_shift = 0;
79         q_fixed      = 0;
80     }
81 
82     ARM_COMPUTE_RETURN_ERROR_ON(*right_shift < 0);
83     ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
84     *quant_multiplier = static_cast<int32_t>(q_fixed);
85 
86     return Status{};
87 }
88 
calculate_quantized_multiplier_greater_than_one(float multiplier,int32_t * quantized_multiplier,int32_t * left_shift)89 Status calculate_quantized_multiplier_greater_than_one(float    multiplier,
90                                                        int32_t *quantized_multiplier,
91                                                        int32_t *left_shift)
92 {
93     ARM_COMPUTE_RETURN_ERROR_ON(quantized_multiplier == nullptr);
94     ARM_COMPUTE_RETURN_ERROR_ON(left_shift == nullptr);
95     ARM_COMPUTE_RETURN_ERROR_ON(multiplier < 1.f);
96 
97     int          shift_exp = 0;
98     const double q         = std::frexp(multiplier, &shift_exp);
99     *left_shift            = shift_exp;
100     auto q_fixed           = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
101     ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
102     if(q_fixed == fixed_point_one_Q0)
103     {
104         q_fixed /= 2;
105         ++*left_shift;
106     }
107     ARM_COMPUTE_RETURN_ERROR_ON(*left_shift < 0);
108     ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
109     *quantized_multiplier = static_cast<int32_t>(q_fixed);
110 
111     return Status{};
112 }
113 
calculate_quantized_multipliers(const QuantizationInfo & iq_info,const QuantizationInfo & wq_info,const QuantizationInfo & oq_info,GEMMLowpOutputStageInfo & stage_info)114 arm_compute::Status calculate_quantized_multipliers(const QuantizationInfo &iq_info,
115                                                     const QuantizationInfo &wq_info,
116                                                     const QuantizationInfo &oq_info,
117                                                     GEMMLowpOutputStageInfo &stage_info)
118 {
119     ARM_COMPUTE_RETURN_ERROR_ON(iq_info.scale().empty());
120     ARM_COMPUTE_RETURN_ERROR_ON(wq_info.scale().empty());
121     ARM_COMPUTE_RETURN_ERROR_ON(oq_info.scale().empty());
122 
123     const unsigned int size = wq_info.scale().size();
124 
125     auto &quant_multipliers = stage_info.gemmlowp_multipliers;
126     auto &quant_shifts      = stage_info.gemmlowp_shifts;
127     quant_multipliers.resize(size);
128     quant_shifts.resize(size);
129 
130     const auto &w_scales = wq_info.scale();
131     const float i_scale  = iq_info.scale().at(0);
132     const float o_scale  = oq_info.scale().at(0);
133 
134     for(unsigned int i = 0; i < size; ++i)
135     {
136         const float multiplier       = i_scale * w_scales[i] / o_scale;
137         int32_t     quant_multiplier = 0;
138         int32_t     quant_shift      = 0;
139         ARM_COMPUTE_RETURN_ON_ERROR(calculate_quantized_multiplier(multiplier, &quant_multiplier, &quant_shift));
140         quant_multipliers[i] = quant_multiplier;
141         quant_shifts[i]      = quant_shift;
142     }
143 
144     // Legacy part
145     stage_info.gemmlowp_shift      = quant_shifts[0];
146     stage_info.gemmlowp_multiplier = quant_multipliers[0];
147 
148     return Status{};
149 }
150 
get_min_max_values_from_quantized_data_type(DataType data_type)151 std::pair<int, int> get_min_max_values_from_quantized_data_type(DataType data_type)
152 {
153     int min_quant_val = 0;
154     int max_quant_val = 0;
155     switch(data_type)
156     {
157         case DataType::QASYMM8:
158             min_quant_val = std::numeric_limits<uint8_t>::min();
159             max_quant_val = std::numeric_limits<uint8_t>::max();
160             break;
161         case DataType::QSYMM8:
162         case DataType::QASYMM8_SIGNED:
163             min_quant_val = std::numeric_limits<int8_t>::min();
164             max_quant_val = std::numeric_limits<int8_t>::max();
165             break;
166         case DataType::QASYMM16:
167             min_quant_val = std::numeric_limits<uint16_t>::min();
168             max_quant_val = std::numeric_limits<uint16_t>::max();
169             break;
170         case DataType::QSYMM16:
171             min_quant_val = std::numeric_limits<int16_t>::min();
172             max_quant_val = std::numeric_limits<int16_t>::max();
173             break;
174         default:
175             ARM_COMPUTE_ERROR("Unsupported data type");
176     }
177     return std::make_pair(min_quant_val, max_quant_val);
178 }
compute_quantized_multipliers_and_shifts(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * output,int32_t * output_multipliers_ptr,int32_t * output_shifts_ptr)179 void compute_quantized_multipliers_and_shifts(const ITensorInfo *input,
180                                               const ITensorInfo *weights,
181                                               const ITensorInfo *output,
182                                               int32_t           *output_multipliers_ptr,
183                                               int32_t           *output_shifts_ptr)
184 {
185     const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
186     const QuantizationInfo        wq_info = weights->quantization_info();
187     const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
188 
189     const unsigned int num_filters = wq_info.scale().size();
190 
191     for(unsigned int i = 0; i < num_filters; ++i)
192     {
193         int32_t     output_multiplier = 0;
194         int32_t     output_shift      = 0;
195         const float multiplier        = iq_info.scale * wq_info.scale()[i] / oq_info.scale;
196         calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
197 
198         output_multipliers_ptr[i] = output_multiplier;
199         output_shifts_ptr[i]      = output_shift;
200     }
201 }
202 
saturating_rounding_doubling_highmul(int32_t a,int32_t b)203 int32_t saturating_rounding_doubling_highmul(int32_t a, int32_t b)
204 {
205     bool    overflow = a == b && a == std::numeric_limits<int32_t>::min();
206     int64_t a_64(a);
207     int64_t b_64(b);
208     int64_t ab_64               = a_64 * b_64;
209     const bool  is_positive_or_zero =
210         a == 0 || b == 0 ||
211         (std::signbit(static_cast<double>(a)) == std::signbit(static_cast<double>(b)));
212     int32_t nudge               = is_positive_or_zero ? (1 << 30) : (1 - (1 << 30));
213     int32_t ab_x2_high32        = static_cast<int32_t>((ab_64 + nudge) / (1ll << 31));
214     return overflow ? std::numeric_limits<int32_t>::max() : ab_x2_high32;
215 }
216 
rounding_divide_by_pow2(int32_t x,int exponent)217 inline int32_t rounding_divide_by_pow2(int32_t x, int exponent)
218 {
219     const int32_t mask      = (1 << exponent) - 1;
220     const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0);
221     return (x >> exponent) + ((x & mask) > threshold ? 1 : 0);
222 }
223 
multiply_by_quantized_multiplier(int32_t input,int32_t qmul,int32_t shift)224 int32_t multiply_by_quantized_multiplier(int32_t input, int32_t qmul, int32_t shift)
225 {
226     const auto left_shift  = shift > 0 ? shift : 0;
227     const auto right_shift = shift > 0 ? 0 : -shift;
228     return rounding_divide_by_pow2(saturating_rounding_doubling_highmul(input * (1 << left_shift), qmul), right_shift);
229 }
230 
saturating_rounding_multiply_by_pow2(int32_t exponent,int32_t v)231 int32_t saturating_rounding_multiply_by_pow2(int32_t exponent, int32_t v)
232 {
233     if(exponent == 0)
234     {
235         return v;
236     }
237     else if(exponent < 0)
238     {
239         return rounding_divide_by_pow2(v, -exponent);
240     }
241     else
242     {
243         constexpr auto min   = std::numeric_limits<int32_t>::min();
244         constexpr auto max   = std::numeric_limits<int32_t>::max();
245         const auto     width = sizeof(int32_t) * 8;
246 
247         const int32_t threshold = ((1 << (width - 1 - exponent)) - 1);
248         bool          pos_mask  = v > threshold;
249         bool          neg_mask  = v < -threshold;
250         int32_t       result    = v << exponent;
251         result                  = pos_mask ? max : result;
252         result                  = neg_mask ? min : result;
253         return result;
254     }
255 }
256 
get_invsqrt_quantized_multiplier_exp(int32_t input,int32_t reverse_shift,int32_t & output_inv_sqrt,int32_t & output_shift)257 void get_invsqrt_quantized_multiplier_exp(int32_t input, int32_t reverse_shift, int32_t &output_inv_sqrt, int32_t &output_shift)
258 {
259     ARM_COMPUTE_ERROR_ON(input < 0);
260 
261     if(input <= 1)
262     {
263         // dealing the inputs (0 and 1) separately to avoid overflow
264         output_inv_sqrt = std::numeric_limits<std::int32_t>::max();
265         output_shift    = 0;
266         return;
267     }
268 
269     // prepare input for fixed point operation and compute shift value
270     output_shift = 11;
271     while(input >= (1 << 29))
272     {
273         input /= 4;
274         ++output_shift;
275     }
276 
277     const uint32_t max_left_shift_bits       = __builtin_clz(static_cast<uint32_t>(input)) - 1;
278     const uint32_t max_left_shift_bits_pairs = max_left_shift_bits / 2;
279     const uint32_t left_shift_bit_pairs      = max_left_shift_bits_pairs - 1;
280     output_shift -= left_shift_bit_pairs;
281     input <<= 2 * left_shift_bit_pairs;
282 
283     // Calculation in fixed point domain with 3 integer bits.
284     using FixedPointRawType                    = int32_t;
285     constexpr uint32_t fixedpoint_position     = 3;
286     constexpr uint32_t fixedpoint_int_position = sizeof(FixedPointRawType) * 8 - 1 - fixedpoint_position;
287     using FixedPoint3                          = FixedPointRawType;
288     using FixedPoint0                          = FixedPointRawType;
289 
290     // fixed point representation of input divided by 2 and 1.5 for Newton-Raphson iteration
291     const FixedPoint3 fixedpoint_input      = (input >> 1);
292     const FixedPoint3 fixedpoint_half_input = rounding_divide_by_pow2(fixedpoint_input, 1);
293     const FixedPoint3 fixedpoint_half_three = (0x1 << fixedpoint_int_position) + (0x1 << (fixedpoint_int_position - 1));
294 
295     // initial guess (1) in fixed point representation
296     FixedPoint3 x = 0x1 << fixedpoint_int_position;
297 
298     // multiplication of two fixed point numbers, defined for readability
299     auto fixed_point_mul = [](FixedPointRawType a, FixedPointRawType b) -> FixedPointRawType
300     {
301         return saturating_rounding_doubling_highmul(a, b);
302     };
303 
304     // rescaling of fixed point to have dst_bit integer bits, defined for readability
305     auto fixed_point_rescale = [](FixedPointRawType a, uint32_t src_bit, uint32_t dst_bit) -> FixedPointRawType
306     {
307         const uint32_t exponent = src_bit - dst_bit;
308         return saturating_rounding_multiply_by_pow2(exponent, a);
309     };
310 
311     // 5 iterations of Newton-Raphson method for inverse square root - 1.5 * x_n = input/2 * (x_n)^3
312     constexpr int32_t num_iteration = 5;
313     for(int32_t i = 0; i < num_iteration; ++i)
314     {
315         const auto x3 = fixed_point_rescale(fixed_point_mul(fixed_point_mul(x, x), x), 9, fixedpoint_position);
316         x             = fixed_point_rescale(fixed_point_mul(fixedpoint_half_three, x) - fixed_point_mul(fixedpoint_half_input, x3), 6, fixedpoint_position);
317     }
318 
319     // fixed point representation of sqrt(1/2)
320     const FixedPoint0 fixedpoint_half_sqrt_2 = 1518500250;
321     x                                        = fixed_point_mul(fixedpoint_half_sqrt_2, x);
322     output_inv_sqrt                          = x;
323     if(output_shift < 0)
324     {
325         output_inv_sqrt <<= -output_shift;
326         output_shift = 0;
327     }
328     // convert right shift to left shift
329     output_shift *= reverse_shift;
330 }
331 } // quantization
332 } // arm_compute
333