• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
3  * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
4  * Copyright © 2010 Intel Corporation
5  * Copyright © 2011 Bryan Cain
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24  * DEALINGS IN THE SOFTWARE.
25  */
26 
27 /**
28  * \file glsl_to_tgsi.cpp
29  *
30  * Translate GLSL IR to TGSI.
31  */
32 
33 #include "st_glsl_to_tgsi.h"
34 
35 #include "compiler/glsl/glsl_parser_extras.h"
36 #include "compiler/glsl/ir_optimization.h"
37 #include "compiler/glsl/program.h"
38 
39 #include "main/errors.h"
40 #include "main/shaderobj.h"
41 #include "main/uniforms.h"
42 #include "main/shaderapi.h"
43 #include "main/shaderimage.h"
44 #include "program/prog_instruction.h"
45 
46 #include "pipe/p_context.h"
47 #include "pipe/p_screen.h"
48 #include "tgsi/tgsi_ureg.h"
49 #include "tgsi/tgsi_info.h"
50 #include "util/u_math.h"
51 #include "util/u_memory.h"
52 #include "st_program.h"
53 #include "st_mesa_to_tgsi.h"
54 #include "st_format.h"
55 #include "st_glsl_to_tgsi_temprename.h"
56 
57 #include "util/hash_table.h"
58 #include <algorithm>
59 
60 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) |    \
61                            (1 << PROGRAM_CONSTANT) |     \
62                            (1 << PROGRAM_UNIFORM))
63 
64 #define MAX_GLSL_TEXTURE_OFFSET 4
65 
66 #ifndef NDEBUG
67 #include "util/u_atomic.h"
68 #include "util/simple_mtx.h"
69 #include <fstream>
70 #include <ios>
71 
72 /* Prepare to make it possible to specify log file */
73 static std::ofstream stats_log;
74 
75 /* Helper function to check whether we want to write some statistics
76  * of the shader conversion.
77  */
78 
79 static simple_mtx_t print_stats_mutex = _SIMPLE_MTX_INITIALIZER_NP;
80 
print_stats_enabled()81 static inline bool print_stats_enabled ()
82 {
83    static int stats_enabled = 0;
84 
85    if (!stats_enabled) {
86       simple_mtx_lock(&print_stats_mutex);
87       if (!stats_enabled) {
88 	 const char *stats_filename = getenv("GLSL_TO_TGSI_PRINT_STATS");
89 	 if (stats_filename) {
90 	    bool write_header = std::ifstream(stats_filename).fail();
91 	    stats_log.open(stats_filename, std::ios_base::out | std::ios_base::app);
92 	    stats_enabled = stats_log.good() ? 1 : -1;
93 	    if (write_header)
94 	       stats_log << "arrays,temps,temps in arrays,total,instructions\n";
95 	 } else {
96 	    stats_enabled = -1;
97 	 }
98       }
99       simple_mtx_unlock(&print_stats_mutex);
100    }
101    return stats_enabled > 0;
102 }
103 #define PRINT_STATS(X) if (print_stats_enabled()) do { X; } while (false);
104 #else
105 #define PRINT_STATS(X)
106 #endif
107 
108 
is_precise(const ir_variable * ir)109 static unsigned is_precise(const ir_variable *ir)
110 {
111    if (!ir)
112       return 0;
113    return ir->data.precise || ir->data.invariant;
114 }
115 
116 class variable_storage {
117    DECLARE_RZALLOC_CXX_OPERATORS(variable_storage)
118 
119 public:
variable_storage(ir_variable * var,gl_register_file file,int index,unsigned array_id=0)120    variable_storage(ir_variable *var, gl_register_file file, int index,
121                     unsigned array_id = 0)
122       : file(file), index(index), component(0), var(var), array_id(array_id)
123    {
124       assert(file != PROGRAM_ARRAY || array_id != 0);
125    }
126 
127    gl_register_file file;
128    int index;
129 
130    /* Explicit component location. This is given in terms of the GLSL-style
131     * swizzles where each double is a single component, i.e. for 64-bit types
132     * it can only be 0 or 1.
133     */
134    int component;
135    ir_variable *var; /* variable that maps to this, if any */
136    unsigned array_id;
137 };
138 
139 class immediate_storage : public exec_node {
140 public:
immediate_storage(gl_constant_value * values,int size32,GLenum type)141    immediate_storage(gl_constant_value *values, int size32, GLenum type)
142    {
143       memcpy(this->values, values, size32 * sizeof(gl_constant_value));
144       this->size32 = size32;
145       this->type = type;
146    }
147 
148    /* doubles are stored across 2 gl_constant_values */
149    gl_constant_value values[4];
150    int size32; /**< Number of 32-bit components (1-4) */
151    GLenum type; /**< GL_DOUBLE, GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
152 };
153 
154 static const st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
155 static const st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
156 
157 struct inout_decl {
158    unsigned mesa_index;
159    unsigned array_id; /* TGSI ArrayID; 1-based: 0 means not an array */
160    unsigned size;
161    unsigned interp_loc;
162    unsigned gs_out_streams;
163    enum glsl_interp_mode interp;
164    enum glsl_base_type base_type;
165    ubyte usage_mask; /* GLSL-style usage-mask,  i.e. single bit per double */
166    bool invariant;
167 };
168 
169 static struct inout_decl *
find_inout_array(struct inout_decl * decls,unsigned count,unsigned array_id)170 find_inout_array(struct inout_decl *decls, unsigned count, unsigned array_id)
171 {
172    assert(array_id != 0);
173 
174    for (unsigned i = 0; i < count; i++) {
175       struct inout_decl *decl = &decls[i];
176 
177       if (array_id == decl->array_id) {
178          return decl;
179       }
180    }
181 
182    return NULL;
183 }
184 
185 static enum glsl_base_type
find_array_type(struct inout_decl * decls,unsigned count,unsigned array_id)186 find_array_type(struct inout_decl *decls, unsigned count, unsigned array_id)
187 {
188    if (!array_id)
189       return GLSL_TYPE_ERROR;
190    struct inout_decl *decl = find_inout_array(decls, count, array_id);
191    if (decl)
192       return decl->base_type;
193    return GLSL_TYPE_ERROR;
194 }
195 
196 struct hwatomic_decl {
197    unsigned location;
198    unsigned binding;
199    unsigned size;
200    unsigned array_id;
201 };
202 
203 struct glsl_to_tgsi_visitor : public ir_visitor {
204 public:
205    glsl_to_tgsi_visitor();
206    ~glsl_to_tgsi_visitor();
207 
208    struct gl_context *ctx;
209    struct gl_program *prog;
210    struct gl_shader_program *shader_program;
211    struct gl_linked_shader *shader;
212    struct gl_shader_compiler_options *options;
213 
214    int next_temp;
215 
216    unsigned *array_sizes;
217    unsigned max_num_arrays;
218    unsigned next_array;
219 
220    struct inout_decl inputs[4 * PIPE_MAX_SHADER_INPUTS];
221    unsigned num_inputs;
222    unsigned num_input_arrays;
223    struct inout_decl outputs[4 * PIPE_MAX_SHADER_OUTPUTS];
224    unsigned num_outputs;
225    unsigned num_output_arrays;
226 
227    struct hwatomic_decl atomic_info[PIPE_MAX_HW_ATOMIC_BUFFERS];
228    unsigned num_atomics;
229    unsigned num_atomic_arrays;
230    int num_address_regs;
231    uint32_t samplers_used;
232    glsl_base_type sampler_types[PIPE_MAX_SAMPLERS];
233    enum tgsi_texture_type sampler_targets[PIPE_MAX_SAMPLERS];
234    int images_used;
235    enum tgsi_texture_type image_targets[PIPE_MAX_SHADER_IMAGES];
236    enum pipe_format image_formats[PIPE_MAX_SHADER_IMAGES];
237    bool image_wr[PIPE_MAX_SHADER_IMAGES];
238    bool indirect_addr_consts;
239    int wpos_transform_const;
240 
241    bool native_integers;
242    bool have_sqrt;
243    bool have_fma;
244    bool use_shared_memory;
245    bool has_tex_txf_lz;
246    bool precise;
247    bool need_uarl;
248    bool tg4_component_in_swizzle;
249 
250    variable_storage *find_variable_storage(ir_variable *var);
251 
252    int add_constant(gl_register_file file, gl_constant_value values[8],
253                     int size, GLenum datatype, uint16_t *swizzle_out);
254 
255    st_src_reg get_temp(const glsl_type *type);
256    void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
257 
258    st_src_reg st_src_reg_for_double(double val);
259    st_src_reg st_src_reg_for_float(float val);
260    st_src_reg st_src_reg_for_int(int val);
261    st_src_reg st_src_reg_for_int64(int64_t val);
262    st_src_reg st_src_reg_for_type(enum glsl_base_type type, int val);
263 
264    /**
265     * \name Visit methods
266     *
267     * As typical for the visitor pattern, there must be one \c visit method for
268     * each concrete subclass of \c ir_instruction.  Virtual base classes within
269     * the hierarchy should not have \c visit methods.
270     */
271    /*@{*/
272    virtual void visit(ir_variable *);
273    virtual void visit(ir_loop *);
274    virtual void visit(ir_loop_jump *);
275    virtual void visit(ir_function_signature *);
276    virtual void visit(ir_function *);
277    virtual void visit(ir_expression *);
278    virtual void visit(ir_swizzle *);
279    virtual void visit(ir_dereference_variable  *);
280    virtual void visit(ir_dereference_array *);
281    virtual void visit(ir_dereference_record *);
282    virtual void visit(ir_assignment *);
283    virtual void visit(ir_constant *);
284    virtual void visit(ir_call *);
285    virtual void visit(ir_return *);
286    virtual void visit(ir_discard *);
287    virtual void visit(ir_demote *);
288    virtual void visit(ir_texture *);
289    virtual void visit(ir_if *);
290    virtual void visit(ir_emit_vertex *);
291    virtual void visit(ir_end_primitive *);
292    virtual void visit(ir_barrier *);
293    /*@}*/
294 
295    void ATTRIBUTE_NOINLINE visit_expression(ir_expression *, st_src_reg *);
296 
297    void visit_atomic_counter_intrinsic(ir_call *);
298    void visit_ssbo_intrinsic(ir_call *);
299    void visit_membar_intrinsic(ir_call *);
300    void visit_shared_intrinsic(ir_call *);
301    void visit_image_intrinsic(ir_call *);
302    void visit_generic_intrinsic(ir_call *, enum tgsi_opcode op);
303 
304    st_src_reg result;
305 
306    /** List of variable_storage */
307    struct hash_table *variables;
308 
309    /** List of immediate_storage */
310    exec_list immediates;
311    unsigned num_immediates;
312 
313    /** List of glsl_to_tgsi_instruction */
314    exec_list instructions;
315 
316    glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, enum tgsi_opcode op,
317                                       st_dst_reg dst = undef_dst,
318                                       st_src_reg src0 = undef_src,
319                                       st_src_reg src1 = undef_src,
320                                       st_src_reg src2 = undef_src,
321                                       st_src_reg src3 = undef_src);
322 
323    glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, enum tgsi_opcode op,
324                                       st_dst_reg dst, st_dst_reg dst1,
325                                       st_src_reg src0 = undef_src,
326                                       st_src_reg src1 = undef_src,
327                                       st_src_reg src2 = undef_src,
328                                       st_src_reg src3 = undef_src);
329 
330    enum tgsi_opcode get_opcode(enum tgsi_opcode op,
331                                st_dst_reg dst,
332                                st_src_reg src0, st_src_reg src1);
333 
334    /**
335     * Emit the correct dot-product instruction for the type of arguments
336     */
337    glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
338                                      st_dst_reg dst,
339                                      st_src_reg src0,
340                                      st_src_reg src1,
341                                      unsigned elements);
342 
343    void emit_scalar(ir_instruction *ir, enum tgsi_opcode op,
344                     st_dst_reg dst, st_src_reg src0);
345 
346    void emit_scalar(ir_instruction *ir, enum tgsi_opcode op,
347                     st_dst_reg dst, st_src_reg src0, st_src_reg src1);
348 
349    void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
350 
351    void get_deref_offsets(ir_dereference *ir,
352                           unsigned *array_size,
353                           unsigned *base,
354                           uint16_t *index,
355                           st_src_reg *reladdr,
356                           bool opaque);
357   void calc_deref_offsets(ir_dereference *tail,
358                           unsigned *array_elements,
359                           uint16_t *index,
360                           st_src_reg *indirect,
361                           unsigned *location);
362    st_src_reg canonicalize_gather_offset(st_src_reg offset);
363    bool handle_bound_deref(ir_dereference *ir);
364 
365    bool try_emit_mad(ir_expression *ir,
366               int mul_operand);
367    bool try_emit_mad_for_and_not(ir_expression *ir,
368               int mul_operand);
369 
370    void emit_swz(ir_expression *ir);
371 
372    bool process_move_condition(ir_rvalue *ir);
373 
374    void simplify_cmp(void);
375 
376    void rename_temp_registers(struct rename_reg_pair *renames);
377    void get_first_temp_read(int *first_reads);
378    void get_first_temp_write(int *first_writes);
379    void get_last_temp_read_first_temp_write(int *last_reads, int *first_writes);
380    void get_last_temp_write(int *last_writes);
381 
382    void copy_propagate(void);
383    int eliminate_dead_code(void);
384 
385    void split_arrays(void);
386    void merge_two_dsts(void);
387    void merge_registers(void);
388    void renumber_registers(void);
389 
390    void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
391                        st_dst_reg *l, st_src_reg *r,
392                        st_src_reg *cond, bool cond_swap);
393 
394    void print_stats();
395 
396    void *mem_ctx;
397 };
398 
399 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X,
400                                            GLSL_TYPE_FLOAT, 0);
401 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X,
402                                             GLSL_TYPE_FLOAT, 1);
403 static st_dst_reg sampler_reladdr = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X,
404                                                GLSL_TYPE_FLOAT, 2);
405 
406 static void
407 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
408    PRINTFLIKE(2, 3);
409 
410 static void
fail_link(struct gl_shader_program * prog,const char * fmt,...)411 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
412 {
413    va_list args;
414    va_start(args, fmt);
415    ralloc_vasprintf_append(&prog->data->InfoLog, fmt, args);
416    va_end(args);
417 
418    prog->data->LinkStatus = LINKING_FAILURE;
419 }
420 
421 int
swizzle_for_size(int size)422 swizzle_for_size(int size)
423 {
424    static const int size_swizzles[4] = {
425       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
426       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
427       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
428       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
429    };
430 
431    assert((size >= 1) && (size <= 4));
432    return size_swizzles[size - 1];
433 }
434 
435 
436 glsl_to_tgsi_instruction *
emit_asm(ir_instruction * ir,enum tgsi_opcode op,st_dst_reg dst,st_dst_reg dst1,st_src_reg src0,st_src_reg src1,st_src_reg src2,st_src_reg src3)437 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, enum tgsi_opcode op,
438                                st_dst_reg dst, st_dst_reg dst1,
439                                st_src_reg src0, st_src_reg src1,
440                                st_src_reg src2, st_src_reg src3)
441 {
442    glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
443    int num_reladdr = 0, i, j;
444    bool dst_is_64bit[2];
445 
446    op = get_opcode(op, dst, src0, src1);
447 
448    /* If we have to do relative addressing, we want to load the ARL
449     * reg directly for one of the regs, and preload the other reladdr
450     * sources into temps.
451     */
452    num_reladdr += dst.reladdr != NULL || dst.reladdr2;
453    assert(!dst1.reladdr); /* should be lowered in earlier passes */
454    num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
455    num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
456    num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
457    num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
458 
459    reladdr_to_temp(ir, &src3, &num_reladdr);
460    reladdr_to_temp(ir, &src2, &num_reladdr);
461    reladdr_to_temp(ir, &src1, &num_reladdr);
462    reladdr_to_temp(ir, &src0, &num_reladdr);
463 
464    if (dst.reladdr || dst.reladdr2) {
465       if (dst.reladdr)
466          emit_arl(ir, address_reg, *dst.reladdr);
467       if (dst.reladdr2)
468          emit_arl(ir, address_reg2, *dst.reladdr2);
469       num_reladdr--;
470    }
471 
472    assert(num_reladdr == 0);
473 
474    /* inst->op has only 8 bits. */
475    STATIC_ASSERT(TGSI_OPCODE_LAST <= 255);
476 
477    inst->op = op;
478    inst->precise = this->precise;
479    inst->info = tgsi_get_opcode_info(op);
480    inst->dst[0] = dst;
481    inst->dst[1] = dst1;
482    inst->src[0] = src0;
483    inst->src[1] = src1;
484    inst->src[2] = src2;
485    inst->src[3] = src3;
486    inst->is_64bit_expanded = false;
487    inst->ir = ir;
488    inst->dead_mask = 0;
489    inst->tex_offsets = NULL;
490    inst->tex_offset_num_offset = 0;
491    inst->saturate = 0;
492    inst->tex_shadow = 0;
493    /* default to float, for paths where this is not initialized
494     * (since 0==UINT which is likely wrong):
495     */
496    inst->tex_type = GLSL_TYPE_FLOAT;
497 
498    /* Update indirect addressing status used by TGSI */
499    if (dst.reladdr || dst.reladdr2) {
500       switch (dst.file) {
501       case PROGRAM_STATE_VAR:
502       case PROGRAM_CONSTANT:
503       case PROGRAM_UNIFORM:
504          this->indirect_addr_consts = true;
505          break;
506       case PROGRAM_IMMEDIATE:
507          assert(!"immediates should not have indirect addressing");
508          break;
509       default:
510          break;
511       }
512    }
513    else {
514       for (i = 0; i < 4; i++) {
515          if (inst->src[i].reladdr) {
516             switch (inst->src[i].file) {
517             case PROGRAM_STATE_VAR:
518             case PROGRAM_CONSTANT:
519             case PROGRAM_UNIFORM:
520                this->indirect_addr_consts = true;
521                break;
522             case PROGRAM_IMMEDIATE:
523                assert(!"immediates should not have indirect addressing");
524                break;
525             default:
526                break;
527             }
528          }
529       }
530    }
531 
532    /*
533     * This section contains the double processing.
534     * GLSL just represents doubles as single channel values,
535     * however most HW and TGSI represent doubles as pairs of register channels.
536     *
537     * so we have to fixup destination writemask/index and src swizzle/indexes.
538     * dest writemasks need to translate from single channel write mask
539     * to a dual-channel writemask, but also need to modify the index,
540     * if we are touching the Z,W fields in the pre-translated writemask.
541     *
542     * src channels have similiar index modifications along with swizzle
543     * changes to we pick the XY, ZW pairs from the correct index.
544     *
545     * GLSL [0].x -> TGSI [0].xy
546     * GLSL [0].y -> TGSI [0].zw
547     * GLSL [0].z -> TGSI [1].xy
548     * GLSL [0].w -> TGSI [1].zw
549     */
550    for (j = 0; j < 2; j++) {
551       dst_is_64bit[j] = glsl_base_type_is_64bit(inst->dst[j].type);
552       if (!dst_is_64bit[j] && inst->dst[j].file == PROGRAM_OUTPUT &&
553           inst->dst[j].type == GLSL_TYPE_ARRAY) {
554          enum glsl_base_type type = find_array_type(this->outputs,
555                                                     this->num_outputs,
556                                                     inst->dst[j].array_id);
557          if (glsl_base_type_is_64bit(type))
558             dst_is_64bit[j] = true;
559       }
560    }
561 
562    if (dst_is_64bit[0] || dst_is_64bit[1] ||
563        glsl_base_type_is_64bit(inst->src[0].type)) {
564       glsl_to_tgsi_instruction *dinst = NULL;
565       int initial_src_swz[4], initial_src_idx[4];
566       int initial_dst_idx[2], initial_dst_writemask[2];
567       /* select the writemask for dst0 or dst1 */
568       unsigned writemask = inst->dst[1].file == PROGRAM_UNDEFINED
569          ? inst->dst[0].writemask : inst->dst[1].writemask;
570 
571       /* copy out the writemask, index and swizzles for all src/dsts. */
572       for (j = 0; j < 2; j++) {
573          initial_dst_writemask[j] = inst->dst[j].writemask;
574          initial_dst_idx[j] = inst->dst[j].index;
575       }
576 
577       for (j = 0; j < 4; j++) {
578          initial_src_swz[j] = inst->src[j].swizzle;
579          initial_src_idx[j] = inst->src[j].index;
580       }
581 
582       /*
583        * scan all the components in the dst writemask
584        * generate an instruction for each of them if required.
585        */
586       st_src_reg addr;
587       while (writemask) {
588 
589          int i = u_bit_scan(&writemask);
590 
591          /* before emitting the instruction, see if we have to adjust
592           * load / store address */
593          if (i > 1 && (inst->op == TGSI_OPCODE_LOAD ||
594                        inst->op == TGSI_OPCODE_STORE) &&
595              addr.file == PROGRAM_UNDEFINED) {
596             /* We have to advance the buffer address by 16 */
597             addr = get_temp(glsl_type::uint_type);
598             emit_asm(ir, TGSI_OPCODE_UADD, st_dst_reg(addr),
599                      inst->src[0], st_src_reg_for_int(16));
600          }
601 
602          /* first time use previous instruction */
603          if (dinst == NULL) {
604             dinst = inst;
605          } else {
606             /* create a new instructions for subsequent attempts */
607             dinst = new(mem_ctx) glsl_to_tgsi_instruction();
608             *dinst = *inst;
609             dinst->next = NULL;
610             dinst->prev = NULL;
611          }
612          this->instructions.push_tail(dinst);
613          dinst->is_64bit_expanded = true;
614 
615          /* modify the destination if we are splitting */
616          for (j = 0; j < 2; j++) {
617             if (dst_is_64bit[j]) {
618                dinst->dst[j].writemask = (i & 1) ? WRITEMASK_ZW : WRITEMASK_XY;
619                dinst->dst[j].index = initial_dst_idx[j];
620                if (i > 1) {
621                   if (dinst->op == TGSI_OPCODE_LOAD ||
622                       dinst->op == TGSI_OPCODE_STORE)
623                      dinst->src[0] = addr;
624                   if (dinst->op != TGSI_OPCODE_STORE)
625                      dinst->dst[j].index++;
626                }
627             } else {
628                /* if we aren't writing to a double, just get the bit of the
629                 * initial writemask for this channel
630                 */
631                dinst->dst[j].writemask = initial_dst_writemask[j] & (1 << i);
632             }
633          }
634 
635          /* modify the src registers */
636          for (j = 0; j < 4; j++) {
637             int swz = GET_SWZ(initial_src_swz[j], i);
638 
639             if (glsl_base_type_is_64bit(dinst->src[j].type)) {
640                dinst->src[j].index = initial_src_idx[j];
641                if (swz > 1) {
642                   dinst->src[j].double_reg2 = true;
643                   dinst->src[j].index++;
644                }
645 
646                if (swz & 1)
647                   dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W,
648                                                         SWIZZLE_Z, SWIZZLE_W);
649                else
650                   dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
651                                                         SWIZZLE_X, SWIZZLE_Y);
652 
653             } else {
654                /* some opcodes are special case in what they use as sources
655                 * - [FUI]2D/[UI]2I64 is a float/[u]int src0, (D)LDEXP is
656                 * integer src1
657                 */
658                if (op == TGSI_OPCODE_F2D || op == TGSI_OPCODE_U2D ||
659                    op == TGSI_OPCODE_I2D ||
660                    op == TGSI_OPCODE_I2I64 || op == TGSI_OPCODE_U2I64 ||
661                    op == TGSI_OPCODE_DLDEXP || op == TGSI_OPCODE_LDEXP ||
662                    (op == TGSI_OPCODE_UCMP && dst_is_64bit[0])) {
663                   dinst->src[j].swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
664                }
665             }
666          }
667       }
668       inst = dinst;
669    } else {
670       this->instructions.push_tail(inst);
671    }
672 
673 
674    return inst;
675 }
676 
677 glsl_to_tgsi_instruction *
emit_asm(ir_instruction * ir,enum tgsi_opcode op,st_dst_reg dst,st_src_reg src0,st_src_reg src1,st_src_reg src2,st_src_reg src3)678 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, enum tgsi_opcode op,
679                                st_dst_reg dst,
680                                st_src_reg src0, st_src_reg src1,
681                                st_src_reg src2, st_src_reg src3)
682 {
683    return emit_asm(ir, op, dst, undef_dst, src0, src1, src2, src3);
684 }
685 
686 /**
687  * Determines whether to use an integer, unsigned integer, or float opcode
688  * based on the operands and input opcode, then emits the result.
689  */
690 enum tgsi_opcode
get_opcode(enum tgsi_opcode op,st_dst_reg dst,st_src_reg src0,st_src_reg src1)691 glsl_to_tgsi_visitor::get_opcode(enum tgsi_opcode op,
692                                  st_dst_reg dst,
693                                  st_src_reg src0, st_src_reg src1)
694 {
695    enum glsl_base_type type = GLSL_TYPE_FLOAT;
696 
697    if (op == TGSI_OPCODE_MOV)
698        return op;
699 
700    assert(src0.type != GLSL_TYPE_ARRAY);
701    assert(src0.type != GLSL_TYPE_STRUCT);
702    assert(src1.type != GLSL_TYPE_ARRAY);
703    assert(src1.type != GLSL_TYPE_STRUCT);
704 
705    if (is_resource_instruction(op))
706       type = src1.type;
707    else if (src0.type == GLSL_TYPE_INT64 || src1.type == GLSL_TYPE_INT64)
708       type = GLSL_TYPE_INT64;
709    else if (src0.type == GLSL_TYPE_UINT64 || src1.type == GLSL_TYPE_UINT64)
710       type = GLSL_TYPE_UINT64;
711    else if (src0.type == GLSL_TYPE_DOUBLE || src1.type == GLSL_TYPE_DOUBLE)
712       type = GLSL_TYPE_DOUBLE;
713    else if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
714       type = GLSL_TYPE_FLOAT;
715    else if (native_integers)
716       type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
717 
718 #define case7(c, f, i, u, d, i64, ui64)             \
719    case TGSI_OPCODE_##c: \
720       if (type == GLSL_TYPE_UINT64)           \
721          op = TGSI_OPCODE_##ui64; \
722       else if (type == GLSL_TYPE_INT64)       \
723          op = TGSI_OPCODE_##i64; \
724       else if (type == GLSL_TYPE_DOUBLE)       \
725          op = TGSI_OPCODE_##d; \
726       else if (type == GLSL_TYPE_INT)       \
727          op = TGSI_OPCODE_##i; \
728       else if (type == GLSL_TYPE_UINT) \
729          op = TGSI_OPCODE_##u; \
730       else \
731          op = TGSI_OPCODE_##f; \
732       break;
733 
734 #define casecomp(c, f, i, u, d, i64, ui64)           \
735    case TGSI_OPCODE_##c: \
736       if (type == GLSL_TYPE_INT64)             \
737          op = TGSI_OPCODE_##i64; \
738       else if (type == GLSL_TYPE_UINT64)        \
739          op = TGSI_OPCODE_##ui64; \
740       else if (type == GLSL_TYPE_DOUBLE)       \
741          op = TGSI_OPCODE_##d; \
742       else if (type == GLSL_TYPE_INT || type == GLSL_TYPE_SUBROUTINE)       \
743          op = TGSI_OPCODE_##i; \
744       else if (type == GLSL_TYPE_UINT) \
745          op = TGSI_OPCODE_##u; \
746       else if (native_integers) \
747          op = TGSI_OPCODE_##f; \
748       else \
749          op = TGSI_OPCODE_##c; \
750       break;
751 
752    switch (op) {
753       /* Some instructions are initially selected without considering the type.
754        * This fixes the type:
755        *
756        *    INIT     FLOAT SINT     UINT     DOUBLE   SINT64   UINT64
757        */
758       case7(ADD,     ADD,  UADD,    UADD,    DADD,    U64ADD,  U64ADD);
759       case7(CEIL,    CEIL, LAST,    LAST,    DCEIL,   LAST,    LAST);
760       case7(DIV,     DIV,  IDIV,    UDIV,    DDIV,    I64DIV,  U64DIV);
761       case7(FMA,     FMA,  UMAD,    UMAD,    DFMA,    LAST,    LAST);
762       case7(FLR,     FLR,  LAST,    LAST,    DFLR,    LAST,    LAST);
763       case7(FRC,     FRC,  LAST,    LAST,    DFRAC,   LAST,    LAST);
764       case7(MUL,     MUL,  UMUL,    UMUL,    DMUL,    U64MUL,  U64MUL);
765       case7(MAD,     MAD,  UMAD,    UMAD,    DMAD,    LAST,    LAST);
766       case7(MAX,     MAX,  IMAX,    UMAX,    DMAX,    I64MAX,  U64MAX);
767       case7(MIN,     MIN,  IMIN,    UMIN,    DMIN,    I64MIN,  U64MIN);
768       case7(RCP,     RCP,  LAST,    LAST,    DRCP,    LAST,    LAST);
769       case7(ROUND,   ROUND,LAST,    LAST,    DROUND,  LAST,    LAST);
770       case7(RSQ,     RSQ,  LAST,    LAST,    DRSQ,    LAST,    LAST);
771       case7(SQRT,    SQRT, LAST,    LAST,    DSQRT,   LAST,    LAST);
772       case7(SSG,     SSG,  ISSG,    ISSG,    DSSG,    I64SSG,  I64SSG);
773       case7(TRUNC,   TRUNC,LAST,    LAST,    DTRUNC,  LAST,    LAST);
774 
775       case7(MOD,     LAST, MOD,     UMOD,    LAST,    I64MOD,  U64MOD);
776       case7(SHL,     LAST, SHL,     SHL,     LAST,    U64SHL,  U64SHL);
777       case7(IBFE,    LAST, IBFE,    UBFE,    LAST,    LAST,    LAST);
778       case7(IMSB,    LAST, IMSB,    UMSB,    LAST,    LAST,    LAST);
779       case7(IMUL_HI, LAST, IMUL_HI, UMUL_HI, LAST,    LAST,    LAST);
780       case7(ISHR,    LAST, ISHR,    USHR,    LAST,    I64SHR,  U64SHR);
781       case7(ATOMIMAX,LAST, ATOMIMAX,ATOMUMAX,LAST,    LAST,    LAST);
782       case7(ATOMIMIN,LAST, ATOMIMIN,ATOMUMIN,LAST,    LAST,    LAST);
783       case7(ATOMUADD,ATOMFADD,ATOMUADD,ATOMUADD,LAST, LAST,    LAST);
784 
785       casecomp(SEQ, FSEQ, USEQ, USEQ, DSEQ, U64SEQ, U64SEQ);
786       casecomp(SNE, FSNE, USNE, USNE, DSNE, U64SNE, U64SNE);
787       casecomp(SGE, FSGE, ISGE, USGE, DSGE, I64SGE, U64SGE);
788       casecomp(SLT, FSLT, ISLT, USLT, DSLT, I64SLT, U64SLT);
789 
790       default:
791          break;
792    }
793 
794    assert(op != TGSI_OPCODE_LAST);
795    return op;
796 }
797 
798 glsl_to_tgsi_instruction *
emit_dp(ir_instruction * ir,st_dst_reg dst,st_src_reg src0,st_src_reg src1,unsigned elements)799 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
800                               st_dst_reg dst, st_src_reg src0, st_src_reg src1,
801                               unsigned elements)
802 {
803    static const enum tgsi_opcode dot_opcodes[] = {
804       TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
805    };
806 
807    return emit_asm(ir, dot_opcodes[elements - 2], dst, src0, src1);
808 }
809 
810 /**
811  * Emits TGSI scalar opcodes to produce unique answers across channels.
812  *
813  * Some TGSI opcodes are scalar-only, like ARB_fp/vp.  The src X
814  * channel determines the result across all channels.  So to do a vec4
815  * of this operation, we want to emit a scalar per source channel used
816  * to produce dest channels.
817  */
818 void
emit_scalar(ir_instruction * ir,enum tgsi_opcode op,st_dst_reg dst,st_src_reg orig_src0,st_src_reg orig_src1)819 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, enum tgsi_opcode op,
820                                   st_dst_reg dst,
821                                   st_src_reg orig_src0, st_src_reg orig_src1)
822 {
823    int i, j;
824    int done_mask = ~dst.writemask;
825 
826    /* TGSI RCP is a scalar operation splatting results to all channels,
827     * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
828     * dst channels.
829     */
830    for (i = 0; i < 4; i++) {
831       GLuint this_mask = (1 << i);
832       st_src_reg src0 = orig_src0;
833       st_src_reg src1 = orig_src1;
834 
835       if (done_mask & this_mask)
836          continue;
837 
838       GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
839       GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
840       for (j = i + 1; j < 4; j++) {
841          /* If there is another enabled component in the destination that is
842           * derived from the same inputs, generate its value on this pass as
843           * well.
844           */
845          if (!(done_mask & (1 << j)) &&
846              GET_SWZ(src0.swizzle, j) == src0_swiz &&
847              GET_SWZ(src1.swizzle, j) == src1_swiz) {
848             this_mask |= (1 << j);
849          }
850       }
851       src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
852                                    src0_swiz, src0_swiz);
853       src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
854                                    src1_swiz, src1_swiz);
855 
856       dst.writemask = this_mask;
857       emit_asm(ir, op, dst, src0, src1);
858       done_mask |= this_mask;
859    }
860 }
861 
862 void
emit_scalar(ir_instruction * ir,enum tgsi_opcode op,st_dst_reg dst,st_src_reg src0)863 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, enum tgsi_opcode op,
864                                   st_dst_reg dst, st_src_reg src0)
865 {
866    st_src_reg undef = undef_src;
867 
868    undef.swizzle = SWIZZLE_XXXX;
869 
870    emit_scalar(ir, op, dst, src0, undef);
871 }
872 
873 void
emit_arl(ir_instruction * ir,st_dst_reg dst,st_src_reg src0)874 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
875                                st_dst_reg dst, st_src_reg src0)
876 {
877    enum tgsi_opcode op = TGSI_OPCODE_ARL;
878 
879    if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT) {
880       if (!this->need_uarl && src0.is_legal_tgsi_address_operand())
881          return;
882 
883       op = TGSI_OPCODE_UARL;
884    }
885 
886    assert(dst.file == PROGRAM_ADDRESS);
887    if (dst.index >= this->num_address_regs)
888       this->num_address_regs = dst.index + 1;
889 
890    emit_asm(NULL, op, dst, src0);
891 }
892 
893 int
add_constant(gl_register_file file,gl_constant_value values[8],int size,GLenum datatype,uint16_t * swizzle_out)894 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
895                                    gl_constant_value values[8], int size,
896                                    GLenum datatype,
897                                    uint16_t *swizzle_out)
898 {
899    if (file == PROGRAM_CONSTANT) {
900       GLuint swizzle = swizzle_out ? *swizzle_out : 0;
901       int result = _mesa_add_typed_unnamed_constant(this->prog->Parameters,
902                                                     values, size, datatype,
903                                                     &swizzle);
904       if (swizzle_out)
905          *swizzle_out = swizzle;
906       return result;
907    }
908 
909    assert(file == PROGRAM_IMMEDIATE);
910 
911    int index = 0;
912    immediate_storage *entry;
913    int size32 = size * ((datatype == GL_DOUBLE ||
914                          datatype == GL_INT64_ARB ||
915                          datatype == GL_UNSIGNED_INT64_ARB) ? 2 : 1);
916    int i;
917 
918    /* Search immediate storage to see if we already have an identical
919     * immediate that we can use instead of adding a duplicate entry.
920     */
921    foreach_in_list(immediate_storage, entry, &this->immediates) {
922       immediate_storage *tmp = entry;
923 
924       for (i = 0; i * 4 < size32; i++) {
925          int slot_size = MIN2(size32 - (i * 4), 4);
926          if (tmp->type != datatype || tmp->size32 != slot_size)
927             break;
928          if (memcmp(tmp->values, &values[i * 4],
929                     slot_size * sizeof(gl_constant_value)))
930             break;
931 
932          /* Everything matches, keep going until the full size is matched */
933          tmp = (immediate_storage *)tmp->next;
934       }
935 
936       /* The full value matched */
937       if (i * 4 >= size32)
938          return index;
939 
940       index++;
941    }
942 
943    for (i = 0; i * 4 < size32; i++) {
944       int slot_size = MIN2(size32 - (i * 4), 4);
945       /* Add this immediate to the list. */
946       entry = new(mem_ctx) immediate_storage(&values[i * 4],
947                                              slot_size, datatype);
948       this->immediates.push_tail(entry);
949       this->num_immediates++;
950    }
951    return index;
952 }
953 
954 st_src_reg
st_src_reg_for_float(float val)955 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
956 {
957    st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
958    union gl_constant_value uval;
959 
960    uval.f = val;
961    src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
962 
963    return src;
964 }
965 
966 st_src_reg
st_src_reg_for_double(double val)967 glsl_to_tgsi_visitor::st_src_reg_for_double(double val)
968 {
969    st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_DOUBLE);
970    union gl_constant_value uval[2];
971 
972    memcpy(uval, &val, sizeof(uval));
973    src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
974    src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
975    return src;
976 }
977 
978 st_src_reg
st_src_reg_for_int(int val)979 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
980 {
981    st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
982    union gl_constant_value uval;
983 
984    assert(native_integers);
985 
986    uval.i = val;
987    src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
988 
989    return src;
990 }
991 
992 st_src_reg
st_src_reg_for_int64(int64_t val)993 glsl_to_tgsi_visitor::st_src_reg_for_int64(int64_t val)
994 {
995    st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT64);
996    union gl_constant_value uval[2];
997 
998    memcpy(uval, &val, sizeof(uval));
999    src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
1000    src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
1001 
1002    return src;
1003 }
1004 
1005 st_src_reg
st_src_reg_for_type(enum glsl_base_type type,int val)1006 glsl_to_tgsi_visitor::st_src_reg_for_type(enum glsl_base_type type, int val)
1007 {
1008    if (native_integers)
1009       return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
1010                                        st_src_reg_for_int(val);
1011    else
1012       return st_src_reg_for_float(val);
1013 }
1014 
1015 static int
attrib_type_size(const struct glsl_type * type,bool is_vs_input)1016 attrib_type_size(const struct glsl_type *type, bool is_vs_input)
1017 {
1018    return type->count_attribute_slots(is_vs_input);
1019 }
1020 
1021 static int
type_size(const struct glsl_type * type)1022 type_size(const struct glsl_type *type)
1023 {
1024    return type->count_attribute_slots(false);
1025 }
1026 
1027 static void
add_buffer_to_load_and_stores(glsl_to_tgsi_instruction * inst,st_src_reg * buf,exec_list * instructions,ir_constant * access)1028 add_buffer_to_load_and_stores(glsl_to_tgsi_instruction *inst, st_src_reg *buf,
1029                               exec_list *instructions, ir_constant *access)
1030 {
1031    /**
1032     * emit_asm() might have actually split the op into pieces, e.g. for
1033     * double stores. We have to go back and fix up all the generated ops.
1034     */
1035    enum tgsi_opcode op = inst->op;
1036    do {
1037       inst->resource = *buf;
1038       if (access)
1039          inst->buffer_access = access->value.u[0];
1040 
1041       if (inst == instructions->get_head_raw())
1042          break;
1043       inst = (glsl_to_tgsi_instruction *)inst->get_prev();
1044 
1045       if (inst->op == TGSI_OPCODE_UADD) {
1046          if (inst == instructions->get_head_raw())
1047             break;
1048          inst = (glsl_to_tgsi_instruction *)inst->get_prev();
1049       }
1050    } while (inst->op == op && inst->resource.file == PROGRAM_UNDEFINED);
1051 }
1052 
1053 /**
1054  * If the given GLSL type is an array or matrix or a structure containing
1055  * an array/matrix member, return true.  Else return false.
1056  *
1057  * This is used to determine which kind of temp storage (PROGRAM_TEMPORARY
1058  * or PROGRAM_ARRAY) should be used for variables of this type.  Anytime
1059  * we have an array that might be indexed with a variable, we need to use
1060  * the later storage type.
1061  */
1062 static bool
type_has_array_or_matrix(const glsl_type * type)1063 type_has_array_or_matrix(const glsl_type *type)
1064 {
1065    if (type->is_array() || type->is_matrix())
1066       return true;
1067 
1068    if (type->is_struct()) {
1069       for (unsigned i = 0; i < type->length; i++) {
1070          if (type_has_array_or_matrix(type->fields.structure[i].type)) {
1071             return true;
1072          }
1073       }
1074    }
1075 
1076    return false;
1077 }
1078 
1079 
1080 /**
1081  * In the initial pass of codegen, we assign temporary numbers to
1082  * intermediate results.  (not SSA -- variable assignments will reuse
1083  * storage).
1084  */
1085 st_src_reg
get_temp(const glsl_type * type)1086 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1087 {
1088    st_src_reg src;
1089 
1090    src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1091    src.reladdr = NULL;
1092    src.negate = 0;
1093    src.abs = 0;
1094 
1095    if (!options->EmitNoIndirectTemp && type_has_array_or_matrix(type)) {
1096       if (next_array >= max_num_arrays) {
1097          max_num_arrays += 32;
1098          array_sizes = (unsigned*)
1099             realloc(array_sizes, sizeof(array_sizes[0]) * max_num_arrays);
1100       }
1101 
1102       src.file = PROGRAM_ARRAY;
1103       src.index = 0;
1104       src.array_id = next_array + 1;
1105       array_sizes[next_array] = type_size(type);
1106       ++next_array;
1107 
1108    } else {
1109       src.file = PROGRAM_TEMPORARY;
1110       src.index = next_temp;
1111       next_temp += type_size(type);
1112    }
1113 
1114    if (type->is_array() || type->is_struct()) {
1115       src.swizzle = SWIZZLE_NOOP;
1116    } else {
1117       src.swizzle = swizzle_for_size(type->vector_elements);
1118    }
1119 
1120    return src;
1121 }
1122 
1123 variable_storage *
find_variable_storage(ir_variable * var)1124 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1125 {
1126    struct hash_entry *entry;
1127 
1128    entry = _mesa_hash_table_search(this->variables, var);
1129    if (!entry)
1130       return NULL;
1131 
1132    return (variable_storage *)entry->data;
1133 }
1134 
1135 void
visit(ir_variable * ir)1136 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1137 {
1138    if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1139       unsigned int i;
1140       const ir_state_slot *const slots = ir->get_state_slots();
1141       assert(slots != NULL);
1142 
1143       /* Check if this statevar's setup in the STATE file exactly
1144        * matches how we'll want to reference it as a
1145        * struct/array/whatever.  If not, then we need to move it into
1146        * temporary storage and hope that it'll get copy-propagated
1147        * out.
1148        */
1149       for (i = 0; i < ir->get_num_state_slots(); i++) {
1150          if (slots[i].swizzle != SWIZZLE_XYZW) {
1151             break;
1152          }
1153       }
1154 
1155       variable_storage *storage;
1156       st_dst_reg dst;
1157       if (i == ir->get_num_state_slots()) {
1158          /* We'll set the index later. */
1159          storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1160 
1161          _mesa_hash_table_insert(this->variables, ir, storage);
1162 
1163          dst = undef_dst;
1164       } else {
1165          /* The variable_storage constructor allocates slots based on the size
1166           * of the type.  However, this had better match the number of state
1167           * elements that we're going to copy into the new temporary.
1168           */
1169          assert((int) ir->get_num_state_slots() == type_size(ir->type));
1170 
1171          dst = st_dst_reg(get_temp(ir->type));
1172 
1173          storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index,
1174                                                  dst.array_id);
1175 
1176          _mesa_hash_table_insert(this->variables, ir, storage);
1177       }
1178 
1179 
1180       for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
1181          int index = _mesa_add_state_reference(this->prog->Parameters,
1182                                                slots[i].tokens);
1183 
1184          if (storage->file == PROGRAM_STATE_VAR) {
1185             if (storage->index == -1) {
1186                storage->index = index;
1187             } else {
1188                assert(index == storage->index + (int)i);
1189             }
1190          } else {
1191             /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1192              * the data being moved since MOV does not care about the type of
1193              * data it is moving, and we don't want to declare registers with
1194              * array or struct types.
1195              */
1196             st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1197             src.swizzle = slots[i].swizzle;
1198             emit_asm(ir, TGSI_OPCODE_MOV, dst, src);
1199             /* even a float takes up a whole vec4 reg in a struct/array. */
1200             dst.index++;
1201          }
1202       }
1203 
1204       if (storage->file == PROGRAM_TEMPORARY &&
1205           dst.index != storage->index + (int) ir->get_num_state_slots()) {
1206          fail_link(this->shader_program,
1207                   "failed to load builtin uniform `%s'  (%d/%d regs loaded)\n",
1208                   ir->name, dst.index - storage->index,
1209                   type_size(ir->type));
1210       }
1211    }
1212 }
1213 
1214 void
visit(ir_loop * ir)1215 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1216 {
1217    emit_asm(NULL, TGSI_OPCODE_BGNLOOP);
1218 
1219    visit_exec_list(&ir->body_instructions, this);
1220 
1221    emit_asm(NULL, TGSI_OPCODE_ENDLOOP);
1222 }
1223 
1224 void
visit(ir_loop_jump * ir)1225 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1226 {
1227    switch (ir->mode) {
1228    case ir_loop_jump::jump_break:
1229       emit_asm(NULL, TGSI_OPCODE_BRK);
1230       break;
1231    case ir_loop_jump::jump_continue:
1232       emit_asm(NULL, TGSI_OPCODE_CONT);
1233       break;
1234    }
1235 }
1236 
1237 
1238 void
visit(ir_function_signature * ir)1239 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1240 {
1241    assert(0);
1242    (void)ir;
1243 }
1244 
1245 void
visit(ir_function * ir)1246 glsl_to_tgsi_visitor::visit(ir_function *ir)
1247 {
1248    /* Ignore function bodies other than main() -- we shouldn't see calls to
1249     * them since they should all be inlined before we get to glsl_to_tgsi.
1250     */
1251    if (strcmp(ir->name, "main") == 0) {
1252       const ir_function_signature *sig;
1253       exec_list empty;
1254 
1255       sig = ir->matching_signature(NULL, &empty, false);
1256 
1257       assert(sig);
1258 
1259       foreach_in_list(ir_instruction, ir, &sig->body) {
1260          ir->accept(this);
1261       }
1262    }
1263 }
1264 
1265 bool
try_emit_mad(ir_expression * ir,int mul_operand)1266 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1267 {
1268    int nonmul_operand = 1 - mul_operand;
1269    st_src_reg a, b, c;
1270    st_dst_reg result_dst;
1271 
1272    // there is no TGSI opcode for this
1273    if (ir->type->is_integer_64())
1274       return false;
1275 
1276    ir_expression *expr = ir->operands[mul_operand]->as_expression();
1277    if (!expr || expr->operation != ir_binop_mul)
1278       return false;
1279 
1280    expr->operands[0]->accept(this);
1281    a = this->result;
1282    expr->operands[1]->accept(this);
1283    b = this->result;
1284    ir->operands[nonmul_operand]->accept(this);
1285    c = this->result;
1286 
1287    this->result = get_temp(ir->type);
1288    result_dst = st_dst_reg(this->result);
1289    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1290    emit_asm(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1291 
1292    return true;
1293 }
1294 
1295 /**
1296  * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1297  *
1298  * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
1299  * implemented using multiplication, and logical-or is implemented using
1300  * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
1301  * As result, the logical expression (a & !b) can be rewritten as:
1302  *
1303  *     - a * !b
1304  *     - a * (1 - b)
1305  *     - (a * 1) - (a * b)
1306  *     - a + -(a * b)
1307  *     - a + (a * -b)
1308  *
1309  * This final expression can be implemented as a single MAD(a, -b, a)
1310  * instruction.
1311  */
1312 bool
try_emit_mad_for_and_not(ir_expression * ir,int try_operand)1313 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir,
1314                                                int try_operand)
1315 {
1316    const int other_operand = 1 - try_operand;
1317    st_src_reg a, b;
1318 
1319    ir_expression *expr = ir->operands[try_operand]->as_expression();
1320    if (!expr || expr->operation != ir_unop_logic_not)
1321       return false;
1322 
1323    ir->operands[other_operand]->accept(this);
1324    a = this->result;
1325    expr->operands[0]->accept(this);
1326    b = this->result;
1327 
1328    b.negate = ~b.negate;
1329 
1330    this->result = get_temp(ir->type);
1331    emit_asm(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1332 
1333    return true;
1334 }
1335 
1336 void
reladdr_to_temp(ir_instruction * ir,st_src_reg * reg,int * num_reladdr)1337 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1338                                       st_src_reg *reg, int *num_reladdr)
1339 {
1340    if (!reg->reladdr && !reg->reladdr2)
1341       return;
1342 
1343    if (reg->reladdr)
1344       emit_arl(ir, address_reg, *reg->reladdr);
1345    if (reg->reladdr2)
1346       emit_arl(ir, address_reg2, *reg->reladdr2);
1347 
1348    if (*num_reladdr != 1) {
1349       st_src_reg temp = get_temp(glsl_type::get_instance(reg->type, 4, 1));
1350 
1351       emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1352       *reg = temp;
1353    }
1354 
1355    (*num_reladdr)--;
1356 }
1357 
1358 void
visit(ir_expression * ir)1359 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1360 {
1361    st_src_reg op[ARRAY_SIZE(ir->operands)];
1362 
1363    /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1364     */
1365    if (!this->precise && ir->operation == ir_binop_add) {
1366       if (try_emit_mad(ir, 1))
1367          return;
1368       if (try_emit_mad(ir, 0))
1369          return;
1370    }
1371 
1372    /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1373     */
1374    if (!native_integers && ir->operation == ir_binop_logic_and) {
1375       if (try_emit_mad_for_and_not(ir, 1))
1376          return;
1377       if (try_emit_mad_for_and_not(ir, 0))
1378          return;
1379    }
1380 
1381    if (ir->operation == ir_quadop_vector)
1382       assert(!"ir_quadop_vector should have been lowered");
1383 
1384    for (unsigned int operand = 0; operand < ir->num_operands; operand++) {
1385       this->result.file = PROGRAM_UNDEFINED;
1386       ir->operands[operand]->accept(this);
1387       if (this->result.file == PROGRAM_UNDEFINED) {
1388          printf("Failed to get tree for expression operand:\n");
1389          ir->operands[operand]->print();
1390          printf("\n");
1391          exit(1);
1392       }
1393       op[operand] = this->result;
1394 
1395       /* Matrix expression operands should have been broken down to vector
1396        * operations already.
1397        */
1398       assert(!ir->operands[operand]->type->is_matrix());
1399    }
1400 
1401    visit_expression(ir, op);
1402 }
1403 
1404 /* The non-recursive part of the expression visitor lives in a separate
1405  * function and should be prevented from being inlined, to avoid a stack
1406  * explosion when deeply nested expressions are visited.
1407  */
1408 void
visit_expression(ir_expression * ir,st_src_reg * op)1409 glsl_to_tgsi_visitor::visit_expression(ir_expression* ir, st_src_reg *op)
1410 {
1411    st_src_reg result_src;
1412    st_dst_reg result_dst;
1413 
1414    int vector_elements = ir->operands[0]->type->vector_elements;
1415    if (ir->operands[1] &&
1416        ir->operation != ir_binop_interpolate_at_offset &&
1417        ir->operation != ir_binop_interpolate_at_sample) {
1418       st_src_reg *swz_op = NULL;
1419       if (vector_elements > ir->operands[1]->type->vector_elements) {
1420          assert(ir->operands[1]->type->vector_elements == 1);
1421          swz_op = &op[1];
1422       } else if (vector_elements < ir->operands[1]->type->vector_elements) {
1423          assert(ir->operands[0]->type->vector_elements == 1);
1424          swz_op = &op[0];
1425       }
1426       if (swz_op) {
1427          uint16_t swizzle_x = GET_SWZ(swz_op->swizzle, 0);
1428          swz_op->swizzle = MAKE_SWIZZLE4(swizzle_x, swizzle_x,
1429                                          swizzle_x, swizzle_x);
1430       }
1431       vector_elements = MAX2(vector_elements,
1432                              ir->operands[1]->type->vector_elements);
1433    }
1434    if (ir->operands[2] &&
1435        ir->operands[2]->type->vector_elements != vector_elements) {
1436       /* This can happen with ir_triop_lrp, i.e. glsl mix */
1437       assert(ir->operands[2]->type->vector_elements == 1);
1438       uint16_t swizzle_x = GET_SWZ(op[2].swizzle, 0);
1439       op[2].swizzle = MAKE_SWIZZLE4(swizzle_x, swizzle_x,
1440                                     swizzle_x, swizzle_x);
1441    }
1442 
1443    this->result.file = PROGRAM_UNDEFINED;
1444 
1445    /* Storage for our result.  Ideally for an assignment we'd be using
1446     * the actual storage for the result here, instead.
1447     */
1448    result_src = get_temp(ir->type);
1449    /* convenience for the emit functions below. */
1450    result_dst = st_dst_reg(result_src);
1451    /* Limit writes to the channels that will be used by result_src later.
1452     * This does limit this temp's use as a temporary for multi-instruction
1453     * sequences.
1454     */
1455    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1456 
1457    switch (ir->operation) {
1458    case ir_unop_logic_not:
1459       if (result_dst.type != GLSL_TYPE_FLOAT)
1460          emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1461       else {
1462          /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
1463           * older GPUs implement SEQ using multiple instructions (i915 uses two
1464           * SGE instructions and a MUL instruction).  Since our logic values are
1465           * 0.0 and 1.0, 1-x also implements !x.
1466           */
1467          op[0].negate = ~op[0].negate;
1468          emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0],
1469                   st_src_reg_for_float(1.0));
1470       }
1471       break;
1472    case ir_unop_neg:
1473       if (result_dst.type == GLSL_TYPE_INT64 ||
1474           result_dst.type == GLSL_TYPE_UINT64)
1475          emit_asm(ir, TGSI_OPCODE_I64NEG, result_dst, op[0]);
1476       else if (result_dst.type == GLSL_TYPE_INT ||
1477                result_dst.type == GLSL_TYPE_UINT)
1478          emit_asm(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1479       else if (result_dst.type == GLSL_TYPE_DOUBLE)
1480          emit_asm(ir, TGSI_OPCODE_DNEG, result_dst, op[0]);
1481       else {
1482          op[0].negate = ~op[0].negate;
1483          result_src = op[0];
1484       }
1485       break;
1486    case ir_unop_subroutine_to_int:
1487       emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1488       break;
1489    case ir_unop_abs:
1490       if (result_dst.type == GLSL_TYPE_FLOAT)
1491          emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0].get_abs());
1492       else if (result_dst.type == GLSL_TYPE_DOUBLE)
1493          emit_asm(ir, TGSI_OPCODE_DABS, result_dst, op[0]);
1494       else if (result_dst.type == GLSL_TYPE_INT64 ||
1495                result_dst.type == GLSL_TYPE_UINT64)
1496          emit_asm(ir, TGSI_OPCODE_I64ABS, result_dst, op[0]);
1497       else
1498          emit_asm(ir, TGSI_OPCODE_IABS, result_dst, op[0]);
1499       break;
1500    case ir_unop_sign:
1501       emit_asm(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1502       break;
1503    case ir_unop_rcp:
1504       emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1505       break;
1506 
1507    case ir_unop_exp2:
1508       emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1509       break;
1510    case ir_unop_exp:
1511       assert(!"not reached: should be handled by exp_to_exp2");
1512       break;
1513    case ir_unop_log:
1514       assert(!"not reached: should be handled by log_to_log2");
1515       break;
1516    case ir_unop_log2:
1517       emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1518       break;
1519    case ir_unop_sin:
1520       emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1521       break;
1522    case ir_unop_cos:
1523       emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1524       break;
1525    case ir_unop_saturate: {
1526       glsl_to_tgsi_instruction *inst;
1527       inst = emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1528       inst->saturate = true;
1529       break;
1530    }
1531 
1532    case ir_unop_dFdx:
1533    case ir_unop_dFdx_coarse:
1534       emit_asm(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1535       break;
1536    case ir_unop_dFdx_fine:
1537       emit_asm(ir, TGSI_OPCODE_DDX_FINE, result_dst, op[0]);
1538       break;
1539    case ir_unop_dFdy:
1540    case ir_unop_dFdy_coarse:
1541    case ir_unop_dFdy_fine:
1542    {
1543       /* The X component contains 1 or -1 depending on whether the framebuffer
1544        * is a FBO or the window system buffer, respectively.
1545        * It is then multiplied with the source operand of DDY.
1546        */
1547       static const gl_state_index16 transform_y_state[STATE_LENGTH]
1548          = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1549 
1550       unsigned transform_y_index =
1551          _mesa_add_state_reference(this->prog->Parameters,
1552                                    transform_y_state);
1553 
1554       st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1555                                           transform_y_index,
1556                                           glsl_type::vec4_type);
1557       transform_y.swizzle = SWIZZLE_XXXX;
1558 
1559       st_src_reg temp = get_temp(glsl_type::vec4_type);
1560 
1561       emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1562       emit_asm(ir, ir->operation == ir_unop_dFdy_fine ?
1563            TGSI_OPCODE_DDY_FINE : TGSI_OPCODE_DDY, result_dst, temp);
1564       break;
1565    }
1566 
1567    case ir_unop_frexp_sig:
1568       emit_asm(ir, TGSI_OPCODE_DFRACEXP, result_dst, undef_dst, op[0]);
1569       break;
1570 
1571    case ir_unop_frexp_exp:
1572       emit_asm(ir, TGSI_OPCODE_DFRACEXP, undef_dst, result_dst, op[0]);
1573       break;
1574 
1575    case ir_binop_add:
1576       emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1577       break;
1578    case ir_binop_sub:
1579       op[1].negate = ~op[1].negate;
1580       emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1581       break;
1582 
1583    case ir_binop_mul:
1584       emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1585       break;
1586    case ir_binop_div:
1587       emit_asm(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1588       break;
1589    case ir_binop_mod:
1590       if (result_dst.type == GLSL_TYPE_FLOAT)
1591          assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1592       else
1593          emit_asm(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1594       break;
1595 
1596    case ir_binop_less:
1597       emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1598       break;
1599    case ir_binop_gequal:
1600       emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1601       break;
1602    case ir_binop_equal:
1603       emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1604       break;
1605    case ir_binop_nequal:
1606       emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1607       break;
1608    case ir_binop_all_equal:
1609       /* "==" operator producing a scalar boolean. */
1610       if (ir->operands[0]->type->is_vector() ||
1611           ir->operands[1]->type->is_vector()) {
1612          st_src_reg temp = get_temp(native_integers ?
1613                                     glsl_type::uvec4_type :
1614                                     glsl_type::vec4_type);
1615 
1616          if (native_integers) {
1617             st_dst_reg temp_dst = st_dst_reg(temp);
1618             st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1619 
1620             if (ir->operands[0]->type->is_boolean() &&
1621                 ir->operands[1]->as_constant() &&
1622                 ir->operands[1]->as_constant()->is_one()) {
1623                emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1624             } else {
1625                emit_asm(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1626             }
1627 
1628             /* Emit 1-3 AND operations to combine the SEQ results. */
1629             switch (ir->operands[0]->type->vector_elements) {
1630             case 2:
1631                break;
1632             case 3:
1633                temp_dst.writemask = WRITEMASK_Y;
1634                temp1.swizzle = SWIZZLE_YYYY;
1635                temp2.swizzle = SWIZZLE_ZZZZ;
1636                emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1637                break;
1638             case 4:
1639                temp_dst.writemask = WRITEMASK_X;
1640                temp1.swizzle = SWIZZLE_XXXX;
1641                temp2.swizzle = SWIZZLE_YYYY;
1642                emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1643                temp_dst.writemask = WRITEMASK_Y;
1644                temp1.swizzle = SWIZZLE_ZZZZ;
1645                temp2.swizzle = SWIZZLE_WWWW;
1646                emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1647             }
1648 
1649             temp1.swizzle = SWIZZLE_XXXX;
1650             temp2.swizzle = SWIZZLE_YYYY;
1651             emit_asm(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1652          } else {
1653             emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1654 
1655             /* After the dot-product, the value will be an integer on the
1656              * range [0,4].  Zero becomes 1.0, and positive values become zero.
1657              */
1658             emit_dp(ir, result_dst, temp, temp, vector_elements);
1659 
1660             /* Negating the result of the dot-product gives values on the range
1661              * [-4, 0].  Zero becomes 1.0, and negative values become zero.
1662              * This is achieved using SGE.
1663              */
1664             st_src_reg sge_src = result_src;
1665             sge_src.negate = ~sge_src.negate;
1666             emit_asm(ir, TGSI_OPCODE_SGE, result_dst, sge_src,
1667                      st_src_reg_for_float(0.0));
1668          }
1669       } else {
1670          emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1671       }
1672       break;
1673    case ir_binop_any_nequal:
1674       /* "!=" operator producing a scalar boolean. */
1675       if (ir->operands[0]->type->is_vector() ||
1676           ir->operands[1]->type->is_vector()) {
1677          st_src_reg temp = get_temp(native_integers ?
1678                                     glsl_type::uvec4_type :
1679                                     glsl_type::vec4_type);
1680          if (ir->operands[0]->type->is_boolean() &&
1681              ir->operands[1]->as_constant() &&
1682              ir->operands[1]->as_constant()->is_zero()) {
1683             emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1684          } else {
1685             emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1686          }
1687 
1688          if (native_integers) {
1689             st_dst_reg temp_dst = st_dst_reg(temp);
1690             st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1691 
1692             /* Emit 1-3 OR operations to combine the SNE results. */
1693             switch (ir->operands[0]->type->vector_elements) {
1694             case 2:
1695                break;
1696             case 3:
1697                temp_dst.writemask = WRITEMASK_Y;
1698                temp1.swizzle = SWIZZLE_YYYY;
1699                temp2.swizzle = SWIZZLE_ZZZZ;
1700                emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1701                break;
1702             case 4:
1703                temp_dst.writemask = WRITEMASK_X;
1704                temp1.swizzle = SWIZZLE_XXXX;
1705                temp2.swizzle = SWIZZLE_YYYY;
1706                emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1707                temp_dst.writemask = WRITEMASK_Y;
1708                temp1.swizzle = SWIZZLE_ZZZZ;
1709                temp2.swizzle = SWIZZLE_WWWW;
1710                emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1711             }
1712 
1713             temp1.swizzle = SWIZZLE_XXXX;
1714             temp2.swizzle = SWIZZLE_YYYY;
1715             emit_asm(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1716          } else {
1717             /* After the dot-product, the value will be an integer on the
1718              * range [0,4].  Zero stays zero, and positive values become 1.0.
1719              */
1720             glsl_to_tgsi_instruction *const dp =
1721                   emit_dp(ir, result_dst, temp, temp, vector_elements);
1722             if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1723                /* The clamping to [0,1] can be done for free in the fragment
1724                 * shader with a saturate.
1725                 */
1726                dp->saturate = true;
1727             } else {
1728                /* Negating the result of the dot-product gives values on the
1729                 * range [-4, 0].  Zero stays zero, and negative values become
1730                 * 1.0.  This achieved using SLT.
1731                 */
1732                st_src_reg slt_src = result_src;
1733                slt_src.negate = ~slt_src.negate;
1734                emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src,
1735                         st_src_reg_for_float(0.0));
1736             }
1737          }
1738       } else {
1739          emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1740       }
1741       break;
1742 
1743    case ir_binop_logic_xor:
1744       if (native_integers)
1745          emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1746       else
1747          emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1748       break;
1749 
1750    case ir_binop_logic_or: {
1751       if (native_integers) {
1752          /* If integers are used as booleans, we can use an actual "or"
1753           * instruction.
1754           */
1755          assert(native_integers);
1756          emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1757       } else {
1758          /* After the addition, the value will be an integer on the
1759           * range [0,2].  Zero stays zero, and positive values become 1.0.
1760           */
1761          glsl_to_tgsi_instruction *add =
1762             emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1763          if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1764             /* The clamping to [0,1] can be done for free in the fragment
1765              * shader with a saturate if floats are being used as boolean
1766              * values.
1767              */
1768             add->saturate = true;
1769          } else {
1770             /* Negating the result of the addition gives values on the range
1771              * [-2, 0].  Zero stays zero, and negative values become 1.0
1772              * This is achieved using SLT.
1773              */
1774             st_src_reg slt_src = result_src;
1775             slt_src.negate = ~slt_src.negate;
1776             emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src,
1777                      st_src_reg_for_float(0.0));
1778          }
1779       }
1780       break;
1781    }
1782 
1783    case ir_binop_logic_and:
1784       /* If native integers are disabled, the bool args are stored as float 0.0
1785        * or 1.0, so "mul" gives us "and".  If they're enabled, just use the
1786        * actual AND opcode.
1787        */
1788       if (native_integers)
1789          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1790       else
1791          emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1792       break;
1793 
1794    case ir_binop_dot:
1795       assert(ir->operands[0]->type->is_vector());
1796       assert(ir->operands[0]->type == ir->operands[1]->type);
1797       emit_dp(ir, result_dst, op[0], op[1],
1798               ir->operands[0]->type->vector_elements);
1799       break;
1800 
1801    case ir_unop_sqrt:
1802       if (have_sqrt) {
1803          emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1804       } else {
1805          /* This is the only instruction sequence that makes the game "Risen"
1806           * render correctly. ABS is not required for the game, but since GLSL
1807           * declares negative values as "undefined", allowing us to do whatever
1808           * we want, I choose to use ABS to match DX9 and pre-GLSL RSQ
1809           * behavior.
1810           */
1811          emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0].get_abs());
1812          emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, result_src);
1813       }
1814       break;
1815    case ir_unop_rsq:
1816       emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1817       break;
1818    case ir_unop_i2f:
1819       if (native_integers) {
1820          emit_asm(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1821          break;
1822       }
1823       /* fallthrough to next case otherwise */
1824    case ir_unop_b2f:
1825       if (native_integers) {
1826          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0],
1827                   st_src_reg_for_float(1.0));
1828          break;
1829       }
1830       /* fallthrough to next case otherwise */
1831    case ir_unop_i2u:
1832    case ir_unop_u2i:
1833    case ir_unop_i642u64:
1834    case ir_unop_u642i64:
1835       /* Converting between signed and unsigned integers is a no-op. */
1836       result_src = op[0];
1837       result_src.type = result_dst.type;
1838       break;
1839    case ir_unop_b2i:
1840       if (native_integers) {
1841          /* Booleans are stored as integers using ~0 for true and 0 for false.
1842           * GLSL requires that int(bool) return 1 for true and 0 for false.
1843           * This conversion is done with AND, but it could be done with NEG.
1844           */
1845          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0],
1846                   st_src_reg_for_int(1));
1847       } else {
1848          /* Booleans and integers are both stored as floats when native
1849           * integers are disabled.
1850           */
1851          result_src = op[0];
1852       }
1853       break;
1854    case ir_unop_f2i:
1855       if (native_integers)
1856          emit_asm(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1857       else
1858          emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1859       break;
1860    case ir_unop_f2u:
1861       if (native_integers)
1862          emit_asm(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
1863       else
1864          emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1865       break;
1866    case ir_unop_bitcast_f2i:
1867    case ir_unop_bitcast_f2u:
1868       /* Make sure we don't propagate the negate modifier to integer opcodes. */
1869       if (op[0].negate || op[0].abs)
1870          emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1871       else
1872          result_src = op[0];
1873       result_src.type = ir->operation == ir_unop_bitcast_f2i ? GLSL_TYPE_INT :
1874                                                                GLSL_TYPE_UINT;
1875       break;
1876    case ir_unop_bitcast_i2f:
1877    case ir_unop_bitcast_u2f:
1878       result_src = op[0];
1879       result_src.type = GLSL_TYPE_FLOAT;
1880       break;
1881    case ir_unop_f2b:
1882       emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0],
1883                st_src_reg_for_float(0.0));
1884       break;
1885    case ir_unop_d2b:
1886       emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0],
1887                st_src_reg_for_double(0.0));
1888       break;
1889    case ir_unop_i2b:
1890       if (native_integers)
1891          emit_asm(ir, TGSI_OPCODE_USNE, result_dst, op[0],
1892                   st_src_reg_for_int(0));
1893       else
1894          emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0],
1895                   st_src_reg_for_float(0.0));
1896       break;
1897    case ir_unop_bitcast_u642d:
1898    case ir_unop_bitcast_i642d:
1899       result_src = op[0];
1900       result_src.type = GLSL_TYPE_DOUBLE;
1901       break;
1902    case ir_unop_bitcast_d2i64:
1903       result_src = op[0];
1904       result_src.type = GLSL_TYPE_INT64;
1905       break;
1906    case ir_unop_bitcast_d2u64:
1907       result_src = op[0];
1908       result_src.type = GLSL_TYPE_UINT64;
1909       break;
1910    case ir_unop_trunc:
1911       emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1912       break;
1913    case ir_unop_ceil:
1914       emit_asm(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
1915       break;
1916    case ir_unop_floor:
1917       emit_asm(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1918       break;
1919    case ir_unop_round_even:
1920       emit_asm(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1921       break;
1922    case ir_unop_fract:
1923       emit_asm(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1924       break;
1925 
1926    case ir_binop_min:
1927       emit_asm(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1928       break;
1929    case ir_binop_max:
1930       emit_asm(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1931       break;
1932    case ir_binop_pow:
1933       emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1934       break;
1935 
1936    case ir_unop_bit_not:
1937       if (native_integers) {
1938          emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1939          break;
1940       }
1941       /* fallthrough */
1942    case ir_unop_u2f:
1943       if (native_integers) {
1944          emit_asm(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1945          break;
1946       }
1947       /* fallthrough */
1948    case ir_binop_lshift:
1949    case ir_binop_rshift:
1950       if (native_integers) {
1951          enum tgsi_opcode opcode = ir->operation == ir_binop_lshift
1952             ? TGSI_OPCODE_SHL : TGSI_OPCODE_ISHR;
1953          st_src_reg count;
1954 
1955          if (glsl_base_type_is_64bit(op[0].type)) {
1956             /* GLSL shift operations have 32-bit shift counts, but TGSI uses
1957              * 64 bits.
1958              */
1959             count = get_temp(glsl_type::u64vec(ir->operands[1]
1960                                                ->type->components()));
1961             emit_asm(ir, TGSI_OPCODE_U2I64, st_dst_reg(count), op[1]);
1962          } else {
1963             count = op[1];
1964          }
1965 
1966          emit_asm(ir, opcode, result_dst, op[0], count);
1967          break;
1968       }
1969       /* fallthrough */
1970    case ir_binop_bit_and:
1971       if (native_integers) {
1972          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1973          break;
1974       }
1975       /* fallthrough */
1976    case ir_binop_bit_xor:
1977       if (native_integers) {
1978          emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1979          break;
1980       }
1981       /* fallthrough */
1982    case ir_binop_bit_or:
1983       if (native_integers) {
1984          emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1985          break;
1986       }
1987 
1988       assert(!"GLSL 1.30 features unsupported");
1989       break;
1990 
1991    case ir_binop_ubo_load: {
1992       if (ctx->Const.UseSTD430AsDefaultPacking) {
1993          ir_rvalue *block = ir->operands[0];
1994          ir_rvalue *offset = ir->operands[1];
1995          ir_constant *const_block = block->as_constant();
1996 
1997          st_src_reg cbuf(PROGRAM_CONSTANT,
1998             (const_block ? const_block->value.u[0] + 1 : 1),
1999             ir->type->base_type);
2000 
2001          cbuf.has_index2 = true;
2002 
2003          if (!const_block) {
2004             block->accept(this);
2005             cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
2006             *cbuf.reladdr = this->result;
2007             emit_arl(ir, sampler_reladdr, this->result);
2008          }
2009 
2010          /* Calculate the surface offset */
2011          offset->accept(this);
2012          st_src_reg off = this->result;
2013 
2014          glsl_to_tgsi_instruction *inst =
2015             emit_asm(ir, TGSI_OPCODE_LOAD, result_dst, off);
2016 
2017          if (result_dst.type == GLSL_TYPE_BOOL)
2018             emit_asm(ir, TGSI_OPCODE_USNE, result_dst, st_src_reg(result_dst),
2019                      st_src_reg_for_int(0));
2020 
2021          add_buffer_to_load_and_stores(inst, &cbuf, &this->instructions,
2022                                        NULL);
2023       } else {
2024          ir_constant *const_uniform_block = ir->operands[0]->as_constant();
2025          ir_constant *const_offset_ir = ir->operands[1]->as_constant();
2026          unsigned const_offset = const_offset_ir ?
2027             const_offset_ir->value.u[0] : 0;
2028          unsigned const_block = const_uniform_block ?
2029             const_uniform_block->value.u[0] + 1 : 1;
2030          st_src_reg index_reg = get_temp(glsl_type::uint_type);
2031          st_src_reg cbuf;
2032 
2033          cbuf.type = ir->type->base_type;
2034          cbuf.file = PROGRAM_CONSTANT;
2035          cbuf.index = 0;
2036          cbuf.reladdr = NULL;
2037          cbuf.negate = 0;
2038          cbuf.abs = 0;
2039          cbuf.index2D = const_block;
2040 
2041          assert(ir->type->is_vector() || ir->type->is_scalar());
2042 
2043          if (const_offset_ir) {
2044             /* Constant index into constant buffer */
2045             cbuf.reladdr = NULL;
2046             cbuf.index = const_offset / 16;
2047          } else {
2048             ir_expression *offset_expr = ir->operands[1]->as_expression();
2049             st_src_reg offset = op[1];
2050 
2051             /* The OpenGL spec is written in such a way that accesses with
2052              * non-constant offset are almost always vec4-aligned. The only
2053              * exception to this are members of structs in arrays of structs:
2054              * each struct in an array of structs is at least vec4-aligned,
2055              * but single-element and [ui]vec2 members of the struct may be at
2056              * an offset that is not a multiple of 16 bytes.
2057              *
2058              * Here, we extract that offset, relying on previous passes to
2059              * always generate offset expressions of the form
2060              * (+ expr constant_offset).
2061              *
2062              * Note that the std430 layout, which allows more cases of
2063              * alignment less than vec4 in arrays, is not supported for
2064              * uniform blocks, so we do not have to deal with it here.
2065              */
2066             if (offset_expr && offset_expr->operation == ir_binop_add) {
2067                const_offset_ir = offset_expr->operands[1]->as_constant();
2068                if (const_offset_ir) {
2069                   const_offset = const_offset_ir->value.u[0];
2070                   cbuf.index = const_offset / 16;
2071                   offset_expr->operands[0]->accept(this);
2072                   offset = this->result;
2073                }
2074             }
2075 
2076             /* Relative/variable index into constant buffer */
2077             emit_asm(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), offset,
2078                  st_src_reg_for_int(4));
2079             cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
2080             *cbuf.reladdr = index_reg;
2081          }
2082 
2083          if (const_uniform_block) {
2084             /* Constant constant buffer */
2085             cbuf.reladdr2 = NULL;
2086          } else {
2087             /* Relative/variable constant buffer */
2088             cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
2089             *cbuf.reladdr2 = op[0];
2090          }
2091          cbuf.has_index2 = true;
2092 
2093          cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
2094          if (glsl_base_type_is_64bit(cbuf.type))
2095             cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 8,
2096                                           const_offset % 16 / 8,
2097                                           const_offset % 16 / 8,
2098                                           const_offset % 16 / 8);
2099          else
2100             cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
2101                                           const_offset % 16 / 4,
2102                                           const_offset % 16 / 4,
2103                                           const_offset % 16 / 4);
2104 
2105          if (ir->type->is_boolean()) {
2106             emit_asm(ir, TGSI_OPCODE_USNE, result_dst, cbuf,
2107                      st_src_reg_for_int(0));
2108          } else {
2109             emit_asm(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
2110          }
2111       }
2112       break;
2113    }
2114    case ir_triop_lrp:
2115       /* note: we have to reorder the three args here */
2116       emit_asm(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
2117       break;
2118    case ir_triop_csel:
2119       if (this->ctx->Const.NativeIntegers)
2120          emit_asm(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2121       else {
2122          op[0].negate = ~op[0].negate;
2123          emit_asm(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2124       }
2125       break;
2126    case ir_triop_bitfield_extract:
2127       emit_asm(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2128       break;
2129    case ir_quadop_bitfield_insert:
2130       emit_asm(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2131       break;
2132    case ir_unop_bitfield_reverse:
2133       emit_asm(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2134       break;
2135    case ir_unop_bit_count:
2136       emit_asm(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2137       break;
2138    case ir_unop_find_msb:
2139       emit_asm(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2140       break;
2141    case ir_unop_find_lsb:
2142       emit_asm(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2143       break;
2144    case ir_binop_imul_high:
2145       emit_asm(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2146       break;
2147    case ir_triop_fma:
2148       /* In theory, MAD is incorrect here. */
2149       if (have_fma)
2150          emit_asm(ir, TGSI_OPCODE_FMA, result_dst, op[0], op[1], op[2]);
2151       else
2152          emit_asm(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2153       break;
2154    case ir_unop_interpolate_at_centroid:
2155       emit_asm(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
2156       break;
2157    case ir_binop_interpolate_at_offset: {
2158       /* The y coordinate needs to be flipped for the default fb */
2159       static const gl_state_index16 transform_y_state[STATE_LENGTH]
2160          = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
2161 
2162       unsigned transform_y_index =
2163          _mesa_add_state_reference(this->prog->Parameters,
2164                                    transform_y_state);
2165 
2166       st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
2167                                           transform_y_index,
2168                                           glsl_type::vec4_type);
2169       transform_y.swizzle = SWIZZLE_XXXX;
2170 
2171       st_src_reg temp = get_temp(glsl_type::vec2_type);
2172       st_dst_reg temp_dst = st_dst_reg(temp);
2173 
2174       emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[1]);
2175       temp_dst.writemask = WRITEMASK_Y;
2176       emit_asm(ir, TGSI_OPCODE_MUL, temp_dst, transform_y, op[1]);
2177       emit_asm(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], temp);
2178       break;
2179    }
2180    case ir_binop_interpolate_at_sample:
2181       emit_asm(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
2182       break;
2183 
2184    case ir_unop_d2f:
2185       emit_asm(ir, TGSI_OPCODE_D2F, result_dst, op[0]);
2186       break;
2187    case ir_unop_f2d:
2188       emit_asm(ir, TGSI_OPCODE_F2D, result_dst, op[0]);
2189       break;
2190    case ir_unop_d2i:
2191       emit_asm(ir, TGSI_OPCODE_D2I, result_dst, op[0]);
2192       break;
2193    case ir_unop_i2d:
2194       emit_asm(ir, TGSI_OPCODE_I2D, result_dst, op[0]);
2195       break;
2196    case ir_unop_d2u:
2197       emit_asm(ir, TGSI_OPCODE_D2U, result_dst, op[0]);
2198       break;
2199    case ir_unop_u2d:
2200       emit_asm(ir, TGSI_OPCODE_U2D, result_dst, op[0]);
2201       break;
2202    case ir_unop_unpack_double_2x32:
2203    case ir_unop_pack_double_2x32:
2204    case ir_unop_unpack_int_2x32:
2205    case ir_unop_pack_int_2x32:
2206    case ir_unop_unpack_uint_2x32:
2207    case ir_unop_pack_uint_2x32:
2208    case ir_unop_unpack_sampler_2x32:
2209    case ir_unop_pack_sampler_2x32:
2210    case ir_unop_unpack_image_2x32:
2211    case ir_unop_pack_image_2x32:
2212       emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2213       break;
2214 
2215    case ir_binop_ldexp:
2216       if (ir->operands[0]->type->is_double()) {
2217          emit_asm(ir, TGSI_OPCODE_DLDEXP, result_dst, op[0], op[1]);
2218       } else if (ir->operands[0]->type->is_float()) {
2219          emit_asm(ir, TGSI_OPCODE_LDEXP, result_dst, op[0], op[1]);
2220       } else {
2221          assert(!"Invalid ldexp for non-double opcode in glsl_to_tgsi_visitor::visit()");
2222       }
2223       break;
2224 
2225    case ir_unop_pack_half_2x16:
2226       emit_asm(ir, TGSI_OPCODE_PK2H, result_dst, op[0]);
2227       break;
2228    case ir_unop_unpack_half_2x16:
2229       emit_asm(ir, TGSI_OPCODE_UP2H, result_dst, op[0]);
2230       break;
2231 
2232    case ir_unop_get_buffer_size: {
2233       ir_constant *const_offset = ir->operands[0]->as_constant();
2234       st_src_reg buffer(
2235             PROGRAM_BUFFER,
2236             const_offset ? const_offset->value.u[0] : 0,
2237             GLSL_TYPE_UINT);
2238       if (!const_offset) {
2239          buffer.reladdr = ralloc(mem_ctx, st_src_reg);
2240          *buffer.reladdr = op[0];
2241          emit_arl(ir, sampler_reladdr, op[0]);
2242       }
2243       emit_asm(ir, TGSI_OPCODE_RESQ, result_dst)->resource = buffer;
2244       break;
2245    }
2246 
2247    case ir_unop_u2i64:
2248    case ir_unop_u2u64:
2249    case ir_unop_b2i64: {
2250       st_src_reg temp = get_temp(glsl_type::uvec4_type);
2251       st_dst_reg temp_dst = st_dst_reg(temp);
2252       unsigned orig_swz = op[0].swizzle;
2253       /*
2254        * To convert unsigned to 64-bit:
2255        * zero Y channel, copy X channel.
2256        */
2257       temp_dst.writemask = WRITEMASK_Y;
2258       if (vector_elements > 1)
2259          temp_dst.writemask |= WRITEMASK_W;
2260       emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
2261       temp_dst.writemask = WRITEMASK_X;
2262       if (vector_elements > 1)
2263           temp_dst.writemask |= WRITEMASK_Z;
2264       op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 0), GET_SWZ(orig_swz, 0),
2265                                     GET_SWZ(orig_swz, 1), GET_SWZ(orig_swz, 1));
2266       if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
2267          emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2268       else
2269          emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0], st_src_reg_for_int(1));
2270       result_src = temp;
2271       result_src.type = GLSL_TYPE_UINT64;
2272       if (vector_elements > 2) {
2273          /* Subtle: We rely on the fact that get_temp here returns the next
2274           * TGSI temporary register directly after the temp register used for
2275           * the first two components, so that the result gets picked up
2276           * automatically.
2277           */
2278          st_src_reg temp = get_temp(glsl_type::uvec4_type);
2279          st_dst_reg temp_dst = st_dst_reg(temp);
2280          temp_dst.writemask = WRITEMASK_Y;
2281          if (vector_elements > 3)
2282             temp_dst.writemask |= WRITEMASK_W;
2283          emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
2284 
2285          temp_dst.writemask = WRITEMASK_X;
2286          if (vector_elements > 3)
2287             temp_dst.writemask |= WRITEMASK_Z;
2288          op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 2),
2289                                        GET_SWZ(orig_swz, 2),
2290                                        GET_SWZ(orig_swz, 3),
2291                                        GET_SWZ(orig_swz, 3));
2292          if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
2293             emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2294          else
2295             emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0],
2296                      st_src_reg_for_int(1));
2297       }
2298       break;
2299    }
2300    case ir_unop_i642i:
2301    case ir_unop_u642i:
2302    case ir_unop_u642u:
2303    case ir_unop_i642u: {
2304       st_src_reg temp = get_temp(glsl_type::uvec4_type);
2305       st_dst_reg temp_dst = st_dst_reg(temp);
2306       unsigned orig_swz = op[0].swizzle;
2307       unsigned orig_idx = op[0].index;
2308       int el;
2309       temp_dst.writemask = WRITEMASK_X;
2310 
2311       for (el = 0; el < vector_elements; el++) {
2312          unsigned swz = GET_SWZ(orig_swz, el);
2313          if (swz & 1)
2314             op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_Z,
2315                                           SWIZZLE_Z, SWIZZLE_Z);
2316          else
2317             op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X,
2318                                           SWIZZLE_X, SWIZZLE_X);
2319          if (swz > 2)
2320             op[0].index = orig_idx + 1;
2321          op[0].type = GLSL_TYPE_UINT;
2322          temp_dst.writemask = WRITEMASK_X << el;
2323          emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2324       }
2325       result_src = temp;
2326       if (ir->operation == ir_unop_u642u || ir->operation == ir_unop_i642u)
2327          result_src.type = GLSL_TYPE_UINT;
2328       else
2329          result_src.type = GLSL_TYPE_INT;
2330       break;
2331    }
2332    case ir_unop_i642b:
2333       emit_asm(ir, TGSI_OPCODE_U64SNE, result_dst, op[0],
2334                st_src_reg_for_int64(0));
2335       break;
2336    case ir_unop_i642f:
2337       emit_asm(ir, TGSI_OPCODE_I642F, result_dst, op[0]);
2338       break;
2339    case ir_unop_u642f:
2340       emit_asm(ir, TGSI_OPCODE_U642F, result_dst, op[0]);
2341       break;
2342    case ir_unop_i642d:
2343       emit_asm(ir, TGSI_OPCODE_I642D, result_dst, op[0]);
2344       break;
2345    case ir_unop_u642d:
2346       emit_asm(ir, TGSI_OPCODE_U642D, result_dst, op[0]);
2347       break;
2348    case ir_unop_i2i64:
2349       emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
2350       break;
2351    case ir_unop_f2i64:
2352       emit_asm(ir, TGSI_OPCODE_F2I64, result_dst, op[0]);
2353       break;
2354    case ir_unop_d2i64:
2355       emit_asm(ir, TGSI_OPCODE_D2I64, result_dst, op[0]);
2356       break;
2357    case ir_unop_i2u64:
2358       emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
2359       break;
2360    case ir_unop_f2u64:
2361       emit_asm(ir, TGSI_OPCODE_F2U64, result_dst, op[0]);
2362       break;
2363    case ir_unop_d2u64:
2364       emit_asm(ir, TGSI_OPCODE_D2U64, result_dst, op[0]);
2365       break;
2366       /* these might be needed */
2367    case ir_unop_pack_snorm_2x16:
2368    case ir_unop_pack_unorm_2x16:
2369    case ir_unop_pack_snorm_4x8:
2370    case ir_unop_pack_unorm_4x8:
2371 
2372    case ir_unop_unpack_snorm_2x16:
2373    case ir_unop_unpack_unorm_2x16:
2374    case ir_unop_unpack_snorm_4x8:
2375    case ir_unop_unpack_unorm_4x8:
2376 
2377    case ir_quadop_vector:
2378    case ir_binop_vector_extract:
2379    case ir_triop_vector_insert:
2380    case ir_binop_carry:
2381    case ir_binop_borrow:
2382    case ir_unop_ssbo_unsized_array_length:
2383    case ir_unop_atan:
2384    case ir_binop_atan2:
2385    case ir_unop_clz:
2386    case ir_binop_add_sat:
2387    case ir_binop_sub_sat:
2388    case ir_binop_abs_sub:
2389    case ir_binop_avg:
2390    case ir_binop_avg_round:
2391    case ir_binop_mul_32x16:
2392    case ir_unop_f162f:
2393    case ir_unop_f2f16:
2394    case ir_unop_f2fmp:
2395    case ir_unop_f162b:
2396    case ir_unop_b2f16:
2397    case ir_unop_i2i:
2398    case ir_unop_i2imp:
2399    case ir_unop_u2u:
2400    case ir_unop_u2ump:
2401       /* This operation is not supported, or should have already been handled.
2402        */
2403       assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2404       break;
2405    }
2406 
2407    this->result = result_src;
2408 }
2409 
2410 
2411 void
visit(ir_swizzle * ir)2412 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2413 {
2414    st_src_reg src;
2415    int i;
2416    int swizzle[4] = {0};
2417 
2418    /* Note that this is only swizzles in expressions, not those on the left
2419     * hand side of an assignment, which do write masking.  See ir_assignment
2420     * for that.
2421     */
2422 
2423    ir->val->accept(this);
2424    src = this->result;
2425    assert(src.file != PROGRAM_UNDEFINED);
2426    assert(ir->type->vector_elements > 0);
2427 
2428    for (i = 0; i < 4; i++) {
2429       if (i < ir->type->vector_elements) {
2430          switch (i) {
2431          case 0:
2432             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2433             break;
2434          case 1:
2435             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2436             break;
2437          case 2:
2438             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2439             break;
2440          case 3:
2441             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2442             break;
2443          }
2444       } else {
2445          /* If the type is smaller than a vec4, replicate the last
2446           * channel out.
2447           */
2448          swizzle[i] = swizzle[ir->type->vector_elements - 1];
2449       }
2450    }
2451 
2452    src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2453 
2454    this->result = src;
2455 }
2456 
2457 /* Test if the variable is an array. Note that geometry and
2458  * tessellation shader inputs are outputs are always arrays (except
2459  * for patch inputs), so only the array element type is considered.
2460  */
2461 static bool
is_inout_array(unsigned stage,ir_variable * var,bool * remove_array)2462 is_inout_array(unsigned stage, ir_variable *var, bool *remove_array)
2463 {
2464    const glsl_type *type = var->type;
2465 
2466    *remove_array = false;
2467 
2468    if ((stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
2469        (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out))
2470       return false;
2471 
2472    if (((stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) ||
2473         (stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in) ||
2474         stage == MESA_SHADER_TESS_CTRL) &&
2475        !var->data.patch) {
2476       if (!var->type->is_array())
2477          return false; /* a system value probably */
2478 
2479       type = var->type->fields.array;
2480       *remove_array = true;
2481    }
2482 
2483    return type->is_array() || type->is_matrix();
2484 }
2485 
2486 static unsigned
st_translate_interp_loc(ir_variable * var)2487 st_translate_interp_loc(ir_variable *var)
2488 {
2489    if (var->data.centroid)
2490       return TGSI_INTERPOLATE_LOC_CENTROID;
2491    else if (var->data.sample)
2492       return TGSI_INTERPOLATE_LOC_SAMPLE;
2493    else
2494       return TGSI_INTERPOLATE_LOC_CENTER;
2495 }
2496 
2497 void
visit(ir_dereference_variable * ir)2498 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2499 {
2500    variable_storage *entry;
2501    ir_variable *var = ir->var;
2502    bool remove_array;
2503 
2504    if (handle_bound_deref(ir->as_dereference()))
2505       return;
2506 
2507    entry = find_variable_storage(ir->var);
2508 
2509    if (!entry) {
2510       switch (var->data.mode) {
2511       case ir_var_uniform:
2512          entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2513                                                var->data.param_index);
2514          _mesa_hash_table_insert(this->variables, var, entry);
2515          break;
2516       case ir_var_shader_in: {
2517          /* The linker assigns locations for varyings and attributes,
2518           * including deprecated builtins (like gl_Color), user-assign
2519           * generic attributes (glBindVertexLocation), and
2520           * user-defined varyings.
2521           */
2522          assert(var->data.location != -1);
2523 
2524          const glsl_type *type_without_array = var->type->without_array();
2525          struct inout_decl *decl = &inputs[num_inputs];
2526          unsigned component = var->data.location_frac;
2527          unsigned num_components;
2528          num_inputs++;
2529 
2530          if (type_without_array->is_64bit())
2531             component = component / 2;
2532          if (type_without_array->vector_elements)
2533             num_components = type_without_array->vector_elements;
2534          else
2535             num_components = 4;
2536 
2537          decl->mesa_index = var->data.location;
2538          decl->interp = (glsl_interp_mode) var->data.interpolation;
2539          decl->interp_loc = st_translate_interp_loc(var);
2540          decl->base_type = type_without_array->base_type;
2541          decl->usage_mask = u_bit_consecutive(component, num_components);
2542 
2543          if (is_inout_array(shader->Stage, var, &remove_array)) {
2544             decl->array_id = num_input_arrays + 1;
2545             num_input_arrays++;
2546          } else {
2547             decl->array_id = 0;
2548          }
2549 
2550          if (remove_array)
2551             decl->size = type_size(var->type->fields.array);
2552          else
2553             decl->size = type_size(var->type);
2554 
2555          entry = new(mem_ctx) variable_storage(var,
2556                                                PROGRAM_INPUT,
2557                                                decl->mesa_index,
2558                                                decl->array_id);
2559          entry->component = component;
2560 
2561          _mesa_hash_table_insert(this->variables, var, entry);
2562 
2563          break;
2564       }
2565       case ir_var_shader_out: {
2566          assert(var->data.location != -1);
2567 
2568          const glsl_type *type_without_array = var->type->without_array();
2569          struct inout_decl *decl = &outputs[num_outputs];
2570          unsigned component = var->data.location_frac;
2571          unsigned num_components;
2572          num_outputs++;
2573 
2574          decl->invariant = var->data.invariant;
2575 
2576          if (type_without_array->is_64bit())
2577             component = component / 2;
2578          if (type_without_array->vector_elements)
2579             num_components = type_without_array->vector_elements;
2580          else
2581             num_components = 4;
2582 
2583          decl->mesa_index = var->data.location + FRAG_RESULT_MAX * var->data.index;
2584          decl->base_type = type_without_array->base_type;
2585          decl->usage_mask = u_bit_consecutive(component, num_components);
2586          if (var->data.stream & (1u << 31)) {
2587             decl->gs_out_streams = var->data.stream & ~(1u << 31);
2588          } else {
2589             assert(var->data.stream < 4);
2590             decl->gs_out_streams = 0;
2591             for (unsigned i = 0; i < num_components; ++i)
2592                decl->gs_out_streams |= var->data.stream << (2 * (component + i));
2593          }
2594 
2595          if (is_inout_array(shader->Stage, var, &remove_array)) {
2596             decl->array_id = num_output_arrays + 1;
2597             num_output_arrays++;
2598          } else {
2599             decl->array_id = 0;
2600          }
2601 
2602          if (remove_array)
2603             decl->size = type_size(var->type->fields.array);
2604          else
2605             decl->size = type_size(var->type);
2606 
2607          if (var->data.fb_fetch_output) {
2608             st_dst_reg dst = st_dst_reg(get_temp(var->type));
2609             st_src_reg src = st_src_reg(PROGRAM_OUTPUT, decl->mesa_index,
2610                                         var->type, component, decl->array_id);
2611             emit_asm(NULL, TGSI_OPCODE_FBFETCH, dst, src);
2612             entry = new(mem_ctx) variable_storage(var, dst.file, dst.index,
2613                                                   dst.array_id);
2614          } else {
2615             entry = new(mem_ctx) variable_storage(var,
2616                                                   PROGRAM_OUTPUT,
2617                                                   decl->mesa_index,
2618                                                   decl->array_id);
2619          }
2620          entry->component = component;
2621 
2622          _mesa_hash_table_insert(this->variables, var, entry);
2623 
2624          break;
2625       }
2626       case ir_var_system_value:
2627          entry = new(mem_ctx) variable_storage(var,
2628                                                PROGRAM_SYSTEM_VALUE,
2629                                                var->data.location);
2630          break;
2631       case ir_var_auto:
2632       case ir_var_temporary:
2633          st_src_reg src = get_temp(var->type);
2634 
2635          entry = new(mem_ctx) variable_storage(var, src.file, src.index,
2636                                                src.array_id);
2637          _mesa_hash_table_insert(this->variables, var, entry);
2638 
2639          break;
2640       }
2641 
2642       if (!entry) {
2643          printf("Failed to make storage for %s\n", var->name);
2644          exit(1);
2645       }
2646    }
2647 
2648    this->result = st_src_reg(entry->file, entry->index, var->type,
2649                              entry->component, entry->array_id);
2650    if (this->shader->Stage == MESA_SHADER_VERTEX &&
2651        var->data.mode == ir_var_shader_in &&
2652        var->type->without_array()->is_double())
2653       this->result.is_double_vertex_input = true;
2654    if (!native_integers)
2655       this->result.type = GLSL_TYPE_FLOAT;
2656 }
2657 
2658 static void
shrink_array_declarations(struct inout_decl * decls,unsigned count,GLbitfield64 * usage_mask,GLbitfield64 double_usage_mask,GLbitfield * patch_usage_mask)2659 shrink_array_declarations(struct inout_decl *decls, unsigned count,
2660                           GLbitfield64* usage_mask,
2661                           GLbitfield64 double_usage_mask,
2662                           GLbitfield* patch_usage_mask)
2663 {
2664    unsigned i;
2665    int j;
2666 
2667    /* Fix array declarations by removing unused array elements at both ends
2668     * of the arrays. For example, mat4[3] where only mat[1] is used.
2669     */
2670    for (i = 0; i < count; i++) {
2671       struct inout_decl *decl = &decls[i];
2672       if (!decl->array_id)
2673          continue;
2674 
2675       /* Shrink the beginning. */
2676       for (j = 0; j < (int)decl->size; j++) {
2677          if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2678             if (*patch_usage_mask &
2679                 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2680                break;
2681          }
2682          else {
2683             if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2684                break;
2685             if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2686                break;
2687          }
2688 
2689          decl->mesa_index++;
2690          decl->size--;
2691          j--;
2692       }
2693 
2694       /* Shrink the end. */
2695       for (j = decl->size-1; j >= 0; j--) {
2696          if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2697             if (*patch_usage_mask &
2698                 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2699                break;
2700          }
2701          else {
2702             if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2703                break;
2704             if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2705                break;
2706          }
2707 
2708          decl->size--;
2709       }
2710 
2711       /* When not all entries of an array are accessed, we mark them as used
2712        * here anyway, to ensure that the input/output mapping logic doesn't get
2713        * confused.
2714        *
2715        * TODO This happens when an array isn't used via indirect access, which
2716        * some game ports do (at least eON-based). There is an optimization
2717        * opportunity here by replacing the array declaration with non-array
2718        * declarations of those slots that are actually used.
2719        */
2720       for (j = 1; j < (int)decl->size; ++j) {
2721          if (decl->mesa_index >= VARYING_SLOT_PATCH0)
2722             *patch_usage_mask |= BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j);
2723          else
2724             *usage_mask |= BITFIELD64_BIT(decl->mesa_index + j);
2725       }
2726    }
2727 }
2728 
2729 
2730 static void
mark_array_io(struct inout_decl * decls,unsigned count,GLbitfield64 * usage_mask,GLbitfield64 double_usage_mask,GLbitfield * patch_usage_mask)2731 mark_array_io(struct inout_decl *decls, unsigned count,
2732               GLbitfield64* usage_mask,
2733               GLbitfield64 double_usage_mask,
2734               GLbitfield* patch_usage_mask)
2735 {
2736    unsigned i;
2737    int j;
2738 
2739    /* Fix array declarations by removing unused array elements at both ends
2740     * of the arrays. For example, mat4[3] where only mat[1] is used.
2741     */
2742    for (i = 0; i < count; i++) {
2743       struct inout_decl *decl = &decls[i];
2744       if (!decl->array_id)
2745          continue;
2746 
2747       /* When not all entries of an array are accessed, we mark them as used
2748        * here anyway, to ensure that the input/output mapping logic doesn't get
2749        * confused.
2750        *
2751        * TODO This happens when an array isn't used via indirect access, which
2752        * some game ports do (at least eON-based). There is an optimization
2753        * opportunity here by replacing the array declaration with non-array
2754        * declarations of those slots that are actually used.
2755        */
2756       for (j = 0; j < (int)decl->size; ++j) {
2757          if (decl->mesa_index >= VARYING_SLOT_PATCH0)
2758             *patch_usage_mask |= BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j);
2759          else
2760             *usage_mask |= BITFIELD64_BIT(decl->mesa_index + j);
2761       }
2762    }
2763 }
2764 
2765 void
visit(ir_dereference_array * ir)2766 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2767 {
2768    ir_constant *index;
2769    st_src_reg src;
2770    bool is_2D = false;
2771    ir_variable *var = ir->variable_referenced();
2772 
2773    if (handle_bound_deref(ir->as_dereference()))
2774       return;
2775 
2776    /* We only need the logic provided by count_vec4_slots()
2777     * for arrays of structs. Indirect sampler and image indexing is handled
2778     * elsewhere.
2779     */
2780    int element_size = ir->type->without_array()->is_struct() ?
2781       ir->type->count_vec4_slots(false, var->data.bindless) :
2782       type_size(ir->type);
2783 
2784    index = ir->array_index->constant_expression_value(ralloc_parent(ir));
2785 
2786    ir->array->accept(this);
2787    src = this->result;
2788 
2789    if (!src.has_index2) {
2790       switch (this->prog->Target) {
2791       case GL_TESS_CONTROL_PROGRAM_NV:
2792          is_2D = (src.file == PROGRAM_INPUT || src.file == PROGRAM_OUTPUT) &&
2793                  !ir->variable_referenced()->data.patch;
2794          break;
2795       case GL_TESS_EVALUATION_PROGRAM_NV:
2796          is_2D = src.file == PROGRAM_INPUT &&
2797                  !ir->variable_referenced()->data.patch;
2798          break;
2799       case GL_GEOMETRY_PROGRAM_NV:
2800          is_2D = src.file == PROGRAM_INPUT;
2801          break;
2802       }
2803    }
2804 
2805    if (is_2D)
2806       element_size = 1;
2807 
2808    if (index) {
2809 
2810       if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
2811           src.file == PROGRAM_INPUT)
2812          element_size = attrib_type_size(ir->type, true);
2813       if (is_2D) {
2814          src.index2D = index->value.i[0];
2815          src.has_index2 = true;
2816       } else
2817          src.index += index->value.i[0] * element_size;
2818    } else {
2819       /* Variable index array dereference.  It eats the "vec4" of the
2820        * base of the array and an index that offsets the TGSI register
2821        * index.
2822        */
2823       ir->array_index->accept(this);
2824 
2825       st_src_reg index_reg;
2826 
2827       if (element_size == 1) {
2828          index_reg = this->result;
2829       } else {
2830          index_reg = get_temp(native_integers ?
2831                               glsl_type::int_type : glsl_type::float_type);
2832 
2833          emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2834               this->result, st_src_reg_for_type(index_reg.type, element_size));
2835       }
2836 
2837       /* If there was already a relative address register involved, add the
2838        * new and the old together to get the new offset.
2839        */
2840       if (!is_2D && src.reladdr != NULL) {
2841          st_src_reg accum_reg = get_temp(native_integers ?
2842                                 glsl_type::int_type : glsl_type::float_type);
2843 
2844          emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2845               index_reg, *src.reladdr);
2846 
2847          index_reg = accum_reg;
2848       }
2849 
2850       if (is_2D) {
2851          src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2852          *src.reladdr2 = index_reg;
2853          src.index2D = 0;
2854          src.has_index2 = true;
2855       } else {
2856          src.reladdr = ralloc(mem_ctx, st_src_reg);
2857          *src.reladdr = index_reg;
2858       }
2859    }
2860 
2861    /* Change the register type to the element type of the array. */
2862    src.type = ir->type->base_type;
2863 
2864    this->result = src;
2865 }
2866 
2867 void
visit(ir_dereference_record * ir)2868 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2869 {
2870    unsigned int i;
2871    const glsl_type *struct_type = ir->record->type;
2872    ir_variable *var = ir->record->variable_referenced();
2873    int offset = 0;
2874 
2875    if (handle_bound_deref(ir->as_dereference()))
2876       return;
2877 
2878    ir->record->accept(this);
2879 
2880    assert(ir->field_idx >= 0);
2881    assert(var);
2882    for (i = 0; i < struct_type->length; i++) {
2883       if (i == (unsigned) ir->field_idx)
2884          break;
2885       const glsl_type *member_type = struct_type->fields.structure[i].type;
2886       offset += member_type->count_vec4_slots(false, var->data.bindless);
2887    }
2888 
2889    /* If the type is smaller than a vec4, replicate the last channel out. */
2890    if (ir->type->is_scalar() || ir->type->is_vector())
2891       this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2892    else
2893       this->result.swizzle = SWIZZLE_NOOP;
2894 
2895    this->result.index += offset;
2896    this->result.type = ir->type->base_type;
2897 }
2898 
2899 /**
2900  * We want to be careful in assignment setup to hit the actual storage
2901  * instead of potentially using a temporary like we might with the
2902  * ir_dereference handler.
2903  */
2904 static st_dst_reg
get_assignment_lhs(ir_dereference * ir,glsl_to_tgsi_visitor * v,int * component)2905 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v, int *component)
2906 {
2907    /* The LHS must be a dereference.  If the LHS is a variable indexed array
2908     * access of a vector, it must be separated into a series conditional moves
2909     * before reaching this point (see ir_vec_index_to_cond_assign).
2910     */
2911    assert(ir->as_dereference());
2912    ir_dereference_array *deref_array = ir->as_dereference_array();
2913    if (deref_array) {
2914       assert(!deref_array->array->type->is_vector());
2915    }
2916 
2917    /* Use the rvalue deref handler for the most part.  We write swizzles using
2918     * the writemask, but we do extract the base component for enhanced layouts
2919     * from the source swizzle.
2920     */
2921    ir->accept(v);
2922    *component = GET_SWZ(v->result.swizzle, 0);
2923    return st_dst_reg(v->result);
2924 }
2925 
2926 /**
2927  * Process the condition of a conditional assignment
2928  *
2929  * Examines the condition of a conditional assignment to generate the optimal
2930  * first operand of a \c CMP instruction.  If the condition is a relational
2931  * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2932  * used as the source for the \c CMP instruction.  Otherwise the comparison
2933  * is processed to a boolean result, and the boolean result is used as the
2934  * operand to the CMP instruction.
2935  */
2936 bool
process_move_condition(ir_rvalue * ir)2937 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2938 {
2939    ir_rvalue *src_ir = ir;
2940    bool negate = true;
2941    bool switch_order = false;
2942 
2943    ir_expression *const expr = ir->as_expression();
2944 
2945    if (native_integers) {
2946       if ((expr != NULL) && (expr->num_operands == 2)) {
2947          enum glsl_base_type type = expr->operands[0]->type->base_type;
2948          if (type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT ||
2949              type == GLSL_TYPE_BOOL) {
2950             if (expr->operation == ir_binop_equal) {
2951                if (expr->operands[0]->is_zero()) {
2952                   src_ir = expr->operands[1];
2953                   switch_order = true;
2954                }
2955                else if (expr->operands[1]->is_zero()) {
2956                   src_ir = expr->operands[0];
2957                   switch_order = true;
2958                }
2959             }
2960             else if (expr->operation == ir_binop_nequal) {
2961                if (expr->operands[0]->is_zero()) {
2962                   src_ir = expr->operands[1];
2963                }
2964                else if (expr->operands[1]->is_zero()) {
2965                   src_ir = expr->operands[0];
2966                }
2967             }
2968          }
2969       }
2970 
2971       src_ir->accept(this);
2972       return switch_order;
2973    }
2974 
2975    if ((expr != NULL) && (expr->num_operands == 2)) {
2976       bool zero_on_left = false;
2977 
2978       if (expr->operands[0]->is_zero()) {
2979          src_ir = expr->operands[1];
2980          zero_on_left = true;
2981       } else if (expr->operands[1]->is_zero()) {
2982          src_ir = expr->operands[0];
2983          zero_on_left = false;
2984       }
2985 
2986       /*      a is -  0  +            -  0  +
2987        * (a <  0)  T  F  F  ( a < 0)  T  F  F
2988        * (0 <  a)  F  F  T  (-a < 0)  F  F  T
2989        * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
2990        * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
2991        *
2992        * Note that exchanging the order of 0 and 'a' in the comparison simply
2993        * means that the value of 'a' should be negated.
2994        */
2995       if (src_ir != ir) {
2996          switch (expr->operation) {
2997          case ir_binop_less:
2998             switch_order = false;
2999             negate = zero_on_left;
3000             break;
3001 
3002          case ir_binop_gequal:
3003             switch_order = true;
3004             negate = zero_on_left;
3005             break;
3006 
3007          default:
3008             /* This isn't the right kind of comparison afterall, so make sure
3009              * the whole condition is visited.
3010              */
3011             src_ir = ir;
3012             break;
3013          }
3014       }
3015    }
3016 
3017    src_ir->accept(this);
3018 
3019    /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
3020     * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
3021     * choose which value TGSI_OPCODE_CMP produces without an extra instruction
3022     * computing the condition.
3023     */
3024    if (negate)
3025       this->result.negate = ~this->result.negate;
3026 
3027    return switch_order;
3028 }
3029 
3030 void
emit_block_mov(ir_assignment * ir,const struct glsl_type * type,st_dst_reg * l,st_src_reg * r,st_src_reg * cond,bool cond_swap)3031 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
3032                                      st_dst_reg *l, st_src_reg *r,
3033                                      st_src_reg *cond, bool cond_swap)
3034 {
3035    if (type->is_struct()) {
3036       for (unsigned int i = 0; i < type->length; i++) {
3037          emit_block_mov(ir, type->fields.structure[i].type, l, r,
3038                         cond, cond_swap);
3039       }
3040       return;
3041    }
3042 
3043    if (type->is_array()) {
3044       for (unsigned int i = 0; i < type->length; i++) {
3045          emit_block_mov(ir, type->fields.array, l, r, cond, cond_swap);
3046       }
3047       return;
3048    }
3049 
3050    if (type->is_matrix()) {
3051       const struct glsl_type *vec_type;
3052 
3053       vec_type = glsl_type::get_instance(type->is_double()
3054                                          ? GLSL_TYPE_DOUBLE : GLSL_TYPE_FLOAT,
3055                                          type->vector_elements, 1);
3056 
3057       for (int i = 0; i < type->matrix_columns; i++) {
3058          emit_block_mov(ir, vec_type, l, r, cond, cond_swap);
3059       }
3060       return;
3061    }
3062 
3063    assert(type->is_scalar() || type->is_vector());
3064 
3065    l->type = type->base_type;
3066    r->type = type->base_type;
3067    if (cond) {
3068       st_src_reg l_src = st_src_reg(*l);
3069 
3070       if (l_src.file == PROGRAM_OUTPUT &&
3071           this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
3072           (l_src.index == FRAG_RESULT_DEPTH ||
3073            l_src.index == FRAG_RESULT_STENCIL)) {
3074          /* This is a special case because the source swizzles will be shifted
3075           * later to account for the difference between GLSL (where they're
3076           * plain floats) and TGSI (where they're Z and Y components). */
3077          l_src.swizzle = SWIZZLE_XXXX;
3078       }
3079 
3080       if (native_integers) {
3081          emit_asm(ir, TGSI_OPCODE_UCMP, *l, *cond,
3082               cond_swap ? l_src : *r,
3083               cond_swap ? *r : l_src);
3084       } else {
3085          emit_asm(ir, TGSI_OPCODE_CMP, *l, *cond,
3086               cond_swap ? l_src : *r,
3087               cond_swap ? *r : l_src);
3088       }
3089    } else {
3090       emit_asm(ir, TGSI_OPCODE_MOV, *l, *r);
3091    }
3092    l->index++;
3093    r->index++;
3094    if (type->is_dual_slot()) {
3095       l->index++;
3096       if (r->is_double_vertex_input == false)
3097          r->index++;
3098    }
3099 }
3100 
3101 void
visit(ir_assignment * ir)3102 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
3103 {
3104    int dst_component;
3105    st_dst_reg l;
3106    st_src_reg r;
3107 
3108    /* all generated instructions need to be flaged as precise */
3109    this->precise = is_precise(ir->lhs->variable_referenced());
3110    ir->rhs->accept(this);
3111    r = this->result;
3112 
3113    l = get_assignment_lhs(ir->lhs, this, &dst_component);
3114 
3115    {
3116       int swizzles[4];
3117       int first_enabled_chan = 0;
3118       int rhs_chan = 0;
3119       ir_variable *variable = ir->lhs->variable_referenced();
3120 
3121       if (shader->Stage == MESA_SHADER_FRAGMENT &&
3122           variable->data.mode == ir_var_shader_out &&
3123           (variable->data.location == FRAG_RESULT_DEPTH ||
3124            variable->data.location == FRAG_RESULT_STENCIL)) {
3125          assert(ir->lhs->type->is_scalar());
3126          assert(ir->write_mask == WRITEMASK_X);
3127 
3128          if (variable->data.location == FRAG_RESULT_DEPTH)
3129             l.writemask = WRITEMASK_Z;
3130          else {
3131             assert(variable->data.location == FRAG_RESULT_STENCIL);
3132             l.writemask = WRITEMASK_Y;
3133          }
3134       } else if (ir->write_mask == 0) {
3135          assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
3136 
3137          unsigned num_elements =
3138             ir->lhs->type->without_array()->vector_elements;
3139 
3140          if (num_elements) {
3141             l.writemask = u_bit_consecutive(0, num_elements);
3142          } else {
3143             /* The type is a struct or an array of (array of) structs. */
3144             l.writemask = WRITEMASK_XYZW;
3145          }
3146       } else {
3147          l.writemask = ir->write_mask;
3148       }
3149 
3150       for (int i = 0; i < 4; i++) {
3151          if (l.writemask & (1 << i)) {
3152             first_enabled_chan = GET_SWZ(r.swizzle, i);
3153             break;
3154          }
3155       }
3156 
3157       l.writemask = l.writemask << dst_component;
3158 
3159       /* Swizzle a small RHS vector into the channels being written.
3160        *
3161        * glsl ir treats write_mask as dictating how many channels are
3162        * present on the RHS while TGSI treats write_mask as just
3163        * showing which channels of the vec4 RHS get written.
3164        */
3165       for (int i = 0; i < 4; i++) {
3166          if (l.writemask & (1 << i))
3167             swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
3168          else
3169             swizzles[i] = first_enabled_chan;
3170       }
3171       r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
3172                                 swizzles[2], swizzles[3]);
3173    }
3174 
3175    assert(l.file != PROGRAM_UNDEFINED);
3176    assert(r.file != PROGRAM_UNDEFINED);
3177 
3178    if (ir->condition) {
3179       const bool switch_order = this->process_move_condition(ir->condition);
3180       st_src_reg condition = this->result;
3181 
3182       emit_block_mov(ir, ir->lhs->type, &l, &r, &condition, switch_order);
3183    } else if (ir->rhs->as_expression() &&
3184               this->instructions.get_tail() &&
3185               ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
3186               !((glsl_to_tgsi_instruction *)this->instructions.get_tail())->is_64bit_expanded &&
3187               type_size(ir->lhs->type) == 1 &&
3188               l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst[0].writemask) {
3189       /* To avoid emitting an extra MOV when assigning an expression to a
3190        * variable, emit the last instruction of the expression again, but
3191        * replace the destination register with the target of the assignment.
3192        * Dead code elimination will remove the original instruction.
3193        */
3194       glsl_to_tgsi_instruction *inst, *new_inst;
3195       inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
3196       new_inst = emit_asm(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2], inst->src[3]);
3197       new_inst->saturate = inst->saturate;
3198       new_inst->resource = inst->resource;
3199       inst->dead_mask = inst->dst[0].writemask;
3200    } else {
3201       emit_block_mov(ir, ir->rhs->type, &l, &r, NULL, false);
3202    }
3203    this->precise = 0;
3204 }
3205 
3206 
3207 void
visit(ir_constant * ir)3208 glsl_to_tgsi_visitor::visit(ir_constant *ir)
3209 {
3210    st_src_reg src;
3211    GLdouble stack_vals[4] = { 0 };
3212    gl_constant_value *values = (gl_constant_value *) stack_vals;
3213    GLenum gl_type = GL_NONE;
3214    unsigned int i, elements;
3215    static int in_array = 0;
3216    gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
3217 
3218    /* Unfortunately, 4 floats is all we can get into
3219     * _mesa_add_typed_unnamed_constant.  So, make a temp to store an
3220     * aggregate constant and move each constant value into it.  If we
3221     * get lucky, copy propagation will eliminate the extra moves.
3222     */
3223    if (ir->type->is_struct()) {
3224       st_src_reg temp_base = get_temp(ir->type);
3225       st_dst_reg temp = st_dst_reg(temp_base);
3226 
3227       for (i = 0; i < ir->type->length; i++) {
3228          ir_constant *const field_value = ir->get_record_field(i);
3229          int size = type_size(field_value->type);
3230 
3231          assert(size > 0);
3232 
3233          field_value->accept(this);
3234          src = this->result;
3235 
3236          for (unsigned j = 0; j < (unsigned int)size; j++) {
3237             emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3238 
3239             src.index++;
3240             temp.index++;
3241          }
3242       }
3243       this->result = temp_base;
3244       return;
3245    }
3246 
3247    if (ir->type->is_array()) {
3248       st_src_reg temp_base = get_temp(ir->type);
3249       st_dst_reg temp = st_dst_reg(temp_base);
3250       int size = type_size(ir->type->fields.array);
3251 
3252       assert(size > 0);
3253       in_array++;
3254 
3255       for (i = 0; i < ir->type->length; i++) {
3256          ir->const_elements[i]->accept(this);
3257          src = this->result;
3258          for (int j = 0; j < size; j++) {
3259             emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3260 
3261             src.index++;
3262             temp.index++;
3263          }
3264       }
3265       this->result = temp_base;
3266       in_array--;
3267       return;
3268    }
3269 
3270    if (ir->type->is_matrix()) {
3271       st_src_reg mat = get_temp(ir->type);
3272       st_dst_reg mat_column = st_dst_reg(mat);
3273 
3274       for (i = 0; i < ir->type->matrix_columns; i++) {
3275          switch (ir->type->base_type) {
3276          case GLSL_TYPE_FLOAT:
3277             values = (gl_constant_value *)
3278                &ir->value.f[i * ir->type->vector_elements];
3279 
3280             src = st_src_reg(file, -1, ir->type->base_type);
3281             src.index = add_constant(file,
3282                                      values,
3283                                      ir->type->vector_elements,
3284                                      GL_FLOAT,
3285                                      &src.swizzle);
3286             emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3287             break;
3288          case GLSL_TYPE_DOUBLE:
3289             values = (gl_constant_value *)
3290                &ir->value.d[i * ir->type->vector_elements];
3291             src = st_src_reg(file, -1, ir->type->base_type);
3292             src.index = add_constant(file,
3293                                      values,
3294                                      ir->type->vector_elements,
3295                                      GL_DOUBLE,
3296                                      &src.swizzle);
3297             if (ir->type->vector_elements >= 2) {
3298                mat_column.writemask = WRITEMASK_XY;
3299                src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
3300                                            SWIZZLE_X, SWIZZLE_Y);
3301                emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3302             } else {
3303                mat_column.writemask = WRITEMASK_X;
3304                src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X,
3305                                            SWIZZLE_X, SWIZZLE_X);
3306                emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3307             }
3308             src.index++;
3309             if (ir->type->vector_elements > 2) {
3310                if (ir->type->vector_elements == 4) {
3311                   mat_column.writemask = WRITEMASK_ZW;
3312                   src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
3313                                               SWIZZLE_X, SWIZZLE_Y);
3314                   emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3315                } else {
3316                   mat_column.writemask = WRITEMASK_Z;
3317                   src.swizzle = MAKE_SWIZZLE4(SWIZZLE_Y, SWIZZLE_Y,
3318                                               SWIZZLE_Y, SWIZZLE_Y);
3319                   emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3320                   mat_column.writemask = WRITEMASK_XYZW;
3321                   src.swizzle = SWIZZLE_XYZW;
3322                }
3323                mat_column.index++;
3324             }
3325             break;
3326          default:
3327             unreachable("Illegal matrix constant type.\n");
3328             break;
3329          }
3330          mat_column.index++;
3331       }
3332       this->result = mat;
3333       return;
3334    }
3335 
3336    elements = ir->type->vector_elements;
3337    switch (ir->type->base_type) {
3338    case GLSL_TYPE_FLOAT:
3339       gl_type = GL_FLOAT;
3340       for (i = 0; i < ir->type->vector_elements; i++) {
3341          values[i].f = ir->value.f[i];
3342       }
3343       break;
3344    case GLSL_TYPE_DOUBLE:
3345       gl_type = GL_DOUBLE;
3346       for (i = 0; i < ir->type->vector_elements; i++) {
3347          memcpy(&values[i * 2], &ir->value.d[i], sizeof(double));
3348       }
3349       break;
3350    case GLSL_TYPE_INT64:
3351       gl_type = GL_INT64_ARB;
3352       for (i = 0; i < ir->type->vector_elements; i++) {
3353          memcpy(&values[i * 2], &ir->value.d[i], sizeof(int64_t));
3354       }
3355       break;
3356    case GLSL_TYPE_UINT64:
3357       gl_type = GL_UNSIGNED_INT64_ARB;
3358       for (i = 0; i < ir->type->vector_elements; i++) {
3359          memcpy(&values[i * 2], &ir->value.d[i], sizeof(uint64_t));
3360       }
3361       break;
3362    case GLSL_TYPE_UINT:
3363       gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
3364       for (i = 0; i < ir->type->vector_elements; i++) {
3365          if (native_integers)
3366             values[i].u = ir->value.u[i];
3367          else
3368             values[i].f = ir->value.u[i];
3369       }
3370       break;
3371    case GLSL_TYPE_INT:
3372       gl_type = native_integers ? GL_INT : GL_FLOAT;
3373       for (i = 0; i < ir->type->vector_elements; i++) {
3374          if (native_integers)
3375             values[i].i = ir->value.i[i];
3376          else
3377             values[i].f = ir->value.i[i];
3378       }
3379       break;
3380    case GLSL_TYPE_BOOL:
3381       gl_type = native_integers ? GL_BOOL : GL_FLOAT;
3382       for (i = 0; i < ir->type->vector_elements; i++) {
3383          values[i].u = ir->value.b[i] ? ctx->Const.UniformBooleanTrue : 0;
3384       }
3385       break;
3386    case GLSL_TYPE_SAMPLER:
3387    case GLSL_TYPE_IMAGE:
3388       gl_type = GL_UNSIGNED_INT;
3389       elements = 2;
3390       values[0].u = ir->value.u64[0] & 0xffffffff;
3391       values[1].u = ir->value.u64[0] >> 32;
3392       break;
3393    default:
3394       assert(!"Non-float/uint/int/bool/sampler/image constant");
3395    }
3396 
3397    this->result = st_src_reg(file, -1, ir->type);
3398    this->result.index = add_constant(file,
3399                                      values,
3400                                      elements,
3401                                      gl_type,
3402                                      &this->result.swizzle);
3403 }
3404 
3405 void
visit_atomic_counter_intrinsic(ir_call * ir)3406 glsl_to_tgsi_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
3407 {
3408    exec_node *param = ir->actual_parameters.get_head();
3409    ir_dereference *deref = static_cast<ir_dereference *>(param);
3410    ir_variable *location = deref->variable_referenced();
3411    bool has_hw_atomics = st_context(ctx)->has_hw_atomics;
3412    /* Calculate the surface offset */
3413    st_src_reg offset;
3414    unsigned array_size = 0, base = 0;
3415    uint16_t index = 0;
3416    st_src_reg resource;
3417 
3418    get_deref_offsets(deref, &array_size, &base, &index, &offset, false);
3419 
3420    if (has_hw_atomics) {
3421       variable_storage *entry = find_variable_storage(location);
3422       st_src_reg buffer(PROGRAM_HW_ATOMIC, 0, GLSL_TYPE_ATOMIC_UINT,
3423                         location->data.binding);
3424 
3425       if (!entry) {
3426          entry = new(mem_ctx) variable_storage(location, PROGRAM_HW_ATOMIC,
3427                                                num_atomics);
3428          _mesa_hash_table_insert(this->variables, location, entry);
3429 
3430          atomic_info[num_atomics].location = location->data.location;
3431          atomic_info[num_atomics].binding = location->data.binding;
3432          atomic_info[num_atomics].size = location->type->arrays_of_arrays_size();
3433          if (atomic_info[num_atomics].size == 0)
3434             atomic_info[num_atomics].size = 1;
3435          atomic_info[num_atomics].array_id = 0;
3436          num_atomics++;
3437       }
3438 
3439       if (offset.file != PROGRAM_UNDEFINED) {
3440          if (atomic_info[entry->index].array_id == 0) {
3441             num_atomic_arrays++;
3442             atomic_info[entry->index].array_id = num_atomic_arrays;
3443          }
3444          buffer.array_id = atomic_info[entry->index].array_id;
3445       }
3446 
3447       buffer.index = index;
3448       buffer.index += location->data.offset / ATOMIC_COUNTER_SIZE;
3449       buffer.has_index2 = true;
3450 
3451       if (offset.file != PROGRAM_UNDEFINED) {
3452          buffer.reladdr = ralloc(mem_ctx, st_src_reg);
3453          *buffer.reladdr = offset;
3454          emit_arl(ir, sampler_reladdr, offset);
3455       }
3456       offset = st_src_reg_for_int(0);
3457 
3458       resource = buffer;
3459    } else {
3460       st_src_reg buffer(PROGRAM_BUFFER,
3461                         prog->info.num_ssbos +
3462                         location->data.binding,
3463                         GLSL_TYPE_ATOMIC_UINT);
3464 
3465       if (offset.file != PROGRAM_UNDEFINED) {
3466          emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(offset),
3467                   offset, st_src_reg_for_int(ATOMIC_COUNTER_SIZE));
3468          emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(offset),
3469                   offset, st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE));
3470       } else {
3471          offset = st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE);
3472       }
3473       resource = buffer;
3474    }
3475 
3476    ir->return_deref->accept(this);
3477    st_dst_reg dst(this->result);
3478    dst.writemask = WRITEMASK_X;
3479 
3480    glsl_to_tgsi_instruction *inst;
3481 
3482    if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_read) {
3483       inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, offset);
3484    } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_increment) {
3485       inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3486                       st_src_reg_for_int(1));
3487    } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_predecrement) {
3488       inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3489                       st_src_reg_for_int(-1));
3490       emit_asm(ir, TGSI_OPCODE_ADD, dst, this->result, st_src_reg_for_int(-1));
3491    } else {
3492       param = param->get_next();
3493       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3494       val->accept(this);
3495 
3496       st_src_reg data = this->result, data2 = undef_src;
3497       enum tgsi_opcode opcode;
3498       switch (ir->callee->intrinsic_id) {
3499       case ir_intrinsic_atomic_counter_add:
3500          opcode = TGSI_OPCODE_ATOMUADD;
3501          break;
3502       case ir_intrinsic_atomic_counter_min:
3503          opcode = TGSI_OPCODE_ATOMIMIN;
3504          break;
3505       case ir_intrinsic_atomic_counter_max:
3506          opcode = TGSI_OPCODE_ATOMIMAX;
3507          break;
3508       case ir_intrinsic_atomic_counter_and:
3509          opcode = TGSI_OPCODE_ATOMAND;
3510          break;
3511       case ir_intrinsic_atomic_counter_or:
3512          opcode = TGSI_OPCODE_ATOMOR;
3513          break;
3514       case ir_intrinsic_atomic_counter_xor:
3515          opcode = TGSI_OPCODE_ATOMXOR;
3516          break;
3517       case ir_intrinsic_atomic_counter_exchange:
3518          opcode = TGSI_OPCODE_ATOMXCHG;
3519          break;
3520       case ir_intrinsic_atomic_counter_comp_swap: {
3521          opcode = TGSI_OPCODE_ATOMCAS;
3522          param = param->get_next();
3523          val = ((ir_instruction *)param)->as_rvalue();
3524          val->accept(this);
3525          data2 = this->result;
3526          break;
3527       }
3528       default:
3529          assert(!"Unexpected intrinsic");
3530          return;
3531       }
3532 
3533       inst = emit_asm(ir, opcode, dst, offset, data, data2);
3534    }
3535 
3536    inst->resource = resource;
3537 }
3538 
3539 void
visit_ssbo_intrinsic(ir_call * ir)3540 glsl_to_tgsi_visitor::visit_ssbo_intrinsic(ir_call *ir)
3541 {
3542    exec_node *param = ir->actual_parameters.get_head();
3543 
3544    ir_rvalue *block = ((ir_instruction *)param)->as_rvalue();
3545 
3546    param = param->get_next();
3547    ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3548 
3549    ir_constant *const_block = block->as_constant();
3550    st_src_reg buffer(
3551          PROGRAM_BUFFER,
3552          const_block ? const_block->value.u[0] : 0,
3553          GLSL_TYPE_UINT);
3554 
3555    if (!const_block) {
3556       block->accept(this);
3557       buffer.reladdr = ralloc(mem_ctx, st_src_reg);
3558       *buffer.reladdr = this->result;
3559       emit_arl(ir, sampler_reladdr, this->result);
3560    }
3561 
3562    /* Calculate the surface offset */
3563    offset->accept(this);
3564    st_src_reg off = this->result;
3565 
3566    st_dst_reg dst = undef_dst;
3567    if (ir->return_deref) {
3568       ir->return_deref->accept(this);
3569       dst = st_dst_reg(this->result);
3570       dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3571    }
3572 
3573    glsl_to_tgsi_instruction *inst;
3574 
3575    if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_load) {
3576       inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3577       if (dst.type == GLSL_TYPE_BOOL)
3578          emit_asm(ir, TGSI_OPCODE_USNE, dst, st_src_reg(dst),
3579                   st_src_reg_for_int(0));
3580    } else if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_store) {
3581       param = param->get_next();
3582       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3583       val->accept(this);
3584 
3585       param = param->get_next();
3586       ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3587       assert(write_mask);
3588       dst.writemask = write_mask->value.u[0];
3589 
3590       dst.type = this->result.type;
3591       inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3592    } else {
3593       param = param->get_next();
3594       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3595       val->accept(this);
3596 
3597       st_src_reg data = this->result, data2 = undef_src;
3598       enum tgsi_opcode opcode;
3599       switch (ir->callee->intrinsic_id) {
3600       case ir_intrinsic_ssbo_atomic_add:
3601          opcode = TGSI_OPCODE_ATOMUADD;
3602          break;
3603       case ir_intrinsic_ssbo_atomic_min:
3604          opcode = TGSI_OPCODE_ATOMIMIN;
3605          break;
3606       case ir_intrinsic_ssbo_atomic_max:
3607          opcode = TGSI_OPCODE_ATOMIMAX;
3608          break;
3609       case ir_intrinsic_ssbo_atomic_and:
3610          opcode = TGSI_OPCODE_ATOMAND;
3611          break;
3612       case ir_intrinsic_ssbo_atomic_or:
3613          opcode = TGSI_OPCODE_ATOMOR;
3614          break;
3615       case ir_intrinsic_ssbo_atomic_xor:
3616          opcode = TGSI_OPCODE_ATOMXOR;
3617          break;
3618       case ir_intrinsic_ssbo_atomic_exchange:
3619          opcode = TGSI_OPCODE_ATOMXCHG;
3620          break;
3621       case ir_intrinsic_ssbo_atomic_comp_swap:
3622          opcode = TGSI_OPCODE_ATOMCAS;
3623          param = param->get_next();
3624          val = ((ir_instruction *)param)->as_rvalue();
3625          val->accept(this);
3626          data2 = this->result;
3627          break;
3628       default:
3629          assert(!"Unexpected intrinsic");
3630          return;
3631       }
3632 
3633       inst = emit_asm(ir, opcode, dst, off, data, data2);
3634    }
3635 
3636    param = param->get_next();
3637    ir_constant *access = NULL;
3638    if (!param->is_tail_sentinel()) {
3639       access = ((ir_instruction *)param)->as_constant();
3640       assert(access);
3641    }
3642 
3643    add_buffer_to_load_and_stores(inst, &buffer, &this->instructions, access);
3644 }
3645 
3646 void
visit_membar_intrinsic(ir_call * ir)3647 glsl_to_tgsi_visitor::visit_membar_intrinsic(ir_call *ir)
3648 {
3649    switch (ir->callee->intrinsic_id) {
3650    case ir_intrinsic_memory_barrier:
3651       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3652                st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3653                                   TGSI_MEMBAR_ATOMIC_BUFFER |
3654                                   TGSI_MEMBAR_SHADER_IMAGE |
3655                                   TGSI_MEMBAR_SHARED));
3656       break;
3657    case ir_intrinsic_memory_barrier_atomic_counter:
3658       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3659                st_src_reg_for_int(TGSI_MEMBAR_ATOMIC_BUFFER));
3660       break;
3661    case ir_intrinsic_memory_barrier_buffer:
3662       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3663                st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER));
3664       break;
3665    case ir_intrinsic_memory_barrier_image:
3666       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3667                st_src_reg_for_int(TGSI_MEMBAR_SHADER_IMAGE));
3668       break;
3669    case ir_intrinsic_memory_barrier_shared:
3670       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3671                st_src_reg_for_int(TGSI_MEMBAR_SHARED));
3672       break;
3673    case ir_intrinsic_group_memory_barrier:
3674       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3675                st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3676                                   TGSI_MEMBAR_ATOMIC_BUFFER |
3677                                   TGSI_MEMBAR_SHADER_IMAGE |
3678                                   TGSI_MEMBAR_SHARED |
3679                                   TGSI_MEMBAR_THREAD_GROUP));
3680       break;
3681    default:
3682       assert(!"Unexpected memory barrier intrinsic");
3683    }
3684 }
3685 
3686 void
visit_shared_intrinsic(ir_call * ir)3687 glsl_to_tgsi_visitor::visit_shared_intrinsic(ir_call *ir)
3688 {
3689    exec_node *param = ir->actual_parameters.get_head();
3690 
3691    ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3692 
3693    st_src_reg buffer(PROGRAM_MEMORY, 0, GLSL_TYPE_UINT);
3694 
3695    /* Calculate the surface offset */
3696    offset->accept(this);
3697    st_src_reg off = this->result;
3698 
3699    st_dst_reg dst = undef_dst;
3700    if (ir->return_deref) {
3701       ir->return_deref->accept(this);
3702       dst = st_dst_reg(this->result);
3703       dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3704    }
3705 
3706    glsl_to_tgsi_instruction *inst;
3707 
3708    if (ir->callee->intrinsic_id == ir_intrinsic_shared_load) {
3709       inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3710       inst->resource = buffer;
3711    } else if (ir->callee->intrinsic_id == ir_intrinsic_shared_store) {
3712       param = param->get_next();
3713       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3714       val->accept(this);
3715 
3716       param = param->get_next();
3717       ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3718       assert(write_mask);
3719       dst.writemask = write_mask->value.u[0];
3720 
3721       dst.type = this->result.type;
3722       inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3723       inst->resource = buffer;
3724    } else {
3725       param = param->get_next();
3726       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3727       val->accept(this);
3728 
3729       st_src_reg data = this->result, data2 = undef_src;
3730       enum tgsi_opcode opcode;
3731       switch (ir->callee->intrinsic_id) {
3732       case ir_intrinsic_shared_atomic_add:
3733          opcode = TGSI_OPCODE_ATOMUADD;
3734          break;
3735       case ir_intrinsic_shared_atomic_min:
3736          opcode = TGSI_OPCODE_ATOMIMIN;
3737          break;
3738       case ir_intrinsic_shared_atomic_max:
3739          opcode = TGSI_OPCODE_ATOMIMAX;
3740          break;
3741       case ir_intrinsic_shared_atomic_and:
3742          opcode = TGSI_OPCODE_ATOMAND;
3743          break;
3744       case ir_intrinsic_shared_atomic_or:
3745          opcode = TGSI_OPCODE_ATOMOR;
3746          break;
3747       case ir_intrinsic_shared_atomic_xor:
3748          opcode = TGSI_OPCODE_ATOMXOR;
3749          break;
3750       case ir_intrinsic_shared_atomic_exchange:
3751          opcode = TGSI_OPCODE_ATOMXCHG;
3752          break;
3753       case ir_intrinsic_shared_atomic_comp_swap:
3754          opcode = TGSI_OPCODE_ATOMCAS;
3755          param = param->get_next();
3756          val = ((ir_instruction *)param)->as_rvalue();
3757          val->accept(this);
3758          data2 = this->result;
3759          break;
3760       default:
3761          assert(!"Unexpected intrinsic");
3762          return;
3763       }
3764 
3765       inst = emit_asm(ir, opcode, dst, off, data, data2);
3766       inst->resource = buffer;
3767    }
3768 }
3769 
3770 static void
get_image_qualifiers(ir_dereference * ir,const glsl_type ** type,bool * memory_coherent,bool * memory_volatile,bool * memory_restrict,bool * memory_read_only,enum pipe_format * image_format)3771 get_image_qualifiers(ir_dereference *ir, const glsl_type **type,
3772                      bool *memory_coherent, bool *memory_volatile,
3773                      bool *memory_restrict, bool *memory_read_only,
3774                      enum pipe_format *image_format)
3775 {
3776 
3777    switch (ir->ir_type) {
3778    case ir_type_dereference_record: {
3779       ir_dereference_record *deref_record = ir->as_dereference_record();
3780       const glsl_type *struct_type = deref_record->record->type;
3781       int fild_idx = deref_record->field_idx;
3782 
3783       *type = struct_type->fields.structure[fild_idx].type->without_array();
3784       *memory_coherent =
3785          struct_type->fields.structure[fild_idx].memory_coherent;
3786       *memory_volatile =
3787          struct_type->fields.structure[fild_idx].memory_volatile;
3788       *memory_restrict =
3789          struct_type->fields.structure[fild_idx].memory_restrict;
3790       *memory_read_only =
3791          struct_type->fields.structure[fild_idx].memory_read_only;
3792       *image_format =
3793          struct_type->fields.structure[fild_idx].image_format;
3794       break;
3795    }
3796 
3797    case ir_type_dereference_array: {
3798       ir_dereference_array *deref_arr = ir->as_dereference_array();
3799       get_image_qualifiers((ir_dereference *)deref_arr->array, type,
3800                            memory_coherent, memory_volatile, memory_restrict,
3801                            memory_read_only, image_format);
3802       break;
3803    }
3804 
3805    case ir_type_dereference_variable: {
3806       ir_variable *var = ir->variable_referenced();
3807 
3808       *type = var->type->without_array();
3809       *memory_coherent = var->data.memory_coherent;
3810       *memory_volatile = var->data.memory_volatile;
3811       *memory_restrict = var->data.memory_restrict;
3812       *memory_read_only = var->data.memory_read_only;
3813       *image_format = var->data.image_format;
3814       break;
3815    }
3816 
3817    default:
3818       break;
3819    }
3820 }
3821 
3822 void
visit_image_intrinsic(ir_call * ir)3823 glsl_to_tgsi_visitor::visit_image_intrinsic(ir_call *ir)
3824 {
3825    exec_node *param = ir->actual_parameters.get_head();
3826 
3827    ir_dereference *img = (ir_dereference *)param;
3828    const ir_variable *imgvar = img->variable_referenced();
3829    unsigned sampler_array_size = 1, sampler_base = 0;
3830    bool memory_coherent = false, memory_volatile = false,
3831         memory_restrict = false, memory_read_only = false;
3832    enum pipe_format image_format = PIPE_FORMAT_NONE;
3833    const glsl_type *type = NULL;
3834 
3835    get_image_qualifiers(img, &type, &memory_coherent, &memory_volatile,
3836                         &memory_restrict, &memory_read_only, &image_format);
3837 
3838    st_src_reg reladdr;
3839    st_src_reg image(PROGRAM_IMAGE, 0, GLSL_TYPE_UINT);
3840    uint16_t index = 0;
3841    get_deref_offsets(img, &sampler_array_size, &sampler_base,
3842                      &index, &reladdr, !imgvar->contains_bindless());
3843 
3844    image.index = index;
3845    if (reladdr.file != PROGRAM_UNDEFINED) {
3846       image.reladdr = ralloc(mem_ctx, st_src_reg);
3847       *image.reladdr = reladdr;
3848       emit_arl(ir, sampler_reladdr, reladdr);
3849    }
3850 
3851    st_dst_reg dst = undef_dst;
3852    if (ir->return_deref) {
3853       ir->return_deref->accept(this);
3854       dst = st_dst_reg(this->result);
3855       dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3856    }
3857 
3858    glsl_to_tgsi_instruction *inst;
3859 
3860    st_src_reg bindless;
3861    if (imgvar->contains_bindless()) {
3862       img->accept(this);
3863       bindless = this->result;
3864    }
3865 
3866    if (ir->callee->intrinsic_id == ir_intrinsic_image_size) {
3867       dst.writemask = WRITEMASK_XYZ;
3868       inst = emit_asm(ir, TGSI_OPCODE_RESQ, dst);
3869    } else if (ir->callee->intrinsic_id == ir_intrinsic_image_samples) {
3870       st_src_reg res = get_temp(glsl_type::ivec4_type);
3871       st_dst_reg dstres = st_dst_reg(res);
3872       dstres.writemask = WRITEMASK_W;
3873       inst = emit_asm(ir, TGSI_OPCODE_RESQ, dstres);
3874       res.swizzle = SWIZZLE_WWWW;
3875       emit_asm(ir, TGSI_OPCODE_MOV, dst, res);
3876    } else {
3877       st_src_reg arg1 = undef_src, arg2 = undef_src;
3878       st_src_reg coord;
3879       st_dst_reg coord_dst;
3880       coord = get_temp(glsl_type::ivec4_type);
3881       coord_dst = st_dst_reg(coord);
3882       coord_dst.writemask = (1 << type->coordinate_components()) - 1;
3883       param = param->get_next();
3884       ((ir_dereference *)param)->accept(this);
3885       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3886       coord.swizzle = SWIZZLE_XXXX;
3887       switch (type->coordinate_components()) {
3888       case 4: assert(!"unexpected coord count");
3889       /* fallthrough */
3890       case 3: coord.swizzle |= SWIZZLE_Z << 6;
3891       /* fallthrough */
3892       case 2: coord.swizzle |= SWIZZLE_Y << 3;
3893       }
3894 
3895       if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS) {
3896          param = param->get_next();
3897          ((ir_dereference *)param)->accept(this);
3898          st_src_reg sample = this->result;
3899          sample.swizzle = SWIZZLE_XXXX;
3900          coord_dst.writemask = WRITEMASK_W;
3901          emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample);
3902          coord.swizzle |= SWIZZLE_W << 9;
3903       }
3904 
3905       param = param->get_next();
3906       if (!param->is_tail_sentinel()) {
3907          ((ir_dereference *)param)->accept(this);
3908          arg1 = this->result;
3909          param = param->get_next();
3910       }
3911 
3912       if (!param->is_tail_sentinel()) {
3913          ((ir_dereference *)param)->accept(this);
3914          arg2 = this->result;
3915          param = param->get_next();
3916       }
3917 
3918       assert(param->is_tail_sentinel());
3919 
3920       enum tgsi_opcode opcode;
3921       switch (ir->callee->intrinsic_id) {
3922       case ir_intrinsic_image_load:
3923          opcode = TGSI_OPCODE_LOAD;
3924          break;
3925       case ir_intrinsic_image_store:
3926          opcode = TGSI_OPCODE_STORE;
3927          break;
3928       case ir_intrinsic_image_atomic_add:
3929          opcode = TGSI_OPCODE_ATOMUADD;
3930          break;
3931       case ir_intrinsic_image_atomic_min:
3932          opcode = TGSI_OPCODE_ATOMIMIN;
3933          break;
3934       case ir_intrinsic_image_atomic_max:
3935          opcode = TGSI_OPCODE_ATOMIMAX;
3936          break;
3937       case ir_intrinsic_image_atomic_and:
3938          opcode = TGSI_OPCODE_ATOMAND;
3939          break;
3940       case ir_intrinsic_image_atomic_or:
3941          opcode = TGSI_OPCODE_ATOMOR;
3942          break;
3943       case ir_intrinsic_image_atomic_xor:
3944          opcode = TGSI_OPCODE_ATOMXOR;
3945          break;
3946       case ir_intrinsic_image_atomic_exchange:
3947          opcode = TGSI_OPCODE_ATOMXCHG;
3948          break;
3949       case ir_intrinsic_image_atomic_comp_swap:
3950          opcode = TGSI_OPCODE_ATOMCAS;
3951          break;
3952       case ir_intrinsic_image_atomic_inc_wrap: {
3953          /* There's a bit of disagreement between GLSL and the hardware. The
3954           * hardware wants to wrap after the given wrap value, while GLSL
3955           * wants to wrap at the value. Subtract 1 to make up the difference.
3956           */
3957          st_src_reg wrap = get_temp(glsl_type::uint_type);
3958          emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(wrap),
3959                   arg1, st_src_reg_for_int(-1));
3960          arg1 = wrap;
3961          opcode = TGSI_OPCODE_ATOMINC_WRAP;
3962          break;
3963       }
3964       case ir_intrinsic_image_atomic_dec_wrap:
3965          opcode = TGSI_OPCODE_ATOMDEC_WRAP;
3966          break;
3967       default:
3968          assert(!"Unexpected intrinsic");
3969          return;
3970       }
3971 
3972       inst = emit_asm(ir, opcode, dst, coord, arg1, arg2);
3973       if (opcode == TGSI_OPCODE_STORE)
3974          inst->dst[0].writemask = WRITEMASK_XYZW;
3975    }
3976 
3977    if (imgvar->contains_bindless()) {
3978       inst->resource = bindless;
3979       inst->resource.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
3980                                              SWIZZLE_X, SWIZZLE_Y);
3981    } else {
3982       inst->resource = image;
3983       inst->sampler_array_size = sampler_array_size;
3984       inst->sampler_base = sampler_base;
3985    }
3986 
3987    inst->tex_target = type->sampler_index();
3988    inst->image_format = image_format;
3989    inst->read_only = memory_read_only;
3990 
3991    if (memory_coherent)
3992       inst->buffer_access |= TGSI_MEMORY_COHERENT;
3993    if (memory_restrict)
3994       inst->buffer_access |= TGSI_MEMORY_RESTRICT;
3995    if (memory_volatile)
3996       inst->buffer_access |= TGSI_MEMORY_VOLATILE;
3997 }
3998 
3999 void
visit_generic_intrinsic(ir_call * ir,enum tgsi_opcode op)4000 glsl_to_tgsi_visitor::visit_generic_intrinsic(ir_call *ir, enum tgsi_opcode op)
4001 {
4002    ir->return_deref->accept(this);
4003    st_dst_reg dst = st_dst_reg(this->result);
4004 
4005    dst.writemask = u_bit_consecutive(0, ir->return_deref->var->type->vector_elements);
4006 
4007    st_src_reg src[4] = { undef_src, undef_src, undef_src, undef_src };
4008    unsigned num_src = 0;
4009    foreach_in_list(ir_rvalue, param, &ir->actual_parameters) {
4010       assert(num_src < ARRAY_SIZE(src));
4011 
4012       this->result.file = PROGRAM_UNDEFINED;
4013       param->accept(this);
4014       assert(this->result.file != PROGRAM_UNDEFINED);
4015 
4016       src[num_src] = this->result;
4017       num_src++;
4018    }
4019 
4020    emit_asm(ir, op, dst, src[0], src[1], src[2], src[3]);
4021 }
4022 
4023 void
visit(ir_call * ir)4024 glsl_to_tgsi_visitor::visit(ir_call *ir)
4025 {
4026    ir_function_signature *sig = ir->callee;
4027 
4028    /* Filter out intrinsics */
4029    switch (sig->intrinsic_id) {
4030    case ir_intrinsic_atomic_counter_read:
4031    case ir_intrinsic_atomic_counter_increment:
4032    case ir_intrinsic_atomic_counter_predecrement:
4033    case ir_intrinsic_atomic_counter_add:
4034    case ir_intrinsic_atomic_counter_min:
4035    case ir_intrinsic_atomic_counter_max:
4036    case ir_intrinsic_atomic_counter_and:
4037    case ir_intrinsic_atomic_counter_or:
4038    case ir_intrinsic_atomic_counter_xor:
4039    case ir_intrinsic_atomic_counter_exchange:
4040    case ir_intrinsic_atomic_counter_comp_swap:
4041       visit_atomic_counter_intrinsic(ir);
4042       return;
4043 
4044    case ir_intrinsic_ssbo_load:
4045    case ir_intrinsic_ssbo_store:
4046    case ir_intrinsic_ssbo_atomic_add:
4047    case ir_intrinsic_ssbo_atomic_min:
4048    case ir_intrinsic_ssbo_atomic_max:
4049    case ir_intrinsic_ssbo_atomic_and:
4050    case ir_intrinsic_ssbo_atomic_or:
4051    case ir_intrinsic_ssbo_atomic_xor:
4052    case ir_intrinsic_ssbo_atomic_exchange:
4053    case ir_intrinsic_ssbo_atomic_comp_swap:
4054       visit_ssbo_intrinsic(ir);
4055       return;
4056 
4057    case ir_intrinsic_memory_barrier:
4058    case ir_intrinsic_memory_barrier_atomic_counter:
4059    case ir_intrinsic_memory_barrier_buffer:
4060    case ir_intrinsic_memory_barrier_image:
4061    case ir_intrinsic_memory_barrier_shared:
4062    case ir_intrinsic_group_memory_barrier:
4063       visit_membar_intrinsic(ir);
4064       return;
4065 
4066    case ir_intrinsic_shared_load:
4067    case ir_intrinsic_shared_store:
4068    case ir_intrinsic_shared_atomic_add:
4069    case ir_intrinsic_shared_atomic_min:
4070    case ir_intrinsic_shared_atomic_max:
4071    case ir_intrinsic_shared_atomic_and:
4072    case ir_intrinsic_shared_atomic_or:
4073    case ir_intrinsic_shared_atomic_xor:
4074    case ir_intrinsic_shared_atomic_exchange:
4075    case ir_intrinsic_shared_atomic_comp_swap:
4076       visit_shared_intrinsic(ir);
4077       return;
4078 
4079    case ir_intrinsic_image_load:
4080    case ir_intrinsic_image_store:
4081    case ir_intrinsic_image_atomic_add:
4082    case ir_intrinsic_image_atomic_min:
4083    case ir_intrinsic_image_atomic_max:
4084    case ir_intrinsic_image_atomic_and:
4085    case ir_intrinsic_image_atomic_or:
4086    case ir_intrinsic_image_atomic_xor:
4087    case ir_intrinsic_image_atomic_exchange:
4088    case ir_intrinsic_image_atomic_comp_swap:
4089    case ir_intrinsic_image_size:
4090    case ir_intrinsic_image_samples:
4091    case ir_intrinsic_image_atomic_inc_wrap:
4092    case ir_intrinsic_image_atomic_dec_wrap:
4093       visit_image_intrinsic(ir);
4094       return;
4095 
4096    case ir_intrinsic_shader_clock:
4097       visit_generic_intrinsic(ir, TGSI_OPCODE_CLOCK);
4098       return;
4099 
4100    case ir_intrinsic_vote_all:
4101       visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_ALL);
4102       return;
4103    case ir_intrinsic_vote_any:
4104       visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_ANY);
4105       return;
4106    case ir_intrinsic_vote_eq:
4107       visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_EQ);
4108       return;
4109    case ir_intrinsic_ballot:
4110       visit_generic_intrinsic(ir, TGSI_OPCODE_BALLOT);
4111       return;
4112    case ir_intrinsic_read_first_invocation:
4113       visit_generic_intrinsic(ir, TGSI_OPCODE_READ_FIRST);
4114       return;
4115    case ir_intrinsic_read_invocation:
4116       visit_generic_intrinsic(ir, TGSI_OPCODE_READ_INVOC);
4117       return;
4118 
4119    case ir_intrinsic_helper_invocation:
4120       visit_generic_intrinsic(ir, TGSI_OPCODE_READ_HELPER);
4121       return;
4122 
4123    case ir_intrinsic_invalid:
4124    case ir_intrinsic_generic_load:
4125    case ir_intrinsic_generic_store:
4126    case ir_intrinsic_generic_atomic_add:
4127    case ir_intrinsic_generic_atomic_and:
4128    case ir_intrinsic_generic_atomic_or:
4129    case ir_intrinsic_generic_atomic_xor:
4130    case ir_intrinsic_generic_atomic_min:
4131    case ir_intrinsic_generic_atomic_max:
4132    case ir_intrinsic_generic_atomic_exchange:
4133    case ir_intrinsic_generic_atomic_comp_swap:
4134    case ir_intrinsic_begin_invocation_interlock:
4135    case ir_intrinsic_end_invocation_interlock:
4136       unreachable("Invalid intrinsic");
4137    }
4138 }
4139 
4140 void
calc_deref_offsets(ir_dereference * tail,unsigned * array_elements,uint16_t * index,st_src_reg * indirect,unsigned * location)4141 glsl_to_tgsi_visitor::calc_deref_offsets(ir_dereference *tail,
4142                                          unsigned *array_elements,
4143                                          uint16_t *index,
4144                                          st_src_reg *indirect,
4145                                          unsigned *location)
4146 {
4147    switch (tail->ir_type) {
4148    case ir_type_dereference_record: {
4149       ir_dereference_record *deref_record = tail->as_dereference_record();
4150       const glsl_type *struct_type = deref_record->record->type;
4151       int field_index = deref_record->field_idx;
4152 
4153       calc_deref_offsets(deref_record->record->as_dereference(), array_elements, index, indirect, location);
4154 
4155       assert(field_index >= 0);
4156       *location += struct_type->struct_location_offset(field_index);
4157       break;
4158    }
4159 
4160    case ir_type_dereference_array: {
4161       ir_dereference_array *deref_arr = tail->as_dereference_array();
4162 
4163       void *mem_ctx = ralloc_parent(deref_arr);
4164       ir_constant *array_index =
4165          deref_arr->array_index->constant_expression_value(mem_ctx);
4166 
4167       if (!array_index) {
4168          st_src_reg temp_reg;
4169          st_dst_reg temp_dst;
4170 
4171          temp_reg = get_temp(glsl_type::uint_type);
4172          temp_dst = st_dst_reg(temp_reg);
4173          temp_dst.writemask = 1;
4174 
4175          deref_arr->array_index->accept(this);
4176          if (*array_elements != 1)
4177             emit_asm(NULL, TGSI_OPCODE_MUL, temp_dst, this->result, st_src_reg_for_int(*array_elements));
4178          else
4179             emit_asm(NULL, TGSI_OPCODE_MOV, temp_dst, this->result);
4180 
4181          if (indirect->file == PROGRAM_UNDEFINED)
4182             *indirect = temp_reg;
4183          else {
4184             temp_dst = st_dst_reg(*indirect);
4185             temp_dst.writemask = 1;
4186             emit_asm(NULL, TGSI_OPCODE_ADD, temp_dst, *indirect, temp_reg);
4187          }
4188       } else
4189          *index += array_index->value.u[0] * *array_elements;
4190 
4191       *array_elements *= deref_arr->array->type->length;
4192 
4193       calc_deref_offsets(deref_arr->array->as_dereference(), array_elements, index, indirect, location);
4194       break;
4195    }
4196    default:
4197       break;
4198    }
4199 }
4200 
4201 void
get_deref_offsets(ir_dereference * ir,unsigned * array_size,unsigned * base,uint16_t * index,st_src_reg * reladdr,bool opaque)4202 glsl_to_tgsi_visitor::get_deref_offsets(ir_dereference *ir,
4203                                         unsigned *array_size,
4204                                         unsigned *base,
4205                                         uint16_t *index,
4206                                         st_src_reg *reladdr,
4207                                         bool opaque)
4208 {
4209    GLuint shader = _mesa_program_enum_to_shader_stage(this->prog->Target);
4210    unsigned location = 0;
4211    ir_variable *var = ir->variable_referenced();
4212 
4213    reladdr->reset();
4214 
4215    *base = 0;
4216    *array_size = 1;
4217 
4218    assert(var);
4219    location = var->data.location;
4220    calc_deref_offsets(ir, array_size, index, reladdr, &location);
4221 
4222    /*
4223     * If we end up with no indirect then adjust the base to the index,
4224     * and set the array size to 1.
4225     */
4226    if (reladdr->file == PROGRAM_UNDEFINED) {
4227       *base = *index;
4228       *array_size = 1;
4229    }
4230 
4231    if (opaque) {
4232       assert(location != 0xffffffff);
4233       *base += this->shader_program->data->UniformStorage[location].opaque[shader].index;
4234       *index += this->shader_program->data->UniformStorage[location].opaque[shader].index;
4235    }
4236 }
4237 
4238 st_src_reg
canonicalize_gather_offset(st_src_reg offset)4239 glsl_to_tgsi_visitor::canonicalize_gather_offset(st_src_reg offset)
4240 {
4241    if (offset.reladdr || offset.reladdr2 ||
4242        offset.has_index2 ||
4243        offset.file == PROGRAM_UNIFORM ||
4244        offset.file == PROGRAM_CONSTANT ||
4245        offset.file == PROGRAM_STATE_VAR) {
4246       st_src_reg tmp = get_temp(glsl_type::ivec2_type);
4247       st_dst_reg tmp_dst = st_dst_reg(tmp);
4248       tmp_dst.writemask = WRITEMASK_XY;
4249       emit_asm(NULL, TGSI_OPCODE_MOV, tmp_dst, offset);
4250       return tmp;
4251    }
4252 
4253    return offset;
4254 }
4255 
4256 bool
handle_bound_deref(ir_dereference * ir)4257 glsl_to_tgsi_visitor::handle_bound_deref(ir_dereference *ir)
4258 {
4259    ir_variable *var = ir->variable_referenced();
4260 
4261    if (!var || var->data.mode != ir_var_uniform || var->data.bindless ||
4262        !(ir->type->is_image() || ir->type->is_sampler()))
4263       return false;
4264 
4265    /* Convert from bound sampler/image to bindless handle. */
4266    bool is_image = ir->type->is_image();
4267    st_src_reg resource(is_image ? PROGRAM_IMAGE : PROGRAM_SAMPLER, 0, GLSL_TYPE_UINT);
4268    uint16_t index = 0;
4269    unsigned array_size = 1, base = 0;
4270    st_src_reg reladdr;
4271    get_deref_offsets(ir, &array_size, &base, &index, &reladdr, true);
4272 
4273    resource.index = index;
4274    if (reladdr.file != PROGRAM_UNDEFINED) {
4275       resource.reladdr = ralloc(mem_ctx, st_src_reg);
4276       *resource.reladdr = reladdr;
4277       emit_arl(ir, sampler_reladdr, reladdr);
4278    }
4279 
4280    this->result = get_temp(glsl_type::uvec2_type);
4281    st_dst_reg dst(this->result);
4282    dst.writemask = WRITEMASK_XY;
4283 
4284    glsl_to_tgsi_instruction *inst = emit_asm(
4285       ir, is_image ? TGSI_OPCODE_IMG2HND : TGSI_OPCODE_SAMP2HND, dst);
4286 
4287    inst->tex_target = ir->type->sampler_index();
4288    inst->resource = resource;
4289    inst->sampler_array_size = array_size;
4290    inst->sampler_base = base;
4291 
4292    return true;
4293 }
4294 
4295 void
visit(ir_texture * ir)4296 glsl_to_tgsi_visitor::visit(ir_texture *ir)
4297 {
4298    st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
4299    st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
4300    st_src_reg levels_src, reladdr;
4301    st_dst_reg result_dst, coord_dst, cube_sc_dst;
4302    glsl_to_tgsi_instruction *inst = NULL;
4303    enum tgsi_opcode opcode = TGSI_OPCODE_NOP;
4304    const glsl_type *sampler_type = ir->sampler->type;
4305    unsigned sampler_array_size = 1, sampler_base = 0;
4306    bool is_cube_array = false;
4307    ir_variable *var = ir->sampler->variable_referenced();
4308    unsigned i;
4309 
4310    /* if we are a cube array sampler or a cube shadow */
4311    if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4312       is_cube_array = sampler_type->sampler_array;
4313    }
4314 
4315    if (ir->coordinate) {
4316       ir->coordinate->accept(this);
4317 
4318       /* Put our coords in a temp.  We'll need to modify them for shadow,
4319        * projection, or LOD, so the only case we'd use it as-is is if
4320        * we're doing plain old texturing.  The optimization passes on
4321        * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
4322        */
4323       coord = get_temp(glsl_type::vec4_type);
4324       coord_dst = st_dst_reg(coord);
4325       coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
4326       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4327    }
4328 
4329    if (ir->projector) {
4330       ir->projector->accept(this);
4331       projector = this->result;
4332    }
4333 
4334    /* Storage for our result.  Ideally for an assignment we'd be using
4335     * the actual storage for the result here, instead.
4336     */
4337    result_src = get_temp(ir->type);
4338    result_dst = st_dst_reg(result_src);
4339    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
4340 
4341    switch (ir->op) {
4342    case ir_tex:
4343       opcode = (is_cube_array && ir->shadow_comparator) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
4344       if (ir->offset) {
4345          ir->offset->accept(this);
4346          offset[0] = this->result;
4347       }
4348       break;
4349    case ir_txb:
4350       if (is_cube_array ||
4351          (sampler_type->sampler_shadow && sampler_type->coordinate_components() >= 3)) {
4352          opcode = TGSI_OPCODE_TXB2;
4353       }
4354       else {
4355          opcode = TGSI_OPCODE_TXB;
4356       }
4357       ir->lod_info.bias->accept(this);
4358       lod_info = this->result;
4359       if (ir->offset) {
4360          ir->offset->accept(this);
4361          offset[0] = this->result;
4362       }
4363       break;
4364    case ir_txl:
4365       if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
4366          opcode = TGSI_OPCODE_TEX_LZ;
4367       } else {
4368          opcode = (is_cube_array || (sampler_type->sampler_shadow && sampler_type->coordinate_components() >= 3)) ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
4369          ir->lod_info.lod->accept(this);
4370          lod_info = this->result;
4371       }
4372       if (ir->offset) {
4373          ir->offset->accept(this);
4374          offset[0] = this->result;
4375       }
4376       break;
4377    case ir_txd:
4378       opcode = TGSI_OPCODE_TXD;
4379       ir->lod_info.grad.dPdx->accept(this);
4380       dx = this->result;
4381       ir->lod_info.grad.dPdy->accept(this);
4382       dy = this->result;
4383       if (ir->offset) {
4384          ir->offset->accept(this);
4385          offset[0] = this->result;
4386       }
4387       break;
4388    case ir_txs:
4389       opcode = TGSI_OPCODE_TXQ;
4390       ir->lod_info.lod->accept(this);
4391       lod_info = this->result;
4392       break;
4393    case ir_query_levels:
4394       opcode = TGSI_OPCODE_TXQ;
4395       lod_info = undef_src;
4396       levels_src = get_temp(ir->type);
4397       break;
4398    case ir_txf:
4399       if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
4400          opcode = TGSI_OPCODE_TXF_LZ;
4401       } else {
4402          opcode = TGSI_OPCODE_TXF;
4403          ir->lod_info.lod->accept(this);
4404          lod_info = this->result;
4405       }
4406       if (ir->offset) {
4407          ir->offset->accept(this);
4408          offset[0] = this->result;
4409       }
4410       break;
4411    case ir_txf_ms:
4412       opcode = TGSI_OPCODE_TXF;
4413       ir->lod_info.sample_index->accept(this);
4414       sample_index = this->result;
4415       break;
4416    case ir_tg4:
4417       opcode = TGSI_OPCODE_TG4;
4418       ir->lod_info.component->accept(this);
4419       component = this->result;
4420       if (ir->offset) {
4421          ir->offset->accept(this);
4422          if (ir->offset->type->is_array()) {
4423             const glsl_type *elt_type = ir->offset->type->fields.array;
4424             for (i = 0; i < ir->offset->type->length; i++) {
4425                offset[i] = this->result;
4426                offset[i].index += i * type_size(elt_type);
4427                offset[i].type = elt_type->base_type;
4428                offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
4429                offset[i] = canonicalize_gather_offset(offset[i]);
4430             }
4431          } else {
4432             offset[0] = canonicalize_gather_offset(this->result);
4433          }
4434       }
4435       break;
4436    case ir_lod:
4437       opcode = TGSI_OPCODE_LODQ;
4438       break;
4439    case ir_texture_samples:
4440       opcode = TGSI_OPCODE_TXQS;
4441       break;
4442    case ir_samples_identical:
4443       unreachable("Unexpected ir_samples_identical opcode");
4444    }
4445 
4446    if (ir->projector) {
4447       if (opcode == TGSI_OPCODE_TEX) {
4448          /* Slot the projector in as the last component of the coord. */
4449          coord_dst.writemask = WRITEMASK_W;
4450          emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, projector);
4451          coord_dst.writemask = WRITEMASK_XYZW;
4452          opcode = TGSI_OPCODE_TXP;
4453       } else {
4454          st_src_reg coord_w = coord;
4455          coord_w.swizzle = SWIZZLE_WWWW;
4456 
4457          /* For the other TEX opcodes there's no projective version
4458           * since the last slot is taken up by LOD info.  Do the
4459           * projective divide now.
4460           */
4461          coord_dst.writemask = WRITEMASK_W;
4462          emit_asm(ir, TGSI_OPCODE_RCP, coord_dst, projector);
4463 
4464          /* In the case where we have to project the coordinates "by hand,"
4465           * the shadow comparator value must also be projected.
4466           */
4467          st_src_reg tmp_src = coord;
4468          if (ir->shadow_comparator) {
4469             /* Slot the shadow value in as the second to last component of the
4470              * coord.
4471              */
4472             ir->shadow_comparator->accept(this);
4473 
4474             tmp_src = get_temp(glsl_type::vec4_type);
4475             st_dst_reg tmp_dst = st_dst_reg(tmp_src);
4476 
4477             /* Projective division not allowed for array samplers. */
4478             assert(!sampler_type->sampler_array);
4479 
4480             tmp_dst.writemask = WRITEMASK_Z;
4481             emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
4482 
4483             tmp_dst.writemask = WRITEMASK_XY;
4484             emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
4485          }
4486 
4487          coord_dst.writemask = WRITEMASK_XYZ;
4488          emit_asm(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
4489 
4490          coord_dst.writemask = WRITEMASK_XYZW;
4491          coord.swizzle = SWIZZLE_XYZW;
4492       }
4493    }
4494 
4495    /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the
4496     * shadow comparator was put in the correct place (and projected) by the
4497     * code, above, that handles by-hand projection.
4498     */
4499    if (ir->shadow_comparator && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
4500       /* Slot the shadow value in as the second to last component of the
4501        * coord.
4502        */
4503       ir->shadow_comparator->accept(this);
4504 
4505       if (is_cube_array) {
4506          if (lod_info.file != PROGRAM_UNDEFINED) {
4507             // If we have both a cube array *and* a bias/lod, stick the
4508             // comparator into the .Y of the second argument.
4509             st_src_reg tmp = get_temp(glsl_type::vec2_type);
4510             cube_sc_dst = st_dst_reg(tmp);
4511             cube_sc_dst.writemask = WRITEMASK_X;
4512             emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, lod_info);
4513             lod_info = tmp;
4514             cube_sc_dst.writemask = WRITEMASK_Y;
4515          } else {
4516             cube_sc = get_temp(glsl_type::float_type);
4517             cube_sc_dst = st_dst_reg(cube_sc);
4518             cube_sc_dst.writemask = WRITEMASK_X;
4519          }
4520          emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
4521       }
4522       else {
4523          if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
4524               sampler_type->sampler_array) ||
4525              sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4526             coord_dst.writemask = WRITEMASK_W;
4527          } else {
4528             coord_dst.writemask = WRITEMASK_Z;
4529          }
4530          emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4531          coord_dst.writemask = WRITEMASK_XYZW;
4532       }
4533    }
4534 
4535    if (ir->op == ir_txf_ms) {
4536       coord_dst.writemask = WRITEMASK_W;
4537       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
4538       coord_dst.writemask = WRITEMASK_XYZW;
4539    } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
4540        opcode == TGSI_OPCODE_TXF) {
4541       /* TGSI stores LOD or LOD bias in the last channel of the coords. */
4542       coord_dst.writemask = WRITEMASK_W;
4543       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
4544       coord_dst.writemask = WRITEMASK_XYZW;
4545    }
4546 
4547    st_src_reg sampler(PROGRAM_SAMPLER, 0, GLSL_TYPE_UINT);
4548 
4549    uint16_t index = 0;
4550    get_deref_offsets(ir->sampler, &sampler_array_size, &sampler_base,
4551                      &index, &reladdr, !var->contains_bindless());
4552 
4553    sampler.index = index;
4554    if (reladdr.file != PROGRAM_UNDEFINED) {
4555       sampler.reladdr = ralloc(mem_ctx, st_src_reg);
4556       *sampler.reladdr = reladdr;
4557       emit_arl(ir, sampler_reladdr, reladdr);
4558    }
4559 
4560    st_src_reg bindless;
4561    if (var->contains_bindless()) {
4562       ir->sampler->accept(this);
4563       bindless = this->result;
4564    }
4565 
4566    if (opcode == TGSI_OPCODE_TXD)
4567       inst = emit_asm(ir, opcode, result_dst, coord, dx, dy);
4568    else if (opcode == TGSI_OPCODE_TXQ) {
4569       if (ir->op == ir_query_levels) {
4570          /* the level is stored in W */
4571          inst = emit_asm(ir, opcode, st_dst_reg(levels_src), lod_info);
4572          result_dst.writemask = WRITEMASK_X;
4573          levels_src.swizzle = SWIZZLE_WWWW;
4574          emit_asm(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
4575       } else
4576          inst = emit_asm(ir, opcode, result_dst, lod_info);
4577    } else if (opcode == TGSI_OPCODE_TXQS) {
4578       inst = emit_asm(ir, opcode, result_dst);
4579    } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
4580       inst = emit_asm(ir, opcode, result_dst, coord, lod_info);
4581    } else if (opcode == TGSI_OPCODE_TEX2) {
4582       inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4583    } else if (opcode == TGSI_OPCODE_TG4) {
4584       if (is_cube_array && ir->shadow_comparator) {
4585          inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4586       } else {
4587          if (this->tg4_component_in_swizzle) {
4588             inst = emit_asm(ir, opcode, result_dst, coord);
4589             int idx = 0;
4590             foreach_in_list(immediate_storage, entry, &this->immediates) {
4591                if (component.index == idx) {
4592                   gl_constant_value value = entry->values[component.swizzle];
4593                   inst->gather_component = value.i;
4594                   break;
4595                }
4596                idx++;
4597             }
4598          } else {
4599             inst = emit_asm(ir, opcode, result_dst, coord, component);
4600          }
4601       }
4602    } else
4603       inst = emit_asm(ir, opcode, result_dst, coord);
4604 
4605    if (ir->shadow_comparator)
4606       inst->tex_shadow = GL_TRUE;
4607 
4608    if (var->contains_bindless()) {
4609       inst->resource = bindless;
4610       inst->resource.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
4611                                              SWIZZLE_X, SWIZZLE_Y);
4612    } else {
4613       inst->resource = sampler;
4614       inst->sampler_array_size = sampler_array_size;
4615       inst->sampler_base = sampler_base;
4616    }
4617 
4618    if (ir->offset) {
4619       if (!inst->tex_offsets)
4620          inst->tex_offsets = rzalloc_array(inst, st_src_reg,
4621                                            MAX_GLSL_TEXTURE_OFFSET);
4622 
4623       for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET &&
4624                   offset[i].file != PROGRAM_UNDEFINED; i++)
4625          inst->tex_offsets[i] = offset[i];
4626       inst->tex_offset_num_offset = i;
4627    }
4628 
4629    inst->tex_target = sampler_type->sampler_index();
4630    inst->tex_type = ir->type->base_type;
4631 
4632    this->result = result_src;
4633 }
4634 
4635 void
visit(ir_return * ir)4636 glsl_to_tgsi_visitor::visit(ir_return *ir)
4637 {
4638    assert(!ir->get_value());
4639 
4640    emit_asm(ir, TGSI_OPCODE_RET);
4641 }
4642 
4643 void
visit(ir_discard * ir)4644 glsl_to_tgsi_visitor::visit(ir_discard *ir)
4645 {
4646    if (ir->condition) {
4647       ir->condition->accept(this);
4648       st_src_reg condition = this->result;
4649 
4650       /* Convert the bool condition to a float so we can negate. */
4651       if (native_integers) {
4652          st_src_reg temp = get_temp(ir->condition->type);
4653          emit_asm(ir, TGSI_OPCODE_AND, st_dst_reg(temp),
4654               condition, st_src_reg_for_float(1.0));
4655          condition = temp;
4656       }
4657 
4658       condition.negate = ~condition.negate;
4659       emit_asm(ir, TGSI_OPCODE_KILL_IF, undef_dst, condition);
4660    } else {
4661       /* unconditional kil */
4662       emit_asm(ir, TGSI_OPCODE_KILL);
4663    }
4664 }
4665 
4666 void
visit(ir_demote * ir)4667 glsl_to_tgsi_visitor::visit(ir_demote *ir)
4668 {
4669    emit_asm(ir, TGSI_OPCODE_DEMOTE);
4670 }
4671 
4672 void
visit(ir_if * ir)4673 glsl_to_tgsi_visitor::visit(ir_if *ir)
4674 {
4675    enum tgsi_opcode if_opcode;
4676    glsl_to_tgsi_instruction *if_inst;
4677 
4678    ir->condition->accept(this);
4679    assert(this->result.file != PROGRAM_UNDEFINED);
4680 
4681    if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
4682 
4683    if_inst = emit_asm(ir->condition, if_opcode, undef_dst, this->result);
4684 
4685    this->instructions.push_tail(if_inst);
4686 
4687    visit_exec_list(&ir->then_instructions, this);
4688 
4689    if (!ir->else_instructions.is_empty()) {
4690       emit_asm(ir->condition, TGSI_OPCODE_ELSE);
4691       visit_exec_list(&ir->else_instructions, this);
4692    }
4693 
4694    if_inst = emit_asm(ir->condition, TGSI_OPCODE_ENDIF);
4695 }
4696 
4697 
4698 void
visit(ir_emit_vertex * ir)4699 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
4700 {
4701    assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4702 
4703    ir->stream->accept(this);
4704    emit_asm(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
4705 }
4706 
4707 void
visit(ir_end_primitive * ir)4708 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
4709 {
4710    assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4711 
4712    ir->stream->accept(this);
4713    emit_asm(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
4714 }
4715 
4716 void
visit(ir_barrier * ir)4717 glsl_to_tgsi_visitor::visit(ir_barrier *ir)
4718 {
4719    assert(this->prog->Target == GL_TESS_CONTROL_PROGRAM_NV ||
4720           this->prog->Target == GL_COMPUTE_PROGRAM_NV);
4721 
4722    emit_asm(ir, TGSI_OPCODE_BARRIER);
4723 }
4724 
glsl_to_tgsi_visitor()4725 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
4726 {
4727    STATIC_ASSERT(sizeof(samplers_used) * 8 >= PIPE_MAX_SAMPLERS);
4728 
4729    result.file = PROGRAM_UNDEFINED;
4730    next_temp = 1;
4731    array_sizes = NULL;
4732    max_num_arrays = 0;
4733    next_array = 0;
4734    num_inputs = 0;
4735    num_outputs = 0;
4736    num_input_arrays = 0;
4737    num_output_arrays = 0;
4738    num_atomics = 0;
4739    num_atomic_arrays = 0;
4740    num_immediates = 0;
4741    num_address_regs = 0;
4742    samplers_used = 0;
4743    images_used = 0;
4744    indirect_addr_consts = false;
4745    wpos_transform_const = -1;
4746    native_integers = false;
4747    mem_ctx = ralloc_context(NULL);
4748    ctx = NULL;
4749    prog = NULL;
4750    precise = 0;
4751    need_uarl = false;
4752    tg4_component_in_swizzle = false;
4753    shader_program = NULL;
4754    shader = NULL;
4755    options = NULL;
4756    have_sqrt = false;
4757    have_fma = false;
4758    use_shared_memory = false;
4759    has_tex_txf_lz = false;
4760    variables = NULL;
4761 }
4762 
var_destroy(struct hash_entry * entry)4763 static void var_destroy(struct hash_entry *entry)
4764 {
4765    variable_storage *storage = (variable_storage *)entry->data;
4766 
4767    delete storage;
4768 }
4769 
~glsl_to_tgsi_visitor()4770 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
4771 {
4772    _mesa_hash_table_destroy(variables, var_destroy);
4773    free(array_sizes);
4774    ralloc_free(mem_ctx);
4775 }
4776 
free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor * v)4777 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
4778 {
4779    delete v;
4780 }
4781 
4782 
4783 /**
4784  * Count resources used by the given gpu program (number of texture
4785  * samplers, etc).
4786  */
4787 static void
count_resources(glsl_to_tgsi_visitor * v,gl_program * prog)4788 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
4789 {
4790    v->samplers_used = 0;
4791    v->images_used = 0;
4792    prog->info.textures_used_by_txf = 0;
4793 
4794    foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
4795       if (inst->info->is_tex) {
4796          for (int i = 0; i < inst->sampler_array_size; i++) {
4797             unsigned idx = inst->sampler_base + i;
4798             v->samplers_used |= 1u << idx;
4799 
4800             debug_assert(idx < (int)ARRAY_SIZE(v->sampler_types));
4801             v->sampler_types[idx] = inst->tex_type;
4802             v->sampler_targets[idx] =
4803                st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4804 
4805             if (inst->op == TGSI_OPCODE_TXF || inst->op == TGSI_OPCODE_TXF_LZ) {
4806                prog->info.textures_used_by_txf |= 1u << idx;
4807             }
4808          }
4809       }
4810 
4811       if (inst->tex_target == TEXTURE_EXTERNAL_INDEX)
4812          prog->ExternalSamplersUsed |= 1 << inst->resource.index;
4813 
4814       if (inst->resource.file != PROGRAM_UNDEFINED && (
4815                 is_resource_instruction(inst->op) ||
4816                 inst->op == TGSI_OPCODE_STORE)) {
4817          if (inst->resource.file == PROGRAM_MEMORY) {
4818             v->use_shared_memory = true;
4819          } else if (inst->resource.file == PROGRAM_IMAGE) {
4820             for (int i = 0; i < inst->sampler_array_size; i++) {
4821                unsigned idx = inst->sampler_base + i;
4822                v->images_used |= 1 << idx;
4823                v->image_targets[idx] =
4824                   st_translate_texture_target(inst->tex_target, false);
4825                v->image_formats[idx] = inst->image_format;
4826                v->image_wr[idx] = !inst->read_only;
4827             }
4828          }
4829       }
4830    }
4831    prog->SamplersUsed = v->samplers_used;
4832 
4833    if (v->shader_program != NULL)
4834       _mesa_update_shader_textures_used(v->shader_program, prog);
4835 }
4836 
4837 /**
4838  * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
4839  * are read from the given src in this instruction
4840  */
4841 static int
get_src_arg_mask(st_dst_reg dst,st_src_reg src)4842 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
4843 {
4844    int read_mask = 0, comp;
4845 
4846    /* Now, given the src swizzle and the written channels, find which
4847     * components are actually read
4848     */
4849    for (comp = 0; comp < 4; ++comp) {
4850       const unsigned coord = GET_SWZ(src.swizzle, comp);
4851       assert(coord < 4);
4852       if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
4853          read_mask |= 1 << coord;
4854    }
4855 
4856    return read_mask;
4857 }
4858 
4859 /**
4860  * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
4861  * instruction is the first instruction to write to register T0.  There are
4862  * several lowering passes done in GLSL IR (e.g. branches and
4863  * relative addressing) that create a large number of conditional assignments
4864  * that ir_to_mesa converts to CMP instructions like the one mentioned above.
4865  *
4866  * Here is why this conversion is safe:
4867  * CMP T0, T1 T2 T0 can be expanded to:
4868  * if (T1 < 0.0)
4869  *   MOV T0, T2;
4870  * else
4871  *   MOV T0, T0;
4872  *
4873  * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
4874  * as the original program.  If (T1 < 0.0) evaluates to false, executing
4875  * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
4876  * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
4877  * because any instruction that was going to read from T0 after this was going
4878  * to read a garbage value anyway.
4879  */
4880 void
simplify_cmp(void)4881 glsl_to_tgsi_visitor::simplify_cmp(void)
4882 {
4883    int tempWritesSize = 0;
4884    unsigned *tempWrites = NULL;
4885    unsigned outputWrites[VARYING_SLOT_TESS_MAX];
4886 
4887    memset(outputWrites, 0, sizeof(outputWrites));
4888 
4889    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4890       unsigned prevWriteMask = 0;
4891 
4892       /* Give up if we encounter relative addressing or flow control. */
4893       if (inst->dst[0].reladdr || inst->dst[0].reladdr2 ||
4894           inst->dst[1].reladdr || inst->dst[1].reladdr2 ||
4895           inst->info->is_branch ||
4896           inst->op == TGSI_OPCODE_CONT ||
4897           inst->op == TGSI_OPCODE_END ||
4898           inst->op == TGSI_OPCODE_RET) {
4899          break;
4900       }
4901 
4902       if (inst->dst[0].file == PROGRAM_OUTPUT) {
4903          assert(inst->dst[0].index < (signed)ARRAY_SIZE(outputWrites));
4904          prevWriteMask = outputWrites[inst->dst[0].index];
4905          outputWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4906       } else if (inst->dst[0].file == PROGRAM_TEMPORARY) {
4907          if (inst->dst[0].index >= tempWritesSize) {
4908             const int inc = 4096;
4909 
4910             tempWrites = (unsigned*)
4911                          realloc(tempWrites,
4912                                  (tempWritesSize + inc) * sizeof(unsigned));
4913             if (!tempWrites)
4914                return;
4915 
4916             memset(tempWrites + tempWritesSize, 0, inc * sizeof(unsigned));
4917             tempWritesSize += inc;
4918          }
4919 
4920          prevWriteMask = tempWrites[inst->dst[0].index];
4921          tempWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4922       } else
4923          continue;
4924 
4925       /* For a CMP to be considered a conditional write, the destination
4926        * register and source register two must be the same. */
4927       if (inst->op == TGSI_OPCODE_CMP
4928           && !(inst->dst[0].writemask & prevWriteMask)
4929           && inst->src[2].file == inst->dst[0].file
4930           && inst->src[2].index == inst->dst[0].index
4931           && inst->dst[0].writemask ==
4932              get_src_arg_mask(inst->dst[0], inst->src[2])) {
4933 
4934          inst->op = TGSI_OPCODE_MOV;
4935          inst->info = tgsi_get_opcode_info(inst->op);
4936          inst->src[0] = inst->src[1];
4937       }
4938    }
4939 
4940    free(tempWrites);
4941 }
4942 
4943 static void
rename_temp_handle_src(struct rename_reg_pair * renames,st_src_reg * src)4944 rename_temp_handle_src(struct rename_reg_pair *renames, st_src_reg *src)
4945 {
4946    if (src && src->file == PROGRAM_TEMPORARY) {
4947       int old_idx = src->index;
4948       if (renames[old_idx].valid)
4949          src->index = renames[old_idx].new_reg;
4950    }
4951 }
4952 
4953 /* Replaces all references to a temporary register index with another index. */
4954 void
rename_temp_registers(struct rename_reg_pair * renames)4955 glsl_to_tgsi_visitor::rename_temp_registers(struct rename_reg_pair *renames)
4956 {
4957    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4958       unsigned j;
4959       for (j = 0; j < num_inst_src_regs(inst); j++) {
4960          rename_temp_handle_src(renames, &inst->src[j]);
4961          rename_temp_handle_src(renames, inst->src[j].reladdr);
4962          rename_temp_handle_src(renames, inst->src[j].reladdr2);
4963       }
4964 
4965       for (j = 0; j < inst->tex_offset_num_offset; j++) {
4966          rename_temp_handle_src(renames, &inst->tex_offsets[j]);
4967          rename_temp_handle_src(renames, inst->tex_offsets[j].reladdr);
4968          rename_temp_handle_src(renames, inst->tex_offsets[j].reladdr2);
4969       }
4970 
4971       rename_temp_handle_src(renames, &inst->resource);
4972       rename_temp_handle_src(renames, inst->resource.reladdr);
4973       rename_temp_handle_src(renames, inst->resource.reladdr2);
4974 
4975       for (j = 0; j < num_inst_dst_regs(inst); j++) {
4976          if (inst->dst[j].file == PROGRAM_TEMPORARY) {
4977             int old_idx = inst->dst[j].index;
4978             if (renames[old_idx].valid)
4979                inst->dst[j].index = renames[old_idx].new_reg;
4980          }
4981          rename_temp_handle_src(renames, inst->dst[j].reladdr);
4982          rename_temp_handle_src(renames, inst->dst[j].reladdr2);
4983       }
4984    }
4985 }
4986 
4987 void
get_first_temp_write(int * first_writes)4988 glsl_to_tgsi_visitor::get_first_temp_write(int *first_writes)
4989 {
4990    int depth = 0; /* loop depth */
4991    int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4992    unsigned i = 0, j;
4993 
4994    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4995       for (j = 0; j < num_inst_dst_regs(inst); j++) {
4996          if (inst->dst[j].file == PROGRAM_TEMPORARY) {
4997             if (first_writes[inst->dst[j].index] == -1)
4998                 first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
4999          }
5000       }
5001 
5002       if (inst->op == TGSI_OPCODE_BGNLOOP) {
5003          if (depth++ == 0)
5004             loop_start = i;
5005       } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
5006          if (--depth == 0)
5007             loop_start = -1;
5008       }
5009       assert(depth >= 0);
5010       i++;
5011    }
5012 }
5013 
5014 void
get_first_temp_read(int * first_reads)5015 glsl_to_tgsi_visitor::get_first_temp_read(int *first_reads)
5016 {
5017    int depth = 0; /* loop depth */
5018    int loop_start = -1; /* index of the first active BGNLOOP (if any) */
5019    unsigned i = 0, j;
5020 
5021    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5022       for (j = 0; j < num_inst_src_regs(inst); j++) {
5023          if (inst->src[j].file == PROGRAM_TEMPORARY) {
5024             if (first_reads[inst->src[j].index] == -1)
5025                 first_reads[inst->src[j].index] = (depth == 0) ? i : loop_start;
5026          }
5027       }
5028       for (j = 0; j < inst->tex_offset_num_offset; j++) {
5029          if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
5030             if (first_reads[inst->tex_offsets[j].index] == -1)
5031                first_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : loop_start;
5032          }
5033       }
5034       if (inst->op == TGSI_OPCODE_BGNLOOP) {
5035          if (depth++ == 0)
5036             loop_start = i;
5037       } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
5038          if (--depth == 0)
5039             loop_start = -1;
5040       }
5041       assert(depth >= 0);
5042       i++;
5043    }
5044 }
5045 
5046 void
get_last_temp_read_first_temp_write(int * last_reads,int * first_writes)5047 glsl_to_tgsi_visitor::get_last_temp_read_first_temp_write(int *last_reads, int *first_writes)
5048 {
5049    int depth = 0; /* loop depth */
5050    int loop_start = -1; /* index of the first active BGNLOOP (if any) */
5051    unsigned i = 0, j;
5052    int k;
5053    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5054       for (j = 0; j < num_inst_src_regs(inst); j++) {
5055          if (inst->src[j].file == PROGRAM_TEMPORARY)
5056             last_reads[inst->src[j].index] = (depth == 0) ? i : -2;
5057       }
5058       for (j = 0; j < num_inst_dst_regs(inst); j++) {
5059          if (inst->dst[j].file == PROGRAM_TEMPORARY) {
5060             if (first_writes[inst->dst[j].index] == -1)
5061                first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
5062             last_reads[inst->dst[j].index] = (depth == 0) ? i : -2;
5063          }
5064       }
5065       for (j = 0; j < inst->tex_offset_num_offset; j++) {
5066          if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
5067             last_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : -2;
5068       }
5069       if (inst->op == TGSI_OPCODE_BGNLOOP) {
5070          if (depth++ == 0)
5071             loop_start = i;
5072       } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
5073          if (--depth == 0) {
5074             loop_start = -1;
5075             for (k = 0; k < this->next_temp; k++) {
5076                if (last_reads[k] == -2) {
5077                   last_reads[k] = i;
5078                }
5079             }
5080          }
5081       }
5082       assert(depth >= 0);
5083       i++;
5084    }
5085 }
5086 
5087 void
get_last_temp_write(int * last_writes)5088 glsl_to_tgsi_visitor::get_last_temp_write(int *last_writes)
5089 {
5090    int depth = 0; /* loop depth */
5091    int i = 0, k;
5092    unsigned j;
5093 
5094    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5095       for (j = 0; j < num_inst_dst_regs(inst); j++) {
5096          if (inst->dst[j].file == PROGRAM_TEMPORARY)
5097             last_writes[inst->dst[j].index] = (depth == 0) ? i : -2;
5098       }
5099 
5100       if (inst->op == TGSI_OPCODE_BGNLOOP)
5101          depth++;
5102       else if (inst->op == TGSI_OPCODE_ENDLOOP)
5103          if (--depth == 0) {
5104             for (k = 0; k < this->next_temp; k++) {
5105                if (last_writes[k] == -2) {
5106                   last_writes[k] = i;
5107                }
5108             }
5109          }
5110       assert(depth >= 0);
5111       i++;
5112    }
5113 }
5114 
5115 /*
5116  * On a basic block basis, tracks available PROGRAM_TEMPORARY register
5117  * channels for copy propagation and updates following instructions to
5118  * use the original versions.
5119  *
5120  * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
5121  * will occur.  As an example, a TXP production before this pass:
5122  *
5123  * 0: MOV TEMP[1], INPUT[4].xyyy;
5124  * 1: MOV TEMP[1].w, INPUT[4].wwww;
5125  * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
5126  *
5127  * and after:
5128  *
5129  * 0: MOV TEMP[1], INPUT[4].xyyy;
5130  * 1: MOV TEMP[1].w, INPUT[4].wwww;
5131  * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5132  *
5133  * which allows for dead code elimination on TEMP[1]'s writes.
5134  */
5135 void
copy_propagate(void)5136 glsl_to_tgsi_visitor::copy_propagate(void)
5137 {
5138    glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
5139                                                   glsl_to_tgsi_instruction *,
5140                                                   this->next_temp * 4);
5141    int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
5142    int level = 0;
5143 
5144    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5145       assert(inst->dst[0].file != PROGRAM_TEMPORARY
5146              || inst->dst[0].index < this->next_temp);
5147 
5148       /* First, do any copy propagation possible into the src regs. */
5149       for (int r = 0; r < 3; r++) {
5150          glsl_to_tgsi_instruction *first = NULL;
5151          bool good = true;
5152          int acp_base = inst->src[r].index * 4;
5153 
5154          if (inst->src[r].file != PROGRAM_TEMPORARY ||
5155              inst->src[r].reladdr ||
5156              inst->src[r].reladdr2)
5157             continue;
5158 
5159          /* See if we can find entries in the ACP consisting of MOVs
5160           * from the same src register for all the swizzled channels
5161           * of this src register reference.
5162           */
5163          for (int i = 0; i < 4; i++) {
5164             int src_chan = GET_SWZ(inst->src[r].swizzle, i);
5165             glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
5166 
5167             if (!copy_chan) {
5168                good = false;
5169                break;
5170             }
5171 
5172             assert(acp_level[acp_base + src_chan] <= level);
5173 
5174             if (!first) {
5175                first = copy_chan;
5176             } else {
5177                if (first->src[0].file != copy_chan->src[0].file ||
5178                    first->src[0].index != copy_chan->src[0].index ||
5179                    first->src[0].double_reg2 != copy_chan->src[0].double_reg2 ||
5180                    first->src[0].index2D != copy_chan->src[0].index2D) {
5181                   good = false;
5182                   break;
5183                }
5184             }
5185          }
5186 
5187          if (good) {
5188             /* We've now validated that we can copy-propagate to
5189              * replace this src register reference.  Do it.
5190              */
5191             inst->src[r].file = first->src[0].file;
5192             inst->src[r].index = first->src[0].index;
5193             inst->src[r].index2D = first->src[0].index2D;
5194             inst->src[r].has_index2 = first->src[0].has_index2;
5195             inst->src[r].double_reg2 = first->src[0].double_reg2;
5196             inst->src[r].array_id = first->src[0].array_id;
5197 
5198             int swizzle = 0;
5199             for (int i = 0; i < 4; i++) {
5200                int src_chan = GET_SWZ(inst->src[r].swizzle, i);
5201                glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
5202                swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i));
5203             }
5204             inst->src[r].swizzle = swizzle;
5205          }
5206       }
5207 
5208       switch (inst->op) {
5209       case TGSI_OPCODE_BGNLOOP:
5210       case TGSI_OPCODE_ENDLOOP:
5211          /* End of a basic block, clear the ACP entirely. */
5212          memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
5213          break;
5214 
5215       case TGSI_OPCODE_IF:
5216       case TGSI_OPCODE_UIF:
5217          ++level;
5218          break;
5219 
5220       case TGSI_OPCODE_ENDIF:
5221       case TGSI_OPCODE_ELSE:
5222          /* Clear all channels written inside the block from the ACP, but
5223           * leaving those that were not touched.
5224           */
5225          for (int r = 0; r < this->next_temp; r++) {
5226             for (int c = 0; c < 4; c++) {
5227                if (!acp[4 * r + c])
5228                   continue;
5229 
5230                if (acp_level[4 * r + c] >= level)
5231                   acp[4 * r + c] = NULL;
5232             }
5233          }
5234          if (inst->op == TGSI_OPCODE_ENDIF)
5235             --level;
5236          break;
5237 
5238       default:
5239          /* Continuing the block, clear any written channels from
5240           * the ACP.
5241           */
5242          for (int d = 0; d < 2; d++) {
5243             if (inst->dst[d].file == PROGRAM_TEMPORARY && inst->dst[d].reladdr) {
5244                /* Any temporary might be written, so no copy propagation
5245                 * across this instruction.
5246                 */
5247                memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
5248             } else if (inst->dst[d].file == PROGRAM_OUTPUT &&
5249                        inst->dst[d].reladdr) {
5250                /* Any output might be written, so no copy propagation
5251                 * from outputs across this instruction.
5252                 */
5253                for (int r = 0; r < this->next_temp; r++) {
5254                   for (int c = 0; c < 4; c++) {
5255                      if (!acp[4 * r + c])
5256                         continue;
5257 
5258                      if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
5259                         acp[4 * r + c] = NULL;
5260                   }
5261                }
5262             } else if (inst->dst[d].file == PROGRAM_TEMPORARY ||
5263                        inst->dst[d].file == PROGRAM_OUTPUT) {
5264                /* Clear where it's used as dst. */
5265                if (inst->dst[d].file == PROGRAM_TEMPORARY) {
5266                   for (int c = 0; c < 4; c++) {
5267                      if (inst->dst[d].writemask & (1 << c))
5268                         acp[4 * inst->dst[d].index + c] = NULL;
5269                   }
5270                }
5271 
5272                /* Clear where it's used as src. */
5273                for (int r = 0; r < this->next_temp; r++) {
5274                   for (int c = 0; c < 4; c++) {
5275                      if (!acp[4 * r + c])
5276                         continue;
5277 
5278                      int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
5279 
5280                      if (acp[4 * r + c]->src[0].file == inst->dst[d].file &&
5281                          acp[4 * r + c]->src[0].index == inst->dst[d].index &&
5282                          inst->dst[d].writemask & (1 << src_chan)) {
5283                         acp[4 * r + c] = NULL;
5284                      }
5285                   }
5286                }
5287             }
5288          }
5289          break;
5290       }
5291 
5292       /* If this is a copy, add it to the ACP. */
5293       if (inst->op == TGSI_OPCODE_MOV &&
5294           inst->dst[0].file == PROGRAM_TEMPORARY &&
5295           !(inst->dst[0].file == inst->src[0].file &&
5296              inst->dst[0].index == inst->src[0].index) &&
5297           !inst->dst[0].reladdr &&
5298           !inst->dst[0].reladdr2 &&
5299           !inst->saturate &&
5300           inst->src[0].file != PROGRAM_ARRAY &&
5301           (inst->src[0].file != PROGRAM_OUTPUT ||
5302            this->shader->Stage != MESA_SHADER_TESS_CTRL) &&
5303           !inst->src[0].reladdr &&
5304           !inst->src[0].reladdr2 &&
5305           !inst->src[0].negate &&
5306           !inst->src[0].abs) {
5307          for (int i = 0; i < 4; i++) {
5308             if (inst->dst[0].writemask & (1 << i)) {
5309                acp[4 * inst->dst[0].index + i] = inst;
5310                acp_level[4 * inst->dst[0].index + i] = level;
5311             }
5312          }
5313       }
5314    }
5315 
5316    ralloc_free(acp_level);
5317    ralloc_free(acp);
5318 }
5319 
5320 static void
dead_code_handle_reladdr(glsl_to_tgsi_instruction ** writes,st_src_reg * reladdr)5321 dead_code_handle_reladdr(glsl_to_tgsi_instruction **writes, st_src_reg *reladdr)
5322 {
5323    if (reladdr && reladdr->file == PROGRAM_TEMPORARY) {
5324       /* Clear where it's used as src. */
5325       int swz = GET_SWZ(reladdr->swizzle, 0);
5326       writes[4 * reladdr->index + swz] = NULL;
5327    }
5328 }
5329 
5330 /*
5331  * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
5332  * code elimination.
5333  *
5334  * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
5335  * will occur.  As an example, a TXP production after copy propagation but
5336  * before this pass:
5337  *
5338  * 0: MOV TEMP[1], INPUT[4].xyyy;
5339  * 1: MOV TEMP[1].w, INPUT[4].wwww;
5340  * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5341  *
5342  * and after this pass:
5343  *
5344  * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5345  */
5346 int
eliminate_dead_code(void)5347 glsl_to_tgsi_visitor::eliminate_dead_code(void)
5348 {
5349    glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
5350                                                      glsl_to_tgsi_instruction *,
5351                                                      this->next_temp * 4);
5352    int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
5353    int level = 0;
5354    int removed = 0;
5355 
5356    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5357       assert(inst->dst[0].file != PROGRAM_TEMPORARY
5358              || inst->dst[0].index < this->next_temp);
5359 
5360       switch (inst->op) {
5361       case TGSI_OPCODE_BGNLOOP:
5362       case TGSI_OPCODE_ENDLOOP:
5363       case TGSI_OPCODE_CONT:
5364       case TGSI_OPCODE_BRK:
5365          /* End of a basic block, clear the write array entirely.
5366           *
5367           * This keeps us from killing dead code when the writes are
5368           * on either side of a loop, even when the register isn't touched
5369           * inside the loop.  However, glsl_to_tgsi_visitor doesn't seem to emit
5370           * dead code of this type, so it shouldn't make a difference as long as
5371           * the dead code elimination pass in the GLSL compiler does its job.
5372           */
5373          memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5374          break;
5375 
5376       case TGSI_OPCODE_ENDIF:
5377       case TGSI_OPCODE_ELSE:
5378          /* Promote the recorded level of all channels written inside the
5379           * preceding if or else block to the level above the if/else block.
5380           */
5381          for (int r = 0; r < this->next_temp; r++) {
5382             for (int c = 0; c < 4; c++) {
5383                if (!writes[4 * r + c])
5384                   continue;
5385 
5386                if (write_level[4 * r + c] == level)
5387                   write_level[4 * r + c] = level-1;
5388             }
5389          }
5390          if (inst->op == TGSI_OPCODE_ENDIF)
5391             --level;
5392          break;
5393 
5394       case TGSI_OPCODE_IF:
5395       case TGSI_OPCODE_UIF:
5396          ++level;
5397          /* fallthrough to default case to mark the condition as read */
5398       default:
5399          /* Continuing the block, clear any channels from the write array that
5400           * are read by this instruction.
5401           */
5402          for (unsigned i = 0; i < ARRAY_SIZE(inst->src); i++) {
5403             if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
5404                /* Any temporary might be read, so no dead code elimination
5405                 * across this instruction.
5406                 */
5407                memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5408             } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
5409                /* Clear where it's used as src. */
5410                int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
5411                src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
5412                src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
5413                src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
5414 
5415                for (int c = 0; c < 4; c++) {
5416                   if (src_chans & (1 << c))
5417                      writes[4 * inst->src[i].index + c] = NULL;
5418                }
5419             }
5420             dead_code_handle_reladdr(writes, inst->src[i].reladdr);
5421             dead_code_handle_reladdr(writes, inst->src[i].reladdr2);
5422          }
5423          for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
5424             if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
5425                /* Any temporary might be read, so no dead code elimination
5426                 * across this instruction.
5427                 */
5428                memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5429             } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
5430                /* Clear where it's used as src. */
5431                int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
5432                src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
5433                src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
5434                src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
5435 
5436                for (int c = 0; c < 4; c++) {
5437                   if (src_chans & (1 << c))
5438                      writes[4 * inst->tex_offsets[i].index + c] = NULL;
5439                }
5440             }
5441             dead_code_handle_reladdr(writes, inst->tex_offsets[i].reladdr);
5442             dead_code_handle_reladdr(writes, inst->tex_offsets[i].reladdr2);
5443          }
5444 
5445          if (inst->resource.file == PROGRAM_TEMPORARY) {
5446             int src_chans;
5447 
5448             src_chans  = 1 << GET_SWZ(inst->resource.swizzle, 0);
5449             src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 1);
5450             src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 2);
5451             src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 3);
5452 
5453             for (int c = 0; c < 4; c++) {
5454                if (src_chans & (1 << c))
5455                   writes[4 * inst->resource.index + c] = NULL;
5456             }
5457          }
5458          dead_code_handle_reladdr(writes, inst->resource.reladdr);
5459          dead_code_handle_reladdr(writes, inst->resource.reladdr2);
5460 
5461          for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
5462             dead_code_handle_reladdr(writes, inst->dst[i].reladdr);
5463             dead_code_handle_reladdr(writes, inst->dst[i].reladdr2);
5464          }
5465          break;
5466       }
5467 
5468       /* If this instruction writes to a temporary, add it to the write array.
5469        * If there is already an instruction in the write array for one or more
5470        * of the channels, flag that channel write as dead.
5471        */
5472       for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
5473          if (inst->dst[i].file == PROGRAM_TEMPORARY &&
5474              !inst->dst[i].reladdr) {
5475             for (int c = 0; c < 4; c++) {
5476                if (inst->dst[i].writemask & (1 << c)) {
5477                   if (writes[4 * inst->dst[i].index + c]) {
5478                      if (write_level[4 * inst->dst[i].index + c] < level)
5479                         continue;
5480                      else
5481                         writes[4 * inst->dst[i].index + c]->dead_mask |= (1 << c);
5482                   }
5483                   writes[4 * inst->dst[i].index + c] = inst;
5484                   write_level[4 * inst->dst[i].index + c] = level;
5485                }
5486             }
5487          }
5488       }
5489    }
5490 
5491    /* Anything still in the write array at this point is dead code. */
5492    for (int r = 0; r < this->next_temp; r++) {
5493       for (int c = 0; c < 4; c++) {
5494          glsl_to_tgsi_instruction *inst = writes[4 * r + c];
5495          if (inst)
5496             inst->dead_mask |= (1 << c);
5497       }
5498    }
5499 
5500    /* Now actually remove the instructions that are completely dead and update
5501     * the writemask of other instructions with dead channels.
5502     */
5503    foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
5504       if (!inst->dead_mask || !inst->dst[0].writemask)
5505          continue;
5506       /* No amount of dead masks should remove memory stores */
5507       if (inst->info->is_store)
5508          continue;
5509 
5510       if ((inst->dst[0].writemask & ~inst->dead_mask) == 0) {
5511          inst->remove();
5512          delete inst;
5513          removed++;
5514       } else {
5515          if (glsl_base_type_is_64bit(inst->dst[0].type)) {
5516             if (inst->dead_mask == WRITEMASK_XY ||
5517                 inst->dead_mask == WRITEMASK_ZW)
5518                inst->dst[0].writemask &= ~(inst->dead_mask);
5519          } else
5520             inst->dst[0].writemask &= ~(inst->dead_mask);
5521       }
5522    }
5523 
5524    ralloc_free(write_level);
5525    ralloc_free(writes);
5526 
5527    return removed;
5528 }
5529 
5530 /* merge DFRACEXP instructions into one. */
5531 void
merge_two_dsts(void)5532 glsl_to_tgsi_visitor::merge_two_dsts(void)
5533 {
5534    /* We never delete inst, but we may delete its successor. */
5535    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5536       glsl_to_tgsi_instruction *inst2;
5537       unsigned defined;
5538 
5539       if (num_inst_dst_regs(inst) != 2)
5540          continue;
5541 
5542       if (inst->dst[0].file != PROGRAM_UNDEFINED &&
5543           inst->dst[1].file != PROGRAM_UNDEFINED)
5544          continue;
5545 
5546       assert(inst->dst[0].file != PROGRAM_UNDEFINED ||
5547              inst->dst[1].file != PROGRAM_UNDEFINED);
5548 
5549       if (inst->dst[0].file == PROGRAM_UNDEFINED)
5550          defined = 1;
5551       else
5552          defined = 0;
5553 
5554       inst2 = (glsl_to_tgsi_instruction *) inst->next;
5555       while (!inst2->is_tail_sentinel()) {
5556          if (inst->op == inst2->op &&
5557              inst2->dst[defined].file == PROGRAM_UNDEFINED &&
5558              inst->src[0].file == inst2->src[0].file &&
5559              inst->src[0].index == inst2->src[0].index &&
5560              inst->src[0].type == inst2->src[0].type &&
5561              inst->src[0].swizzle == inst2->src[0].swizzle)
5562             break;
5563          inst2 = (glsl_to_tgsi_instruction *) inst2->next;
5564       }
5565 
5566       if (inst2->is_tail_sentinel()) {
5567          /* Undefined destinations are not allowed, substitute with an unused
5568           * temporary register.
5569           */
5570          st_src_reg tmp = get_temp(glsl_type::vec4_type);
5571          inst->dst[defined ^ 1] = st_dst_reg(tmp);
5572          inst->dst[defined ^ 1].writemask = 0;
5573          continue;
5574       }
5575 
5576       inst->dst[defined ^ 1] = inst2->dst[defined ^ 1];
5577       inst2->remove();
5578       delete inst2;
5579    }
5580 }
5581 
5582 template <typename st_reg>
test_indirect_access(const st_reg & reg,bool * has_indirect_access)5583 void test_indirect_access(const st_reg& reg, bool *has_indirect_access)
5584 {
5585    if (reg.file == PROGRAM_ARRAY) {
5586       if (reg.reladdr || reg.reladdr2 || reg.has_index2) {
5587 	 has_indirect_access[reg.array_id] = true;
5588 	 if (reg.reladdr)
5589 	    test_indirect_access(*reg.reladdr, has_indirect_access);
5590 	 if (reg.reladdr2)
5591 	    test_indirect_access(*reg.reladdr2, has_indirect_access);
5592       }
5593    }
5594 }
5595 
5596 template <typename st_reg>
remap_array(st_reg & reg,const int * array_remap_info,const bool * has_indirect_access)5597 void remap_array(st_reg& reg, const int *array_remap_info,
5598 		 const bool *has_indirect_access)
5599 {
5600    if (reg.file == PROGRAM_ARRAY) {
5601       if (!has_indirect_access[reg.array_id]) {
5602 	 reg.file = PROGRAM_TEMPORARY;
5603 	 reg.index = reg.index + array_remap_info[reg.array_id];
5604 	 reg.array_id = 0;
5605       } else {
5606 	 reg.array_id = array_remap_info[reg.array_id];
5607       }
5608 
5609       if (reg.reladdr)
5610 	 remap_array(*reg.reladdr, array_remap_info, has_indirect_access);
5611 
5612       if (reg.reladdr2)
5613 	 remap_array(*reg.reladdr2, array_remap_info, has_indirect_access);
5614    }
5615 }
5616 
5617 /* One-dimensional arrays whose elements are only accessed directly are
5618  * replaced by an according set of temporary registers that then can become
5619  * subject to further optimization steps like copy propagation and
5620  * register merging.
5621  */
5622 void
split_arrays(void)5623 glsl_to_tgsi_visitor::split_arrays(void)
5624 {
5625    if (!next_array)
5626       return;
5627 
5628    bool *has_indirect_access = rzalloc_array(mem_ctx, bool, next_array + 1);
5629 
5630    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5631       for (unsigned j = 0; j < num_inst_src_regs(inst); j++)
5632 	 test_indirect_access(inst->src[j], has_indirect_access);
5633 
5634       for (unsigned j = 0; j < inst->tex_offset_num_offset; j++)
5635 	 test_indirect_access(inst->tex_offsets[j], has_indirect_access);
5636 
5637       for (unsigned j = 0; j < num_inst_dst_regs(inst); j++)
5638 	 test_indirect_access(inst->dst[j], has_indirect_access);
5639 
5640       test_indirect_access(inst->resource, has_indirect_access);
5641    }
5642 
5643    unsigned array_offset = 0;
5644    unsigned n_remaining_arrays = 0;
5645 
5646    /* Double use: For arrays that get split this value will contain
5647     * the base index of the temporary registers this array is replaced
5648     * with. For arrays that remain it contains the new array ID.
5649     */
5650    int *array_remap_info = rzalloc_array(has_indirect_access, int,
5651 					 next_array + 1);
5652 
5653    for (unsigned i = 1; i <= next_array; ++i) {
5654       if (!has_indirect_access[i]) {
5655 	 array_remap_info[i] = this->next_temp + array_offset;
5656 	 array_offset += array_sizes[i - 1];
5657       } else {
5658 	 array_sizes[n_remaining_arrays] = array_sizes[i-1];
5659 	 array_remap_info[i] = ++n_remaining_arrays;
5660       }
5661    }
5662 
5663    if (next_array !=  n_remaining_arrays) {
5664       foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5665 	 for (unsigned j = 0; j < num_inst_src_regs(inst); j++)
5666 	    remap_array(inst->src[j], array_remap_info, has_indirect_access);
5667 
5668 	 for (unsigned j = 0; j < inst->tex_offset_num_offset; j++)
5669 	    remap_array(inst->tex_offsets[j], array_remap_info, has_indirect_access);
5670 
5671 	 for (unsigned j = 0; j < num_inst_dst_regs(inst); j++) {
5672 	    remap_array(inst->dst[j], array_remap_info, has_indirect_access);
5673 	 }
5674 	 remap_array(inst->resource, array_remap_info, has_indirect_access);
5675       }
5676    }
5677 
5678    ralloc_free(has_indirect_access);
5679    this->next_temp += array_offset;
5680    next_array = n_remaining_arrays;
5681 }
5682 
5683 /* Merges temporary registers together where possible to reduce the number of
5684  * registers needed to run a program.
5685  *
5686  * Produces optimal code only after copy propagation and dead code elimination
5687  * have been run. */
5688 void
merge_registers(void)5689 glsl_to_tgsi_visitor::merge_registers(void)
5690 {
5691    class array_live_range *arr_live_ranges = NULL;
5692 
5693    struct register_live_range *reg_live_ranges =
5694 	 rzalloc_array(mem_ctx, struct register_live_range, this->next_temp);
5695 
5696    if (this->next_array > 0) {
5697       arr_live_ranges = new array_live_range[this->next_array];
5698       for (unsigned i = 0; i < this->next_array; ++i)
5699          arr_live_ranges[i] = array_live_range(i+1, this->array_sizes[i]);
5700    }
5701 
5702 
5703    if (get_temp_registers_required_live_ranges(reg_live_ranges, &this->instructions,
5704 					       this->next_temp, reg_live_ranges,
5705 					       this->next_array, arr_live_ranges)) {
5706       struct rename_reg_pair *renames =
5707 	    rzalloc_array(reg_live_ranges, struct rename_reg_pair, this->next_temp);
5708       get_temp_registers_remapping(reg_live_ranges, this->next_temp,
5709 				   reg_live_ranges, renames);
5710       rename_temp_registers(renames);
5711 
5712       this->next_array =  merge_arrays(this->next_array, this->array_sizes,
5713 				       &this->instructions, arr_live_ranges);
5714    }
5715 
5716    if (arr_live_ranges)
5717       delete[] arr_live_ranges;
5718 
5719    ralloc_free(reg_live_ranges);
5720 }
5721 
5722 /* Reassign indices to temporary registers by reusing unused indices created
5723  * by optimization passes. */
5724 void
renumber_registers(void)5725 glsl_to_tgsi_visitor::renumber_registers(void)
5726 {
5727    int i = 0;
5728    int new_index = 0;
5729    int *first_writes = ralloc_array(mem_ctx, int, this->next_temp);
5730    struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5731 
5732    for (i = 0; i < this->next_temp; i++) {
5733       first_writes[i] = -1;
5734    }
5735    get_first_temp_write(first_writes);
5736 
5737    for (i = 0; i < this->next_temp; i++) {
5738       if (first_writes[i] < 0) continue;
5739       if (i != new_index) {
5740          renames[i].new_reg = new_index;
5741          renames[i].valid = true;
5742       }
5743       new_index++;
5744    }
5745 
5746    rename_temp_registers(renames);
5747    this->next_temp = new_index;
5748    ralloc_free(renames);
5749    ralloc_free(first_writes);
5750 }
5751 
5752 #ifndef NDEBUG
print_stats()5753 void glsl_to_tgsi_visitor::print_stats()
5754 {
5755    int narray_registers = 0;
5756    for (unsigned i = 0; i < this->next_array; ++i)
5757       narray_registers += this->array_sizes[i];
5758 
5759    int ninstructions = 0;
5760    foreach_in_list(glsl_to_tgsi_instruction, inst, &instructions) {
5761       ++ninstructions;
5762    }
5763 
5764    simple_mtx_lock(&print_stats_mutex);
5765    stats_log << next_array << ", "
5766 	     << next_temp << ", "
5767 	     << narray_registers << ", "
5768 	     << next_temp + narray_registers << ", "
5769 	     << ninstructions << "\n";
5770    simple_mtx_unlock(&print_stats_mutex);
5771 }
5772 #endif
5773 /* ------------------------- TGSI conversion stuff -------------------------- */
5774 
5775 /**
5776  * Intermediate state used during shader translation.
5777  */
5778 struct st_translate {
5779    struct ureg_program *ureg;
5780 
5781    unsigned temps_size;
5782    struct ureg_dst *temps;
5783 
5784    struct ureg_dst *arrays;
5785    unsigned num_temp_arrays;
5786    struct ureg_src *constants;
5787    int num_constants;
5788    struct ureg_src *immediates;
5789    int num_immediates;
5790    struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
5791    struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
5792    struct ureg_dst address[3];
5793    struct ureg_src samplers[PIPE_MAX_SAMPLERS];
5794    struct ureg_src buffers[PIPE_MAX_SHADER_BUFFERS];
5795    struct ureg_src images[PIPE_MAX_SHADER_IMAGES];
5796    struct ureg_src systemValues[SYSTEM_VALUE_MAX];
5797    struct ureg_src hw_atomics[PIPE_MAX_HW_ATOMIC_BUFFERS];
5798    struct ureg_src shared_memory;
5799    unsigned *array_sizes;
5800    struct inout_decl *input_decls;
5801    unsigned num_input_decls;
5802    struct inout_decl *output_decls;
5803    unsigned num_output_decls;
5804 
5805    const ubyte *inputMapping;
5806    const ubyte *outputMapping;
5807 
5808    enum pipe_shader_type procType;  /**< PIPE_SHADER_VERTEX/FRAGMENT */
5809    bool need_uarl;
5810    bool tg4_component_in_swizzle;
5811 };
5812 
5813 /**
5814  * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
5815  */
5816 static struct ureg_src
emit_immediate(struct st_translate * t,gl_constant_value values[4],GLenum type,int size)5817 emit_immediate(struct st_translate *t,
5818                gl_constant_value values[4],
5819                GLenum type, int size)
5820 {
5821    struct ureg_program *ureg = t->ureg;
5822 
5823    switch (type) {
5824    case GL_FLOAT:
5825       return ureg_DECL_immediate(ureg, &values[0].f, size);
5826    case GL_DOUBLE:
5827       return ureg_DECL_immediate_f64(ureg, (double *)&values[0].f, size);
5828    case GL_INT64_ARB:
5829       return ureg_DECL_immediate_int64(ureg, (int64_t *)&values[0].f, size);
5830    case GL_UNSIGNED_INT64_ARB:
5831       return ureg_DECL_immediate_uint64(ureg, (uint64_t *)&values[0].f, size);
5832    case GL_INT:
5833       return ureg_DECL_immediate_int(ureg, &values[0].i, size);
5834    case GL_UNSIGNED_INT:
5835    case GL_BOOL:
5836       return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
5837    default:
5838       assert(!"should not get here - type must be float, int, uint, or bool");
5839       return ureg_src_undef();
5840    }
5841 }
5842 
5843 /**
5844  * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
5845  */
5846 static struct ureg_dst
dst_register(struct st_translate * t,gl_register_file file,unsigned index,unsigned array_id)5847 dst_register(struct st_translate *t, gl_register_file file, unsigned index,
5848              unsigned array_id)
5849 {
5850    unsigned array;
5851 
5852    switch (file) {
5853    case PROGRAM_UNDEFINED:
5854       return ureg_dst_undef();
5855 
5856    case PROGRAM_TEMPORARY:
5857       /* Allocate space for temporaries on demand. */
5858       if (index >= t->temps_size) {
5859          const int inc = align(index - t->temps_size + 1, 4096);
5860 
5861          t->temps = (struct ureg_dst*)
5862                     realloc(t->temps,
5863                             (t->temps_size + inc) * sizeof(struct ureg_dst));
5864          if (!t->temps)
5865             return ureg_dst_undef();
5866 
5867          memset(t->temps + t->temps_size, 0, inc * sizeof(struct ureg_dst));
5868          t->temps_size += inc;
5869       }
5870 
5871       if (ureg_dst_is_undef(t->temps[index]))
5872          t->temps[index] = ureg_DECL_local_temporary(t->ureg);
5873 
5874       return t->temps[index];
5875 
5876    case PROGRAM_ARRAY:
5877       assert(array_id && array_id <= t->num_temp_arrays);
5878       array = array_id - 1;
5879 
5880       if (ureg_dst_is_undef(t->arrays[array]))
5881          t->arrays[array] = ureg_DECL_array_temporary(
5882             t->ureg, t->array_sizes[array], TRUE);
5883 
5884       return ureg_dst_array_offset(t->arrays[array], index);
5885 
5886    case PROGRAM_OUTPUT:
5887       if (!array_id) {
5888          if (t->procType == PIPE_SHADER_FRAGMENT)
5889             assert(index < 2 * FRAG_RESULT_MAX);
5890          else if (t->procType == PIPE_SHADER_TESS_CTRL ||
5891                   t->procType == PIPE_SHADER_TESS_EVAL)
5892             assert(index < VARYING_SLOT_TESS_MAX);
5893          else
5894             assert(index < VARYING_SLOT_MAX);
5895 
5896          assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
5897          assert(t->outputs[t->outputMapping[index]].File != TGSI_FILE_NULL);
5898          return t->outputs[t->outputMapping[index]];
5899       }
5900       else {
5901          struct inout_decl *decl =
5902             find_inout_array(t->output_decls,
5903                              t->num_output_decls, array_id);
5904          unsigned mesa_index = decl->mesa_index;
5905          int slot = t->outputMapping[mesa_index];
5906 
5907          assert(slot != -1 && t->outputs[slot].File == TGSI_FILE_OUTPUT);
5908 
5909          struct ureg_dst dst = t->outputs[slot];
5910          dst.ArrayID = array_id;
5911          return ureg_dst_array_offset(dst, index - mesa_index);
5912       }
5913 
5914    case PROGRAM_ADDRESS:
5915       return t->address[index];
5916 
5917    default:
5918       assert(!"unknown dst register file");
5919       return ureg_dst_undef();
5920    }
5921 }
5922 
5923 static struct ureg_src
5924 translate_src(struct st_translate *t, const st_src_reg *src_reg);
5925 
5926 static struct ureg_src
translate_addr(struct st_translate * t,const st_src_reg * reladdr,unsigned addr_index)5927 translate_addr(struct st_translate *t, const st_src_reg *reladdr,
5928                unsigned addr_index)
5929 {
5930    if (t->need_uarl || !reladdr->is_legal_tgsi_address_operand())
5931       return ureg_src(t->address[addr_index]);
5932 
5933    return translate_src(t, reladdr);
5934 }
5935 
5936 /**
5937  * Create a TGSI ureg_dst register from an st_dst_reg.
5938  */
5939 static struct ureg_dst
translate_dst(struct st_translate * t,const st_dst_reg * dst_reg,bool saturate)5940 translate_dst(struct st_translate *t,
5941               const st_dst_reg *dst_reg,
5942               bool saturate)
5943 {
5944    struct ureg_dst dst = dst_register(t, dst_reg->file, dst_reg->index,
5945                                       dst_reg->array_id);
5946 
5947    if (dst.File == TGSI_FILE_NULL)
5948       return dst;
5949 
5950    dst = ureg_writemask(dst, dst_reg->writemask);
5951 
5952    if (saturate)
5953       dst = ureg_saturate(dst);
5954 
5955    if (dst_reg->reladdr != NULL) {
5956       assert(dst_reg->file != PROGRAM_TEMPORARY);
5957       dst = ureg_dst_indirect(dst, translate_addr(t, dst_reg->reladdr, 0));
5958    }
5959 
5960    if (dst_reg->has_index2) {
5961       if (dst_reg->reladdr2)
5962          dst = ureg_dst_dimension_indirect(dst,
5963                                            translate_addr(t, dst_reg->reladdr2, 1),
5964                                            dst_reg->index2D);
5965       else
5966          dst = ureg_dst_dimension(dst, dst_reg->index2D);
5967    }
5968 
5969    return dst;
5970 }
5971 
5972 /**
5973  * Create a TGSI ureg_src register from an st_src_reg.
5974  */
5975 static struct ureg_src
translate_src(struct st_translate * t,const st_src_reg * src_reg)5976 translate_src(struct st_translate *t, const st_src_reg *src_reg)
5977 {
5978    struct ureg_src src;
5979    int index = src_reg->index;
5980    int double_reg2 = src_reg->double_reg2 ? 1 : 0;
5981 
5982    switch (src_reg->file) {
5983    case PROGRAM_UNDEFINED:
5984       src = ureg_imm4f(t->ureg, 0, 0, 0, 0);
5985       break;
5986 
5987    case PROGRAM_TEMPORARY:
5988    case PROGRAM_ARRAY:
5989       src = ureg_src(dst_register(t, src_reg->file, src_reg->index,
5990                                   src_reg->array_id));
5991       break;
5992 
5993    case PROGRAM_OUTPUT: {
5994       struct ureg_dst dst = dst_register(t, src_reg->file, src_reg->index,
5995                                          src_reg->array_id);
5996       assert(dst.WriteMask != 0);
5997       unsigned shift = ffs(dst.WriteMask) - 1;
5998       src = ureg_swizzle(ureg_src(dst),
5999                          shift,
6000                          MIN2(shift + 1, 3),
6001                          MIN2(shift + 2, 3),
6002                          MIN2(shift + 3, 3));
6003       break;
6004    }
6005 
6006    case PROGRAM_UNIFORM:
6007       assert(src_reg->index >= 0);
6008       src = src_reg->index < t->num_constants ?
6009                t->constants[src_reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
6010       break;
6011    case PROGRAM_STATE_VAR:
6012    case PROGRAM_CONSTANT:       /* ie, immediate */
6013       if (src_reg->has_index2)
6014          src = ureg_src_register(TGSI_FILE_CONSTANT, src_reg->index);
6015       else
6016          src = src_reg->index >= 0 && src_reg->index < t->num_constants ?
6017                   t->constants[src_reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
6018       break;
6019 
6020    case PROGRAM_IMMEDIATE:
6021       assert(src_reg->index >= 0 && src_reg->index < t->num_immediates);
6022       src = t->immediates[src_reg->index];
6023       break;
6024 
6025    case PROGRAM_INPUT:
6026       /* GLSL inputs are 64-bit containers, so we have to
6027        * map back to the original index and add the offset after
6028        * mapping. */
6029       index -= double_reg2;
6030       if (!src_reg->array_id) {
6031          assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
6032          assert(t->inputs[t->inputMapping[index]].File != TGSI_FILE_NULL);
6033          src = t->inputs[t->inputMapping[index] + double_reg2];
6034       }
6035       else {
6036          struct inout_decl *decl = find_inout_array(t->input_decls,
6037                                                     t->num_input_decls,
6038                                                     src_reg->array_id);
6039          unsigned mesa_index = decl->mesa_index;
6040          int slot = t->inputMapping[mesa_index];
6041 
6042          assert(slot != -1 && t->inputs[slot].File == TGSI_FILE_INPUT);
6043 
6044          src = t->inputs[slot];
6045          src.ArrayID = src_reg->array_id;
6046          src = ureg_src_array_offset(src, index + double_reg2 - mesa_index);
6047       }
6048       break;
6049 
6050    case PROGRAM_ADDRESS:
6051       src = ureg_src(t->address[src_reg->index]);
6052       break;
6053 
6054    case PROGRAM_SYSTEM_VALUE:
6055       assert(src_reg->index < (int) ARRAY_SIZE(t->systemValues));
6056       src = t->systemValues[src_reg->index];
6057       break;
6058 
6059    case PROGRAM_HW_ATOMIC:
6060       src = ureg_src_array_register(TGSI_FILE_HW_ATOMIC, src_reg->index,
6061                                     src_reg->array_id);
6062       break;
6063 
6064    default:
6065       assert(!"unknown src register file");
6066       return ureg_src_undef();
6067    }
6068 
6069    if (src_reg->has_index2) {
6070       /* 2D indexes occur with geometry shader inputs (attrib, vertex)
6071        * and UBO constant buffers (buffer, position).
6072        */
6073       if (src_reg->reladdr2)
6074          src = ureg_src_dimension_indirect(src,
6075                                            translate_addr(t, src_reg->reladdr2, 1),
6076                                            src_reg->index2D);
6077       else
6078          src = ureg_src_dimension(src, src_reg->index2D);
6079    }
6080 
6081    src = ureg_swizzle(src,
6082                       GET_SWZ(src_reg->swizzle, 0) & 0x3,
6083                       GET_SWZ(src_reg->swizzle, 1) & 0x3,
6084                       GET_SWZ(src_reg->swizzle, 2) & 0x3,
6085                       GET_SWZ(src_reg->swizzle, 3) & 0x3);
6086 
6087    if (src_reg->abs)
6088       src = ureg_abs(src);
6089 
6090    if ((src_reg->negate & 0xf) == NEGATE_XYZW)
6091       src = ureg_negate(src);
6092 
6093    if (src_reg->reladdr != NULL) {
6094       assert(src_reg->file != PROGRAM_TEMPORARY);
6095       src = ureg_src_indirect(src, translate_addr(t, src_reg->reladdr, 0));
6096    }
6097 
6098    return src;
6099 }
6100 
6101 static struct tgsi_texture_offset
translate_tex_offset(struct st_translate * t,const st_src_reg * in_offset)6102 translate_tex_offset(struct st_translate *t,
6103                      const st_src_reg *in_offset)
6104 {
6105    struct tgsi_texture_offset offset;
6106    struct ureg_src src = translate_src(t, in_offset);
6107 
6108    offset.File = src.File;
6109    offset.Index = src.Index;
6110    offset.SwizzleX = src.SwizzleX;
6111    offset.SwizzleY = src.SwizzleY;
6112    offset.SwizzleZ = src.SwizzleZ;
6113    offset.Padding = 0;
6114 
6115    assert(!src.Indirect);
6116    assert(!src.DimIndirect);
6117    assert(!src.Dimension);
6118    assert(!src.Absolute); /* those shouldn't be used with integers anyway */
6119    assert(!src.Negate);
6120 
6121    return offset;
6122 }
6123 
6124 static void
compile_tgsi_instruction(struct st_translate * t,const glsl_to_tgsi_instruction * inst)6125 compile_tgsi_instruction(struct st_translate *t,
6126                          const glsl_to_tgsi_instruction *inst)
6127 {
6128    struct ureg_program *ureg = t->ureg;
6129    int i;
6130    struct ureg_dst dst[2];
6131    struct ureg_src src[4];
6132    struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
6133 
6134    int num_dst;
6135    int num_src;
6136    enum tgsi_texture_type tex_target = TGSI_TEXTURE_BUFFER;
6137 
6138    num_dst = num_inst_dst_regs(inst);
6139    num_src = num_inst_src_regs(inst);
6140 
6141    for (i = 0; i < num_dst; i++)
6142       dst[i] = translate_dst(t,
6143                              &inst->dst[i],
6144                              inst->saturate);
6145 
6146    for (i = 0; i < num_src; i++)
6147       src[i] = translate_src(t, &inst->src[i]);
6148 
6149    switch (inst->op) {
6150    case TGSI_OPCODE_BGNLOOP:
6151    case TGSI_OPCODE_ELSE:
6152    case TGSI_OPCODE_ENDLOOP:
6153    case TGSI_OPCODE_IF:
6154    case TGSI_OPCODE_UIF:
6155       assert(num_dst == 0);
6156       ureg_insn(ureg, inst->op, NULL, 0, src, num_src, inst->precise);
6157       return;
6158 
6159    case TGSI_OPCODE_TEX:
6160    case TGSI_OPCODE_TEX_LZ:
6161    case TGSI_OPCODE_TXB:
6162    case TGSI_OPCODE_TXD:
6163    case TGSI_OPCODE_TXL:
6164    case TGSI_OPCODE_TXP:
6165    case TGSI_OPCODE_TXQ:
6166    case TGSI_OPCODE_TXQS:
6167    case TGSI_OPCODE_TXF:
6168    case TGSI_OPCODE_TXF_LZ:
6169    case TGSI_OPCODE_TEX2:
6170    case TGSI_OPCODE_TXB2:
6171    case TGSI_OPCODE_TXL2:
6172    case TGSI_OPCODE_TG4:
6173    case TGSI_OPCODE_LODQ:
6174    case TGSI_OPCODE_SAMP2HND:
6175       if (inst->resource.file == PROGRAM_SAMPLER) {
6176          src[num_src] = t->samplers[inst->resource.index];
6177          if (t->tg4_component_in_swizzle && inst->op == TGSI_OPCODE_TG4)
6178             src[num_src].SwizzleX = inst->gather_component;
6179       } else {
6180          /* Bindless samplers. */
6181          src[num_src] = translate_src(t, &inst->resource);
6182       }
6183       assert(src[num_src].File != TGSI_FILE_NULL);
6184       if (inst->resource.reladdr)
6185          src[num_src] =
6186             ureg_src_indirect(src[num_src],
6187                               translate_addr(t, inst->resource.reladdr, 2));
6188       num_src++;
6189       for (i = 0; i < (int)inst->tex_offset_num_offset; i++) {
6190          texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
6191       }
6192       tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
6193 
6194       ureg_tex_insn(ureg,
6195                     inst->op,
6196                     dst, num_dst,
6197                     tex_target,
6198                     st_translate_texture_type(inst->tex_type),
6199                     texoffsets, inst->tex_offset_num_offset,
6200                     src, num_src);
6201       return;
6202 
6203    case TGSI_OPCODE_RESQ:
6204    case TGSI_OPCODE_LOAD:
6205    case TGSI_OPCODE_ATOMUADD:
6206    case TGSI_OPCODE_ATOMXCHG:
6207    case TGSI_OPCODE_ATOMCAS:
6208    case TGSI_OPCODE_ATOMAND:
6209    case TGSI_OPCODE_ATOMOR:
6210    case TGSI_OPCODE_ATOMXOR:
6211    case TGSI_OPCODE_ATOMUMIN:
6212    case TGSI_OPCODE_ATOMUMAX:
6213    case TGSI_OPCODE_ATOMIMIN:
6214    case TGSI_OPCODE_ATOMIMAX:
6215    case TGSI_OPCODE_ATOMFADD:
6216    case TGSI_OPCODE_IMG2HND:
6217    case TGSI_OPCODE_ATOMINC_WRAP:
6218    case TGSI_OPCODE_ATOMDEC_WRAP:
6219       for (i = num_src - 1; i >= 0; i--)
6220          src[i + 1] = src[i];
6221       num_src++;
6222       if (inst->resource.file == PROGRAM_MEMORY) {
6223          src[0] = t->shared_memory;
6224       } else if (inst->resource.file == PROGRAM_BUFFER) {
6225          src[0] = t->buffers[inst->resource.index];
6226       } else if (inst->resource.file == PROGRAM_HW_ATOMIC) {
6227          src[0] = translate_src(t, &inst->resource);
6228       } else if (inst->resource.file == PROGRAM_CONSTANT) {
6229          assert(inst->resource.has_index2);
6230          src[0] = ureg_src_register(TGSI_FILE_CONSTBUF, inst->resource.index);
6231       } else {
6232          assert(inst->resource.file != PROGRAM_UNDEFINED);
6233          if (inst->resource.file == PROGRAM_IMAGE) {
6234             src[0] = t->images[inst->resource.index];
6235          } else {
6236             /* Bindless images. */
6237             src[0] = translate_src(t, &inst->resource);
6238          }
6239          tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
6240       }
6241       if (inst->resource.reladdr)
6242          src[0] = ureg_src_indirect(src[0],
6243                                     translate_addr(t, inst->resource.reladdr, 2));
6244       assert(src[0].File != TGSI_FILE_NULL);
6245       ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
6246                        inst->buffer_access,
6247                        tex_target, inst->image_format);
6248       break;
6249 
6250    case TGSI_OPCODE_STORE:
6251       if (inst->resource.file == PROGRAM_MEMORY) {
6252          dst[0] = ureg_dst(t->shared_memory);
6253       } else if (inst->resource.file == PROGRAM_BUFFER) {
6254          dst[0] = ureg_dst(t->buffers[inst->resource.index]);
6255       } else {
6256          if (inst->resource.file == PROGRAM_IMAGE) {
6257             dst[0] = ureg_dst(t->images[inst->resource.index]);
6258          } else {
6259             /* Bindless images. */
6260             dst[0] = ureg_dst(translate_src(t, &inst->resource));
6261          }
6262          tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
6263       }
6264       dst[0] = ureg_writemask(dst[0], inst->dst[0].writemask);
6265       if (inst->resource.reladdr)
6266          dst[0] = ureg_dst_indirect(dst[0],
6267                                     translate_addr(t, inst->resource.reladdr, 2));
6268       assert(dst[0].File != TGSI_FILE_NULL);
6269       ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
6270                        inst->buffer_access,
6271                        tex_target, inst->image_format);
6272       break;
6273 
6274    default:
6275       ureg_insn(ureg,
6276                 inst->op,
6277                 dst, num_dst,
6278                 src, num_src, inst->precise);
6279       break;
6280    }
6281 }
6282 
6283 /* Invert SamplePos.y when rendering to the default framebuffer. */
6284 static void
emit_samplepos_adjustment(struct st_translate * t,int wpos_y_transform)6285 emit_samplepos_adjustment(struct st_translate *t, int wpos_y_transform)
6286 {
6287    struct ureg_program *ureg = t->ureg;
6288 
6289    assert(wpos_y_transform >= 0);
6290    struct ureg_src trans_const = ureg_DECL_constant(ureg, wpos_y_transform);
6291    struct ureg_src samplepos_sysval = t->systemValues[SYSTEM_VALUE_SAMPLE_POS];
6292    struct ureg_dst samplepos_flipped = ureg_DECL_temporary(ureg);
6293    struct ureg_dst is_fbo = ureg_DECL_temporary(ureg);
6294 
6295    ureg_ADD(ureg, ureg_writemask(samplepos_flipped, TGSI_WRITEMASK_Y),
6296             ureg_imm1f(ureg, 1), ureg_negate(samplepos_sysval));
6297 
6298    /* If trans.x == 1, use samplepos.y, else use 1 - samplepos.y. */
6299    ureg_FSEQ(ureg, ureg_writemask(is_fbo, TGSI_WRITEMASK_Y),
6300              ureg_scalar(trans_const, TGSI_SWIZZLE_X), ureg_imm1f(ureg, 1));
6301    ureg_UCMP(ureg, ureg_writemask(samplepos_flipped, TGSI_WRITEMASK_Y),
6302              ureg_src(is_fbo), samplepos_sysval, ureg_src(samplepos_flipped));
6303    ureg_MOV(ureg, ureg_writemask(samplepos_flipped, TGSI_WRITEMASK_X),
6304             samplepos_sysval);
6305 
6306    /* Use the result in place of the system value. */
6307    t->systemValues[SYSTEM_VALUE_SAMPLE_POS] = ureg_src(samplepos_flipped);
6308 }
6309 
6310 
6311 /**
6312  * Emit the TGSI instructions for inverting and adjusting WPOS.
6313  * This code is unavoidable because it also depends on whether
6314  * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
6315  */
6316 static void
emit_wpos_adjustment(struct gl_context * ctx,struct st_translate * t,int wpos_transform_const,boolean invert,GLfloat adjX,GLfloat adjY[2])6317 emit_wpos_adjustment(struct gl_context *ctx,
6318                      struct st_translate *t,
6319                      int wpos_transform_const,
6320                      boolean invert,
6321                      GLfloat adjX, GLfloat adjY[2])
6322 {
6323    struct ureg_program *ureg = t->ureg;
6324 
6325    assert(wpos_transform_const >= 0);
6326 
6327    /* Fragment program uses fragment position input.
6328     * Need to replace instances of INPUT[WPOS] with temp T
6329     * where T = INPUT[WPOS] is inverted by Y.
6330     */
6331    struct ureg_src wpostrans = ureg_DECL_constant(ureg, wpos_transform_const);
6332    struct ureg_dst wpos_temp = ureg_DECL_temporary(ureg);
6333    struct ureg_src *wpos =
6334       ctx->Const.GLSLFragCoordIsSysVal ?
6335          &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
6336          &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
6337    struct ureg_src wpos_input = *wpos;
6338 
6339    /* First, apply the coordinate shift: */
6340    if (adjX || adjY[0] || adjY[1]) {
6341       if (adjY[0] != adjY[1]) {
6342          /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
6343           * depending on whether inversion is actually going to be applied
6344           * or not, which is determined by testing against the inversion
6345           * state variable used below, which will be either +1 or -1.
6346           */
6347          struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
6348 
6349          ureg_CMP(ureg, adj_temp,
6350                   ureg_scalar(wpostrans, invert ? 2 : 0),
6351                   ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
6352                   ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
6353          ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
6354       } else {
6355          ureg_ADD(ureg, wpos_temp, wpos_input,
6356                   ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
6357       }
6358       wpos_input = ureg_src(wpos_temp);
6359    } else {
6360       /* MOV wpos_temp, input[wpos]
6361        */
6362       ureg_MOV(ureg, wpos_temp, wpos_input);
6363    }
6364 
6365    /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
6366     * inversion/identity, or the other way around if we're drawing to an FBO.
6367     */
6368    if (invert) {
6369       /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
6370        */
6371       ureg_MAD(ureg,
6372                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
6373                wpos_input,
6374                ureg_scalar(wpostrans, 0),
6375                ureg_scalar(wpostrans, 1));
6376    } else {
6377       /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
6378        */
6379       ureg_MAD(ureg,
6380                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
6381                wpos_input,
6382                ureg_scalar(wpostrans, 2),
6383                ureg_scalar(wpostrans, 3));
6384    }
6385 
6386    /* Use wpos_temp as position input from here on:
6387     */
6388    *wpos = ureg_src(wpos_temp);
6389 }
6390 
6391 
6392 /**
6393  * Emit fragment position/ooordinate code.
6394  */
6395 static void
emit_wpos(struct st_context * st,struct st_translate * t,const struct gl_program * program,struct ureg_program * ureg,int wpos_transform_const)6396 emit_wpos(struct st_context *st,
6397           struct st_translate *t,
6398           const struct gl_program *program,
6399           struct ureg_program *ureg,
6400           int wpos_transform_const)
6401 {
6402    struct pipe_screen *pscreen = st->pipe->screen;
6403    GLfloat adjX = 0.0f;
6404    GLfloat adjY[2] = { 0.0f, 0.0f };
6405    boolean invert = FALSE;
6406 
6407    /* Query the pixel center conventions supported by the pipe driver and set
6408     * adjX, adjY to help out if it cannot handle the requested one internally.
6409     *
6410     * The bias of the y-coordinate depends on whether y-inversion takes place
6411     * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
6412     * drawing to an FBO (causes additional inversion), and whether the pipe
6413     * driver origin and the requested origin differ (the latter condition is
6414     * stored in the 'invert' variable).
6415     *
6416     * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
6417     *
6418     * center shift only:
6419     * i -> h: +0.5
6420     * h -> i: -0.5
6421     *
6422     * inversion only:
6423     * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
6424     * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
6425     * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
6426     * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
6427     *
6428     * inversion and center shift:
6429     * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
6430     * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
6431     * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
6432     * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
6433     */
6434    if (program->info.fs.origin_upper_left) {
6435       /* Fragment shader wants origin in upper-left */
6436       if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
6437          /* the driver supports upper-left origin */
6438       }
6439       else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
6440          /* the driver supports lower-left origin, need to invert Y */
6441          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
6442                        TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
6443          invert = TRUE;
6444       }
6445       else
6446          assert(0);
6447    }
6448    else {
6449       /* Fragment shader wants origin in lower-left */
6450       if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
6451          /* the driver supports lower-left origin */
6452          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
6453                        TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
6454       else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
6455          /* the driver supports upper-left origin, need to invert Y */
6456          invert = TRUE;
6457       else
6458          assert(0);
6459    }
6460 
6461    if (program->info.fs.pixel_center_integer) {
6462       /* Fragment shader wants pixel center integer */
6463       if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
6464          /* the driver supports pixel center integer */
6465          adjY[1] = 1.0f;
6466          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
6467                        TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
6468       }
6469       else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
6470          /* the driver supports pixel center half integer, need to bias X,Y */
6471          adjX = -0.5f;
6472          adjY[0] = -0.5f;
6473          adjY[1] = 0.5f;
6474       }
6475       else
6476          assert(0);
6477    }
6478    else {
6479       /* Fragment shader wants pixel center half integer */
6480       if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
6481          /* the driver supports pixel center half integer */
6482       }
6483       else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
6484          /* the driver supports pixel center integer, need to bias X,Y */
6485          adjX = adjY[0] = adjY[1] = 0.5f;
6486          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
6487                        TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
6488       }
6489       else
6490          assert(0);
6491    }
6492 
6493    /* we invert after adjustment so that we avoid the MOV to temporary,
6494     * and reuse the adjustment ADD instead */
6495    emit_wpos_adjustment(st->ctx, t, wpos_transform_const, invert, adjX, adjY);
6496 }
6497 
6498 /**
6499  * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
6500  * TGSI uses +1 for front, -1 for back.
6501  * This function converts the TGSI value to the GL value.  Simply clamping/
6502  * saturating the value to [0,1] does the job.
6503  */
6504 static void
emit_face_var(struct gl_context * ctx,struct st_translate * t)6505 emit_face_var(struct gl_context *ctx, struct st_translate *t)
6506 {
6507    struct ureg_program *ureg = t->ureg;
6508    struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
6509    struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
6510 
6511    if (ctx->Const.NativeIntegers) {
6512       ureg_FSGE(ureg, face_temp, face_input, ureg_imm1f(ureg, 0));
6513    }
6514    else {
6515       /* MOV_SAT face_temp, input[face] */
6516       ureg_MOV(ureg, ureg_saturate(face_temp), face_input);
6517    }
6518 
6519    /* Use face_temp as face input from here on: */
6520    t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
6521 }
6522 
6523 struct sort_inout_decls {
operator ()sort_inout_decls6524    bool operator()(const struct inout_decl &a, const struct inout_decl &b) const {
6525       return mapping[a.mesa_index] < mapping[b.mesa_index];
6526    }
6527 
6528    const ubyte *mapping;
6529 };
6530 
6531 /* Sort the given array of decls by the corresponding slot (TGSI file index).
6532  *
6533  * This is for the benefit of older drivers which are broken when the
6534  * declarations aren't sorted in this way.
6535  */
6536 static void
sort_inout_decls_by_slot(struct inout_decl * decls,unsigned count,const ubyte mapping[])6537 sort_inout_decls_by_slot(struct inout_decl *decls,
6538                          unsigned count,
6539                          const ubyte mapping[])
6540 {
6541    sort_inout_decls sorter;
6542    sorter.mapping = mapping;
6543    std::sort(decls, decls + count, sorter);
6544 }
6545 
6546 /**
6547  * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
6548  * \param program  the program to translate
6549  * \param numInputs  number of input registers used
6550  * \param inputMapping  maps Mesa fragment program inputs to TGSI generic
6551  *                      input indexes
6552  * \param inputSemanticName  the TGSI_SEMANTIC flag for each input
6553  * \param inputSemanticIndex  the semantic index (ex: which texcoord) for
6554  *                            each input
6555  * \param interpMode  the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
6556  * \param numOutputs  number of output registers used
6557  * \param outputMapping  maps Mesa fragment program outputs to TGSI
6558  *                       generic outputs
6559  * \param outputSemanticName  the TGSI_SEMANTIC flag for each output
6560  * \param outputSemanticIndex  the semantic index (ex: which texcoord) for
6561  *                             each output
6562  *
6563  * \return  PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
6564  */
6565 extern "C" enum pipe_error
st_translate_program(struct gl_context * ctx,enum pipe_shader_type procType,struct ureg_program * ureg,glsl_to_tgsi_visitor * program,const struct gl_program * proginfo,GLuint numInputs,const ubyte inputMapping[],const ubyte inputSlotToAttr[],const ubyte inputSemanticName[],const ubyte inputSemanticIndex[],const ubyte interpMode[],GLuint numOutputs,const ubyte outputMapping[],const ubyte outputSemanticName[],const ubyte outputSemanticIndex[])6566 st_translate_program(
6567    struct gl_context *ctx,
6568    enum pipe_shader_type procType,
6569    struct ureg_program *ureg,
6570    glsl_to_tgsi_visitor *program,
6571    const struct gl_program *proginfo,
6572    GLuint numInputs,
6573    const ubyte inputMapping[],
6574    const ubyte inputSlotToAttr[],
6575    const ubyte inputSemanticName[],
6576    const ubyte inputSemanticIndex[],
6577    const ubyte interpMode[],
6578    GLuint numOutputs,
6579    const ubyte outputMapping[],
6580    const ubyte outputSemanticName[],
6581    const ubyte outputSemanticIndex[])
6582 {
6583    struct pipe_screen *screen = st_context(ctx)->pipe->screen;
6584    struct st_translate *t;
6585    unsigned i;
6586    struct gl_program_constants *frag_const =
6587       &ctx->Const.Program[MESA_SHADER_FRAGMENT];
6588    enum pipe_error ret = PIPE_OK;
6589 
6590    assert(numInputs <= ARRAY_SIZE(t->inputs));
6591    assert(numOutputs <= ARRAY_SIZE(t->outputs));
6592 
6593    ASSERT_BITFIELD_SIZE(st_src_reg, type, GLSL_TYPE_ERROR);
6594    ASSERT_BITFIELD_SIZE(st_src_reg, file, PROGRAM_FILE_MAX);
6595    ASSERT_BITFIELD_SIZE(st_dst_reg, type, GLSL_TYPE_ERROR);
6596    ASSERT_BITFIELD_SIZE(st_dst_reg, file, PROGRAM_FILE_MAX);
6597    ASSERT_BITFIELD_SIZE(glsl_to_tgsi_instruction, tex_type, GLSL_TYPE_ERROR);
6598    ASSERT_BITFIELD_SIZE(glsl_to_tgsi_instruction, image_format, PIPE_FORMAT_COUNT);
6599    ASSERT_BITFIELD_SIZE(glsl_to_tgsi_instruction, tex_target,
6600                         (gl_texture_index) (NUM_TEXTURE_TARGETS - 1));
6601    ASSERT_BITFIELD_SIZE(glsl_to_tgsi_instruction, image_format,
6602                         (enum pipe_format) (PIPE_FORMAT_COUNT - 1));
6603    ASSERT_BITFIELD_SIZE(glsl_to_tgsi_instruction, op,
6604                         (enum tgsi_opcode) (TGSI_OPCODE_LAST - 1));
6605 
6606    t = CALLOC_STRUCT(st_translate);
6607    if (!t) {
6608       ret = PIPE_ERROR_OUT_OF_MEMORY;
6609       goto out;
6610    }
6611 
6612    t->procType = procType;
6613    t->need_uarl = !screen->get_param(screen, PIPE_CAP_TGSI_ANY_REG_AS_ADDRESS);
6614    t->tg4_component_in_swizzle = screen->get_param(screen, PIPE_CAP_TGSI_TG4_COMPONENT_IN_SWIZZLE);
6615    t->inputMapping = inputMapping;
6616    t->outputMapping = outputMapping;
6617    t->ureg = ureg;
6618    t->num_temp_arrays = program->next_array;
6619    if (t->num_temp_arrays)
6620       t->arrays = (struct ureg_dst*)
6621                   calloc(t->num_temp_arrays, sizeof(t->arrays[0]));
6622 
6623    /*
6624     * Declare input attributes.
6625     */
6626    switch (procType) {
6627    case PIPE_SHADER_FRAGMENT:
6628    case PIPE_SHADER_GEOMETRY:
6629    case PIPE_SHADER_TESS_EVAL:
6630    case PIPE_SHADER_TESS_CTRL:
6631       sort_inout_decls_by_slot(program->inputs, program->num_inputs, inputMapping);
6632 
6633       for (i = 0; i < program->num_inputs; ++i) {
6634          struct inout_decl *decl = &program->inputs[i];
6635          unsigned slot = inputMapping[decl->mesa_index];
6636          struct ureg_src src;
6637          ubyte tgsi_usage_mask = decl->usage_mask;
6638 
6639          if (glsl_base_type_is_64bit(decl->base_type)) {
6640             if (tgsi_usage_mask == 1)
6641                tgsi_usage_mask = TGSI_WRITEMASK_XY;
6642             else if (tgsi_usage_mask == 2)
6643                tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6644             else
6645                tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6646          }
6647 
6648          enum tgsi_interpolate_mode interp_mode = TGSI_INTERPOLATE_CONSTANT;
6649          enum tgsi_interpolate_loc interp_location = TGSI_INTERPOLATE_LOC_CENTER;
6650          if (procType == PIPE_SHADER_FRAGMENT) {
6651             assert(interpMode);
6652             interp_mode = interpMode[slot] != TGSI_INTERPOLATE_COUNT ?
6653                (enum tgsi_interpolate_mode) interpMode[slot] :
6654                tgsi_get_interp_mode(decl->interp,
6655                                     inputSlotToAttr[slot] == VARYING_SLOT_COL0 ||
6656                                     inputSlotToAttr[slot] == VARYING_SLOT_COL1);
6657 
6658             interp_location = (enum tgsi_interpolate_loc) decl->interp_loc;
6659          }
6660 
6661          src = ureg_DECL_fs_input_cyl_centroid_layout(ureg,
6662                   (enum tgsi_semantic) inputSemanticName[slot],
6663                   inputSemanticIndex[slot],
6664                   interp_mode, 0, interp_location, slot, tgsi_usage_mask,
6665                   decl->array_id, decl->size);
6666 
6667          for (unsigned j = 0; j < decl->size; ++j) {
6668             if (t->inputs[slot + j].File != TGSI_FILE_INPUT) {
6669                /* The ArrayID is set up in dst_register */
6670                t->inputs[slot + j] = src;
6671                t->inputs[slot + j].ArrayID = 0;
6672                t->inputs[slot + j].Index += j;
6673             }
6674          }
6675       }
6676       break;
6677    case PIPE_SHADER_VERTEX:
6678       for (i = 0; i < numInputs; i++) {
6679          t->inputs[i] = ureg_DECL_vs_input(ureg, i);
6680       }
6681       break;
6682    case PIPE_SHADER_COMPUTE:
6683       break;
6684    default:
6685       assert(0);
6686    }
6687 
6688    /*
6689     * Declare output attributes.
6690     */
6691    switch (procType) {
6692    case PIPE_SHADER_FRAGMENT:
6693    case PIPE_SHADER_COMPUTE:
6694       break;
6695    case PIPE_SHADER_GEOMETRY:
6696    case PIPE_SHADER_TESS_EVAL:
6697    case PIPE_SHADER_TESS_CTRL:
6698    case PIPE_SHADER_VERTEX:
6699       sort_inout_decls_by_slot(program->outputs, program->num_outputs, outputMapping);
6700 
6701       for (i = 0; i < program->num_outputs; ++i) {
6702          struct inout_decl *decl = &program->outputs[i];
6703          unsigned slot = outputMapping[decl->mesa_index];
6704          struct ureg_dst dst;
6705          ubyte tgsi_usage_mask = decl->usage_mask;
6706 
6707          if (glsl_base_type_is_64bit(decl->base_type)) {
6708             if (tgsi_usage_mask == 1)
6709                tgsi_usage_mask = TGSI_WRITEMASK_XY;
6710             else if (tgsi_usage_mask == 2)
6711                tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6712             else
6713                tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6714          }
6715 
6716          dst = ureg_DECL_output_layout(ureg,
6717                      (enum tgsi_semantic) outputSemanticName[slot],
6718                      outputSemanticIndex[slot],
6719                      decl->gs_out_streams,
6720                      slot, tgsi_usage_mask, decl->array_id, decl->size, decl->invariant);
6721          dst.Invariant = decl->invariant;
6722          for (unsigned j = 0; j < decl->size; ++j) {
6723             if (t->outputs[slot + j].File != TGSI_FILE_OUTPUT) {
6724                /* The ArrayID is set up in dst_register */
6725                t->outputs[slot + j] = dst;
6726                t->outputs[slot + j].ArrayID = 0;
6727                t->outputs[slot + j].Index += j;
6728                t->outputs[slot + j].Invariant = decl->invariant;
6729             }
6730          }
6731       }
6732       break;
6733    default:
6734       assert(0);
6735    }
6736 
6737    if (procType == PIPE_SHADER_FRAGMENT) {
6738       if (proginfo->info.inputs_read & VARYING_BIT_POS) {
6739           /* Must do this after setting up t->inputs. */
6740           emit_wpos(st_context(ctx), t, proginfo, ureg,
6741                     program->wpos_transform_const);
6742       }
6743 
6744       if (proginfo->info.inputs_read & VARYING_BIT_FACE)
6745          emit_face_var(ctx, t);
6746 
6747       for (i = 0; i < numOutputs; i++) {
6748          switch (outputSemanticName[i]) {
6749          case TGSI_SEMANTIC_POSITION:
6750             t->outputs[i] = ureg_DECL_output(ureg,
6751                                              TGSI_SEMANTIC_POSITION, /* Z/Depth */
6752                                              outputSemanticIndex[i]);
6753             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
6754             break;
6755          case TGSI_SEMANTIC_STENCIL:
6756             t->outputs[i] = ureg_DECL_output(ureg,
6757                                              TGSI_SEMANTIC_STENCIL, /* Stencil */
6758                                              outputSemanticIndex[i]);
6759             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
6760             break;
6761          case TGSI_SEMANTIC_COLOR:
6762             t->outputs[i] = ureg_DECL_output(ureg,
6763                                              TGSI_SEMANTIC_COLOR,
6764                                              outputSemanticIndex[i]);
6765             break;
6766          case TGSI_SEMANTIC_SAMPLEMASK:
6767             t->outputs[i] = ureg_DECL_output(ureg,
6768                                              TGSI_SEMANTIC_SAMPLEMASK,
6769                                              outputSemanticIndex[i]);
6770             /* TODO: If we ever support more than 32 samples, this will have
6771              * to become an array.
6772              */
6773             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6774             break;
6775          default:
6776             assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
6777             ret = PIPE_ERROR_BAD_INPUT;
6778             goto out;
6779          }
6780       }
6781 
6782       if (program->shader->Program->sh.fs.BlendSupport)
6783          ureg_property(ureg,
6784                        TGSI_PROPERTY_FS_BLEND_EQUATION_ADVANCED,
6785                        program->shader->Program->sh.fs.BlendSupport);
6786 
6787    }
6788    else if (procType == PIPE_SHADER_VERTEX) {
6789       for (i = 0; i < numOutputs; i++) {
6790          if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
6791             /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
6792             ureg_MOV(ureg,
6793                      ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
6794                      ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
6795             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6796          }
6797       }
6798    }
6799 
6800    /* Declare address register.
6801     */
6802    if (program->num_address_regs > 0) {
6803       assert(program->num_address_regs <= 3);
6804       for (int i = 0; i < program->num_address_regs; i++)
6805          t->address[i] = ureg_DECL_address(ureg);
6806    }
6807 
6808    /* Declare misc input registers
6809     */
6810    BITSET_FOREACH_SET(i, proginfo->info.system_values_read, SYSTEM_VALUE_MAX) {
6811       enum tgsi_semantic semName = tgsi_get_sysval_semantic(i);
6812 
6813       t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
6814 
6815       if (semName == TGSI_SEMANTIC_INSTANCEID ||
6816           semName == TGSI_SEMANTIC_VERTEXID) {
6817          /* From Gallium perspective, these system values are always
6818           * integer, and require native integer support.  However, if
6819           * native integer is supported on the vertex stage but not the
6820           * pixel stage (e.g, i915g + draw), Mesa will generate IR that
6821           * assumes these system values are floats. To resolve the
6822           * inconsistency, we insert a U2F.
6823           */
6824          struct st_context *st = st_context(ctx);
6825          struct pipe_screen *pscreen = st->pipe->screen;
6826          assert(procType == PIPE_SHADER_VERTEX);
6827          assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
6828          (void) pscreen;
6829          if (!ctx->Const.NativeIntegers) {
6830             struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
6831             ureg_U2F(t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X),
6832                      t->systemValues[i]);
6833             t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
6834          }
6835       }
6836 
6837       if (procType == PIPE_SHADER_FRAGMENT &&
6838           semName == TGSI_SEMANTIC_POSITION)
6839          emit_wpos(st_context(ctx), t, proginfo, ureg,
6840                    program->wpos_transform_const);
6841 
6842       if (procType == PIPE_SHADER_FRAGMENT &&
6843           semName == TGSI_SEMANTIC_SAMPLEPOS)
6844          emit_samplepos_adjustment(t, program->wpos_transform_const);
6845    }
6846 
6847    t->array_sizes = program->array_sizes;
6848    t->input_decls = program->inputs;
6849    t->num_input_decls = program->num_inputs;
6850    t->output_decls = program->outputs;
6851    t->num_output_decls = program->num_outputs;
6852 
6853    /* Emit constants and uniforms.  TGSI uses a single index space for these,
6854     * so we put all the translated regs in t->constants.
6855     */
6856    if (proginfo->Parameters) {
6857       t->constants = (struct ureg_src *)
6858          calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
6859       if (t->constants == NULL) {
6860          ret = PIPE_ERROR_OUT_OF_MEMORY;
6861          goto out;
6862       }
6863       t->num_constants = proginfo->Parameters->NumParameters;
6864 
6865       for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
6866          unsigned pvo = proginfo->Parameters->ParameterValueOffset[i];
6867 
6868          switch (proginfo->Parameters->Parameters[i].Type) {
6869          case PROGRAM_STATE_VAR:
6870          case PROGRAM_UNIFORM:
6871             t->constants[i] = ureg_DECL_constant(ureg, i);
6872             break;
6873 
6874          /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
6875           * addressing of the const buffer.
6876           * FIXME: Be smarter and recognize param arrays:
6877           * indirect addressing is only valid within the referenced
6878           * array.
6879           */
6880          case PROGRAM_CONSTANT:
6881             if (program->indirect_addr_consts)
6882                t->constants[i] = ureg_DECL_constant(ureg, i);
6883             else
6884                t->constants[i] = emit_immediate(t,
6885                                                 proginfo->Parameters->ParameterValues + pvo,
6886                                                 proginfo->Parameters->Parameters[i].DataType,
6887                                                 4);
6888             break;
6889          default:
6890             break;
6891          }
6892       }
6893    }
6894 
6895    for (i = 0; i < proginfo->info.num_ubos; i++) {
6896       unsigned size = proginfo->sh.UniformBlocks[i]->UniformBufferSize;
6897       unsigned num_const_vecs = (size + 15) / 16;
6898       unsigned first, last;
6899       assert(num_const_vecs > 0);
6900       first = 0;
6901       last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
6902       ureg_DECL_constant2D(t->ureg, first, last, i + 1);
6903    }
6904 
6905    /* Emit immediate values.
6906     */
6907    t->immediates = (struct ureg_src *)
6908       calloc(program->num_immediates, sizeof(struct ureg_src));
6909    if (t->immediates == NULL) {
6910       ret = PIPE_ERROR_OUT_OF_MEMORY;
6911       goto out;
6912    }
6913    t->num_immediates = program->num_immediates;
6914 
6915    i = 0;
6916    foreach_in_list(immediate_storage, imm, &program->immediates) {
6917       assert(i < program->num_immediates);
6918       t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size32);
6919    }
6920    assert(i == program->num_immediates);
6921 
6922    /* texture samplers */
6923    for (i = 0; i < frag_const->MaxTextureImageUnits; i++) {
6924       if (program->samplers_used & (1u << i)) {
6925          enum tgsi_return_type type =
6926             st_translate_texture_type(program->sampler_types[i]);
6927 
6928          t->samplers[i] = ureg_DECL_sampler(ureg, i);
6929 
6930          ureg_DECL_sampler_view(ureg, i, program->sampler_targets[i],
6931                                 type, type, type, type);
6932       }
6933    }
6934 
6935    /* Declare atomic and shader storage buffers. */
6936    {
6937       struct gl_program *prog = program->prog;
6938 
6939       if (!st_context(ctx)->has_hw_atomics) {
6940          for (i = 0; i < prog->info.num_abos; i++) {
6941             unsigned index = (prog->info.num_ssbos +
6942                               prog->sh.AtomicBuffers[i]->Binding);
6943             assert(prog->sh.AtomicBuffers[i]->Binding <
6944                    frag_const->MaxAtomicBuffers);
6945             t->buffers[index] = ureg_DECL_buffer(ureg, index, true);
6946          }
6947       } else {
6948          for (i = 0; i < program->num_atomics; i++) {
6949             struct hwatomic_decl *ainfo = &program->atomic_info[i];
6950             gl_uniform_storage *uni_storage = &prog->sh.data->UniformStorage[ainfo->location];
6951             int base = uni_storage->offset / ATOMIC_COUNTER_SIZE;
6952             ureg_DECL_hw_atomic(ureg, base, base + ainfo->size - 1, ainfo->binding,
6953                                 ainfo->array_id);
6954          }
6955       }
6956 
6957       assert(prog->info.num_ssbos <= frag_const->MaxShaderStorageBlocks);
6958       for (i = 0; i < prog->info.num_ssbos; i++) {
6959          t->buffers[i] = ureg_DECL_buffer(ureg, i, false);
6960       }
6961    }
6962 
6963    if (program->use_shared_memory)
6964       t->shared_memory = ureg_DECL_memory(ureg, TGSI_MEMORY_TYPE_SHARED);
6965 
6966    for (i = 0; i < program->shader->Program->info.num_images; i++) {
6967       if (program->images_used & (1 << i)) {
6968          t->images[i] = ureg_DECL_image(ureg, i,
6969                                         program->image_targets[i],
6970                                         program->image_formats[i],
6971                                         program->image_wr[i],
6972                                         false);
6973       }
6974    }
6975 
6976    /* Emit each instruction in turn:
6977     */
6978    foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions)
6979       compile_tgsi_instruction(t, inst);
6980 
6981 out:
6982    if (t) {
6983       free(t->arrays);
6984       free(t->temps);
6985       free(t->constants);
6986       t->num_constants = 0;
6987       free(t->immediates);
6988       t->num_immediates = 0;
6989       FREE(t);
6990    }
6991 
6992    return ret;
6993 }
6994 /* ----------------------------- End TGSI code ------------------------------ */
6995 
6996 
6997 /**
6998  * Convert a shader's GLSL IR into a Mesa gl_program, although without
6999  * generating Mesa IR.
7000  */
7001 static struct gl_program *
get_mesa_program_tgsi(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_linked_shader * shader)7002 get_mesa_program_tgsi(struct gl_context *ctx,
7003                       struct gl_shader_program *shader_program,
7004                       struct gl_linked_shader *shader)
7005 {
7006    glsl_to_tgsi_visitor* v;
7007    struct gl_program *prog;
7008    struct gl_shader_compiler_options *options =
7009          &ctx->Const.ShaderCompilerOptions[shader->Stage];
7010    struct pipe_screen *pscreen = ctx->st->pipe->screen;
7011    enum pipe_shader_type ptarget = pipe_shader_type_from_mesa(shader->Stage);
7012    unsigned skip_merge_registers;
7013 
7014    validate_ir_tree(shader->ir);
7015 
7016    prog = shader->Program;
7017 
7018    prog->Parameters = _mesa_new_parameter_list();
7019    v = new glsl_to_tgsi_visitor();
7020    v->ctx = ctx;
7021    v->prog = prog;
7022    v->shader_program = shader_program;
7023    v->shader = shader;
7024    v->options = options;
7025    v->native_integers = ctx->Const.NativeIntegers;
7026 
7027    v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
7028                                             PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
7029    v->have_fma = pscreen->get_shader_param(pscreen, ptarget,
7030                                            PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED);
7031    v->has_tex_txf_lz = pscreen->get_param(pscreen,
7032                                           PIPE_CAP_TGSI_TEX_TXF_LZ);
7033    v->need_uarl = !pscreen->get_param(pscreen, PIPE_CAP_TGSI_ANY_REG_AS_ADDRESS);
7034 
7035    v->tg4_component_in_swizzle = pscreen->get_param(pscreen, PIPE_CAP_TGSI_TG4_COMPONENT_IN_SWIZZLE);
7036    v->variables = _mesa_hash_table_create(v->mem_ctx, _mesa_hash_pointer,
7037                                           _mesa_key_pointer_equal);
7038    skip_merge_registers =
7039       pscreen->get_shader_param(pscreen, ptarget,
7040                                 PIPE_SHADER_CAP_TGSI_SKIP_MERGE_REGISTERS);
7041 
7042    _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
7043                                                prog->Parameters);
7044 
7045    /* Remove reads from output registers. */
7046    if (!pscreen->get_param(pscreen, PIPE_CAP_TGSI_CAN_READ_OUTPUTS))
7047       lower_output_reads(shader->Stage, shader->ir);
7048 
7049    /* Emit intermediate IR for main(). */
7050    visit_exec_list(shader->ir, v);
7051 
7052 #if 0
7053    /* Print out some information (for debugging purposes) used by the
7054     * optimization passes. */
7055    {
7056       int i;
7057       int *first_writes = ralloc_array(v->mem_ctx, int, v->next_temp);
7058       int *first_reads = ralloc_array(v->mem_ctx, int, v->next_temp);
7059       int *last_writes = ralloc_array(v->mem_ctx, int, v->next_temp);
7060       int *last_reads = ralloc_array(v->mem_ctx, int, v->next_temp);
7061 
7062       for (i = 0; i < v->next_temp; i++) {
7063          first_writes[i] = -1;
7064          first_reads[i] = -1;
7065          last_writes[i] = -1;
7066          last_reads[i] = -1;
7067       }
7068       v->get_first_temp_read(first_reads);
7069       v->get_last_temp_read_first_temp_write(last_reads, first_writes);
7070       v->get_last_temp_write(last_writes);
7071       for (i = 0; i < v->next_temp; i++)
7072          printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, first_reads[i],
7073                 first_writes[i],
7074                 last_reads[i],
7075                 last_writes[i]);
7076       ralloc_free(first_writes);
7077       ralloc_free(first_reads);
7078       ralloc_free(last_writes);
7079       ralloc_free(last_reads);
7080    }
7081 #endif
7082 
7083    /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
7084    v->simplify_cmp();
7085    v->copy_propagate();
7086 
7087    while (v->eliminate_dead_code());
7088 
7089    v->merge_two_dsts();
7090 
7091    if (!skip_merge_registers) {
7092       v->split_arrays();
7093       v->copy_propagate();
7094       while (v->eliminate_dead_code());
7095 
7096       v->merge_registers();
7097       v->copy_propagate();
7098       while (v->eliminate_dead_code());
7099    }
7100 
7101    v->renumber_registers();
7102 
7103    /* Write the END instruction. */
7104    v->emit_asm(NULL, TGSI_OPCODE_END);
7105 
7106    if (ctx->_Shader->Flags & GLSL_DUMP) {
7107       _mesa_log("\n");
7108       _mesa_log("GLSL IR for linked %s program %d:\n",
7109              _mesa_shader_stage_to_string(shader->Stage),
7110              shader_program->Name);
7111       _mesa_print_ir(_mesa_get_log_file(), shader->ir, NULL);
7112       _mesa_log("\n\n");
7113    }
7114 
7115    do_set_program_inouts(shader->ir, prog, shader->Stage);
7116 
7117    _mesa_copy_linked_program_data(shader_program, shader);
7118 
7119    if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_SKIP_SHRINK_IO_ARRAYS)) {
7120       mark_array_io(v->inputs, v->num_inputs,
7121                     &prog->info.inputs_read,
7122                     prog->DualSlotInputs,
7123                     &prog->info.patch_inputs_read);
7124 
7125       mark_array_io(v->outputs, v->num_outputs,
7126                     &prog->info.outputs_written, 0ULL,
7127                     &prog->info.patch_outputs_written);
7128    } else  {
7129       shrink_array_declarations(v->inputs, v->num_inputs,
7130                                 &prog->info.inputs_read,
7131                                 prog->DualSlotInputs,
7132                                 &prog->info.patch_inputs_read);
7133       shrink_array_declarations(v->outputs, v->num_outputs,
7134                                 &prog->info.outputs_written, 0ULL,
7135                                 &prog->info.patch_outputs_written);
7136    }
7137 
7138    count_resources(v, prog);
7139 
7140    /* The GLSL IR won't be needed anymore. */
7141    ralloc_free(shader->ir);
7142    shader->ir = NULL;
7143 
7144    /* This must be done before the uniform storage is associated. */
7145    if (shader->Stage == MESA_SHADER_FRAGMENT &&
7146        (prog->info.inputs_read & VARYING_BIT_POS ||
7147         BITSET_TEST(prog->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) ||
7148         BITSET_TEST(prog->info.system_values_read, SYSTEM_VALUE_SAMPLE_POS))) {
7149       static const gl_state_index16 wposTransformState[STATE_LENGTH] = {
7150          STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM
7151       };
7152 
7153       v->wpos_transform_const = _mesa_add_state_reference(prog->Parameters,
7154                                                           wposTransformState);
7155    }
7156 
7157    /* Avoid reallocation of the program parameter list, because the uniform
7158     * storage is only associated with the original parameter list.
7159     * This should be enough for Bitmap and DrawPixels constants.
7160     */
7161    _mesa_reserve_parameter_storage(prog->Parameters, 8);
7162 
7163    /* This has to be done last.  Any operation the can cause
7164     * prog->ParameterValues to get reallocated (e.g., anything that adds a
7165     * program constant) has to happen before creating this linkage.
7166     */
7167    _mesa_associate_uniform_storage(ctx, shader_program, prog);
7168    if (!shader_program->data->LinkStatus) {
7169       free_glsl_to_tgsi_visitor(v);
7170       _mesa_reference_program(ctx, &shader->Program, NULL);
7171       return NULL;
7172    }
7173 
7174    st_program(prog)->glsl_to_tgsi = v;
7175 
7176    PRINT_STATS(v->print_stats());
7177 
7178    return prog;
7179 }
7180 
7181 /* See if there are unsupported control flow statements. */
7182 class ir_control_flow_info_visitor : public ir_hierarchical_visitor {
7183 private:
7184    const struct gl_shader_compiler_options *options;
7185 public:
ir_control_flow_info_visitor(const struct gl_shader_compiler_options * options)7186    ir_control_flow_info_visitor(const struct gl_shader_compiler_options *options)
7187       : options(options),
7188         unsupported(false)
7189    {
7190    }
7191 
visit_enter(ir_function * ir)7192    virtual ir_visitor_status visit_enter(ir_function *ir)
7193    {
7194       /* Other functions are skipped (same as glsl_to_tgsi). */
7195       if (strcmp(ir->name, "main") == 0)
7196          return visit_continue;
7197 
7198       return visit_continue_with_parent;
7199    }
7200 
visit_enter(ir_call * ir)7201    virtual ir_visitor_status visit_enter(ir_call *ir)
7202    {
7203       if (!ir->callee->is_intrinsic()) {
7204          unsupported = true; /* it's a function call */
7205          return visit_stop;
7206       }
7207       return visit_continue;
7208    }
7209 
visit_enter(ir_return * ir)7210    virtual ir_visitor_status visit_enter(ir_return *ir)
7211    {
7212       if (options->EmitNoMainReturn) {
7213          unsupported = true;
7214          return visit_stop;
7215       }
7216       return visit_continue;
7217    }
7218 
7219    bool unsupported;
7220 };
7221 
7222 static bool
has_unsupported_control_flow(exec_list * ir,const struct gl_shader_compiler_options * options)7223 has_unsupported_control_flow(exec_list *ir,
7224                              const struct gl_shader_compiler_options *options)
7225 {
7226    ir_control_flow_info_visitor visitor(options);
7227    visit_list_elements(&visitor, ir);
7228    return visitor.unsupported;
7229 }
7230 
7231 /**
7232  * Link a shader.
7233  * This actually involves converting GLSL IR into an intermediate TGSI-like IR
7234  * with code lowering and other optimizations.
7235  */
7236 GLboolean
st_link_tgsi(struct gl_context * ctx,struct gl_shader_program * prog)7237 st_link_tgsi(struct gl_context *ctx, struct gl_shader_program *prog)
7238 {
7239    struct pipe_screen *pscreen = ctx->st->pipe->screen;
7240 
7241    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
7242       struct gl_linked_shader *shader = prog->_LinkedShaders[i];
7243       if (shader == NULL)
7244          continue;
7245 
7246       exec_list *ir = shader->ir;
7247       gl_shader_stage stage = shader->Stage;
7248       enum pipe_shader_type ptarget = pipe_shader_type_from_mesa(stage);
7249       const struct gl_shader_compiler_options *options =
7250             &ctx->Const.ShaderCompilerOptions[stage];
7251 
7252       unsigned if_threshold = pscreen->get_shader_param(pscreen, ptarget,
7253                                                         PIPE_SHADER_CAP_LOWER_IF_THRESHOLD);
7254       if (ctx->Const.GLSLOptimizeConservatively) {
7255          /* Do it once and repeat only if there's unsupported control flow. */
7256          do {
7257             do_common_optimization(ir, true, true, options,
7258                                    ctx->Const.NativeIntegers);
7259             lower_if_to_cond_assign((gl_shader_stage)i, ir,
7260                                     options->MaxIfDepth, if_threshold);
7261          } while (has_unsupported_control_flow(ir, options));
7262       } else {
7263          /* Repeat it until it stops making changes. */
7264          bool progress;
7265          do {
7266             progress = do_common_optimization(ir, true, true, options,
7267                                               ctx->Const.NativeIntegers);
7268             progress |= lower_if_to_cond_assign((gl_shader_stage)i, ir,
7269                                                 options->MaxIfDepth, if_threshold);
7270          } while (progress);
7271       }
7272 
7273       /* Do this again to lower ir_binop_vector_extract introduced
7274        * by optimization passes.
7275        */
7276       do_vec_index_to_cond_assign(ir);
7277 
7278       validate_ir_tree(ir);
7279 
7280       struct gl_program *linked_prog =
7281          get_mesa_program_tgsi(ctx, prog, shader);
7282       st_set_prog_affected_state_flags(linked_prog);
7283 
7284       if (linked_prog) {
7285          /* This is really conservative: */
7286          linked_prog->info.writes_memory =
7287             linked_prog->info.num_ssbos ||
7288             linked_prog->info.num_images ||
7289             ctx->Extensions.ARB_bindless_texture ||
7290             (linked_prog->sh.LinkedTransformFeedback &&
7291              linked_prog->sh.LinkedTransformFeedback->NumVarying);
7292 
7293          if (!ctx->Driver.ProgramStringNotify(ctx,
7294                                               _mesa_shader_stage_to_program(i),
7295                                               linked_prog)) {
7296             _mesa_reference_program(ctx, &shader->Program, NULL);
7297             return GL_FALSE;
7298          }
7299       }
7300    }
7301 
7302    return GL_TRUE;
7303 }
7304