• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2022  Google, Inc.
3  *
4  *  This is part of HarfBuzz, a text shaping library.
5  *
6  * Permission is hereby granted, without written agreement and without
7  * license or royalty fees, to use, copy, modify, and distribute this
8  * software and its documentation for any purpose, provided that the
9  * above copyright notice and the following two paragraphs appear in
10  * all copies of this software.
11  *
12  * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
13  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
14  * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
15  * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
16  * DAMAGE.
17  *
18  * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
19  * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
20  * FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED HEREUNDER IS
21  * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
22  * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
23  *
24  * Google Author(s): Garret Rieger
25  */
26 
27 #include "../hb-set.hh"
28 #include "../hb-priority-queue.hh"
29 #include "../hb-serialize.hh"
30 
31 #ifndef GRAPH_GRAPH_HH
32 #define GRAPH_GRAPH_HH
33 
34 namespace graph {
35 
36 /**
37  * Represents a serialized table in the form of a graph.
38  * Provides methods for modifying and reordering the graph.
39  */
40 struct graph_t
41 {
42   struct vertex_t
43   {
44     hb_serialize_context_t::object_t obj;
45     int64_t distance = 0 ;
46     int64_t space = 0 ;
47     hb_vector_t<unsigned> parents;
48     unsigned start = 0;
49     unsigned end = 0;
50     unsigned priority = 0;
51 
52 
link_positions_validgraph::graph_t::vertex_t53     bool link_positions_valid (unsigned num_objects, bool removed_nil)
54     {
55       hb_set_t assigned_bytes;
56       for (const auto& l : obj.real_links)
57       {
58         if (l.objidx >= num_objects
59             || (removed_nil && !l.objidx))
60         {
61           DEBUG_MSG (SUBSET_REPACK, nullptr,
62                      "Invalid graph. Invalid object index.");
63           return false;
64         }
65 
66         unsigned start = l.position;
67         unsigned end = start + l.width - 1;
68 
69         if (unlikely (l.width < 2 || l.width > 4))
70         {
71           DEBUG_MSG (SUBSET_REPACK, nullptr,
72                      "Invalid graph. Invalid link width.");
73           return false;
74         }
75 
76         if (unlikely (end >= table_size ()))
77         {
78           DEBUG_MSG (SUBSET_REPACK, nullptr,
79                      "Invalid graph. Link position is out of bounds.");
80           return false;
81         }
82 
83         if (unlikely (assigned_bytes.intersects (start, end)))
84         {
85           DEBUG_MSG (SUBSET_REPACK, nullptr,
86                      "Invalid graph. Found offsets whose positions overlap.");
87           return false;
88         }
89 
90         assigned_bytes.add_range (start, end);
91       }
92 
93       return !assigned_bytes.in_error ();
94     }
95 
normalizegraph::graph_t::vertex_t96     void normalize ()
97     {
98       obj.real_links.qsort ();
99       for (auto& l : obj.real_links)
100       {
101         for (unsigned i = 0; i < l.width; i++)
102         {
103           obj.head[l.position + i] = 0;
104         }
105       }
106     }
107 
equalsgraph::graph_t::vertex_t108     bool equals (const vertex_t& other,
109                  const graph_t& graph,
110                  const graph_t& other_graph,
111                  unsigned depth) const
112     {
113       if (!(as_bytes () == other.as_bytes ()))
114       {
115         DEBUG_MSG (SUBSET_REPACK, nullptr,
116                    "vertex [%lu] bytes != [%lu] bytes, depth = %u",
117                    (unsigned long) table_size (),
118                    (unsigned long) other.table_size (),
119                    depth);
120 
121         auto a = as_bytes ();
122         auto b = other.as_bytes ();
123         while (a || b)
124         {
125           DEBUG_MSG (SUBSET_REPACK, nullptr,
126                      "  0x%x %s 0x%x", *a, (*a == *b) ? "==" : "!=", *b);
127           a++;
128           b++;
129         }
130         return false;
131       }
132 
133       return links_equal (obj.real_links, other.obj.real_links, graph, other_graph, depth);
134     }
135 
as_bytesgraph::graph_t::vertex_t136     hb_bytes_t as_bytes () const
137     {
138       return hb_bytes_t (obj.head, table_size ());
139     }
140 
swapgraph::graph_t141     friend void swap (vertex_t& a, vertex_t& b)
142     {
143       hb_swap (a.obj, b.obj);
144       hb_swap (a.distance, b.distance);
145       hb_swap (a.space, b.space);
146       hb_swap (a.parents, b.parents);
147       hb_swap (a.start, b.start);
148       hb_swap (a.end, b.end);
149       hb_swap (a.priority, b.priority);
150     }
151 
152     hb_hashmap_t<unsigned, unsigned>
position_to_index_mapgraph::graph_t::vertex_t153     position_to_index_map () const
154     {
155       hb_hashmap_t<unsigned, unsigned> result;
156 
157       for (const auto& l : obj.real_links) {
158         result.set (l.position, l.objidx);
159       }
160 
161       return result;
162     }
163 
is_sharedgraph::graph_t::vertex_t164     bool is_shared () const
165     {
166       return parents.length > 1;
167     }
168 
incoming_edgesgraph::graph_t::vertex_t169     unsigned incoming_edges () const
170     {
171       return parents.length;
172     }
173 
remove_parentgraph::graph_t::vertex_t174     void remove_parent (unsigned parent_index)
175     {
176       for (unsigned i = 0; i < parents.length; i++)
177       {
178         if (parents[i] != parent_index) continue;
179         parents.remove_unordered (i);
180         break;
181       }
182     }
183 
remove_real_linkgraph::graph_t::vertex_t184     void remove_real_link (unsigned child_index, const void* offset)
185     {
186       for (unsigned i = 0; i < obj.real_links.length; i++)
187       {
188         auto& link = obj.real_links.arrayZ[i];
189         if (link.objidx != child_index)
190           continue;
191 
192         if ((obj.head + link.position) != offset)
193           continue;
194 
195         obj.real_links.remove_unordered (i);
196         return;
197       }
198     }
199 
remap_parentsgraph::graph_t::vertex_t200     void remap_parents (const hb_vector_t<unsigned>& id_map)
201     {
202       for (unsigned i = 0; i < parents.length; i++)
203         parents[i] = id_map[parents[i]];
204     }
205 
remap_parentgraph::graph_t::vertex_t206     void remap_parent (unsigned old_index, unsigned new_index)
207     {
208       for (unsigned i = 0; i < parents.length; i++)
209       {
210         if (parents[i] == old_index)
211           parents[i] = new_index;
212       }
213     }
214 
is_leafgraph::graph_t::vertex_t215     bool is_leaf () const
216     {
217       return !obj.real_links.length && !obj.virtual_links.length;
218     }
219 
raise_prioritygraph::graph_t::vertex_t220     bool raise_priority ()
221     {
222       if (has_max_priority ()) return false;
223       priority++;
224       return true;
225     }
226 
has_max_prioritygraph::graph_t::vertex_t227     bool has_max_priority () const {
228       return priority >= 3;
229     }
230 
table_sizegraph::graph_t::vertex_t231     size_t table_size () const {
232       return obj.tail - obj.head;
233     }
234 
modified_distancegraph::graph_t::vertex_t235     int64_t modified_distance (unsigned order) const
236     {
237       // TODO(garretrieger): once priority is high enough, should try
238       // setting distance = 0 which will force to sort immediately after
239       // it's parent where possible.
240 
241       int64_t modified_distance =
242           hb_min (hb_max(distance + distance_modifier (), 0), 0x7FFFFFFFFFF);
243       if (has_max_priority ()) {
244         modified_distance = 0;
245       }
246       return (modified_distance << 18) | (0x003FFFF & order);
247     }
248 
distance_modifiergraph::graph_t::vertex_t249     int64_t distance_modifier () const
250     {
251       if (!priority) return 0;
252       int64_t table_size = obj.tail - obj.head;
253 
254       if (priority == 1)
255         return -table_size / 2;
256 
257       return -table_size;
258     }
259 
260    private:
links_equalgraph::graph_t::vertex_t261     bool links_equal (const hb_vector_t<hb_serialize_context_t::object_t::link_t>& this_links,
262                       const hb_vector_t<hb_serialize_context_t::object_t::link_t>& other_links,
263                       const graph_t& graph,
264                       const graph_t& other_graph,
265                       unsigned depth) const
266     {
267       auto a = this_links.iter ();
268       auto b = other_links.iter ();
269 
270       while (a && b)
271       {
272         const auto& link_a = *a;
273         const auto& link_b = *b;
274 
275         if (link_a.width != link_b.width ||
276             link_a.is_signed != link_b.is_signed ||
277             link_a.whence != link_b.whence ||
278             link_a.position != link_b.position ||
279             link_a.bias != link_b.bias)
280           return false;
281 
282         if (!graph.vertices_[link_a.objidx].equals (
283                 other_graph.vertices_[link_b.objidx], graph, other_graph, depth + 1))
284           return false;
285 
286         a++;
287         b++;
288       }
289 
290       if (bool (a) != bool (b))
291         return false;
292 
293       return true;
294     }
295   };
296 
297   template <typename T>
298   struct vertex_and_table_t
299   {
vertex_and_table_tgraph::graph_t::vertex_and_table_t300     vertex_and_table_t () : index (0), vertex (nullptr), table (nullptr)
301     {}
302 
303     unsigned index;
304     vertex_t* vertex;
305     T* table;
306 
operator boolgraph::graph_t::vertex_and_table_t307     operator bool () {
308        return table && vertex;
309     }
310   };
311 
312   /*
313    * A topological sorting of an object graph. Ordered
314    * in reverse serialization order (first object in the
315    * serialization is at the end of the list). This matches
316    * the 'packed' object stack used internally in the
317    * serializer
318    */
319   template<typename T>
graph_tgraph::graph_t320   graph_t (const T& objects)
321       : parents_invalid (true),
322         distance_invalid (true),
323         positions_invalid (true),
324         successful (true),
325         buffers ()
326   {
327     num_roots_for_space_.push (1);
328     bool removed_nil = false;
329     vertices_.alloc (objects.length);
330     vertices_scratch_.alloc (objects.length);
331     for (unsigned i = 0; i < objects.length; i++)
332     {
333       // If this graph came from a serialization buffer object 0 is the
334       // nil object. We don't need it for our purposes here so drop it.
335       if (i == 0 && !objects[i])
336       {
337         removed_nil = true;
338         continue;
339       }
340 
341       vertex_t* v = vertices_.push ();
342       if (check_success (!vertices_.in_error ()))
343         v->obj = *objects[i];
344 
345       check_success (v->link_positions_valid (objects.length, removed_nil));
346 
347       if (!removed_nil) continue;
348       // Fix indices to account for removed nil object.
349       for (auto& l : v->obj.all_links_writer ()) {
350         l.objidx--;
351       }
352     }
353   }
354 
~graph_tgraph::graph_t355   ~graph_t ()
356   {
357     vertices_.fini ();
358     for (char* b : buffers)
359       hb_free (b);
360   }
361 
operator ==graph::graph_t362   bool operator== (const graph_t& other) const
363   {
364     return root ().equals (other.root (), *this, other, 0);
365   }
366 
367   // Sorts links of all objects in a consistent manner and zeroes all offsets.
normalizegraph::graph_t368   void normalize ()
369   {
370     for (auto& v : vertices_.writer ())
371       v.normalize ();
372   }
373 
in_errorgraph::graph_t374   bool in_error () const
375   {
376     return !successful ||
377         vertices_.in_error () ||
378         num_roots_for_space_.in_error ();
379   }
380 
rootgraph::graph_t381   const vertex_t& root () const
382   {
383     return vertices_[root_idx ()];
384   }
385 
root_idxgraph::graph_t386   unsigned root_idx () const
387   {
388     // Object graphs are in reverse order, the first object is at the end
389     // of the vector. Since the graph is topologically sorted it's safe to
390     // assume the first object has no incoming edges.
391     return vertices_.length - 1;
392   }
393 
objectgraph::graph_t394   const hb_serialize_context_t::object_t& object (unsigned i) const
395   {
396     return vertices_[i].obj;
397   }
398 
add_buffergraph::graph_t399   void add_buffer (char* buffer)
400   {
401     buffers.push (buffer);
402   }
403 
404   /*
405    * Adds a 16 bit link from parent_id to child_id
406    */
407   template<typename T>
add_linkgraph::graph_t408   void add_link (T* offset,
409                  unsigned parent_id,
410                  unsigned child_id)
411   {
412     auto& v = vertices_[parent_id];
413     auto* link = v.obj.real_links.push ();
414     link->width = 2;
415     link->objidx = child_id;
416     link->position = (char*) offset - (char*) v.obj.head;
417     vertices_[child_id].parents.push (parent_id);
418   }
419 
420   /*
421    * Generates a new topological sorting of graph ordered by the shortest
422    * distance to each node if positions are marked as invalid.
423    */
sort_shortest_distance_if_neededgraph::graph_t424   void sort_shortest_distance_if_needed ()
425   {
426     if (!positions_invalid) return;
427     sort_shortest_distance ();
428   }
429 
430 
431   /*
432    * Generates a new topological sorting of graph ordered by the shortest
433    * distance to each node.
434    */
sort_shortest_distancegraph::graph_t435   void sort_shortest_distance ()
436   {
437     positions_invalid = true;
438 
439     if (vertices_.length <= 1) {
440       // Graph of 1 or less doesn't need sorting.
441       return;
442     }
443 
444     update_distances ();
445 
446     hb_priority_queue_t queue;
447     hb_vector_t<vertex_t> &sorted_graph = vertices_scratch_;
448     if (unlikely (!check_success (sorted_graph.resize (vertices_.length)))) return;
449     hb_vector_t<unsigned> id_map;
450     if (unlikely (!check_success (id_map.resize (vertices_.length)))) return;
451 
452     hb_vector_t<unsigned> removed_edges;
453     if (unlikely (!check_success (removed_edges.resize (vertices_.length)))) return;
454     update_parents ();
455 
456     queue.insert (root ().modified_distance (0), root_idx ());
457     int new_id = root_idx ();
458     unsigned order = 1;
459     while (!queue.in_error () && !queue.is_empty ())
460     {
461       unsigned next_id = queue.pop_minimum().second;
462 
463       hb_swap (sorted_graph[new_id], vertices_[next_id]);
464       const vertex_t& next = sorted_graph[new_id];
465 
466       if (unlikely (!check_success(new_id >= 0))) {
467         // We are out of ids. Which means we've visited a node more than once.
468         // This graph contains a cycle which is not allowed.
469         DEBUG_MSG (SUBSET_REPACK, nullptr, "Invalid graph. Contains cycle.");
470         return;
471       }
472 
473       id_map[next_id] = new_id--;
474 
475       for (const auto& link : next.obj.all_links ()) {
476         removed_edges[link.objidx]++;
477         if (!(vertices_[link.objidx].incoming_edges () - removed_edges[link.objidx]))
478           // Add the order that the links were encountered to the priority.
479           // This ensures that ties between priorities objects are broken in a consistent
480           // way. More specifically this is set up so that if a set of objects have the same
481           // distance they'll be added to the topological order in the order that they are
482           // referenced from the parent object.
483           queue.insert (vertices_[link.objidx].modified_distance (order++),
484                         link.objidx);
485       }
486     }
487 
488     check_success (!queue.in_error ());
489     check_success (!sorted_graph.in_error ());
490 
491     remap_all_obj_indices (id_map, &sorted_graph);
492     hb_swap (vertices_, sorted_graph);
493 
494     if (!check_success (new_id == -1))
495       print_orphaned_nodes ();
496   }
497 
498   /*
499    * Finds the set of nodes (placed into roots) that should be assigned unique spaces.
500    * More specifically this looks for the top most 24 bit or 32 bit links in the graph.
501    * Some special casing is done that is specific to the layout of GSUB/GPOS tables.
502    */
find_space_rootsgraph::graph_t503   void find_space_roots (hb_set_t& visited, hb_set_t& roots)
504   {
505     int root_index = (int) root_idx ();
506     for (int i = root_index; i >= 0; i--)
507     {
508       if (visited.has (i)) continue;
509 
510       // Only real links can form 32 bit spaces
511       for (auto& l : vertices_[i].obj.real_links)
512       {
513         if (l.is_signed || l.width < 3)
514           continue;
515 
516         if (i == root_index && l.width == 3)
517           // Ignore 24bit links from the root node, this skips past the single 24bit
518           // pointer to the lookup list.
519           continue;
520 
521         if (l.width == 3)
522         {
523           // A 24bit offset forms a root, unless there is 32bit offsets somewhere
524           // in it's subgraph, then those become the roots instead. This is to make sure
525           // that extension subtables beneath a 24bit lookup become the spaces instead
526           // of the offset to the lookup.
527           hb_set_t sub_roots;
528           find_32bit_roots (l.objidx, sub_roots);
529           if (sub_roots) {
530             for (unsigned sub_root_idx : sub_roots) {
531               roots.add (sub_root_idx);
532               find_subgraph (sub_root_idx, visited);
533             }
534             continue;
535           }
536         }
537 
538         roots.add (l.objidx);
539         find_subgraph (l.objidx, visited);
540       }
541     }
542   }
543 
544   template <typename T, typename ...Ts>
as_tablegraph::graph_t545   vertex_and_table_t<T> as_table (unsigned parent, const void* offset, Ts... ds)
546   {
547     return as_table_from_index<T> (index_for_offset (parent, offset), std::forward<Ts>(ds)...);
548   }
549 
550   template <typename T, typename ...Ts>
as_mutable_tablegraph::graph_t551   vertex_and_table_t<T> as_mutable_table (unsigned parent, const void* offset, Ts... ds)
552   {
553     return as_table_from_index<T> (mutable_index_for_offset (parent, offset), std::forward<Ts>(ds)...);
554   }
555 
556   template <typename T, typename ...Ts>
as_table_from_indexgraph::graph_t557   vertex_and_table_t<T> as_table_from_index (unsigned index, Ts... ds)
558   {
559     if (index >= vertices_.length)
560       return vertex_and_table_t<T> ();
561 
562     vertex_and_table_t<T> r;
563     r.vertex = &vertices_[index];
564     r.table = (T*) r.vertex->obj.head;
565     r.index = index;
566     if (!r.table)
567       return vertex_and_table_t<T> ();
568 
569     if (!r.table->sanitize (*(r.vertex), std::forward<Ts>(ds)...))
570       return vertex_and_table_t<T> ();
571 
572     return r;
573   }
574 
575   // Finds the object id of the object pointed to by the offset at 'offset'
576   // within object[node_idx].
index_for_offsetgraph::graph_t577   unsigned index_for_offset (unsigned node_idx, const void* offset) const
578   {
579     const auto& node = object (node_idx);
580     if (offset < node.head || offset >= node.tail) return -1;
581 
582     unsigned length = node.real_links.length;
583     for (unsigned i = 0; i < length; i++)
584     {
585       // Use direct access for increased performance, this is a hot method.
586       const auto& link = node.real_links.arrayZ[i];
587       if (offset != node.head + link.position)
588         continue;
589       return link.objidx;
590     }
591 
592     return -1;
593   }
594 
595   // Finds the object id of the object pointed to by the offset at 'offset'
596   // within object[node_idx]. Ensures that the returned object is safe to mutate.
597   // That is, if the original child object is shared by parents other than node_idx
598   // it will be duplicated and the duplicate will be returned instead.
mutable_index_for_offsetgraph::graph_t599   unsigned mutable_index_for_offset (unsigned node_idx, const void* offset)
600   {
601     unsigned child_idx = index_for_offset (node_idx, offset);
602     auto& child = vertices_[child_idx];
603     for (unsigned p : child.parents)
604     {
605       if (p != node_idx) {
606         return duplicate (node_idx, child_idx);
607       }
608     }
609 
610     return child_idx;
611   }
612 
613 
614   /*
615    * Assign unique space numbers to each connected subgraph of 24 bit and/or 32 bit offset(s).
616    * Currently, this is implemented specifically tailored to the structure of a GPOS/GSUB
617    * (including with 24bit offsets) table.
618    */
assign_spacesgraph::graph_t619   bool assign_spaces ()
620   {
621     update_parents ();
622 
623     hb_set_t visited;
624     hb_set_t roots;
625     find_space_roots (visited, roots);
626 
627     // Mark everything not in the subgraphs of the roots as visited. This prevents
628     // subgraphs from being connected via nodes not in those subgraphs.
629     visited.invert ();
630 
631     if (!roots) return false;
632 
633     while (roots)
634     {
635       uint32_t next = HB_SET_VALUE_INVALID;
636       if (unlikely (!check_success (!roots.in_error ()))) break;
637       if (!roots.next (&next)) break;
638 
639       hb_set_t connected_roots;
640       find_connected_nodes (next, roots, visited, connected_roots);
641       if (unlikely (!check_success (!connected_roots.in_error ()))) break;
642 
643       isolate_subgraph (connected_roots);
644       if (unlikely (!check_success (!connected_roots.in_error ()))) break;
645 
646       unsigned next_space = this->next_space ();
647       num_roots_for_space_.push (0);
648       for (unsigned root : connected_roots)
649       {
650         DEBUG_MSG (SUBSET_REPACK, nullptr, "Subgraph %u gets space %u", root, next_space);
651         vertices_[root].space = next_space;
652         num_roots_for_space_[next_space] = num_roots_for_space_[next_space] + 1;
653         distance_invalid = true;
654         positions_invalid = true;
655       }
656 
657       // TODO(grieger): special case for GSUB/GPOS use extension promotions to move 16 bit space
658       //                into the 32 bit space as needed, instead of using isolation.
659     }
660 
661 
662 
663     return true;
664   }
665 
666   /*
667    * Isolates the subgraph of nodes reachable from root. Any links to nodes in the subgraph
668    * that originate from outside of the subgraph will be removed by duplicating the linked to
669    * object.
670    *
671    * Indices stored in roots will be updated if any of the roots are duplicated to new indices.
672    */
isolate_subgraphgraph::graph_t673   bool isolate_subgraph (hb_set_t& roots)
674   {
675     update_parents ();
676     hb_map_t subgraph;
677 
678     // incoming edges to root_idx should be all 32 bit in length so we don't need to de-dup these
679     // set the subgraph incoming edge count to match all of root_idx's incoming edges
680     hb_set_t parents;
681     for (unsigned root_idx : roots)
682     {
683       subgraph.set (root_idx, wide_parents (root_idx, parents));
684       find_subgraph (root_idx, subgraph);
685     }
686 
687     unsigned original_root_idx = root_idx ();
688     hb_map_t index_map;
689     bool made_changes = false;
690     for (auto entry : subgraph.iter ())
691     {
692       const auto& node = vertices_[entry.first];
693       unsigned subgraph_incoming_edges = entry.second;
694 
695       if (subgraph_incoming_edges < node.incoming_edges ())
696       {
697         // Only  de-dup objects with incoming links from outside the subgraph.
698         made_changes = true;
699         duplicate_subgraph (entry.first, index_map);
700       }
701     }
702 
703     if (!made_changes)
704       return false;
705 
706     if (original_root_idx != root_idx ()
707         && parents.has (original_root_idx))
708     {
709       // If the root idx has changed since parents was determined, update root idx in parents
710       parents.add (root_idx ());
711       parents.del (original_root_idx);
712     }
713 
714     auto new_subgraph =
715         + subgraph.keys ()
716         | hb_map([&] (uint32_t node_idx) {
717           const uint32_t *v;
718           if (index_map.has (node_idx, &v)) return *v;
719           return node_idx;
720         })
721         ;
722 
723     remap_obj_indices (index_map, new_subgraph);
724     remap_obj_indices (index_map, parents.iter (), true);
725 
726     // Update roots set with new indices as needed.
727     uint32_t next = HB_SET_VALUE_INVALID;
728     while (roots.next (&next))
729     {
730       const uint32_t *v;
731       if (index_map.has (next, &v))
732       {
733         roots.del (next);
734         roots.add (*v);
735       }
736     }
737 
738     return true;
739   }
740 
find_subgraphgraph::graph_t741   void find_subgraph (unsigned node_idx, hb_map_t& subgraph)
742   {
743     for (const auto& link : vertices_[node_idx].obj.all_links ())
744     {
745       const uint32_t *v;
746       if (subgraph.has (link.objidx, &v))
747       {
748         subgraph.set (link.objidx, *v + 1);
749         continue;
750       }
751       subgraph.set (link.objidx, 1);
752       find_subgraph (link.objidx, subgraph);
753     }
754   }
755 
find_subgraphgraph::graph_t756   void find_subgraph (unsigned node_idx, hb_set_t& subgraph)
757   {
758     if (subgraph.has (node_idx)) return;
759     subgraph.add (node_idx);
760     for (const auto& link : vertices_[node_idx].obj.all_links ())
761       find_subgraph (link.objidx, subgraph);
762   }
763 
find_subgraph_sizegraph::graph_t764   size_t find_subgraph_size (unsigned node_idx, hb_set_t& subgraph, unsigned max_depth = -1)
765   {
766     if (subgraph.has (node_idx)) return 0;
767     subgraph.add (node_idx);
768 
769     const auto& o = vertices_[node_idx].obj;
770     size_t size = o.tail - o.head;
771     if (max_depth == 0)
772       return size;
773 
774     for (const auto& link : o.all_links ())
775       size += find_subgraph_size (link.objidx, subgraph, max_depth - 1);
776     return size;
777   }
778 
779   /*
780    * Finds the topmost children of 32bit offsets in the subgraph starting
781    * at node_idx. Found indices are placed into 'found'.
782    */
find_32bit_rootsgraph::graph_t783   void find_32bit_roots (unsigned node_idx, hb_set_t& found)
784   {
785     for (const auto& link : vertices_[node_idx].obj.all_links ())
786     {
787       if (!link.is_signed && link.width == 4) {
788         found.add (link.objidx);
789         continue;
790       }
791       find_32bit_roots (link.objidx, found);
792     }
793   }
794 
795   /*
796    * Moves the child of old_parent_idx pointed to by old_offset to a new
797    * vertex at the new_offset.
798    */
799   template<typename O>
move_childgraph::graph_t800   void move_child (unsigned old_parent_idx,
801                    const O* old_offset,
802                    unsigned new_parent_idx,
803                    const O* new_offset)
804   {
805     distance_invalid = true;
806     positions_invalid = true;
807 
808     auto& old_v = vertices_[old_parent_idx];
809     auto& new_v = vertices_[new_parent_idx];
810 
811     unsigned child_id = index_for_offset (old_parent_idx,
812                                           old_offset);
813 
814     auto* new_link = new_v.obj.real_links.push ();
815     new_link->width = O::static_size;
816     new_link->objidx = child_id;
817     new_link->position = (const char*) new_offset - (const char*) new_v.obj.head;
818 
819     auto& child = vertices_[child_id];
820     child.parents.push (new_parent_idx);
821 
822     old_v.remove_real_link (child_id, old_offset);
823     child.remove_parent (old_parent_idx);
824   }
825 
826   /*
827    * duplicates all nodes in the subgraph reachable from node_idx. Does not re-assign
828    * links. index_map is updated with mappings from old id to new id. If a duplication has already
829    * been performed for a given index, then it will be skipped.
830    */
duplicate_subgraphgraph::graph_t831   void duplicate_subgraph (unsigned node_idx, hb_map_t& index_map)
832   {
833     if (index_map.has (node_idx))
834       return;
835 
836     index_map.set (node_idx, duplicate (node_idx));
837     for (const auto& l : object (node_idx).all_links ()) {
838       duplicate_subgraph (l.objidx, index_map);
839     }
840   }
841 
842   /*
843    * Creates a copy of node_idx and returns it's new index.
844    */
duplicategraph::graph_t845   unsigned duplicate (unsigned node_idx)
846   {
847     positions_invalid = true;
848     distance_invalid = true;
849 
850     auto* clone = vertices_.push ();
851     auto& child = vertices_[node_idx];
852     if (vertices_.in_error ()) {
853       return -1;
854     }
855 
856     clone->obj.head = child.obj.head;
857     clone->obj.tail = child.obj.tail;
858     clone->distance = child.distance;
859     clone->space = child.space;
860     clone->parents.reset ();
861 
862     unsigned clone_idx = vertices_.length - 2;
863     for (const auto& l : child.obj.real_links)
864     {
865       clone->obj.real_links.push (l);
866       vertices_[l.objidx].parents.push (clone_idx);
867     }
868     for (const auto& l : child.obj.virtual_links)
869     {
870       clone->obj.virtual_links.push (l);
871       vertices_[l.objidx].parents.push (clone_idx);
872     }
873 
874     check_success (!clone->obj.real_links.in_error ());
875     check_success (!clone->obj.virtual_links.in_error ());
876 
877     // The last object is the root of the graph, so swap back the root to the end.
878     // The root's obj idx does change, however since it's root nothing else refers to it.
879     // all other obj idx's will be unaffected.
880     hb_swap (vertices_[vertices_.length - 2], *clone);
881 
882     // Since the root moved, update the parents arrays of all children on the root.
883     for (const auto& l : root ().obj.all_links ())
884       vertices_[l.objidx].remap_parent (root_idx () - 1, root_idx ());
885 
886     return clone_idx;
887   }
888 
889   /*
890    * Creates a copy of child and re-assigns the link from
891    * parent to the clone. The copy is a shallow copy, objects
892    * linked from child are not duplicated.
893    */
duplicate_if_sharedgraph::graph_t894   unsigned duplicate_if_shared (unsigned parent_idx, unsigned child_idx)
895   {
896     unsigned new_idx = duplicate (parent_idx, child_idx);
897     if (new_idx == (unsigned) -1) return child_idx;
898     return new_idx;
899   }
900 
901 
902   /*
903    * Creates a copy of child and re-assigns the link from
904    * parent to the clone. The copy is a shallow copy, objects
905    * linked from child are not duplicated.
906    */
duplicategraph::graph_t907   unsigned duplicate (unsigned parent_idx, unsigned child_idx)
908   {
909     update_parents ();
910 
911     unsigned links_to_child = 0;
912     for (const auto& l : vertices_[parent_idx].obj.all_links ())
913     {
914       if (l.objidx == child_idx) links_to_child++;
915     }
916 
917     if (vertices_[child_idx].incoming_edges () <= links_to_child)
918     {
919       // Can't duplicate this node, doing so would orphan the original one as all remaining links
920       // to child are from parent.
921       DEBUG_MSG (SUBSET_REPACK, nullptr, "  Not duplicating %d => %d",
922                  parent_idx, child_idx);
923       return -1;
924     }
925 
926     DEBUG_MSG (SUBSET_REPACK, nullptr, "  Duplicating %d => %d",
927                parent_idx, child_idx);
928 
929     unsigned clone_idx = duplicate (child_idx);
930     if (clone_idx == (unsigned) -1) return false;
931     // duplicate shifts the root node idx, so if parent_idx was root update it.
932     if (parent_idx == clone_idx) parent_idx++;
933 
934     auto& parent = vertices_[parent_idx];
935     for (auto& l : parent.obj.all_links_writer ())
936     {
937       if (l.objidx != child_idx)
938         continue;
939 
940       reassign_link (l, parent_idx, clone_idx);
941     }
942 
943     return clone_idx;
944   }
945 
946 
947   /*
948    * Adds a new node to the graph, not connected to anything.
949    */
new_nodegraph::graph_t950   unsigned new_node (char* head, char* tail)
951   {
952     positions_invalid = true;
953     distance_invalid = true;
954 
955     auto* clone = vertices_.push ();
956     if (vertices_.in_error ()) {
957       return -1;
958     }
959 
960     clone->obj.head = head;
961     clone->obj.tail = tail;
962     clone->distance = 0;
963     clone->space = 0;
964 
965     unsigned clone_idx = vertices_.length - 2;
966 
967     // The last object is the root of the graph, so swap back the root to the end.
968     // The root's obj idx does change, however since it's root nothing else refers to it.
969     // all other obj idx's will be unaffected.
970     hb_swap (vertices_[vertices_.length - 2], *clone);
971 
972     // Since the root moved, update the parents arrays of all children on the root.
973     for (const auto& l : root ().obj.all_links ())
974       vertices_[l.objidx].remap_parent (root_idx () - 1, root_idx ());
975 
976     return clone_idx;
977   }
978 
979   /*
980    * Raises the sorting priority of all children.
981    */
raise_childrens_prioritygraph::graph_t982   bool raise_childrens_priority (unsigned parent_idx)
983   {
984     DEBUG_MSG (SUBSET_REPACK, nullptr, "  Raising priority of all children of %d",
985                parent_idx);
986     // This operation doesn't change ordering until a sort is run, so no need
987     // to invalidate positions. It does not change graph structure so no need
988     // to update distances or edge counts.
989     auto& parent = vertices_[parent_idx].obj;
990     bool made_change = false;
991     for (auto& l : parent.all_links_writer ())
992       made_change |= vertices_[l.objidx].raise_priority ();
993     return made_change;
994   }
995 
is_fully_connectedgraph::graph_t996   bool is_fully_connected ()
997   {
998     update_parents();
999 
1000     if (root().parents)
1001       // Root cannot have parents.
1002       return false;
1003 
1004     for (unsigned i = 0; i < root_idx (); i++)
1005     {
1006       if (!vertices_[i].parents)
1007         return false;
1008     }
1009     return true;
1010   }
1011 
1012 #if 0
1013   /*
1014    * Saves the current graph to a packed binary format which the repacker fuzzer takes
1015    * as a seed.
1016    */
1017   void save_fuzzer_seed (hb_tag_t tag) const
1018   {
1019     FILE* f = fopen ("./repacker_fuzzer_seed", "w");
1020     fwrite ((void*) &tag, sizeof (tag), 1, f);
1021 
1022     uint16_t num_objects = vertices_.length;
1023     fwrite ((void*) &num_objects, sizeof (num_objects), 1, f);
1024 
1025     for (const auto& v : vertices_)
1026     {
1027       uint16_t blob_size = v.table_size ();
1028       fwrite ((void*) &blob_size, sizeof (blob_size), 1, f);
1029       fwrite ((const void*) v.obj.head, blob_size, 1, f);
1030     }
1031 
1032     uint16_t link_count = 0;
1033     for (const auto& v : vertices_)
1034       link_count += v.obj.real_links.length;
1035 
1036     fwrite ((void*) &link_count, sizeof (link_count), 1, f);
1037 
1038     typedef struct
1039     {
1040       uint16_t parent;
1041       uint16_t child;
1042       uint16_t position;
1043       uint8_t width;
1044     } link_t;
1045 
1046     for (unsigned i = 0; i < vertices_.length; i++)
1047     {
1048       for (const auto& l : vertices_[i].obj.real_links)
1049       {
1050         link_t link {
1051           (uint16_t) i, (uint16_t) l.objidx,
1052           (uint16_t) l.position, (uint8_t) l.width
1053         };
1054         fwrite ((void*) &link, sizeof (link), 1, f);
1055       }
1056     }
1057 
1058     fclose (f);
1059   }
1060 #endif
1061 
print_orphaned_nodesgraph::graph_t1062   void print_orphaned_nodes ()
1063   {
1064     if (!DEBUG_ENABLED(SUBSET_REPACK)) return;
1065 
1066     DEBUG_MSG (SUBSET_REPACK, nullptr, "Graph is not fully connected.");
1067     parents_invalid = true;
1068     update_parents();
1069 
1070     if (root().parents) {
1071       DEBUG_MSG (SUBSET_REPACK, nullptr, "Root node has incoming edges.");
1072     }
1073 
1074     for (unsigned i = 0; i < root_idx (); i++)
1075     {
1076       const auto& v = vertices_[i];
1077       if (!v.parents)
1078         DEBUG_MSG (SUBSET_REPACK, nullptr, "Node %u is orphaned.", i);
1079     }
1080   }
1081 
num_roots_for_spacegraph::graph_t1082   unsigned num_roots_for_space (unsigned space) const
1083   {
1084     return num_roots_for_space_[space];
1085   }
1086 
next_spacegraph::graph_t1087   unsigned next_space () const
1088   {
1089     return num_roots_for_space_.length;
1090   }
1091 
move_to_new_spacegraph::graph_t1092   void move_to_new_space (const hb_set_t& indices)
1093   {
1094     num_roots_for_space_.push (0);
1095     unsigned new_space = num_roots_for_space_.length - 1;
1096 
1097     for (unsigned index : indices) {
1098       auto& node = vertices_[index];
1099       num_roots_for_space_[node.space] = num_roots_for_space_[node.space] - 1;
1100       num_roots_for_space_[new_space] = num_roots_for_space_[new_space] + 1;
1101       node.space = new_space;
1102       distance_invalid = true;
1103       positions_invalid = true;
1104     }
1105   }
1106 
space_forgraph::graph_t1107   unsigned space_for (unsigned index, unsigned* root = nullptr) const
1108   {
1109     const auto& node = vertices_[index];
1110     if (node.space)
1111     {
1112       if (root != nullptr)
1113         *root = index;
1114       return node.space;
1115     }
1116 
1117     if (!node.parents)
1118     {
1119       if (root)
1120         *root = index;
1121       return 0;
1122     }
1123 
1124     return space_for (node.parents[0], root);
1125   }
1126 
err_other_errorgraph::graph_t1127   void err_other_error () { this->successful = false; }
1128 
total_size_in_bytesgraph::graph_t1129   size_t total_size_in_bytes () const {
1130     size_t total_size = 0;
1131     for (unsigned i = 0; i < vertices_.length; i++) {
1132       size_t size = vertices_[i].obj.tail - vertices_[i].obj.head;
1133       total_size += size;
1134     }
1135     return total_size;
1136   }
1137 
1138 
1139  private:
1140 
1141   /*
1142    * Returns the numbers of incoming edges that are 24 or 32 bits wide.
1143    */
wide_parentsgraph::graph_t1144   unsigned wide_parents (unsigned node_idx, hb_set_t& parents) const
1145   {
1146     unsigned count = 0;
1147     hb_set_t visited;
1148     for (unsigned p : vertices_[node_idx].parents)
1149     {
1150       if (visited.has (p)) continue;
1151       visited.add (p);
1152 
1153       // Only real links can be wide
1154       for (const auto& l : vertices_[p].obj.real_links)
1155       {
1156         if (l.objidx == node_idx
1157             && (l.width == 3 || l.width == 4)
1158             && !l.is_signed)
1159         {
1160           count++;
1161           parents.add (p);
1162         }
1163       }
1164     }
1165     return count;
1166   }
1167 
check_successgraph::graph_t1168   bool check_success (bool success)
1169   { return this->successful && (success || ((void) err_other_error (), false)); }
1170 
1171  public:
1172   /*
1173    * Creates a map from objid to # of incoming edges.
1174    */
update_parentsgraph::graph_t1175   void update_parents ()
1176   {
1177     if (!parents_invalid) return;
1178 
1179     for (unsigned i = 0; i < vertices_.length; i++)
1180       vertices_[i].parents.reset ();
1181 
1182     for (unsigned p = 0; p < vertices_.length; p++)
1183     {
1184       for (auto& l : vertices_[p].obj.all_links ())
1185       {
1186         vertices_[l.objidx].parents.push (p);
1187       }
1188     }
1189 
1190     for (unsigned i = 0; i < vertices_.length; i++)
1191       // parents arrays must be accurate or downstream operations like cycle detection
1192       // and sorting won't work correctly.
1193       check_success (!vertices_[i].parents.in_error ());
1194 
1195     parents_invalid = false;
1196   }
1197 
1198   /*
1199    * compute the serialized start and end positions for each vertex.
1200    */
update_positionsgraph::graph_t1201   void update_positions ()
1202   {
1203     if (!positions_invalid) return;
1204 
1205     unsigned current_pos = 0;
1206     for (int i = root_idx (); i >= 0; i--)
1207     {
1208       auto& v = vertices_[i];
1209       v.start = current_pos;
1210       current_pos += v.obj.tail - v.obj.head;
1211       v.end = current_pos;
1212     }
1213 
1214     positions_invalid = false;
1215   }
1216 
1217   /*
1218    * Finds the distance to each object in the graph
1219    * from the initial node.
1220    */
update_distancesgraph::graph_t1221   void update_distances ()
1222   {
1223     if (!distance_invalid) return;
1224 
1225     // Uses Dijkstra's algorithm to find all of the shortest distances.
1226     // https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
1227     //
1228     // Implementation Note:
1229     // Since our priority queue doesn't support fast priority decreases
1230     // we instead just add new entries into the queue when a priority changes.
1231     // Redundant ones are filtered out later on by the visited set.
1232     // According to https://www3.cs.stonybrook.edu/~rezaul/papers/TR-07-54.pdf
1233     // for practical performance this is faster then using a more advanced queue
1234     // (such as a fibonacci queue) with a fast decrease priority.
1235     for (unsigned i = 0; i < vertices_.length; i++)
1236     {
1237       if (i == vertices_.length - 1)
1238         vertices_[i].distance = 0;
1239       else
1240         vertices_[i].distance = hb_int_max (int64_t);
1241     }
1242 
1243     hb_priority_queue_t queue;
1244     queue.insert (0, vertices_.length - 1);
1245 
1246     hb_vector_t<bool> visited;
1247     visited.resize (vertices_.length);
1248 
1249     while (!queue.in_error () && !queue.is_empty ())
1250     {
1251       unsigned next_idx = queue.pop_minimum ().second;
1252       if (visited[next_idx]) continue;
1253       const auto& next = vertices_[next_idx];
1254       int64_t next_distance = vertices_[next_idx].distance;
1255       visited[next_idx] = true;
1256 
1257       for (const auto& link : next.obj.all_links ())
1258       {
1259         if (visited[link.objidx]) continue;
1260 
1261         const auto& child = vertices_[link.objidx].obj;
1262         unsigned link_width = link.width ? link.width : 4; // treat virtual offsets as 32 bits wide
1263         int64_t child_weight = (child.tail - child.head) +
1264                                ((int64_t) 1 << (link_width * 8)) * (vertices_[link.objidx].space + 1);
1265         int64_t child_distance = next_distance + child_weight;
1266 
1267         if (child_distance < vertices_[link.objidx].distance)
1268         {
1269           vertices_[link.objidx].distance = child_distance;
1270           queue.insert (child_distance, link.objidx);
1271         }
1272       }
1273     }
1274 
1275     check_success (!queue.in_error ());
1276     if (!check_success (queue.is_empty ()))
1277     {
1278       print_orphaned_nodes ();
1279       return;
1280     }
1281 
1282     distance_invalid = false;
1283   }
1284 
1285  private:
1286   /*
1287    * Updates a link in the graph to point to a different object. Corrects the
1288    * parents vector on the previous and new child nodes.
1289    */
reassign_linkgraph::graph_t1290   void reassign_link (hb_serialize_context_t::object_t::link_t& link,
1291                       unsigned parent_idx,
1292                       unsigned new_idx)
1293   {
1294     unsigned old_idx = link.objidx;
1295     link.objidx = new_idx;
1296     vertices_[old_idx].remove_parent (parent_idx);
1297     vertices_[new_idx].parents.push (parent_idx);
1298   }
1299 
1300   /*
1301    * Updates all objidx's in all links using the provided mapping. Corrects incoming edge counts.
1302    */
1303   template<typename Iterator, hb_requires (hb_is_iterator (Iterator))>
remap_obj_indicesgraph::graph_t1304   void remap_obj_indices (const hb_map_t& id_map,
1305                           Iterator subgraph,
1306                           bool only_wide = false)
1307   {
1308     if (!id_map) return;
1309     for (unsigned i : subgraph)
1310     {
1311       for (auto& link : vertices_[i].obj.all_links_writer ())
1312       {
1313         const uint32_t *v;
1314         if (!id_map.has (link.objidx, &v)) continue;
1315         if (only_wide && !(link.width == 4 && !link.is_signed)) continue;
1316 
1317         reassign_link (link, i, *v);
1318       }
1319     }
1320   }
1321 
1322   /*
1323    * Updates all objidx's in all links using the provided mapping.
1324    */
remap_all_obj_indicesgraph::graph_t1325   void remap_all_obj_indices (const hb_vector_t<unsigned>& id_map,
1326                               hb_vector_t<vertex_t>* sorted_graph) const
1327   {
1328     for (unsigned i = 0; i < sorted_graph->length; i++)
1329     {
1330       (*sorted_graph)[i].remap_parents (id_map);
1331       for (auto& link : (*sorted_graph)[i].obj.all_links_writer ())
1332       {
1333         link.objidx = id_map[link.objidx];
1334       }
1335     }
1336   }
1337 
1338   /*
1339    * Finds all nodes in targets that are reachable from start_idx, nodes in visited will be skipped.
1340    * For this search the graph is treated as being undirected.
1341    *
1342    * Connected targets will be added to connected and removed from targets. All visited nodes
1343    * will be added to visited.
1344    */
find_connected_nodesgraph::graph_t1345   void find_connected_nodes (unsigned start_idx,
1346                              hb_set_t& targets,
1347                              hb_set_t& visited,
1348                              hb_set_t& connected)
1349   {
1350     if (unlikely (!check_success (!visited.in_error ()))) return;
1351     if (visited.has (start_idx)) return;
1352     visited.add (start_idx);
1353 
1354     if (targets.has (start_idx))
1355     {
1356       targets.del (start_idx);
1357       connected.add (start_idx);
1358     }
1359 
1360     const auto& v = vertices_[start_idx];
1361 
1362     // Graph is treated as undirected so search children and parents of start_idx
1363     for (const auto& l : v.obj.all_links ())
1364       find_connected_nodes (l.objidx, targets, visited, connected);
1365 
1366     for (unsigned p : v.parents)
1367       find_connected_nodes (p, targets, visited, connected);
1368   }
1369 
1370  public:
1371   // TODO(garretrieger): make private, will need to move most of offset overflow code into graph.
1372   hb_vector_t<vertex_t> vertices_;
1373   hb_vector_t<vertex_t> vertices_scratch_;
1374  private:
1375   bool parents_invalid;
1376   bool distance_invalid;
1377   bool positions_invalid;
1378   bool successful;
1379   hb_vector_t<unsigned> num_roots_for_space_;
1380   hb_vector_t<char*> buffers;
1381 };
1382 
1383 }
1384 
1385 #endif  // GRAPH_GRAPH_HH
1386