1 /******************************************************************************
2 * *
3 * Copyright (C) 2018 The Android Open Source Project
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 *****************************************************************************
18 * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
19 */
20 #include <stdlib.h>
21 #include "ixheaacd_type_def.h"
22 #include "ixheaacd_constants.h"
23 #include "ixheaacd_bitbuffer.h"
24 #include "ixheaacd_interface.h"
25 #include "ixheaacd_common_rom.h"
26 #include "ixheaacd_sbrdecsettings.h"
27 #include "ixheaacd_sbr_scale.h"
28 #include "ixheaacd_env_extr_part.h"
29 #include "ixheaacd_sbr_rom.h"
30 #include "ixheaacd_hybrid.h"
31 #include "ixheaacd_ps_dec.h"
32 #include "ixheaacd_config.h"
33 #include "ixheaacd_qmf_dec.h"
34 #include "ixheaacd_mps_polyphase.h"
35 #include "ixheaacd_mps_struct_def.h"
36 #include "ixheaacd_mps_res_rom.h"
37 #include "ixheaacd_mps_aac_struct.h"
38 #include "ixheaacd_mps_dec.h"
39 #include "ixheaacd_function_selector.h"
40
41 extern const FLOAT32
42 ixheaacd_mps_polyphase_filter_coeff[10 * MAX_NUM_QMF_BANDS_SAC / 2];
43 extern const FLOAT32 ixheaacd_mps_post_twid[30];
44 extern const FLOAT32 ixheaacd_mps_pre_twid[64];
45
46 extern const FLOAT32 ixheaacd_ldmps_polyphase_filter_coeff[1280];
47
48 extern const FLOAT32 ixheaacd_ldmps_pre_twid[32];
49 extern const FLOAT32 ixheaacd_mps_post_re_32[64];
50 extern const FLOAT32 ixheaacd_mps_post_im_32[64];
51
52
ixheaacd_mps_synt_init(FLOAT32 state[POLY_PHASE_SYNTH_SIZE])53 VOID ixheaacd_mps_synt_init(FLOAT32 state[POLY_PHASE_SYNTH_SIZE]) {
54 memset(state, 0, sizeof(FLOAT32) * POLY_PHASE_SYNTH_SIZE);
55 }
56
ixheaacd_mps_synt_post_fft_twiddle_dec(WORD32 resolution,FLOAT32 * fin_re,FLOAT32 * fin_im,const FLOAT32 * table_re,const FLOAT32 * table_im,FLOAT32 * state)57 VOID ixheaacd_mps_synt_post_fft_twiddle_dec(WORD32 resolution, FLOAT32 *fin_re,
58 FLOAT32 *fin_im,
59 const FLOAT32 *table_re,
60 const FLOAT32 *table_im,
61 FLOAT32 *state) {
62 WORD32 l;
63 for (l = 0; l < 2 * resolution; l++) {
64 state[2 * resolution - l - 1] =
65 ((fin_re[l] * table_re[l]) + (fin_im[l] * table_im[l]));
66 }
67 }
68
ixheaacd_mps_synt_out_calc_dec(WORD32 resolution,FLOAT32 * out,FLOAT32 * state,const FLOAT32 * filter_coeff)69 VOID ixheaacd_mps_synt_out_calc_dec(WORD32 resolution, FLOAT32 *out,
70 FLOAT32 *state,
71 const FLOAT32 *filter_coeff) {
72 WORD32 l, k;
73 FLOAT32 *out1, *out2, *state1, *state2;
74 out1 = out;
75 out2 = out + resolution;
76 state1 = state;
77 state2 = state + (3 * resolution);
78
79 for (k = 0; k < 5; k++) {
80 for (l = 0; l < resolution; l++) {
81 *out1++ = (*state1++) * (*filter_coeff++);
82 *out2++ = (*state2++) * (*filter_coeff++);
83 }
84 out1 += resolution;
85 out2 += resolution;
86 state1 += (3 * resolution);
87 state2 += (3 * resolution);
88 }
89 }
90
ixheaacd_mps_synt_out_calc_dec_ldmps(WORD32 resolution,FLOAT32 * out,FLOAT32 * state,const FLOAT32 * filter_coeff)91 VOID ixheaacd_mps_synt_out_calc_dec_ldmps(WORD32 resolution, FLOAT32 *out,
92 FLOAT32 *state, const FLOAT32 *filter_coeff) {
93 WORD32 l, k;
94 FLOAT32 *out1, *out2, *state1, *state2;
95 const FLOAT32 *filter1, *filter2;
96 filter1 = filter_coeff;
97 filter2 = filter_coeff + resolution;
98 out1 = out;
99 out2 = out + resolution;
100 state1 = state;
101 state2 = state + (3 * resolution);
102
103 for (k = 0; k < 5; k++) {
104 for (l = 0; l < resolution; l++) {
105 *out1++ = (*state1++) * (*filter1++);
106 *out2++ = (*state2++) * (*filter2++);
107 }
108 filter1 += resolution;
109 filter2 += resolution;
110 out1 += resolution;
111 out2 += resolution;
112 state1 += (3 * resolution);
113 state2 += (3 * resolution);
114 }
115 }
116
ixheaacd_mps_synt_out_calc_dec_ldmps_32(WORD32 resolution,FLOAT32 * out,FLOAT32 * state,const FLOAT32 * filter_coeff)117 VOID ixheaacd_mps_synt_out_calc_dec_ldmps_32(WORD32 resolution, FLOAT32 *out,
118 FLOAT32 *state, const FLOAT32 *filter_coeff) {
119 WORD32 l, k;
120 FLOAT32 *out1, *out2, *state1, *state2;
121 const FLOAT32 *filter1, *filter2;
122 filter1 = filter_coeff;
123 filter2 = filter_coeff + 2 * resolution;
124 out1 = out;
125 out2 = out + resolution;
126 state1 = state;
127 state2 = state + (3 * resolution);
128
129 for (k = 0; k < 5; k++) {
130 for (l = 0; l < resolution; l++) {
131 *out1++ = ((*state1++) * (filter1[2*l] + filter1[2*l+1])/2);
132 *out2++ = ((*state2++) * (filter2[2 * l] + filter2[2 * l + 1])/2);
133 }
134 filter1 += 4 * resolution;
135 filter2 += 4 * resolution;
136 out1 += resolution;
137 out2 += resolution;
138 state1 += (3 * resolution);
139 state2 += (3 * resolution);
140 }
141 }
142
ixheaacd_mps_synth_pre_twidle(FLOAT32 * out_re,FLOAT32 * out_im,FLOAT32 * c_in,WORD32 len)143 VOID ixheaacd_mps_synth_pre_twidle(FLOAT32 *out_re, FLOAT32 *out_im,
144 FLOAT32 *c_in, WORD32 len) {
145 WORD32 i;
146 FLOAT32 *c_s = c_in;
147 FLOAT32 *p_re_s = out_re;
148 FLOAT32 *p_im_s = out_im;
149 FLOAT32 *c_e = c_in + (len << 1) - 1;
150 FLOAT32 *p_im_e = out_im + len - 1;
151 FLOAT32 *p_re_e = out_re + len - 1;
152 const FLOAT32 *prtw = ixheaacd_mps_pre_twid;
153
154 for (i = 0; i < len; i += 4) {
155 *p_re_s = ((*c_s++) * (*prtw));
156 p_re_s++;
157 *p_im_s = -((*c_s--) * (*prtw));
158 p_im_s++;
159 *p_im_s = ((*c_e--) * (*prtw));
160 p_im_s--;
161 *p_re_s = ((*c_e++) * (*prtw++));
162 p_re_s--;
163 *p_im_s += ((*c_e--) * (*prtw));
164 p_im_s++;
165 *p_re_s += ((*c_e--) * (*prtw));
166 p_re_s++;
167 *p_re_s -= ((*c_s++) * (*prtw));
168 p_re_s++;
169 *p_im_s += ((*c_s++) * (*prtw++));
170 p_im_s++;
171 *p_im_e = ((*c_e--) * (*prtw));
172 p_im_e--;
173 *p_re_e = -((*c_e++) * (*prtw));
174 p_re_e--;
175 *p_re_e = ((*c_s++) * (*prtw));
176 p_re_e++;
177 *p_im_e = ((*c_s--) * (*prtw++));
178 p_im_e++;
179 *p_re_e += ((*c_s++) * (*prtw));
180 p_re_e--;
181 *p_im_e += ((*c_s++) * (*prtw));
182 p_im_e--;
183 *p_im_e -= ((*c_e--) * (*prtw));
184 p_im_e--;
185 *p_re_e += ((*c_e--) * (*prtw++));
186 p_re_e--;
187 }
188 }
189
ixheaacd_mps_synth_post_twidle(FLOAT32 * state,FLOAT32 * out_re,FLOAT32 * out_im,WORD32 len)190 VOID ixheaacd_mps_synth_post_twidle(FLOAT32 *state, FLOAT32 *out_re,
191 FLOAT32 *out_im, WORD32 len) {
192 WORD32 i;
193 {
194 FLOAT32 x_0, x_1, x_2, x_3;
195 FLOAT32 *p_re_e, *p_im_e;
196 const FLOAT32 *potw = ixheaacd_mps_post_twid;
197 FLOAT32 *p_re_s = out_re;
198 FLOAT32 *p_im_s = out_im;
199
200 p_re_e = p_re_s + (len - 2);
201 p_im_e = p_im_s + (len - 2);
202 x_0 = *p_re_e;
203 x_1 = *(p_re_e + 1);
204 x_2 = *p_im_e;
205 x_3 = *(p_im_e + 1);
206
207 *(p_re_e + 1) = -*(p_re_s + 1);
208 *(p_im_e + 1) = -*p_im_s;
209 *p_im_s = *(p_im_s + 1);
210
211 for (i = 5; i < len; i += 4) {
212 FLOAT32 twdr = *potw++;
213 FLOAT32 twdi = *potw++;
214 FLOAT32 tmp;
215
216 *p_re_e = (x_0 * twdi);
217 *p_re_e += (x_1 * twdr);
218 p_re_e--;
219 p_re_s++;
220 *p_re_s = (x_0 * twdr);
221 *p_re_s -= (x_1 * twdi);
222 p_re_s++;
223 x_1 = *p_re_e--;
224 x_0 = *p_re_e++;
225 *p_re_e = (*p_re_s++ * twdi);
226 *p_re_e += -(*p_re_s * twdr);
227 p_re_e--;
228 tmp = (*p_re_s-- * twdi);
229 *p_re_s = tmp + (*p_re_s * twdr);
230
231 *p_im_e = -(x_2 * twdr);
232 *p_im_e += (x_3 * twdi);
233 p_im_e--;
234 p_im_s++;
235 *p_im_s = -(x_2 * twdi);
236 *p_im_s -= (x_3 * twdr);
237 p_im_s++;
238 x_3 = *p_im_e--;
239 x_2 = *p_im_e++;
240 *p_im_e = -(*p_im_s++ * twdr);
241 *p_im_e -= (*p_im_s * twdi);
242 p_im_e--;
243 tmp = (*p_im_s-- * twdr);
244 *p_im_s = tmp - (*p_im_s * twdi);
245 }
246
247 *p_re_e = 0.7071067f * (x_1 + x_0);
248 *p_im_e = 0.7071067f * (x_3 - x_2);
249 *(p_re_s + 1) = -0.7071067f * (x_1 - x_0);
250 *(p_im_s + 1) = -0.7071067f * (x_3 + x_2);
251 }
252
253 for (i = 0; i < len; i++) {
254 state[i] = out_im[i] - out_re[i];
255 state[len + i] = out_im[len - i - 1] + out_re[len - i - 1];
256 state[len - i - 1] = out_im[len - i - 1] - out_re[len - i - 1];
257 state[2 * len - i - 1] = out_im[i] + out_re[i];
258 }
259 }
260
ixheaacd_mps_synt_pre_twiddle_dec(FLOAT32 * ptr_in,const FLOAT32 * table,FLOAT32 * fin_re,FLOAT32 * fin_im,WORD32 resolution)261 VOID ixheaacd_mps_synt_pre_twiddle_dec(FLOAT32 *ptr_in, const FLOAT32 *table,
262 FLOAT32 *fin_re, FLOAT32 *fin_im,
263 WORD32 resolution) {
264 WORD32 k;
265 FLOAT32 *c_s = ptr_in;
266 FLOAT32 *p_re_s = fin_re;
267 FLOAT32 *p_im_s = fin_im;
268 FLOAT32 *c_e = ptr_in + (resolution << 1) - 1;
269 FLOAT32 *p_im_e = fin_im + resolution - 1;
270 FLOAT32 *p_re_e = fin_re + resolution - 1;
271
272 for (k = 0; k < resolution; k += 2) {
273 *p_re_s = (*c_s++) * (*table);
274 *p_im_s = (*c_s) * (*table);
275
276 *p_re_e = (*c_e--) * (*table);
277 *p_im_e = -(*c_e) * (*table++);
278
279 *p_re_s += (*c_s--) * (*table);
280 *p_im_s += -(*c_s++) * (*table);
281 p_re_s++;
282 p_im_s++;
283 c_s++;
284
285 *p_re_e += (*c_e++) * (*table);
286 *p_im_e += (*c_e--) * (*table++);
287 p_re_e--;
288 p_im_e--;
289 c_e--;
290 }
291 }
292
ixheaacd_mps_synt_calc(ia_mps_dec_state_struct * self)293 VOID ixheaacd_mps_synt_calc(ia_mps_dec_state_struct *self) {
294 WORD32 k, l, ts, ch;
295 FLOAT32 *state, *tmp_state, *out;
296 const FLOAT32 *filt_coeff;
297 FLOAT32 *tmp_buf = self->tmp_buf;
298 FLOAT32 fin_re[64] = {0};
299 FLOAT32 fin_im[64] = {0};
300
301 WORD32 resolution = self->resolution;
302 WORD32 m_resolution = resolution >> 1;
303 const FLOAT32 *ixheaacd_mps_post_re, *ixheaacd_mps_post_im;
304 VOID(*ixheaacd_mps_synt_out_calc_pointer)
305 (WORD32 resolution, FLOAT32 *out, FLOAT32 *state, const FLOAT32 *filter_coeff);
306
307 if (self->ldmps_config.ldmps_present_flag)
308 {
309 ixheaacd_mps_synt_out_calc_pointer = &ixheaacd_mps_synt_out_calc_dec_ldmps;
310 filt_coeff = ixheaacd_ldmps_polyphase_filter_coeff;
311 }
312 else
313 {
314 ixheaacd_mps_synt_out_calc_pointer = ixheaacd_mps_synt_out_calc;
315 filt_coeff = ixheaacd_mps_polyphase_filter_coeff;
316 }
317 if (self->qmf_band_count == 32)
318 {
319 for (ch = 0; ch < self->out_ch_count; ch++) {
320 tmp_state = self->qmf_filt_state[ch];
321 state = &tmp_buf[self->time_slots * 2 * resolution];
322 memcpy(state, tmp_state, sizeof(FLOAT32) * 18 * resolution);
323 out = &tmp_buf[74 * MAX_NUM_QMF_BANDS_SAC];
324
325 ixheaacd_mps_post_re = ixheaacd_mps_post_re_32;
326 ixheaacd_mps_post_im = ixheaacd_mps_post_im_32;
327
328 for (ts = 0; ts < self->time_slots; ts++) {
329
330 state -= (2 * resolution);
331
332 ixheaacd_mps_synt_pre_twiddle_dec(&self->qmf_out_dir[ch][ts][0].re,
333 ixheaacd_ldmps_pre_twid, fin_re, fin_im, resolution);
334
335 for (k = resolution; k < 2 * resolution; k++)
336 {
337 fin_re[k] = 0;
338 fin_im[k] = 0;
339 }
340
341 ixheaacd_mps_complex_fft(fin_re, fin_im, 2 * resolution);
342
343 ixheaacd_mps_synt_post_fft_twiddle_dec(resolution, fin_re, fin_im,
344 ixheaacd_mps_post_re,
345 ixheaacd_mps_post_im, state);
346
347 ixheaacd_mps_synt_out_calc_dec_ldmps_32(resolution, out, state, filt_coeff);
348
349 for (k = 0; k < resolution; k++) {
350 FLOAT32 acc = out[k];
351 for (l = 1; l < 10; l++) {
352 acc += out[resolution * l + k];
353 }
354 self->output_buffer[ch][self->qmf_band_count * ts + k] = acc;
355 }
356 }
357 memcpy(tmp_state, state, sizeof(FLOAT32) * 18 * resolution);
358 }
359 }
360 else
361 {
362 for (ch = 0; ch < self->out_ch_count; ch++) {
363 tmp_state = self->qmf_filt_state[ch];
364 state = &tmp_buf[self->time_slots * 2 * resolution];
365 memcpy(state, tmp_state, sizeof(FLOAT32) * 18 * resolution);
366 out = &tmp_buf[74 * MAX_NUM_QMF_BANDS_SAC];
367
368 for (ts = 0; ts < self->time_slots; ts++) {
369
370 state -= (2 * resolution);
371
372 ixheaacd_mps_synth_pre_twidle(
373 fin_re, fin_im, &self->qmf_out_dir[ch][ts][0].re, resolution);
374
375 ixheaacd_mps_synth_calc_fft(fin_re, fin_im, m_resolution);
376
377 ixheaacd_mps_synth_post_twidle(state, fin_re, fin_im, resolution);
378 (*ixheaacd_mps_synt_out_calc_pointer)(resolution, out, state, filt_coeff);
379
380 for (k = 0; k < resolution; k++) {
381 FLOAT32 acc = out[k];
382 for (l = 1; l < 10; l++) {
383 acc += out[resolution * l + k];
384 }
385 self->output_buffer[ch][self->qmf_band_count * ts + k] = acc;
386 }
387 }
388 memcpy(tmp_state, state, sizeof(FLOAT32) * 18 * resolution);
389 }
390 }
391 }
392