• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrXferProcessor_DEFINED
9 #define GrXferProcessor_DEFINED
10 
11 #include "include/gpu/GrTypes.h"
12 #include "src/gpu/Blend.h"
13 #include "src/gpu/ganesh/GrNonAtomicRef.h"
14 #include "src/gpu/ganesh/GrProcessor.h"
15 #include "src/gpu/ganesh/GrProcessorAnalysis.h"
16 #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h"
17 
18 class GrGLSLXPFragmentBuilder;
19 class GrGLSLProgramDataManager;
20 struct GrShaderCaps;
21 namespace skgpu {
22     class KeyBuilder;
23 }
24 /**
25  * Barriers for blending. When a shader reads the dst directly, an Xfer barrier is sometimes
26  * required after a pixel has been written, before it can be safely read again.
27  */
28 enum GrXferBarrierType {
29     kNone_GrXferBarrierType = 0, //<! No barrier is required
30     kTexture_GrXferBarrierType,  //<! Required when a shader reads and renders to the same texture.
31     kBlend_GrXferBarrierType,    //<! Required by certain blend extensions.
32 };
33 /** Should be able to treat kNone as false in boolean expressions */
34 static_assert(SkToBool(kNone_GrXferBarrierType) == false);
35 
36 // Flag version of the above enum.
37 enum class GrXferBarrierFlags {
38     kNone    = 0,
39     kTexture = 1 << 0,
40     kBlend   = 1 << 1,
41 };
42 
GR_MAKE_BITFIELD_CLASS_OPS(GrXferBarrierFlags)43 GR_MAKE_BITFIELD_CLASS_OPS(GrXferBarrierFlags)
44 
45 /**
46  * GrXferProcessor is responsible for implementing the xfer mode that blends the src color and dst
47  * color, and for applying any coverage. It does this by emitting fragment shader code and
48  * controlling the fixed-function blend state. When dual-source blending is available, it may also
49  * write a seconday fragment shader output color. GrXferProcessor has two modes of operation:
50  *
51  * Dst read: When allowed by the backend API, or when supplied a texture of the destination, the
52  * GrXferProcessor may read the destination color. While operating in this mode, the subclass only
53  * provides shader code that blends the src and dst colors, and the base class applies coverage.
54  *
55  * No dst read: When not performing a dst read, the subclass is given full control of the fixed-
56  * function blend state and/or secondary output, and is responsible to apply coverage on its own.
57  *
58  * A GrXferProcessor is never installed directly into our draw state, but instead is created from a
59  * GrXPFactory once we have finalized the state of our draw.
60  */
61 class GrXferProcessor : public GrProcessor, public GrNonAtomicRef<GrXferProcessor> {
62 public:
63     /**
64      * Every GrXferProcessor must be capable of creating a subclass of ProgramImpl. The ProgramImpl
65      * emits the shader code combines determines the fragment shader output(s) from the color and
66      * coverage FP outputs, is attached to the generated backend API pipeline/program, and used to
67      * extract uniform data from GrXferProcessor instances.
68      */
69     class ProgramImpl;
70 
71     /**
72      * Adds a key on the skgpu::KeyBuilder calls onAddToKey(...) to get the specific subclass's key.
73      */
74     void addToKey(const GrShaderCaps&,
75                   skgpu::KeyBuilder*,
76                   const GrSurfaceOrigin* originIfDstTexture,
77                   bool usesInputAttachmentForDstRead) const;
78 
79     /** Returns a new instance of the appropriate *GL* implementation class
80         for the given GrXferProcessor; caller is responsible for deleting
81         the object. */
82     virtual std::unique_ptr<ProgramImpl> makeProgramImpl() const = 0;
83 
84     /**
85      * Returns the barrier type, if any, that this XP will require. Note that the possibility
86      * that a kTexture type barrier is required is handled by the GrPipeline and need not be
87      * considered by subclass overrides of this function.
88      */
89     virtual GrXferBarrierType xferBarrierType(const GrCaps& caps) const {
90         return kNone_GrXferBarrierType;
91     }
92 
93     inline skgpu::BlendInfo getBlendInfo() const {
94         skgpu::BlendInfo blendInfo;
95         if (!this->willReadDstColor()) {
96             this->onGetBlendInfo(&blendInfo);
97         }
98         return blendInfo;
99     }
100 
101     bool willReadDstColor() const { return fWillReadDstColor; }
102 
103     /**
104      * Returns whether or not this xferProcossor will set a secondary output to be used with dual
105      * source blending.
106      */
107     bool hasSecondaryOutput() const;
108 
109     bool isLCD() const { return fIsLCD; }
110 
111     /** Returns true if this and other processor conservatively draw identically. It can only return
112         true when the two processor are of the same subclass (i.e. they return the same object from
113         from getFactory()).
114 
115         A return value of true from isEqual() should not be used to test whether the processor would
116         generate the same shader code. To test for identical code generation use addToKey.
117       */
118 
119     bool isEqual(const GrXferProcessor& that) const {
120         if (this->classID() != that.classID()) {
121             return false;
122         }
123         if (this->fWillReadDstColor != that.fWillReadDstColor) {
124             return false;
125         }
126         if (fIsLCD != that.fIsLCD) {
127             return false;
128         }
129         return this->onIsEqual(that);
130     }
131 
132 protected:
133     GrXferProcessor(ClassID classID);
134     GrXferProcessor(ClassID classID, bool willReadDstColor, GrProcessorAnalysisCoverage);
135 
136 private:
137     /**
138      * Adds a key on the skgpu::KeyBuilder that reflects any variety in the code that may be emitted
139      * by the xfer processor subclass.
140      */
141     virtual void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const = 0;
142 
143     /**
144      * If we are not performing a dst read, returns whether the subclass will set a secondary
145      * output. When using dst reads, the base class controls the secondary output and this method
146      * will not be called.
147      */
148     virtual bool onHasSecondaryOutput() const { return false; }
149 
150     /**
151      * If we are not performing a dst read, retrieves the fixed-function blend state required by the
152      * subclass. When using dst reads, the base class controls the fixed-function blend state and
153      * this method will not be called. The BlendInfo struct comes initialized to "no blending".
154      */
155     virtual void onGetBlendInfo(skgpu::BlendInfo*) const {}
156 
157     virtual bool onIsEqual(const GrXferProcessor&) const = 0;
158 
159     bool fWillReadDstColor;
160     bool fIsLCD;
161 
162     using INHERITED = GrProcessor;
163 };
164 
165 /**
166  * We install a GrXPFactory (XPF) early on in the pipeline before all the final draw information is
167  * known (e.g. whether there is fractional pixel coverage, will coverage be 1 or 4 channel, is the
168  * draw opaque, etc.). Once the state of the draw is finalized, we use the XPF along with all the
169  * draw information to create a GrXferProcessor (XP) which can implement the desired blending for
170  * the draw.
171  *
172  * Before the XP is created, the XPF is able to answer queries about what functionality the XPs it
173  * creates will have. For example, can it create an XP that supports RGB coverage or will the XP
174  * blend with the destination color.
175  *
176  * GrXPFactories are intended to be static immutable objects. We pass them around as raw pointers
177  * and expect the pointers to always be valid and for the factories to be reusable and thread safe.
178  * Equality is tested for using pointer comparison. GrXPFactory destructors must be no-ops.
179  */
180 
181 // In order to construct GrXPFactory subclass instances as constexpr the subclass, and therefore
182 // GrXPFactory, must be a literal type. One requirement is having a trivial destructor. This is ok
183 // since these objects have no need for destructors. However, GCC and clang throw a warning when a
184 // class has virtual functions and a non-virtual destructor. We suppress that warning here and
185 // for the subclasses.
186 #if defined(__GNUC__)
187 #pragma GCC diagnostic push
188 #pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
189 #endif
190 #if defined(__clang__)
191 #pragma clang diagnostic push
192 #pragma clang diagnostic ignored "-Wnon-virtual-dtor"
193 #endif
194 class GrXPFactory {
195 public:
196     enum class AnalysisProperties : unsigned {
197         kNone = 0x0,
198         /**
199          * The fragment shader will require the destination color.
200          */
201         kReadsDstInShader = 0x1,
202         /**
203          * The op may apply coverage as alpha and still blend correctly.
204          */
205         kCompatibleWithCoverageAsAlpha = 0x2,
206         /**
207          * The color input to the GrXferProcessor will be ignored.
208          */
209         kIgnoresInputColor = 0x4,
210         /**
211          * The destination color will be provided to the fragment processor using a texture. This is
212          * additional information about the implementation of kReadsDstInShader.
213          */
214         kRequiresDstTexture = 0x10,
215         /**
216          * If set, each pixel can only be touched once during a draw (e.g., because we have a dst
217          * texture or because we need an xfer barrier).
218          */
219         kRequiresNonOverlappingDraws = 0x20,
220         /**
221          * If set the draw will use fixed function non coherent advanced blends.
222          */
223         kUsesNonCoherentHWBlending = 0x40,
224         /**
225          * If set, the existing dst value has no effect on the final output.
226          */
227         kUnaffectedByDstValue = 0x80,
228     };
229     GR_DECL_BITFIELD_CLASS_OPS_FRIENDS(AnalysisProperties);
230 
231     static sk_sp<const GrXferProcessor> MakeXferProcessor(const GrXPFactory*,
232                                                           const GrProcessorAnalysisColor&,
233                                                           GrProcessorAnalysisCoverage,
234                                                           const GrCaps& caps,
235                                                           GrClampType);
236 
237     static AnalysisProperties GetAnalysisProperties(const GrXPFactory*,
238                                                     const GrProcessorAnalysisColor&,
239                                                     const GrProcessorAnalysisCoverage&,
240                                                     const GrCaps&,
241                                                     GrClampType);
242 
243 protected:
GrXPFactory()244     constexpr GrXPFactory() {}
245 
246 private:
247     virtual sk_sp<const GrXferProcessor> makeXferProcessor(const GrProcessorAnalysisColor&,
248                                                            GrProcessorAnalysisCoverage,
249                                                            const GrCaps&,
250                                                            GrClampType) const = 0;
251 
252     /**
253      * Subclass analysis implementation. This should not return kNeedsDstInTexture as that will be
254      * inferred by the base class based on kReadsDstInShader and the caps.
255      */
256     virtual AnalysisProperties analysisProperties(const GrProcessorAnalysisColor&,
257                                                   const GrProcessorAnalysisCoverage&,
258                                                   const GrCaps&,
259                                                   GrClampType) const = 0;
260 };
261 #if defined(__GNUC__)
262 #pragma GCC diagnostic pop
263 #endif
264 #if defined(__clang__)
265 #pragma clang diagnostic pop
266 #endif
267 
GR_MAKE_BITFIELD_CLASS_OPS(GrXPFactory::AnalysisProperties)268 GR_MAKE_BITFIELD_CLASS_OPS(GrXPFactory::AnalysisProperties)
269 
270 //////////////////////////////////////////////////////////////////////////////
271 
272 class GrXferProcessor::ProgramImpl {
273 public:
274     virtual ~ProgramImpl() = default;
275 
276     using SamplerHandle = GrGLSLUniformHandler::SamplerHandle;
277 
278     struct EmitArgs {
279         EmitArgs(GrGLSLXPFragmentBuilder* fragBuilder,
280                  GrGLSLUniformHandler* uniformHandler,
281                  const GrShaderCaps* caps,
282                  const GrXferProcessor& xp,
283                  const char* inputColor,
284                  const char* inputCoverage,
285                  const char* outputPrimary,
286                  const char* outputSecondary,
287                  const SamplerHandle dstTextureSamplerHandle,
288                  GrSurfaceOrigin dstTextureOrigin,
289                  const skgpu::Swizzle& writeSwizzle)
290                 : fXPFragBuilder(fragBuilder)
291                 , fUniformHandler(uniformHandler)
292                 , fShaderCaps(caps)
293                 , fXP(xp)
294                 , fInputColor(inputColor ? inputColor : "half4(1.0)")
295                 , fInputCoverage(inputCoverage)
296                 , fOutputPrimary(outputPrimary)
297                 , fOutputSecondary(outputSecondary)
298                 , fDstTextureSamplerHandle(dstTextureSamplerHandle)
299                 , fDstTextureOrigin(dstTextureOrigin)
300                 , fWriteSwizzle(writeSwizzle) {}
301         GrGLSLXPFragmentBuilder* fXPFragBuilder;
302         GrGLSLUniformHandler* fUniformHandler;
303         const GrShaderCaps* fShaderCaps;
304         const GrXferProcessor& fXP;
305         const char* fInputColor;
306         const char* fInputCoverage;
307         const char* fOutputPrimary;
308         const char* fOutputSecondary;
309         const SamplerHandle fDstTextureSamplerHandle;
310         GrSurfaceOrigin fDstTextureOrigin;
311         skgpu::Swizzle fWriteSwizzle;
312     };
313     /**
314      * This is similar to emitCode() in the base class, except it takes a full shader builder.
315      * This allows the effect subclass to emit vertex code.
316      */
317     void emitCode(const EmitArgs&);
318 
319     /** A ProgramImpl instance can be reused with any GrXferProcessor that produces the same key.
320         This function reads data from a GrXferProcessor and uploads any uniform variables required
321         by the shaders created in emitCode(). The GrXferProcessor parameter is guaranteed to be of
322         the same type that created this ProgramImpl and to have an identical processor key as the
323         one that created this ProgramImpl. This function calls onSetData on the subclass of
324         ProgramImpl.
325      */
326     void setData(const GrGLSLProgramDataManager& pdm, const GrXferProcessor& xp);
327 
328 protected:
329     ProgramImpl() = default;
330 
331     static void DefaultCoverageModulation(GrGLSLXPFragmentBuilder* fragBuilder,
332                                           const char* srcCoverage,
333                                           const char* dstColor,
334                                           const char* outColor,
335                                           const char* outColorSecondary,
336                                           const GrXferProcessor& proc);
337 
338 private:
339     /**
340      * Called by emitCode() when the XP will not be performing a dst read. This method is
341      * responsible for both blending and coverage. A subclass only needs to implement this method if
342      * it can construct a GrXferProcessor that will not read the dst color.
343      */
344     virtual void emitOutputsForBlendState(const EmitArgs&) {
345         SK_ABORT("emitOutputsForBlendState not implemented.");
346     }
347 
348     /**
349      * Called by emitCode() when the XP will perform a dst read. This method only needs to supply
350      * the blending logic. The base class applies coverage. A subclass only needs to implement this
351      * method if it can construct a GrXferProcessor that reads the dst color.
352      */
353     virtual void emitBlendCodeForDstRead(GrGLSLXPFragmentBuilder*,
354                                          GrGLSLUniformHandler*,
355                                          const char* srcColor,
356                                          const char* srcCoverage,
357                                          const char* dstColor,
358                                          const char* outColor,
359                                          const char* outColorSecondary,
360                                          const GrXferProcessor&) {
361         SK_ABORT("emitBlendCodeForDstRead not implemented.");
362     }
363 
364     virtual void emitWriteSwizzle(GrGLSLXPFragmentBuilder*,
365                                   const skgpu::Swizzle&,
366                                   const char* outColor,
367                                   const char* outColorSecondary) const;
368 
369     virtual void onSetData(const GrGLSLProgramDataManager&, const GrXferProcessor&) {}
370 };
371 
372 #endif
373