1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "kvm_util_internal.h"
12 #include "processor.h"
13
14 #include <assert.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20
21 #define KVM_UTIL_MIN_PFN 2
22
23 static int vcpu_mmap_sz(void);
24
open_path_or_exit(const char * path,int flags)25 int open_path_or_exit(const char *path, int flags)
26 {
27 int fd;
28
29 fd = open(path, flags);
30 if (fd < 0) {
31 print_skip("%s not available (errno: %d)", path, errno);
32 exit(KSFT_SKIP);
33 }
34
35 return fd;
36 }
37
38 /*
39 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
40 *
41 * Input Args:
42 * flags - The flags to pass when opening KVM_DEV_PATH.
43 *
44 * Return:
45 * The opened file descriptor of /dev/kvm.
46 */
_open_kvm_dev_path_or_exit(int flags)47 static int _open_kvm_dev_path_or_exit(int flags)
48 {
49 return open_path_or_exit(KVM_DEV_PATH, flags);
50 }
51
open_kvm_dev_path_or_exit(void)52 int open_kvm_dev_path_or_exit(void)
53 {
54 return _open_kvm_dev_path_or_exit(O_RDONLY);
55 }
56
57 /*
58 * Capability
59 *
60 * Input Args:
61 * cap - Capability
62 *
63 * Output Args: None
64 *
65 * Return:
66 * On success, the Value corresponding to the capability (KVM_CAP_*)
67 * specified by the value of cap. On failure a TEST_ASSERT failure
68 * is produced.
69 *
70 * Looks up and returns the value corresponding to the capability
71 * (KVM_CAP_*) given by cap.
72 */
kvm_check_cap(long cap)73 int kvm_check_cap(long cap)
74 {
75 int ret;
76 int kvm_fd;
77
78 kvm_fd = open_kvm_dev_path_or_exit();
79 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
80 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n"
81 " rc: %i errno: %i", ret, errno);
82
83 close(kvm_fd);
84
85 return ret;
86 }
87
88 /* VM Check Capability
89 *
90 * Input Args:
91 * vm - Virtual Machine
92 * cap - Capability
93 *
94 * Output Args: None
95 *
96 * Return:
97 * On success, the Value corresponding to the capability (KVM_CAP_*)
98 * specified by the value of cap. On failure a TEST_ASSERT failure
99 * is produced.
100 *
101 * Looks up and returns the value corresponding to the capability
102 * (KVM_CAP_*) given by cap.
103 */
vm_check_cap(struct kvm_vm * vm,long cap)104 int vm_check_cap(struct kvm_vm *vm, long cap)
105 {
106 int ret;
107
108 ret = ioctl(vm->fd, KVM_CHECK_EXTENSION, cap);
109 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION VM IOCTL failed,\n"
110 " rc: %i errno: %i", ret, errno);
111
112 return ret;
113 }
114
115 /* VM Enable Capability
116 *
117 * Input Args:
118 * vm - Virtual Machine
119 * cap - Capability
120 *
121 * Output Args: None
122 *
123 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
124 *
125 * Enables a capability (KVM_CAP_*) on the VM.
126 */
vm_enable_cap(struct kvm_vm * vm,struct kvm_enable_cap * cap)127 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
128 {
129 int ret;
130
131 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
132 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
133 " rc: %i errno: %i", ret, errno);
134
135 return ret;
136 }
137
138 /* VCPU Enable Capability
139 *
140 * Input Args:
141 * vm - Virtual Machine
142 * vcpu_id - VCPU
143 * cap - Capability
144 *
145 * Output Args: None
146 *
147 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
148 *
149 * Enables a capability (KVM_CAP_*) on the VCPU.
150 */
vcpu_enable_cap(struct kvm_vm * vm,uint32_t vcpu_id,struct kvm_enable_cap * cap)151 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
152 struct kvm_enable_cap *cap)
153 {
154 struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
155 int r;
156
157 TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
158
159 r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
160 TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
161 " rc: %i, errno: %i", r, errno);
162
163 return r;
164 }
165
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)166 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
167 {
168 struct kvm_enable_cap cap = { 0 };
169
170 cap.cap = KVM_CAP_DIRTY_LOG_RING;
171 cap.args[0] = ring_size;
172 vm_enable_cap(vm, &cap);
173 vm->dirty_ring_size = ring_size;
174 }
175
vm_open(struct kvm_vm * vm,int perm)176 static void vm_open(struct kvm_vm *vm, int perm)
177 {
178 vm->kvm_fd = _open_kvm_dev_path_or_exit(perm);
179
180 if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
181 print_skip("immediate_exit not available");
182 exit(KSFT_SKIP);
183 }
184
185 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
186 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
187 "rc: %i errno: %i", vm->fd, errno);
188 }
189
vm_guest_mode_string(uint32_t i)190 const char *vm_guest_mode_string(uint32_t i)
191 {
192 static const char * const strings[] = {
193 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages",
194 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages",
195 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages",
196 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages",
197 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages",
198 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages",
199 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages",
200 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages",
201 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages",
202 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages",
203 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages",
204 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages",
205 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages",
206 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages",
207 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages",
208 };
209 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
210 "Missing new mode strings?");
211
212 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
213
214 return strings[i];
215 }
216
217 const struct vm_guest_mode_params vm_guest_mode_params[] = {
218 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 },
219 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 },
220 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 },
221 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 },
222 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 },
223 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 },
224 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 },
225 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 },
226 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 },
227 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 },
228 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 },
229 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 },
230 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 },
231 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 },
232 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 },
233 };
234 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
235 "Missing new mode params?");
236
237 /*
238 * VM Create
239 *
240 * Input Args:
241 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
242 * phy_pages - Physical memory pages
243 * perm - permission
244 *
245 * Output Args: None
246 *
247 * Return:
248 * Pointer to opaque structure that describes the created VM.
249 *
250 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
251 * When phy_pages is non-zero, a memory region of phy_pages physical pages
252 * is created and mapped starting at guest physical address 0. The file
253 * descriptor to control the created VM is created with the permissions
254 * given by perm (e.g. O_RDWR).
255 */
vm_create(enum vm_guest_mode mode,uint64_t phy_pages,int perm)256 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
257 {
258 struct kvm_vm *vm;
259
260 pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
261 vm_guest_mode_string(mode), phy_pages, perm);
262
263 vm = calloc(1, sizeof(*vm));
264 TEST_ASSERT(vm != NULL, "Insufficient Memory");
265
266 INIT_LIST_HEAD(&vm->vcpus);
267 vm->regions.gpa_tree = RB_ROOT;
268 vm->regions.hva_tree = RB_ROOT;
269 hash_init(vm->regions.slot_hash);
270
271 vm->mode = mode;
272 vm->type = 0;
273
274 vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
275 vm->va_bits = vm_guest_mode_params[mode].va_bits;
276 vm->page_size = vm_guest_mode_params[mode].page_size;
277 vm->page_shift = vm_guest_mode_params[mode].page_shift;
278
279 /* Setup mode specific traits. */
280 switch (vm->mode) {
281 case VM_MODE_P52V48_4K:
282 vm->pgtable_levels = 4;
283 break;
284 case VM_MODE_P52V48_64K:
285 vm->pgtable_levels = 3;
286 break;
287 case VM_MODE_P48V48_4K:
288 vm->pgtable_levels = 4;
289 break;
290 case VM_MODE_P48V48_64K:
291 vm->pgtable_levels = 3;
292 break;
293 case VM_MODE_P40V48_4K:
294 case VM_MODE_P36V48_4K:
295 vm->pgtable_levels = 4;
296 break;
297 case VM_MODE_P40V48_64K:
298 case VM_MODE_P36V48_64K:
299 vm->pgtable_levels = 3;
300 break;
301 case VM_MODE_P48V48_16K:
302 case VM_MODE_P40V48_16K:
303 case VM_MODE_P36V48_16K:
304 vm->pgtable_levels = 4;
305 break;
306 case VM_MODE_P36V47_16K:
307 vm->pgtable_levels = 3;
308 break;
309 case VM_MODE_PXXV48_4K:
310 #ifdef __x86_64__
311 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
312 /*
313 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
314 * it doesn't take effect unless a CR4.LA57 is set, which it
315 * isn't for this VM_MODE.
316 */
317 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
318 "Linear address width (%d bits) not supported",
319 vm->va_bits);
320 pr_debug("Guest physical address width detected: %d\n",
321 vm->pa_bits);
322 vm->pgtable_levels = 4;
323 vm->va_bits = 48;
324 #else
325 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
326 #endif
327 break;
328 case VM_MODE_P47V64_4K:
329 vm->pgtable_levels = 5;
330 break;
331 case VM_MODE_P44V64_4K:
332 vm->pgtable_levels = 5;
333 break;
334 default:
335 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
336 }
337
338 #ifdef __aarch64__
339 if (vm->pa_bits != 40)
340 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
341 #endif
342
343 vm_open(vm, perm);
344
345 /* Limit to VA-bit canonical virtual addresses. */
346 vm->vpages_valid = sparsebit_alloc();
347 sparsebit_set_num(vm->vpages_valid,
348 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
349 sparsebit_set_num(vm->vpages_valid,
350 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
351 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
352
353 /* Limit physical addresses to PA-bits. */
354 vm->max_gfn = vm_compute_max_gfn(vm);
355
356 /* Allocate and setup memory for guest. */
357 vm->vpages_mapped = sparsebit_alloc();
358 if (phy_pages != 0)
359 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
360 0, 0, phy_pages, 0);
361
362 return vm;
363 }
364
365 /*
366 * VM Create with customized parameters
367 *
368 * Input Args:
369 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
370 * nr_vcpus - VCPU count
371 * slot0_mem_pages - Slot0 physical memory size
372 * extra_mem_pages - Non-slot0 physical memory total size
373 * num_percpu_pages - Per-cpu physical memory pages
374 * guest_code - Guest entry point
375 * vcpuids - VCPU IDs
376 *
377 * Output Args: None
378 *
379 * Return:
380 * Pointer to opaque structure that describes the created VM.
381 *
382 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K),
383 * with customized slot0 memory size, at least 512 pages currently.
384 * extra_mem_pages is only used to calculate the maximum page table size,
385 * no real memory allocation for non-slot0 memory in this function.
386 */
vm_create_with_vcpus(enum vm_guest_mode mode,uint32_t nr_vcpus,uint64_t slot0_mem_pages,uint64_t extra_mem_pages,uint32_t num_percpu_pages,void * guest_code,uint32_t vcpuids[])387 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
388 uint64_t slot0_mem_pages, uint64_t extra_mem_pages,
389 uint32_t num_percpu_pages, void *guest_code,
390 uint32_t vcpuids[])
391 {
392 uint64_t vcpu_pages, extra_pg_pages, pages;
393 struct kvm_vm *vm;
394 int i;
395
396 /* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */
397 if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES)
398 slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES;
399
400 /* The maximum page table size for a memory region will be when the
401 * smallest pages are used. Considering each page contains x page
402 * table descriptors, the total extra size for page tables (for extra
403 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
404 * than N/x*2.
405 */
406 vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus;
407 extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2;
408 pages = slot0_mem_pages + vcpu_pages + extra_pg_pages;
409
410 TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
411 "nr_vcpus = %d too large for host, max-vcpus = %d",
412 nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
413
414 pages = vm_adjust_num_guest_pages(mode, pages);
415 vm = vm_create(mode, pages, O_RDWR);
416
417 kvm_vm_elf_load(vm, program_invocation_name);
418
419 #ifdef __x86_64__
420 vm_create_irqchip(vm);
421 #endif
422
423 for (i = 0; i < nr_vcpus; ++i) {
424 uint32_t vcpuid = vcpuids ? vcpuids[i] : i;
425
426 vm_vcpu_add_default(vm, vcpuid, guest_code);
427 }
428
429 return vm;
430 }
431
vm_create_default_with_vcpus(uint32_t nr_vcpus,uint64_t extra_mem_pages,uint32_t num_percpu_pages,void * guest_code,uint32_t vcpuids[])432 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages,
433 uint32_t num_percpu_pages, void *guest_code,
434 uint32_t vcpuids[])
435 {
436 return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES,
437 extra_mem_pages, num_percpu_pages, guest_code, vcpuids);
438 }
439
vm_create_default(uint32_t vcpuid,uint64_t extra_mem_pages,void * guest_code)440 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
441 void *guest_code)
442 {
443 return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code,
444 (uint32_t []){ vcpuid });
445 }
446
447 /*
448 * VM Restart
449 *
450 * Input Args:
451 * vm - VM that has been released before
452 * perm - permission
453 *
454 * Output Args: None
455 *
456 * Reopens the file descriptors associated to the VM and reinstates the
457 * global state, such as the irqchip and the memory regions that are mapped
458 * into the guest.
459 */
kvm_vm_restart(struct kvm_vm * vmp,int perm)460 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
461 {
462 int ctr;
463 struct userspace_mem_region *region;
464
465 vm_open(vmp, perm);
466 if (vmp->has_irqchip)
467 vm_create_irqchip(vmp);
468
469 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
470 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
471 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
472 " rc: %i errno: %i\n"
473 " slot: %u flags: 0x%x\n"
474 " guest_phys_addr: 0x%llx size: 0x%llx",
475 ret, errno, region->region.slot,
476 region->region.flags,
477 region->region.guest_phys_addr,
478 region->region.memory_size);
479 }
480 }
481
kvm_vm_get_dirty_log(struct kvm_vm * vm,int slot,void * log)482 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
483 {
484 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
485 int ret;
486
487 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
488 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
489 __func__, strerror(-ret));
490 }
491
kvm_vm_clear_dirty_log(struct kvm_vm * vm,int slot,void * log,uint64_t first_page,uint32_t num_pages)492 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
493 uint64_t first_page, uint32_t num_pages)
494 {
495 struct kvm_clear_dirty_log args = {
496 .dirty_bitmap = log, .slot = slot,
497 .first_page = first_page,
498 .num_pages = num_pages
499 };
500 int ret;
501
502 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
503 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
504 __func__, strerror(-ret));
505 }
506
kvm_vm_reset_dirty_ring(struct kvm_vm * vm)507 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
508 {
509 return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS);
510 }
511
512 /*
513 * Userspace Memory Region Find
514 *
515 * Input Args:
516 * vm - Virtual Machine
517 * start - Starting VM physical address
518 * end - Ending VM physical address, inclusive.
519 *
520 * Output Args: None
521 *
522 * Return:
523 * Pointer to overlapping region, NULL if no such region.
524 *
525 * Searches for a region with any physical memory that overlaps with
526 * any portion of the guest physical addresses from start to end
527 * inclusive. If multiple overlapping regions exist, a pointer to any
528 * of the regions is returned. Null is returned only when no overlapping
529 * region exists.
530 */
531 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)532 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
533 {
534 struct rb_node *node;
535
536 for (node = vm->regions.gpa_tree.rb_node; node; ) {
537 struct userspace_mem_region *region =
538 container_of(node, struct userspace_mem_region, gpa_node);
539 uint64_t existing_start = region->region.guest_phys_addr;
540 uint64_t existing_end = region->region.guest_phys_addr
541 + region->region.memory_size - 1;
542 if (start <= existing_end && end >= existing_start)
543 return region;
544
545 if (start < existing_start)
546 node = node->rb_left;
547 else
548 node = node->rb_right;
549 }
550
551 return NULL;
552 }
553
554 /*
555 * KVM Userspace Memory Region Find
556 *
557 * Input Args:
558 * vm - Virtual Machine
559 * start - Starting VM physical address
560 * end - Ending VM physical address, inclusive.
561 *
562 * Output Args: None
563 *
564 * Return:
565 * Pointer to overlapping region, NULL if no such region.
566 *
567 * Public interface to userspace_mem_region_find. Allows tests to look up
568 * the memslot datastructure for a given range of guest physical memory.
569 */
570 struct kvm_userspace_memory_region *
kvm_userspace_memory_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)571 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
572 uint64_t end)
573 {
574 struct userspace_mem_region *region;
575
576 region = userspace_mem_region_find(vm, start, end);
577 if (!region)
578 return NULL;
579
580 return ®ion->region;
581 }
582
583 /*
584 * VCPU Find
585 *
586 * Input Args:
587 * vm - Virtual Machine
588 * vcpuid - VCPU ID
589 *
590 * Output Args: None
591 *
592 * Return:
593 * Pointer to VCPU structure
594 *
595 * Locates a vcpu structure that describes the VCPU specified by vcpuid and
596 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU
597 * for the specified vcpuid.
598 */
vcpu_find(struct kvm_vm * vm,uint32_t vcpuid)599 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
600 {
601 struct vcpu *vcpu;
602
603 list_for_each_entry(vcpu, &vm->vcpus, list) {
604 if (vcpu->id == vcpuid)
605 return vcpu;
606 }
607
608 return NULL;
609 }
610
611 /*
612 * VM VCPU Remove
613 *
614 * Input Args:
615 * vcpu - VCPU to remove
616 *
617 * Output Args: None
618 *
619 * Return: None, TEST_ASSERT failures for all error conditions
620 *
621 * Removes a vCPU from a VM and frees its resources.
622 */
vm_vcpu_rm(struct kvm_vm * vm,struct vcpu * vcpu)623 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu)
624 {
625 int ret;
626
627 if (vcpu->dirty_gfns) {
628 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
629 TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, "
630 "rc: %i errno: %i", ret, errno);
631 vcpu->dirty_gfns = NULL;
632 }
633
634 ret = munmap(vcpu->state, vcpu_mmap_sz());
635 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
636 "errno: %i", ret, errno);
637 ret = close(vcpu->fd);
638 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
639 "errno: %i", ret, errno);
640
641 list_del(&vcpu->list);
642 free(vcpu);
643 }
644
kvm_vm_release(struct kvm_vm * vmp)645 void kvm_vm_release(struct kvm_vm *vmp)
646 {
647 struct vcpu *vcpu, *tmp;
648 int ret;
649
650 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
651 vm_vcpu_rm(vmp, vcpu);
652
653 ret = close(vmp->fd);
654 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
655 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
656
657 ret = close(vmp->kvm_fd);
658 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
659 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
660 }
661
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region,bool unlink)662 static void __vm_mem_region_delete(struct kvm_vm *vm,
663 struct userspace_mem_region *region,
664 bool unlink)
665 {
666 int ret;
667
668 if (unlink) {
669 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree);
670 rb_erase(®ion->hva_node, &vm->regions.hva_tree);
671 hash_del(®ion->slot_node);
672 }
673
674 region->region.memory_size = 0;
675 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
676 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
677 "rc: %i errno: %i", ret, errno);
678
679 sparsebit_free(®ion->unused_phy_pages);
680 ret = munmap(region->mmap_start, region->mmap_size);
681 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
682
683 free(region);
684 }
685
686 /*
687 * Destroys and frees the VM pointed to by vmp.
688 */
kvm_vm_free(struct kvm_vm * vmp)689 void kvm_vm_free(struct kvm_vm *vmp)
690 {
691 int ctr;
692 struct hlist_node *node;
693 struct userspace_mem_region *region;
694
695 if (vmp == NULL)
696 return;
697
698 /* Free userspace_mem_regions. */
699 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
700 __vm_mem_region_delete(vmp, region, false);
701
702 /* Free sparsebit arrays. */
703 sparsebit_free(&vmp->vpages_valid);
704 sparsebit_free(&vmp->vpages_mapped);
705
706 kvm_vm_release(vmp);
707
708 /* Free the structure describing the VM. */
709 free(vmp);
710 }
711
712 /*
713 * Memory Compare, host virtual to guest virtual
714 *
715 * Input Args:
716 * hva - Starting host virtual address
717 * vm - Virtual Machine
718 * gva - Starting guest virtual address
719 * len - number of bytes to compare
720 *
721 * Output Args: None
722 *
723 * Input/Output Args: None
724 *
725 * Return:
726 * Returns 0 if the bytes starting at hva for a length of len
727 * are equal the guest virtual bytes starting at gva. Returns
728 * a value < 0, if bytes at hva are less than those at gva.
729 * Otherwise a value > 0 is returned.
730 *
731 * Compares the bytes starting at the host virtual address hva, for
732 * a length of len, to the guest bytes starting at the guest virtual
733 * address given by gva.
734 */
kvm_memcmp_hva_gva(void * hva,struct kvm_vm * vm,vm_vaddr_t gva,size_t len)735 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
736 {
737 size_t amt;
738
739 /*
740 * Compare a batch of bytes until either a match is found
741 * or all the bytes have been compared.
742 */
743 for (uintptr_t offset = 0; offset < len; offset += amt) {
744 uintptr_t ptr1 = (uintptr_t)hva + offset;
745
746 /*
747 * Determine host address for guest virtual address
748 * at offset.
749 */
750 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
751
752 /*
753 * Determine amount to compare on this pass.
754 * Don't allow the comparsion to cross a page boundary.
755 */
756 amt = len - offset;
757 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
758 amt = vm->page_size - (ptr1 % vm->page_size);
759 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
760 amt = vm->page_size - (ptr2 % vm->page_size);
761
762 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
763 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
764
765 /*
766 * Perform the comparison. If there is a difference
767 * return that result to the caller, otherwise need
768 * to continue on looking for a mismatch.
769 */
770 int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
771 if (ret != 0)
772 return ret;
773 }
774
775 /*
776 * No mismatch found. Let the caller know the two memory
777 * areas are equal.
778 */
779 return 0;
780 }
781
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)782 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
783 struct userspace_mem_region *region)
784 {
785 struct rb_node **cur, *parent;
786
787 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
788 struct userspace_mem_region *cregion;
789
790 cregion = container_of(*cur, typeof(*cregion), gpa_node);
791 parent = *cur;
792 if (region->region.guest_phys_addr <
793 cregion->region.guest_phys_addr)
794 cur = &(*cur)->rb_left;
795 else {
796 TEST_ASSERT(region->region.guest_phys_addr !=
797 cregion->region.guest_phys_addr,
798 "Duplicate GPA in region tree");
799
800 cur = &(*cur)->rb_right;
801 }
802 }
803
804 rb_link_node(®ion->gpa_node, parent, cur);
805 rb_insert_color(®ion->gpa_node, gpa_tree);
806 }
807
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)808 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
809 struct userspace_mem_region *region)
810 {
811 struct rb_node **cur, *parent;
812
813 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
814 struct userspace_mem_region *cregion;
815
816 cregion = container_of(*cur, typeof(*cregion), hva_node);
817 parent = *cur;
818 if (region->host_mem < cregion->host_mem)
819 cur = &(*cur)->rb_left;
820 else {
821 TEST_ASSERT(region->host_mem !=
822 cregion->host_mem,
823 "Duplicate HVA in region tree");
824
825 cur = &(*cur)->rb_right;
826 }
827 }
828
829 rb_link_node(®ion->hva_node, parent, cur);
830 rb_insert_color(®ion->hva_node, hva_tree);
831 }
832
833 /*
834 * VM Userspace Memory Region Add
835 *
836 * Input Args:
837 * vm - Virtual Machine
838 * src_type - Storage source for this region.
839 * NULL to use anonymous memory.
840 * guest_paddr - Starting guest physical address
841 * slot - KVM region slot
842 * npages - Number of physical pages
843 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
844 *
845 * Output Args: None
846 *
847 * Return: None
848 *
849 * Allocates a memory area of the number of pages specified by npages
850 * and maps it to the VM specified by vm, at a starting physical address
851 * given by guest_paddr. The region is created with a KVM region slot
852 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
853 * region is created with the flags given by flags.
854 */
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)855 void vm_userspace_mem_region_add(struct kvm_vm *vm,
856 enum vm_mem_backing_src_type src_type,
857 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
858 uint32_t flags)
859 {
860 int ret;
861 struct userspace_mem_region *region;
862 size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
863 size_t alignment;
864
865 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
866 "Number of guest pages is not compatible with the host. "
867 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
868
869 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
870 "address not on a page boundary.\n"
871 " guest_paddr: 0x%lx vm->page_size: 0x%x",
872 guest_paddr, vm->page_size);
873 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
874 <= vm->max_gfn, "Physical range beyond maximum "
875 "supported physical address,\n"
876 " guest_paddr: 0x%lx npages: 0x%lx\n"
877 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
878 guest_paddr, npages, vm->max_gfn, vm->page_size);
879
880 /*
881 * Confirm a mem region with an overlapping address doesn't
882 * already exist.
883 */
884 region = (struct userspace_mem_region *) userspace_mem_region_find(
885 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
886 if (region != NULL)
887 TEST_FAIL("overlapping userspace_mem_region already "
888 "exists\n"
889 " requested guest_paddr: 0x%lx npages: 0x%lx "
890 "page_size: 0x%x\n"
891 " existing guest_paddr: 0x%lx size: 0x%lx",
892 guest_paddr, npages, vm->page_size,
893 (uint64_t) region->region.guest_phys_addr,
894 (uint64_t) region->region.memory_size);
895
896 /* Confirm no region with the requested slot already exists. */
897 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
898 slot) {
899 if (region->region.slot != slot)
900 continue;
901
902 TEST_FAIL("A mem region with the requested slot "
903 "already exists.\n"
904 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
905 " existing slot: %u paddr: 0x%lx size: 0x%lx",
906 slot, guest_paddr, npages,
907 region->region.slot,
908 (uint64_t) region->region.guest_phys_addr,
909 (uint64_t) region->region.memory_size);
910 }
911
912 /* Allocate and initialize new mem region structure. */
913 region = calloc(1, sizeof(*region));
914 TEST_ASSERT(region != NULL, "Insufficient Memory");
915 region->mmap_size = npages * vm->page_size;
916
917 #ifdef __s390x__
918 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
919 alignment = 0x100000;
920 #else
921 alignment = 1;
922 #endif
923
924 /*
925 * When using THP mmap is not guaranteed to returned a hugepage aligned
926 * address so we have to pad the mmap. Padding is not needed for HugeTLB
927 * because mmap will always return an address aligned to the HugeTLB
928 * page size.
929 */
930 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
931 alignment = max(backing_src_pagesz, alignment);
932
933 ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
934
935 /* Add enough memory to align up if necessary */
936 if (alignment > 1)
937 region->mmap_size += alignment;
938
939 region->fd = -1;
940 if (backing_src_is_shared(src_type)) {
941 int memfd_flags = MFD_CLOEXEC;
942
943 if (src_type == VM_MEM_SRC_SHARED_HUGETLB)
944 memfd_flags |= MFD_HUGETLB;
945
946 region->fd = memfd_create("kvm_selftest", memfd_flags);
947 TEST_ASSERT(region->fd != -1,
948 "memfd_create failed, errno: %i", errno);
949
950 ret = ftruncate(region->fd, region->mmap_size);
951 TEST_ASSERT(ret == 0, "ftruncate failed, errno: %i", errno);
952
953 ret = fallocate(region->fd,
954 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0,
955 region->mmap_size);
956 TEST_ASSERT(ret == 0, "fallocate failed, errno: %i", errno);
957 }
958
959 region->mmap_start = mmap(NULL, region->mmap_size,
960 PROT_READ | PROT_WRITE,
961 vm_mem_backing_src_alias(src_type)->flag,
962 region->fd, 0);
963 TEST_ASSERT(region->mmap_start != MAP_FAILED,
964 "test_malloc failed, mmap_start: %p errno: %i",
965 region->mmap_start, errno);
966
967 TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
968 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
969 "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
970 region->mmap_start, backing_src_pagesz);
971
972 /* Align host address */
973 region->host_mem = align_ptr_up(region->mmap_start, alignment);
974
975 /* As needed perform madvise */
976 if ((src_type == VM_MEM_SRC_ANONYMOUS ||
977 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
978 ret = madvise(region->host_mem, npages * vm->page_size,
979 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
980 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
981 region->host_mem, npages * vm->page_size,
982 vm_mem_backing_src_alias(src_type)->name);
983 }
984
985 region->unused_phy_pages = sparsebit_alloc();
986 sparsebit_set_num(region->unused_phy_pages,
987 guest_paddr >> vm->page_shift, npages);
988 region->region.slot = slot;
989 region->region.flags = flags;
990 region->region.guest_phys_addr = guest_paddr;
991 region->region.memory_size = npages * vm->page_size;
992 region->region.userspace_addr = (uintptr_t) region->host_mem;
993 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
994 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
995 " rc: %i errno: %i\n"
996 " slot: %u flags: 0x%x\n"
997 " guest_phys_addr: 0x%lx size: 0x%lx",
998 ret, errno, slot, flags,
999 guest_paddr, (uint64_t) region->region.memory_size);
1000
1001 /* Add to quick lookup data structures */
1002 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1003 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1004 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot);
1005
1006 /* If shared memory, create an alias. */
1007 if (region->fd >= 0) {
1008 region->mmap_alias = mmap(NULL, region->mmap_size,
1009 PROT_READ | PROT_WRITE,
1010 vm_mem_backing_src_alias(src_type)->flag,
1011 region->fd, 0);
1012 TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1013 "mmap of alias failed, errno: %i", errno);
1014
1015 /* Align host alias address */
1016 region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1017 }
1018 }
1019
1020 /*
1021 * Memslot to region
1022 *
1023 * Input Args:
1024 * vm - Virtual Machine
1025 * memslot - KVM memory slot ID
1026 *
1027 * Output Args: None
1028 *
1029 * Return:
1030 * Pointer to memory region structure that describe memory region
1031 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
1032 * on error (e.g. currently no memory region using memslot as a KVM
1033 * memory slot ID).
1034 */
1035 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)1036 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1037 {
1038 struct userspace_mem_region *region;
1039
1040 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1041 memslot)
1042 if (region->region.slot == memslot)
1043 return region;
1044
1045 fprintf(stderr, "No mem region with the requested slot found,\n"
1046 " requested slot: %u\n", memslot);
1047 fputs("---- vm dump ----\n", stderr);
1048 vm_dump(stderr, vm, 2);
1049 TEST_FAIL("Mem region not found");
1050 return NULL;
1051 }
1052
1053 /*
1054 * VM Memory Region Flags Set
1055 *
1056 * Input Args:
1057 * vm - Virtual Machine
1058 * flags - Starting guest physical address
1059 *
1060 * Output Args: None
1061 *
1062 * Return: None
1063 *
1064 * Sets the flags of the memory region specified by the value of slot,
1065 * to the values given by flags.
1066 */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1067 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1068 {
1069 int ret;
1070 struct userspace_mem_region *region;
1071
1072 region = memslot2region(vm, slot);
1073
1074 region->region.flags = flags;
1075
1076 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
1077
1078 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1079 " rc: %i errno: %i slot: %u flags: 0x%x",
1080 ret, errno, slot, flags);
1081 }
1082
1083 /*
1084 * VM Memory Region Move
1085 *
1086 * Input Args:
1087 * vm - Virtual Machine
1088 * slot - Slot of the memory region to move
1089 * new_gpa - Starting guest physical address
1090 *
1091 * Output Args: None
1092 *
1093 * Return: None
1094 *
1095 * Change the gpa of a memory region.
1096 */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1097 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1098 {
1099 struct userspace_mem_region *region;
1100 int ret;
1101
1102 region = memslot2region(vm, slot);
1103
1104 region->region.guest_phys_addr = new_gpa;
1105
1106 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
1107
1108 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1109 "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1110 ret, errno, slot, new_gpa);
1111 }
1112
1113 /*
1114 * VM Memory Region Delete
1115 *
1116 * Input Args:
1117 * vm - Virtual Machine
1118 * slot - Slot of the memory region to delete
1119 *
1120 * Output Args: None
1121 *
1122 * Return: None
1123 *
1124 * Delete a memory region.
1125 */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1126 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1127 {
1128 __vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1129 }
1130
1131 /*
1132 * VCPU mmap Size
1133 *
1134 * Input Args: None
1135 *
1136 * Output Args: None
1137 *
1138 * Return:
1139 * Size of VCPU state
1140 *
1141 * Returns the size of the structure pointed to by the return value
1142 * of vcpu_state().
1143 */
vcpu_mmap_sz(void)1144 static int vcpu_mmap_sz(void)
1145 {
1146 int dev_fd, ret;
1147
1148 dev_fd = open_kvm_dev_path_or_exit();
1149
1150 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1151 TEST_ASSERT(ret >= sizeof(struct kvm_run),
1152 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
1153 __func__, ret, errno);
1154
1155 close(dev_fd);
1156
1157 return ret;
1158 }
1159
1160 /*
1161 * VM VCPU Add
1162 *
1163 * Input Args:
1164 * vm - Virtual Machine
1165 * vcpuid - VCPU ID
1166 *
1167 * Output Args: None
1168 *
1169 * Return: None
1170 *
1171 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
1172 * No additional VCPU setup is done.
1173 */
vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpuid)1174 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
1175 {
1176 struct vcpu *vcpu;
1177
1178 /* Confirm a vcpu with the specified id doesn't already exist. */
1179 vcpu = vcpu_find(vm, vcpuid);
1180 if (vcpu != NULL)
1181 TEST_FAIL("vcpu with the specified id "
1182 "already exists,\n"
1183 " requested vcpuid: %u\n"
1184 " existing vcpuid: %u state: %p",
1185 vcpuid, vcpu->id, vcpu->state);
1186
1187 /* Allocate and initialize new vcpu structure. */
1188 vcpu = calloc(1, sizeof(*vcpu));
1189 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1190 vcpu->id = vcpuid;
1191 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
1192 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
1193 vcpu->fd, errno);
1194
1195 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
1196 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1197 vcpu_mmap_sz(), sizeof(*vcpu->state));
1198 vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1199 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1200 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
1201 "vcpu id: %u errno: %i", vcpuid, errno);
1202
1203 /* Add to linked-list of VCPUs. */
1204 list_add(&vcpu->list, &vm->vcpus);
1205 }
1206
1207 /*
1208 * VM Virtual Address Unused Gap
1209 *
1210 * Input Args:
1211 * vm - Virtual Machine
1212 * sz - Size (bytes)
1213 * vaddr_min - Minimum Virtual Address
1214 *
1215 * Output Args: None
1216 *
1217 * Return:
1218 * Lowest virtual address at or below vaddr_min, with at least
1219 * sz unused bytes. TEST_ASSERT failure if no area of at least
1220 * size sz is available.
1221 *
1222 * Within the VM specified by vm, locates the lowest starting virtual
1223 * address >= vaddr_min, that has at least sz unallocated bytes. A
1224 * TEST_ASSERT failure occurs for invalid input or no area of at least
1225 * sz unallocated bytes >= vaddr_min is available.
1226 */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1227 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1228 vm_vaddr_t vaddr_min)
1229 {
1230 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1231
1232 /* Determine lowest permitted virtual page index. */
1233 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1234 if ((pgidx_start * vm->page_size) < vaddr_min)
1235 goto no_va_found;
1236
1237 /* Loop over section with enough valid virtual page indexes. */
1238 if (!sparsebit_is_set_num(vm->vpages_valid,
1239 pgidx_start, pages))
1240 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1241 pgidx_start, pages);
1242 do {
1243 /*
1244 * Are there enough unused virtual pages available at
1245 * the currently proposed starting virtual page index.
1246 * If not, adjust proposed starting index to next
1247 * possible.
1248 */
1249 if (sparsebit_is_clear_num(vm->vpages_mapped,
1250 pgidx_start, pages))
1251 goto va_found;
1252 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1253 pgidx_start, pages);
1254 if (pgidx_start == 0)
1255 goto no_va_found;
1256
1257 /*
1258 * If needed, adjust proposed starting virtual address,
1259 * to next range of valid virtual addresses.
1260 */
1261 if (!sparsebit_is_set_num(vm->vpages_valid,
1262 pgidx_start, pages)) {
1263 pgidx_start = sparsebit_next_set_num(
1264 vm->vpages_valid, pgidx_start, pages);
1265 if (pgidx_start == 0)
1266 goto no_va_found;
1267 }
1268 } while (pgidx_start != 0);
1269
1270 no_va_found:
1271 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1272
1273 /* NOT REACHED */
1274 return -1;
1275
1276 va_found:
1277 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1278 pgidx_start, pages),
1279 "Unexpected, invalid virtual page index range,\n"
1280 " pgidx_start: 0x%lx\n"
1281 " pages: 0x%lx",
1282 pgidx_start, pages);
1283 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1284 pgidx_start, pages),
1285 "Unexpected, pages already mapped,\n"
1286 " pgidx_start: 0x%lx\n"
1287 " pages: 0x%lx",
1288 pgidx_start, pages);
1289
1290 return pgidx_start * vm->page_size;
1291 }
1292
1293 /*
1294 * VM Virtual Address Allocate
1295 *
1296 * Input Args:
1297 * vm - Virtual Machine
1298 * sz - Size in bytes
1299 * vaddr_min - Minimum starting virtual address
1300 * data_memslot - Memory region slot for data pages
1301 * pgd_memslot - Memory region slot for new virtual translation tables
1302 *
1303 * Output Args: None
1304 *
1305 * Return:
1306 * Starting guest virtual address
1307 *
1308 * Allocates at least sz bytes within the virtual address space of the vm
1309 * given by vm. The allocated bytes are mapped to a virtual address >=
1310 * the address given by vaddr_min. Note that each allocation uses a
1311 * a unique set of pages, with the minimum real allocation being at least
1312 * a page.
1313 */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1314 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1315 {
1316 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1317
1318 virt_pgd_alloc(vm);
1319 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1320 KVM_UTIL_MIN_PFN * vm->page_size, 0);
1321
1322 /*
1323 * Find an unused range of virtual page addresses of at least
1324 * pages in length.
1325 */
1326 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1327
1328 /* Map the virtual pages. */
1329 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1330 pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1331
1332 virt_pg_map(vm, vaddr, paddr);
1333
1334 sparsebit_set(vm->vpages_mapped,
1335 vaddr >> vm->page_shift);
1336 }
1337
1338 return vaddr_start;
1339 }
1340
1341 /*
1342 * VM Virtual Address Allocate Pages
1343 *
1344 * Input Args:
1345 * vm - Virtual Machine
1346 *
1347 * Output Args: None
1348 *
1349 * Return:
1350 * Starting guest virtual address
1351 *
1352 * Allocates at least N system pages worth of bytes within the virtual address
1353 * space of the vm.
1354 */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1355 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1356 {
1357 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1358 }
1359
1360 /*
1361 * VM Virtual Address Allocate Page
1362 *
1363 * Input Args:
1364 * vm - Virtual Machine
1365 *
1366 * Output Args: None
1367 *
1368 * Return:
1369 * Starting guest virtual address
1370 *
1371 * Allocates at least one system page worth of bytes within the virtual address
1372 * space of the vm.
1373 */
vm_vaddr_alloc_page(struct kvm_vm * vm)1374 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1375 {
1376 return vm_vaddr_alloc_pages(vm, 1);
1377 }
1378
1379 /*
1380 * Map a range of VM virtual address to the VM's physical address
1381 *
1382 * Input Args:
1383 * vm - Virtual Machine
1384 * vaddr - Virtuall address to map
1385 * paddr - VM Physical Address
1386 * npages - The number of pages to map
1387 * pgd_memslot - Memory region slot for new virtual translation tables
1388 *
1389 * Output Args: None
1390 *
1391 * Return: None
1392 *
1393 * Within the VM given by @vm, creates a virtual translation for
1394 * @npages starting at @vaddr to the page range starting at @paddr.
1395 */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1396 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1397 unsigned int npages)
1398 {
1399 size_t page_size = vm->page_size;
1400 size_t size = npages * page_size;
1401
1402 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1403 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1404
1405 while (npages--) {
1406 virt_pg_map(vm, vaddr, paddr);
1407 vaddr += page_size;
1408 paddr += page_size;
1409 }
1410 }
1411
1412 /*
1413 * Address VM Physical to Host Virtual
1414 *
1415 * Input Args:
1416 * vm - Virtual Machine
1417 * gpa - VM physical address
1418 *
1419 * Output Args: None
1420 *
1421 * Return:
1422 * Equivalent host virtual address
1423 *
1424 * Locates the memory region containing the VM physical address given
1425 * by gpa, within the VM given by vm. When found, the host virtual
1426 * address providing the memory to the vm physical address is returned.
1427 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1428 */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1429 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1430 {
1431 struct userspace_mem_region *region;
1432
1433 region = userspace_mem_region_find(vm, gpa, gpa);
1434 if (!region) {
1435 TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1436 return NULL;
1437 }
1438
1439 return (void *)((uintptr_t)region->host_mem
1440 + (gpa - region->region.guest_phys_addr));
1441 }
1442
1443 /*
1444 * Address Host Virtual to VM Physical
1445 *
1446 * Input Args:
1447 * vm - Virtual Machine
1448 * hva - Host virtual address
1449 *
1450 * Output Args: None
1451 *
1452 * Return:
1453 * Equivalent VM physical address
1454 *
1455 * Locates the memory region containing the host virtual address given
1456 * by hva, within the VM given by vm. When found, the equivalent
1457 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1458 * region containing hva exists.
1459 */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1460 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1461 {
1462 struct rb_node *node;
1463
1464 for (node = vm->regions.hva_tree.rb_node; node; ) {
1465 struct userspace_mem_region *region =
1466 container_of(node, struct userspace_mem_region, hva_node);
1467
1468 if (hva >= region->host_mem) {
1469 if (hva <= (region->host_mem
1470 + region->region.memory_size - 1))
1471 return (vm_paddr_t)((uintptr_t)
1472 region->region.guest_phys_addr
1473 + (hva - (uintptr_t)region->host_mem));
1474
1475 node = node->rb_right;
1476 } else
1477 node = node->rb_left;
1478 }
1479
1480 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1481 return -1;
1482 }
1483
1484 /*
1485 * Address VM physical to Host Virtual *alias*.
1486 *
1487 * Input Args:
1488 * vm - Virtual Machine
1489 * gpa - VM physical address
1490 *
1491 * Output Args: None
1492 *
1493 * Return:
1494 * Equivalent address within the host virtual *alias* area, or NULL
1495 * (without failing the test) if the guest memory is not shared (so
1496 * no alias exists).
1497 *
1498 * When vm_create() and related functions are called with a shared memory
1499 * src_type, we also create a writable, shared alias mapping of the
1500 * underlying guest memory. This allows the host to manipulate guest memory
1501 * without mapping that memory in the guest's address space. And, for
1502 * userfaultfd-based demand paging, we can do so without triggering userfaults.
1503 */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1504 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1505 {
1506 struct userspace_mem_region *region;
1507 uintptr_t offset;
1508
1509 region = userspace_mem_region_find(vm, gpa, gpa);
1510 if (!region)
1511 return NULL;
1512
1513 if (!region->host_alias)
1514 return NULL;
1515
1516 offset = gpa - region->region.guest_phys_addr;
1517 return (void *) ((uintptr_t) region->host_alias + offset);
1518 }
1519
1520 /*
1521 * VM Create IRQ Chip
1522 *
1523 * Input Args:
1524 * vm - Virtual Machine
1525 *
1526 * Output Args: None
1527 *
1528 * Return: None
1529 *
1530 * Creates an interrupt controller chip for the VM specified by vm.
1531 */
vm_create_irqchip(struct kvm_vm * vm)1532 void vm_create_irqchip(struct kvm_vm *vm)
1533 {
1534 int ret;
1535
1536 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1537 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1538 "rc: %i errno: %i", ret, errno);
1539
1540 vm->has_irqchip = true;
1541 }
1542
1543 /*
1544 * VM VCPU State
1545 *
1546 * Input Args:
1547 * vm - Virtual Machine
1548 * vcpuid - VCPU ID
1549 *
1550 * Output Args: None
1551 *
1552 * Return:
1553 * Pointer to structure that describes the state of the VCPU.
1554 *
1555 * Locates and returns a pointer to a structure that describes the
1556 * state of the VCPU with the given vcpuid.
1557 */
vcpu_state(struct kvm_vm * vm,uint32_t vcpuid)1558 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1559 {
1560 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1561 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1562
1563 return vcpu->state;
1564 }
1565
1566 /*
1567 * VM VCPU Run
1568 *
1569 * Input Args:
1570 * vm - Virtual Machine
1571 * vcpuid - VCPU ID
1572 *
1573 * Output Args: None
1574 *
1575 * Return: None
1576 *
1577 * Switch to executing the code for the VCPU given by vcpuid, within the VM
1578 * given by vm.
1579 */
vcpu_run(struct kvm_vm * vm,uint32_t vcpuid)1580 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1581 {
1582 int ret = _vcpu_run(vm, vcpuid);
1583 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1584 "rc: %i errno: %i", ret, errno);
1585 }
1586
_vcpu_run(struct kvm_vm * vm,uint32_t vcpuid)1587 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1588 {
1589 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1590 int rc;
1591
1592 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1593 do {
1594 rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1595 } while (rc == -1 && errno == EINTR);
1596
1597 assert_on_unhandled_exception(vm, vcpuid);
1598
1599 return rc;
1600 }
1601
vcpu_get_fd(struct kvm_vm * vm,uint32_t vcpuid)1602 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid)
1603 {
1604 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1605
1606 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1607
1608 return vcpu->fd;
1609 }
1610
vcpu_run_complete_io(struct kvm_vm * vm,uint32_t vcpuid)1611 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1612 {
1613 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1614 int ret;
1615
1616 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1617
1618 vcpu->state->immediate_exit = 1;
1619 ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1620 vcpu->state->immediate_exit = 0;
1621
1622 TEST_ASSERT(ret == -1 && errno == EINTR,
1623 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1624 ret, errno);
1625 }
1626
vcpu_set_guest_debug(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_guest_debug * debug)1627 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
1628 struct kvm_guest_debug *debug)
1629 {
1630 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1631 int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
1632
1633 TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
1634 }
1635
1636 /*
1637 * VM VCPU Set MP State
1638 *
1639 * Input Args:
1640 * vm - Virtual Machine
1641 * vcpuid - VCPU ID
1642 * mp_state - mp_state to be set
1643 *
1644 * Output Args: None
1645 *
1646 * Return: None
1647 *
1648 * Sets the MP state of the VCPU given by vcpuid, to the state given
1649 * by mp_state.
1650 */
vcpu_set_mp_state(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_mp_state * mp_state)1651 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1652 struct kvm_mp_state *mp_state)
1653 {
1654 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1655 int ret;
1656
1657 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1658
1659 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1660 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1661 "rc: %i errno: %i", ret, errno);
1662 }
1663
1664 /*
1665 * VM VCPU Get Reg List
1666 *
1667 * Input Args:
1668 * vm - Virtual Machine
1669 * vcpuid - VCPU ID
1670 *
1671 * Output Args:
1672 * None
1673 *
1674 * Return:
1675 * A pointer to an allocated struct kvm_reg_list
1676 *
1677 * Get the list of guest registers which are supported for
1678 * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls
1679 */
vcpu_get_reg_list(struct kvm_vm * vm,uint32_t vcpuid)1680 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
1681 {
1682 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1683 int ret;
1684
1685 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, ®_list_n);
1686 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1687 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1688 reg_list->n = reg_list_n.n;
1689 vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
1690 return reg_list;
1691 }
1692
1693 /*
1694 * VM VCPU Regs Get
1695 *
1696 * Input Args:
1697 * vm - Virtual Machine
1698 * vcpuid - VCPU ID
1699 *
1700 * Output Args:
1701 * regs - current state of VCPU regs
1702 *
1703 * Return: None
1704 *
1705 * Obtains the current register state for the VCPU specified by vcpuid
1706 * and stores it at the location given by regs.
1707 */
vcpu_regs_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_regs * regs)1708 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1709 {
1710 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1711 int ret;
1712
1713 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1714
1715 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1716 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1717 ret, errno);
1718 }
1719
1720 /*
1721 * VM VCPU Regs Set
1722 *
1723 * Input Args:
1724 * vm - Virtual Machine
1725 * vcpuid - VCPU ID
1726 * regs - Values to set VCPU regs to
1727 *
1728 * Output Args: None
1729 *
1730 * Return: None
1731 *
1732 * Sets the regs of the VCPU specified by vcpuid to the values
1733 * given by regs.
1734 */
vcpu_regs_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_regs * regs)1735 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1736 {
1737 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1738 int ret;
1739
1740 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1741
1742 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1743 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1744 ret, errno);
1745 }
1746
1747 #ifdef __KVM_HAVE_VCPU_EVENTS
vcpu_events_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_vcpu_events * events)1748 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1749 struct kvm_vcpu_events *events)
1750 {
1751 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1752 int ret;
1753
1754 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1755
1756 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1757 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1758 ret, errno);
1759 }
1760
vcpu_events_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_vcpu_events * events)1761 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1762 struct kvm_vcpu_events *events)
1763 {
1764 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1765 int ret;
1766
1767 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1768
1769 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1770 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1771 ret, errno);
1772 }
1773 #endif
1774
1775 #ifdef __x86_64__
vcpu_nested_state_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_nested_state * state)1776 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1777 struct kvm_nested_state *state)
1778 {
1779 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1780 int ret;
1781
1782 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1783
1784 ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1785 TEST_ASSERT(ret == 0,
1786 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1787 ret, errno);
1788 }
1789
vcpu_nested_state_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_nested_state * state,bool ignore_error)1790 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1791 struct kvm_nested_state *state, bool ignore_error)
1792 {
1793 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1794 int ret;
1795
1796 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1797
1798 ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1799 if (!ignore_error) {
1800 TEST_ASSERT(ret == 0,
1801 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1802 ret, errno);
1803 }
1804
1805 return ret;
1806 }
1807 #endif
1808
1809 /*
1810 * VM VCPU System Regs Get
1811 *
1812 * Input Args:
1813 * vm - Virtual Machine
1814 * vcpuid - VCPU ID
1815 *
1816 * Output Args:
1817 * sregs - current state of VCPU system regs
1818 *
1819 * Return: None
1820 *
1821 * Obtains the current system register state for the VCPU specified by
1822 * vcpuid and stores it at the location given by sregs.
1823 */
vcpu_sregs_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_sregs * sregs)1824 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1825 {
1826 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1827 int ret;
1828
1829 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1830
1831 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1832 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1833 ret, errno);
1834 }
1835
1836 /*
1837 * VM VCPU System Regs Set
1838 *
1839 * Input Args:
1840 * vm - Virtual Machine
1841 * vcpuid - VCPU ID
1842 * sregs - Values to set VCPU system regs to
1843 *
1844 * Output Args: None
1845 *
1846 * Return: None
1847 *
1848 * Sets the system regs of the VCPU specified by vcpuid to the values
1849 * given by sregs.
1850 */
vcpu_sregs_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_sregs * sregs)1851 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1852 {
1853 int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1854 TEST_ASSERT(ret == 0, "KVM_SET_SREGS IOCTL failed, "
1855 "rc: %i errno: %i", ret, errno);
1856 }
1857
_vcpu_sregs_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_sregs * sregs)1858 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1859 {
1860 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1861
1862 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1863
1864 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1865 }
1866
vcpu_fpu_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_fpu * fpu)1867 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1868 {
1869 int ret;
1870
1871 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1872 TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1873 ret, errno, strerror(errno));
1874 }
1875
vcpu_fpu_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_fpu * fpu)1876 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1877 {
1878 int ret;
1879
1880 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1881 TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1882 ret, errno, strerror(errno));
1883 }
1884
vcpu_get_reg(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_one_reg * reg)1885 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1886 {
1887 int ret;
1888
1889 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1890 TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1891 ret, errno, strerror(errno));
1892 }
1893
vcpu_set_reg(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_one_reg * reg)1894 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1895 {
1896 int ret;
1897
1898 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1899 TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1900 ret, errno, strerror(errno));
1901 }
1902
1903 /*
1904 * VCPU Ioctl
1905 *
1906 * Input Args:
1907 * vm - Virtual Machine
1908 * vcpuid - VCPU ID
1909 * cmd - Ioctl number
1910 * arg - Argument to pass to the ioctl
1911 *
1912 * Return: None
1913 *
1914 * Issues an arbitrary ioctl on a VCPU fd.
1915 */
vcpu_ioctl(struct kvm_vm * vm,uint32_t vcpuid,unsigned long cmd,void * arg)1916 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1917 unsigned long cmd, void *arg)
1918 {
1919 int ret;
1920
1921 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1922 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1923 cmd, ret, errno, strerror(errno));
1924 }
1925
_vcpu_ioctl(struct kvm_vm * vm,uint32_t vcpuid,unsigned long cmd,void * arg)1926 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1927 unsigned long cmd, void *arg)
1928 {
1929 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1930 int ret;
1931
1932 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1933
1934 ret = ioctl(vcpu->fd, cmd, arg);
1935
1936 return ret;
1937 }
1938
vcpu_map_dirty_ring(struct kvm_vm * vm,uint32_t vcpuid)1939 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid)
1940 {
1941 struct vcpu *vcpu;
1942 uint32_t size = vm->dirty_ring_size;
1943
1944 TEST_ASSERT(size > 0, "Should enable dirty ring first");
1945
1946 vcpu = vcpu_find(vm, vcpuid);
1947
1948 TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid);
1949
1950 if (!vcpu->dirty_gfns) {
1951 void *addr;
1952
1953 addr = mmap(NULL, size, PROT_READ,
1954 MAP_PRIVATE, vcpu->fd,
1955 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1956 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1957
1958 addr = mmap(NULL, size, PROT_READ | PROT_EXEC,
1959 MAP_PRIVATE, vcpu->fd,
1960 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1961 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1962
1963 addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
1964 MAP_SHARED, vcpu->fd,
1965 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1966 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1967
1968 vcpu->dirty_gfns = addr;
1969 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1970 }
1971
1972 return vcpu->dirty_gfns;
1973 }
1974
1975 /*
1976 * VM Ioctl
1977 *
1978 * Input Args:
1979 * vm - Virtual Machine
1980 * cmd - Ioctl number
1981 * arg - Argument to pass to the ioctl
1982 *
1983 * Return: None
1984 *
1985 * Issues an arbitrary ioctl on a VM fd.
1986 */
vm_ioctl(struct kvm_vm * vm,unsigned long cmd,void * arg)1987 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1988 {
1989 int ret;
1990
1991 ret = _vm_ioctl(vm, cmd, arg);
1992 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1993 cmd, ret, errno, strerror(errno));
1994 }
1995
_vm_ioctl(struct kvm_vm * vm,unsigned long cmd,void * arg)1996 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1997 {
1998 return ioctl(vm->fd, cmd, arg);
1999 }
2000
2001 /*
2002 * KVM system ioctl
2003 *
2004 * Input Args:
2005 * vm - Virtual Machine
2006 * cmd - Ioctl number
2007 * arg - Argument to pass to the ioctl
2008 *
2009 * Return: None
2010 *
2011 * Issues an arbitrary ioctl on a KVM fd.
2012 */
kvm_ioctl(struct kvm_vm * vm,unsigned long cmd,void * arg)2013 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2014 {
2015 int ret;
2016
2017 ret = ioctl(vm->kvm_fd, cmd, arg);
2018 TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)",
2019 cmd, ret, errno, strerror(errno));
2020 }
2021
_kvm_ioctl(struct kvm_vm * vm,unsigned long cmd,void * arg)2022 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2023 {
2024 return ioctl(vm->kvm_fd, cmd, arg);
2025 }
2026
2027 /*
2028 * Device Ioctl
2029 */
2030
_kvm_device_check_attr(int dev_fd,uint32_t group,uint64_t attr)2031 int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2032 {
2033 struct kvm_device_attr attribute = {
2034 .group = group,
2035 .attr = attr,
2036 .flags = 0,
2037 };
2038
2039 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
2040 }
2041
kvm_device_check_attr(int dev_fd,uint32_t group,uint64_t attr)2042 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2043 {
2044 int ret = _kvm_device_check_attr(dev_fd, group, attr);
2045
2046 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
2047 return ret;
2048 }
2049
_kvm_create_device(struct kvm_vm * vm,uint64_t type,bool test,int * fd)2050 int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd)
2051 {
2052 struct kvm_create_device create_dev;
2053 int ret;
2054
2055 create_dev.type = type;
2056 create_dev.fd = -1;
2057 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2058 ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev);
2059 *fd = create_dev.fd;
2060 return ret;
2061 }
2062
kvm_create_device(struct kvm_vm * vm,uint64_t type,bool test)2063 int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test)
2064 {
2065 int fd, ret;
2066
2067 ret = _kvm_create_device(vm, type, test, &fd);
2068
2069 if (!test) {
2070 TEST_ASSERT(!ret,
2071 "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno);
2072 return fd;
2073 }
2074 return ret;
2075 }
2076
_kvm_device_access(int dev_fd,uint32_t group,uint64_t attr,void * val,bool write)2077 int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2078 void *val, bool write)
2079 {
2080 struct kvm_device_attr kvmattr = {
2081 .group = group,
2082 .attr = attr,
2083 .flags = 0,
2084 .addr = (uintptr_t)val,
2085 };
2086 int ret;
2087
2088 ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2089 &kvmattr);
2090 return ret;
2091 }
2092
kvm_device_access(int dev_fd,uint32_t group,uint64_t attr,void * val,bool write)2093 int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2094 void *val, bool write)
2095 {
2096 int ret = _kvm_device_access(dev_fd, group, attr, val, write);
2097
2098 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2099 return ret;
2100 }
2101
_vcpu_has_device_attr(struct kvm_vm * vm,uint32_t vcpuid,uint32_t group,uint64_t attr)2102 int _vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2103 uint64_t attr)
2104 {
2105 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2106
2107 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2108
2109 return _kvm_device_check_attr(vcpu->fd, group, attr);
2110 }
2111
vcpu_has_device_attr(struct kvm_vm * vm,uint32_t vcpuid,uint32_t group,uint64_t attr)2112 int vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2113 uint64_t attr)
2114 {
2115 int ret = _vcpu_has_device_attr(vm, vcpuid, group, attr);
2116
2117 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2118 return ret;
2119 }
2120
_vcpu_access_device_attr(struct kvm_vm * vm,uint32_t vcpuid,uint32_t group,uint64_t attr,void * val,bool write)2121 int _vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2122 uint64_t attr, void *val, bool write)
2123 {
2124 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2125
2126 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2127
2128 return _kvm_device_access(vcpu->fd, group, attr, val, write);
2129 }
2130
vcpu_access_device_attr(struct kvm_vm * vm,uint32_t vcpuid,uint32_t group,uint64_t attr,void * val,bool write)2131 int vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2132 uint64_t attr, void *val, bool write)
2133 {
2134 int ret = _vcpu_access_device_attr(vm, vcpuid, group, attr, val, write);
2135
2136 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2137 return ret;
2138 }
2139
2140 /*
2141 * IRQ related functions.
2142 */
2143
_kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)2144 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
2145 {
2146 struct kvm_irq_level irq_level = {
2147 .irq = irq,
2148 .level = level,
2149 };
2150
2151 return _vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
2152 }
2153
kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)2154 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
2155 {
2156 int ret = _kvm_irq_line(vm, irq, level);
2157
2158 TEST_ASSERT(ret >= 0, "KVM_IRQ_LINE failed, rc: %i errno: %i", ret, errno);
2159 }
2160
kvm_gsi_routing_create(void)2161 struct kvm_irq_routing *kvm_gsi_routing_create(void)
2162 {
2163 struct kvm_irq_routing *routing;
2164 size_t size;
2165
2166 size = sizeof(struct kvm_irq_routing);
2167 /* Allocate space for the max number of entries: this wastes 196 KBs. */
2168 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
2169 routing = calloc(1, size);
2170 assert(routing);
2171
2172 return routing;
2173 }
2174
kvm_gsi_routing_irqchip_add(struct kvm_irq_routing * routing,uint32_t gsi,uint32_t pin)2175 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
2176 uint32_t gsi, uint32_t pin)
2177 {
2178 int i;
2179
2180 assert(routing);
2181 assert(routing->nr < KVM_MAX_IRQ_ROUTES);
2182
2183 i = routing->nr;
2184 routing->entries[i].gsi = gsi;
2185 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
2186 routing->entries[i].flags = 0;
2187 routing->entries[i].u.irqchip.irqchip = 0;
2188 routing->entries[i].u.irqchip.pin = pin;
2189 routing->nr++;
2190 }
2191
_kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)2192 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
2193 {
2194 int ret;
2195
2196 assert(routing);
2197 ret = ioctl(vm_get_fd(vm), KVM_SET_GSI_ROUTING, routing);
2198 free(routing);
2199
2200 return ret;
2201 }
2202
kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)2203 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
2204 {
2205 int ret;
2206
2207 ret = _kvm_gsi_routing_write(vm, routing);
2208 TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING failed, rc: %i errno: %i",
2209 ret, errno);
2210 }
2211
2212 /*
2213 * VM Dump
2214 *
2215 * Input Args:
2216 * vm - Virtual Machine
2217 * indent - Left margin indent amount
2218 *
2219 * Output Args:
2220 * stream - Output FILE stream
2221 *
2222 * Return: None
2223 *
2224 * Dumps the current state of the VM given by vm, to the FILE stream
2225 * given by stream.
2226 */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)2227 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
2228 {
2229 int ctr;
2230 struct userspace_mem_region *region;
2231 struct vcpu *vcpu;
2232
2233 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
2234 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
2235 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
2236 fprintf(stream, "%*sMem Regions:\n", indent, "");
2237 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
2238 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
2239 "host_virt: %p\n", indent + 2, "",
2240 (uint64_t) region->region.guest_phys_addr,
2241 (uint64_t) region->region.memory_size,
2242 region->host_mem);
2243 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
2244 sparsebit_dump(stream, region->unused_phy_pages, 0);
2245 }
2246 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
2247 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
2248 fprintf(stream, "%*spgd_created: %u\n", indent, "",
2249 vm->pgd_created);
2250 if (vm->pgd_created) {
2251 fprintf(stream, "%*sVirtual Translation Tables:\n",
2252 indent + 2, "");
2253 virt_dump(stream, vm, indent + 4);
2254 }
2255 fprintf(stream, "%*sVCPUs:\n", indent, "");
2256 list_for_each_entry(vcpu, &vm->vcpus, list)
2257 vcpu_dump(stream, vm, vcpu->id, indent + 2);
2258 }
2259
2260 /* Known KVM exit reasons */
2261 static struct exit_reason {
2262 unsigned int reason;
2263 const char *name;
2264 } exit_reasons_known[] = {
2265 {KVM_EXIT_UNKNOWN, "UNKNOWN"},
2266 {KVM_EXIT_EXCEPTION, "EXCEPTION"},
2267 {KVM_EXIT_IO, "IO"},
2268 {KVM_EXIT_HYPERCALL, "HYPERCALL"},
2269 {KVM_EXIT_DEBUG, "DEBUG"},
2270 {KVM_EXIT_HLT, "HLT"},
2271 {KVM_EXIT_MMIO, "MMIO"},
2272 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
2273 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
2274 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
2275 {KVM_EXIT_INTR, "INTR"},
2276 {KVM_EXIT_SET_TPR, "SET_TPR"},
2277 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
2278 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
2279 {KVM_EXIT_S390_RESET, "S390_RESET"},
2280 {KVM_EXIT_DCR, "DCR"},
2281 {KVM_EXIT_NMI, "NMI"},
2282 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
2283 {KVM_EXIT_OSI, "OSI"},
2284 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
2285 {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
2286 {KVM_EXIT_X86_RDMSR, "RDMSR"},
2287 {KVM_EXIT_X86_WRMSR, "WRMSR"},
2288 {KVM_EXIT_XEN, "XEN"},
2289 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
2290 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
2291 #endif
2292 };
2293
2294 /*
2295 * Exit Reason String
2296 *
2297 * Input Args:
2298 * exit_reason - Exit reason
2299 *
2300 * Output Args: None
2301 *
2302 * Return:
2303 * Constant string pointer describing the exit reason.
2304 *
2305 * Locates and returns a constant string that describes the KVM exit
2306 * reason given by exit_reason. If no such string is found, a constant
2307 * string of "Unknown" is returned.
2308 */
exit_reason_str(unsigned int exit_reason)2309 const char *exit_reason_str(unsigned int exit_reason)
2310 {
2311 unsigned int n1;
2312
2313 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2314 if (exit_reason == exit_reasons_known[n1].reason)
2315 return exit_reasons_known[n1].name;
2316 }
2317
2318 return "Unknown";
2319 }
2320
2321 /*
2322 * Physical Contiguous Page Allocator
2323 *
2324 * Input Args:
2325 * vm - Virtual Machine
2326 * num - number of pages
2327 * paddr_min - Physical address minimum
2328 * memslot - Memory region to allocate page from
2329 *
2330 * Output Args: None
2331 *
2332 * Return:
2333 * Starting physical address
2334 *
2335 * Within the VM specified by vm, locates a range of available physical
2336 * pages at or above paddr_min. If found, the pages are marked as in use
2337 * and their base address is returned. A TEST_ASSERT failure occurs if
2338 * not enough pages are available at or above paddr_min.
2339 */
vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot)2340 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2341 vm_paddr_t paddr_min, uint32_t memslot)
2342 {
2343 struct userspace_mem_region *region;
2344 sparsebit_idx_t pg, base;
2345
2346 TEST_ASSERT(num > 0, "Must allocate at least one page");
2347
2348 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2349 "not divisible by page size.\n"
2350 " paddr_min: 0x%lx page_size: 0x%x",
2351 paddr_min, vm->page_size);
2352
2353 region = memslot2region(vm, memslot);
2354 base = pg = paddr_min >> vm->page_shift;
2355
2356 do {
2357 for (; pg < base + num; ++pg) {
2358 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2359 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2360 break;
2361 }
2362 }
2363 } while (pg && pg != base + num);
2364
2365 if (pg == 0) {
2366 fprintf(stderr, "No guest physical page available, "
2367 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2368 paddr_min, vm->page_size, memslot);
2369 fputs("---- vm dump ----\n", stderr);
2370 vm_dump(stderr, vm, 2);
2371 abort();
2372 }
2373
2374 for (pg = base; pg < base + num; ++pg)
2375 sparsebit_clear(region->unused_phy_pages, pg);
2376
2377 return base * vm->page_size;
2378 }
2379
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)2380 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2381 uint32_t memslot)
2382 {
2383 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2384 }
2385
2386 /* Arbitrary minimum physical address used for virtual translation tables. */
2387 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
2388
vm_alloc_page_table(struct kvm_vm * vm)2389 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2390 {
2391 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
2392 }
2393
2394 /*
2395 * Address Guest Virtual to Host Virtual
2396 *
2397 * Input Args:
2398 * vm - Virtual Machine
2399 * gva - VM virtual address
2400 *
2401 * Output Args: None
2402 *
2403 * Return:
2404 * Equivalent host virtual address
2405 */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)2406 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2407 {
2408 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2409 }
2410
2411 /*
2412 * Is Unrestricted Guest
2413 *
2414 * Input Args:
2415 * vm - Virtual Machine
2416 *
2417 * Output Args: None
2418 *
2419 * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
2420 *
2421 * Check if the unrestricted guest flag is enabled.
2422 */
vm_is_unrestricted_guest(struct kvm_vm * vm)2423 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
2424 {
2425 char val = 'N';
2426 size_t count;
2427 FILE *f;
2428
2429 if (vm == NULL) {
2430 /* Ensure that the KVM vendor-specific module is loaded. */
2431 close(open_kvm_dev_path_or_exit());
2432 }
2433
2434 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
2435 if (f) {
2436 count = fread(&val, sizeof(char), 1, f);
2437 TEST_ASSERT(count == 1, "Unable to read from param file.");
2438 fclose(f);
2439 }
2440
2441 return val == 'Y';
2442 }
2443
vm_get_page_size(struct kvm_vm * vm)2444 unsigned int vm_get_page_size(struct kvm_vm *vm)
2445 {
2446 return vm->page_size;
2447 }
2448
vm_get_page_shift(struct kvm_vm * vm)2449 unsigned int vm_get_page_shift(struct kvm_vm *vm)
2450 {
2451 return vm->page_shift;
2452 }
2453
vm_compute_max_gfn(struct kvm_vm * vm)2454 unsigned long __attribute__((weak)) vm_compute_max_gfn(struct kvm_vm *vm)
2455 {
2456 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2457 }
2458
vm_get_max_gfn(struct kvm_vm * vm)2459 uint64_t vm_get_max_gfn(struct kvm_vm *vm)
2460 {
2461 return vm->max_gfn;
2462 }
2463
vm_get_fd(struct kvm_vm * vm)2464 int vm_get_fd(struct kvm_vm *vm)
2465 {
2466 return vm->fd;
2467 }
2468
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)2469 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2470 unsigned int page_shift,
2471 unsigned int new_page_shift,
2472 bool ceil)
2473 {
2474 unsigned int n = 1 << (new_page_shift - page_shift);
2475
2476 if (page_shift >= new_page_shift)
2477 return num_pages * (1 << (page_shift - new_page_shift));
2478
2479 return num_pages / n + !!(ceil && num_pages % n);
2480 }
2481
getpageshift(void)2482 static inline int getpageshift(void)
2483 {
2484 return __builtin_ffs(getpagesize()) - 1;
2485 }
2486
2487 unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)2488 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2489 {
2490 return vm_calc_num_pages(num_guest_pages,
2491 vm_guest_mode_params[mode].page_shift,
2492 getpageshift(), true);
2493 }
2494
2495 unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)2496 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2497 {
2498 return vm_calc_num_pages(num_host_pages, getpageshift(),
2499 vm_guest_mode_params[mode].page_shift, false);
2500 }
2501
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)2502 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2503 {
2504 unsigned int n;
2505 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2506 return vm_adjust_num_guest_pages(mode, n);
2507 }
2508
vm_get_stats_fd(struct kvm_vm * vm)2509 int vm_get_stats_fd(struct kvm_vm *vm)
2510 {
2511 return ioctl(vm->fd, KVM_GET_STATS_FD, NULL);
2512 }
2513
vcpu_get_stats_fd(struct kvm_vm * vm,uint32_t vcpuid)2514 int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid)
2515 {
2516 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2517
2518 return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL);
2519 }
2520