• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -*- Mode: C; indent-tabs-mode:t ; c-basic-offset:8 -*- */
2 /*
3  * I/O functions for libusb
4  * Copyright © 2007-2009 Daniel Drake <dsd@gentoo.org>
5  * Copyright © 2001 Johannes Erdfelt <johannes@erdfelt.com>
6  * Copyright © 2019 Nathan Hjelm <hjelmn@cs.umm.edu>
7  * Copyright © 2019 Google LLC. All rights reserved.
8  *
9  * This library is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * This library is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with this library; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 #include "libusbi.h"
25 
26 /**
27  * \page libusb_io Synchronous and asynchronous device I/O
28  *
29  * \section io_intro Introduction
30  *
31  * If you're using libusb in your application, you're probably wanting to
32  * perform I/O with devices - you want to perform USB data transfers.
33  *
34  * libusb offers two separate interfaces for device I/O. This page aims to
35  * introduce the two in order to help you decide which one is more suitable
36  * for your application. You can also choose to use both interfaces in your
37  * application by considering each transfer on a case-by-case basis.
38  *
39  * Once you have read through the following discussion, you should consult the
40  * detailed API documentation pages for the details:
41  * - \ref libusb_syncio
42  * - \ref libusb_asyncio
43  *
44  * \section theory Transfers at a logical level
45  *
46  * At a logical level, USB transfers typically happen in two parts. For
47  * example, when reading data from a endpoint:
48  * -# A request for data is sent to the device
49  * -# Some time later, the incoming data is received by the host
50  *
51  * or when writing data to an endpoint:
52  *
53  * -# The data is sent to the device
54  * -# Some time later, the host receives acknowledgement from the device that
55  *    the data has been transferred.
56  *
57  * There may be an indefinite delay between the two steps. Consider a
58  * fictional USB input device with a button that the user can press. In order
59  * to determine when the button is pressed, you would likely submit a request
60  * to read data on a bulk or interrupt endpoint and wait for data to arrive.
61  * Data will arrive when the button is pressed by the user, which is
62  * potentially hours later.
63  *
64  * libusb offers both a synchronous and an asynchronous interface to performing
65  * USB transfers. The main difference is that the synchronous interface
66  * combines both steps indicated above into a single function call, whereas
67  * the asynchronous interface separates them.
68  *
69  * \section sync The synchronous interface
70  *
71  * The synchronous I/O interface allows you to perform a USB transfer with
72  * a single function call. When the function call returns, the transfer has
73  * completed and you can parse the results.
74  *
75  * If you have used libusb-0.1 before, this I/O style will seem familiar to
76  * you. libusb-0.1 only offered a synchronous interface.
77  *
78  * In our input device example, to read button presses you might write code
79  * in the following style:
80 \code
81 unsigned char data[4];
82 int actual_length;
83 int r = libusb_bulk_transfer(dev_handle, LIBUSB_ENDPOINT_IN, data, sizeof(data), &actual_length, 0);
84 if (r == 0 && actual_length == sizeof(data)) {
85 	// results of the transaction can now be found in the data buffer
86 	// parse them here and report button press
87 } else {
88 	error();
89 }
90 \endcode
91  *
92  * The main advantage of this model is simplicity: you did everything with
93  * a single simple function call.
94  *
95  * However, this interface has its limitations. Your application will sleep
96  * inside libusb_bulk_transfer() until the transaction has completed. If it
97  * takes the user 3 hours to press the button, your application will be
98  * sleeping for that long. Execution will be tied up inside the library -
99  * the entire thread will be useless for that duration.
100  *
101  * Another issue is that by tying up the thread with that single transaction
102  * there is no possibility of performing I/O with multiple endpoints and/or
103  * multiple devices simultaneously, unless you resort to creating one thread
104  * per transaction.
105  *
106  * Additionally, there is no opportunity to cancel the transfer after the
107  * request has been submitted.
108  *
109  * For details on how to use the synchronous API, see the
110  * \ref libusb_syncio "synchronous I/O API documentation" pages.
111  *
112  * \section async The asynchronous interface
113  *
114  * Asynchronous I/O is the most significant new feature in libusb-1.0.
115  * Although it is a more complex interface, it solves all the issues detailed
116  * above.
117  *
118  * Instead of providing which functions that block until the I/O has complete,
119  * libusb's asynchronous interface presents non-blocking functions which
120  * begin a transfer and then return immediately. Your application passes a
121  * callback function pointer to this non-blocking function, which libusb will
122  * call with the results of the transaction when it has completed.
123  *
124  * Transfers which have been submitted through the non-blocking functions
125  * can be cancelled with a separate function call.
126  *
127  * The non-blocking nature of this interface allows you to be simultaneously
128  * performing I/O to multiple endpoints on multiple devices, without having
129  * to use threads.
130  *
131  * This added flexibility does come with some complications though:
132  * - In the interest of being a lightweight library, libusb does not create
133  * threads and can only operate when your application is calling into it. Your
134  * application must call into libusb from it's main loop when events are ready
135  * to be handled, or you must use some other scheme to allow libusb to
136  * undertake whatever work needs to be done.
137  * - libusb also needs to be called into at certain fixed points in time in
138  * order to accurately handle transfer timeouts.
139  * - Memory handling becomes more complex. You cannot use stack memory unless
140  * the function with that stack is guaranteed not to return until the transfer
141  * callback has finished executing.
142  * - You generally lose some linearity from your code flow because submitting
143  * the transfer request is done in a separate function from where the transfer
144  * results are handled. This becomes particularly obvious when you want to
145  * submit a second transfer based on the results of an earlier transfer.
146  *
147  * Internally, libusb's synchronous interface is expressed in terms of function
148  * calls to the asynchronous interface.
149  *
150  * For details on how to use the asynchronous API, see the
151  * \ref libusb_asyncio "asynchronous I/O API" documentation pages.
152  */
153 
154 
155 /**
156  * \page libusb_packetoverflow Packets and overflows
157  *
158  * \section packets Packet abstraction
159  *
160  * The USB specifications describe how data is transmitted in packets, with
161  * constraints on packet size defined by endpoint descriptors. The host must
162  * not send data payloads larger than the endpoint's maximum packet size.
163  *
164  * libusb and the underlying OS abstract out the packet concept, allowing you
165  * to request transfers of any size. Internally, the request will be divided
166  * up into correctly-sized packets. You do not have to be concerned with
167  * packet sizes, but there is one exception when considering overflows.
168  *
169  * \section overflow Bulk/interrupt transfer overflows
170  *
171  * When requesting data on a bulk endpoint, libusb requires you to supply a
172  * buffer and the maximum number of bytes of data that libusb can put in that
173  * buffer. However, the size of the buffer is not communicated to the device -
174  * the device is just asked to send any amount of data.
175  *
176  * There is no problem if the device sends an amount of data that is less than
177  * or equal to the buffer size. libusb reports this condition to you through
178  * the \ref libusb_transfer::actual_length "libusb_transfer.actual_length"
179  * field.
180  *
181  * Problems may occur if the device attempts to send more data than can fit in
182  * the buffer. libusb reports LIBUSB_TRANSFER_OVERFLOW for this condition but
183  * other behaviour is largely undefined: actual_length may or may not be
184  * accurate, the chunk of data that can fit in the buffer (before overflow)
185  * may or may not have been transferred.
186  *
187  * Overflows are nasty, but can be avoided. Even though you were told to
188  * ignore packets above, think about the lower level details: each transfer is
189  * split into packets (typically small, with a maximum size of 512 bytes).
190  * Overflows can only happen if the final packet in an incoming data transfer
191  * is smaller than the actual packet that the device wants to transfer.
192  * Therefore, you will never see an overflow if your transfer buffer size is a
193  * multiple of the endpoint's packet size: the final packet will either
194  * fill up completely or will be only partially filled.
195  */
196 
197 /**
198  * @defgroup libusb_asyncio Asynchronous device I/O
199  *
200  * This page details libusb's asynchronous (non-blocking) API for USB device
201  * I/O. This interface is very powerful but is also quite complex - you will
202  * need to read this page carefully to understand the necessary considerations
203  * and issues surrounding use of this interface. Simplistic applications
204  * may wish to consider the \ref libusb_syncio "synchronous I/O API" instead.
205  *
206  * The asynchronous interface is built around the idea of separating transfer
207  * submission and handling of transfer completion (the synchronous model
208  * combines both of these into one). There may be a long delay between
209  * submission and completion, however the asynchronous submission function
210  * is non-blocking so will return control to your application during that
211  * potentially long delay.
212  *
213  * \section asyncabstraction Transfer abstraction
214  *
215  * For the asynchronous I/O, libusb implements the concept of a generic
216  * transfer entity for all types of I/O (control, bulk, interrupt,
217  * isochronous). The generic transfer object must be treated slightly
218  * differently depending on which type of I/O you are performing with it.
219  *
220  * This is represented by the public libusb_transfer structure type.
221  *
222  * \section asynctrf Asynchronous transfers
223  *
224  * We can view asynchronous I/O as a 5 step process:
225  * -# <b>Allocation</b>: allocate a libusb_transfer
226  * -# <b>Filling</b>: populate the libusb_transfer instance with information
227  *    about the transfer you wish to perform
228  * -# <b>Submission</b>: ask libusb to submit the transfer
229  * -# <b>Completion handling</b>: examine transfer results in the
230  *    libusb_transfer structure
231  * -# <b>Deallocation</b>: clean up resources
232  *
233  *
234  * \subsection asyncalloc Allocation
235  *
236  * This step involves allocating memory for a USB transfer. This is the
237  * generic transfer object mentioned above. At this stage, the transfer
238  * is "blank" with no details about what type of I/O it will be used for.
239  *
240  * Allocation is done with the libusb_alloc_transfer() function. You must use
241  * this function rather than allocating your own transfers.
242  *
243  * \subsection asyncfill Filling
244  *
245  * This step is where you take a previously allocated transfer and fill it
246  * with information to determine the message type and direction, data buffer,
247  * callback function, etc.
248  *
249  * You can either fill the required fields yourself or you can use the
250  * helper functions: libusb_fill_control_transfer(), libusb_fill_bulk_transfer()
251  * and libusb_fill_interrupt_transfer().
252  *
253  * \subsection asyncsubmit Submission
254  *
255  * When you have allocated a transfer and filled it, you can submit it using
256  * libusb_submit_transfer(). This function returns immediately but can be
257  * regarded as firing off the I/O request in the background.
258  *
259  * \subsection asynccomplete Completion handling
260  *
261  * After a transfer has been submitted, one of four things can happen to it:
262  *
263  * - The transfer completes (i.e. some data was transferred)
264  * - The transfer has a timeout and the timeout expires before all data is
265  * transferred
266  * - The transfer fails due to an error
267  * - The transfer is cancelled
268  *
269  * Each of these will cause the user-specified transfer callback function to
270  * be invoked. It is up to the callback function to determine which of the
271  * above actually happened and to act accordingly.
272  *
273  * The user-specified callback is passed a pointer to the libusb_transfer
274  * structure which was used to setup and submit the transfer. At completion
275  * time, libusb has populated this structure with results of the transfer:
276  * success or failure reason, number of bytes of data transferred, etc. See
277  * the libusb_transfer structure documentation for more information.
278  *
279  * <b>Important Note</b>: The user-specified callback is called from an event
280  * handling context. It is therefore important that no calls are made into
281  * libusb that will attempt to perform any event handling. Examples of such
282  * functions are any listed in the \ref libusb_syncio "synchronous API" and any of
283  * the blocking functions that retrieve \ref libusb_desc "USB descriptors".
284  *
285  * \subsection Deallocation
286  *
287  * When a transfer has completed (i.e. the callback function has been invoked),
288  * you are advised to free the transfer (unless you wish to resubmit it, see
289  * below). Transfers are deallocated with libusb_free_transfer().
290  *
291  * It is undefined behaviour to free a transfer which has not completed.
292  *
293  * \section asyncresubmit Resubmission
294  *
295  * You may be wondering why allocation, filling, and submission are all
296  * separated above where they could reasonably be combined into a single
297  * operation.
298  *
299  * The reason for separation is to allow you to resubmit transfers without
300  * having to allocate new ones every time. This is especially useful for
301  * common situations dealing with interrupt endpoints - you allocate one
302  * transfer, fill and submit it, and when it returns with results you just
303  * resubmit it for the next interrupt.
304  *
305  * \section asynccancel Cancellation
306  *
307  * Another advantage of using the asynchronous interface is that you have
308  * the ability to cancel transfers which have not yet completed. This is
309  * done by calling the libusb_cancel_transfer() function.
310  *
311  * libusb_cancel_transfer() is asynchronous/non-blocking in itself. When the
312  * cancellation actually completes, the transfer's callback function will
313  * be invoked, and the callback function should check the transfer status to
314  * determine that it was cancelled.
315  *
316  * Freeing the transfer after it has been cancelled but before cancellation
317  * has completed will result in undefined behaviour.
318  *
319  * \attention
320  * When a transfer is cancelled, some of the data may have been transferred.
321  * libusb will communicate this to you in the transfer callback.
322  * <b>Do not assume that no data was transferred.</b>
323  *
324  * \section asyncpartial Partial data transfer resulting from cancellation
325  *
326  * As noted above, some of the data may have been transferred at the time a
327  * transfer is cancelled. It is helpful to see how this is possible if you
328  * consider a bulk transfer to an endpoint with a packet size of 64 bytes.
329  * Supposing you submit a 512-byte transfer to this endpoint, the operating
330  * system will divide this transfer up into 8 separate 64-byte frames that the
331  * host controller will schedule for the device to transfer data. If this
332  * transfer is cancelled while the device is transferring data, a subset of
333  * these frames may be descheduled from the host controller before the device
334  * has the opportunity to finish transferring data to the host.
335  *
336  * What your application should do with a partial data transfer is a policy
337  * decision; there is no single answer that satisfies the needs of every
338  * application. The data that was successfully transferred should be
339  * considered entirely valid, but your application must decide what to do with
340  * the remaining data that was not transferred. Some possible actions to take
341  * are:
342  * - Resubmit another transfer for the remaining data, possibly with a shorter
343  *   timeout
344  * - Discard the partially transferred data and report an error
345  *
346  * \section asynctimeout Timeouts
347  *
348  * When a transfer times out, libusb internally notes this and attempts to
349  * cancel the transfer. As noted in \ref asyncpartial "above", it is possible
350  * that some of the data may actually have been transferred. Your application
351  * should <b>always</b> check how much data was actually transferred once the
352  * transfer completes and act accordingly.
353  *
354  * \section bulk_overflows Overflows on device-to-host bulk/interrupt endpoints
355  *
356  * If your device does not have predictable transfer sizes (or it misbehaves),
357  * your application may submit a request for data on an IN endpoint which is
358  * smaller than the data that the device wishes to send. In some circumstances
359  * this will cause an overflow, which is a nasty condition to deal with. See
360  * the \ref libusb_packetoverflow page for discussion.
361  *
362  * \section asyncctrl Considerations for control transfers
363  *
364  * The <tt>libusb_transfer</tt> structure is generic and hence does not
365  * include specific fields for the control-specific setup packet structure.
366  *
367  * In order to perform a control transfer, you must place the 8-byte setup
368  * packet at the start of the data buffer. To simplify this, you could
369  * cast the buffer pointer to type struct libusb_control_setup, or you can
370  * use the helper function libusb_fill_control_setup().
371  *
372  * The wLength field placed in the setup packet must be the length you would
373  * expect to be sent in the setup packet: the length of the payload that
374  * follows (or the expected maximum number of bytes to receive). However,
375  * the length field of the libusb_transfer object must be the length of
376  * the data buffer - i.e. it should be wLength <em>plus</em> the size of
377  * the setup packet (LIBUSB_CONTROL_SETUP_SIZE).
378  *
379  * If you use the helper functions, this is simplified for you:
380  * -# Allocate a buffer of size LIBUSB_CONTROL_SETUP_SIZE plus the size of the
381  * data you are sending/requesting.
382  * -# Call libusb_fill_control_setup() on the data buffer, using the transfer
383  * request size as the wLength value (i.e. do not include the extra space you
384  * allocated for the control setup).
385  * -# If this is a host-to-device transfer, place the data to be transferred
386  * in the data buffer, starting at offset LIBUSB_CONTROL_SETUP_SIZE.
387  * -# Call libusb_fill_control_transfer() to associate the data buffer with
388  * the transfer (and to set the remaining details such as callback and timeout).
389  *   - Note that there is no parameter to set the length field of the transfer.
390  *     The length is automatically inferred from the wLength field of the setup
391  *     packet.
392  * -# Submit the transfer.
393  *
394  * The multi-byte control setup fields (wValue, wIndex and wLength) must
395  * be given in little-endian byte order (the endianness of the USB bus).
396  * Endianness conversion is transparently handled by
397  * libusb_fill_control_setup() which is documented to accept host-endian
398  * values.
399  *
400  * Further considerations are needed when handling transfer completion in
401  * your callback function:
402  * - As you might expect, the setup packet will still be sitting at the start
403  * of the data buffer.
404  * - If this was a device-to-host transfer, the received data will be sitting
405  * at offset LIBUSB_CONTROL_SETUP_SIZE into the buffer.
406  * - The actual_length field of the transfer structure is relative to the
407  * wLength of the setup packet, rather than the size of the data buffer. So,
408  * if your wLength was 4, your transfer's <tt>length</tt> was 12, then you
409  * should expect an <tt>actual_length</tt> of 4 to indicate that the data was
410  * transferred in entirety.
411  *
412  * To simplify parsing of setup packets and obtaining the data from the
413  * correct offset, you may wish to use the libusb_control_transfer_get_data()
414  * and libusb_control_transfer_get_setup() functions within your transfer
415  * callback.
416  *
417  * Even though control endpoints do not halt, a completed control transfer
418  * may have a LIBUSB_TRANSFER_STALL status code. This indicates the control
419  * request was not supported.
420  *
421  * \section asyncintr Considerations for interrupt transfers
422  *
423  * All interrupt transfers are performed using the polling interval presented
424  * by the bInterval value of the endpoint descriptor.
425  *
426  * \section asynciso Considerations for isochronous transfers
427  *
428  * Isochronous transfers are more complicated than transfers to
429  * non-isochronous endpoints.
430  *
431  * To perform I/O to an isochronous endpoint, allocate the transfer by calling
432  * libusb_alloc_transfer() with an appropriate number of isochronous packets.
433  *
434  * During filling, set \ref libusb_transfer::type "type" to
435  * \ref libusb_transfer_type::LIBUSB_TRANSFER_TYPE_ISOCHRONOUS
436  * "LIBUSB_TRANSFER_TYPE_ISOCHRONOUS", and set
437  * \ref libusb_transfer::num_iso_packets "num_iso_packets" to a value less than
438  * or equal to the number of packets you requested during allocation.
439  * libusb_alloc_transfer() does not set either of these fields for you, given
440  * that you might not even use the transfer on an isochronous endpoint.
441  *
442  * Next, populate the length field for the first num_iso_packets entries in
443  * the \ref libusb_transfer::iso_packet_desc "iso_packet_desc" array. Section
444  * 5.6.3 of the USB2 specifications describe how the maximum isochronous
445  * packet length is determined by the wMaxPacketSize field in the endpoint
446  * descriptor.
447  * Two functions can help you here:
448  *
449  * - libusb_get_max_iso_packet_size() is an easy way to determine the max
450  *   packet size for an isochronous endpoint. Note that the maximum packet
451  *   size is actually the maximum number of bytes that can be transmitted in
452  *   a single microframe, therefore this function multiplies the maximum number
453  *   of bytes per transaction by the number of transaction opportunities per
454  *   microframe.
455  * - libusb_set_iso_packet_lengths() assigns the same length to all packets
456  *   within a transfer, which is usually what you want.
457  *
458  * For outgoing transfers, you'll obviously fill the buffer and populate the
459  * packet descriptors in hope that all the data gets transferred. For incoming
460  * transfers, you must ensure the buffer has sufficient capacity for
461  * the situation where all packets transfer the full amount of requested data.
462  *
463  * Completion handling requires some extra consideration. The
464  * \ref libusb_transfer::actual_length "actual_length" field of the transfer
465  * is meaningless and should not be examined; instead you must refer to the
466  * \ref libusb_iso_packet_descriptor::actual_length "actual_length" field of
467  * each individual packet.
468  *
469  * The \ref libusb_transfer::status "status" field of the transfer is also a
470  * little misleading:
471  *  - If the packets were submitted and the isochronous data microframes
472  *    completed normally, status will have value
473  *    \ref libusb_transfer_status::LIBUSB_TRANSFER_COMPLETED
474  *    "LIBUSB_TRANSFER_COMPLETED". Note that bus errors and software-incurred
475  *    delays are not counted as transfer errors; the transfer.status field may
476  *    indicate COMPLETED even if some or all of the packets failed. Refer to
477  *    the \ref libusb_iso_packet_descriptor::status "status" field of each
478  *    individual packet to determine packet failures.
479  *  - The status field will have value
480  *    \ref libusb_transfer_status::LIBUSB_TRANSFER_ERROR
481  *    "LIBUSB_TRANSFER_ERROR" only when serious errors were encountered.
482  *  - Other transfer status codes occur with normal behaviour.
483  *
484  * The data for each packet will be found at an offset into the buffer that
485  * can be calculated as if each prior packet completed in full. The
486  * libusb_get_iso_packet_buffer() and libusb_get_iso_packet_buffer_simple()
487  * functions may help you here.
488  *
489  * \section asynclimits Transfer length limitations
490  *
491  * Some operating systems may impose limits on the length of the transfer data
492  * buffer or, in the case of isochronous transfers, the length of individual
493  * isochronous packets. Such limits can be difficult for libusb to detect, so
494  * in most cases the library will simply try and submit the transfer as set up
495  * by you. If the transfer fails to submit because it is too large,
496  * libusb_submit_transfer() will return
497  * \ref libusb_error::LIBUSB_ERROR_INVALID_PARAM "LIBUSB_ERROR_INVALID_PARAM".
498  *
499  * The following are known limits for control transfer lengths. Note that this
500  * length includes the 8-byte setup packet.
501  * - Linux (4,096 bytes)
502  * - Windows (4,096 bytes)
503  *
504  * \section asyncmem Memory caveats
505  *
506  * In most circumstances, it is not safe to use stack memory for transfer
507  * buffers. This is because the function that fired off the asynchronous
508  * transfer may return before libusb has finished using the buffer, and when
509  * the function returns it's stack gets destroyed. This is true for both
510  * host-to-device and device-to-host transfers.
511  *
512  * The only case in which it is safe to use stack memory is where you can
513  * guarantee that the function owning the stack space for the buffer does not
514  * return until after the transfer's callback function has completed. In every
515  * other case, you need to use heap memory instead.
516  *
517  * \section asyncflags Fine control
518  *
519  * Through using this asynchronous interface, you may find yourself repeating
520  * a few simple operations many times. You can apply a bitwise OR of certain
521  * flags to a transfer to simplify certain things:
522  * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_SHORT_NOT_OK
523  *   "LIBUSB_TRANSFER_SHORT_NOT_OK" results in transfers which transferred
524  *   less than the requested amount of data being marked with status
525  *   \ref libusb_transfer_status::LIBUSB_TRANSFER_ERROR "LIBUSB_TRANSFER_ERROR"
526  *   (they would normally be regarded as COMPLETED)
527  * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_BUFFER
528  *   "LIBUSB_TRANSFER_FREE_BUFFER" allows you to ask libusb to free the transfer
529  *   buffer when freeing the transfer.
530  * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_TRANSFER
531  *   "LIBUSB_TRANSFER_FREE_TRANSFER" causes libusb to automatically free the
532  *   transfer after the transfer callback returns.
533  *
534  * \section asyncevent Event handling
535  *
536  * An asynchronous model requires that libusb perform work at various
537  * points in time - namely processing the results of previously-submitted
538  * transfers and invoking the user-supplied callback function.
539  *
540  * This gives rise to the libusb_handle_events() function which your
541  * application must call into when libusb has work do to. This gives libusb
542  * the opportunity to reap pending transfers, invoke callbacks, etc.
543  *
544  * \note
545  * All event handling is performed by whichever thread calls the
546  * libusb_handle_events() function. libusb does not invoke any callbacks
547  * outside of this context. Consequently, any callbacks will be run on the
548  * thread that calls the libusb_handle_events() function.
549  *
550  * When to call the libusb_handle_events() function depends on which model
551  * your application decides to use. The 2 different approaches:
552  *
553  * -# Repeatedly call libusb_handle_events() in blocking mode from a dedicated
554  *    thread.
555  * -# Integrate libusb with your application's main event loop. libusb
556  *    exposes a set of file descriptors which allow you to do this.
557  *
558  * The first approach has the big advantage that it will also work on Windows
559  * were libusb' poll API for select / poll integration is not available. So
560  * if you want to support Windows and use the async API, you must use this
561  * approach, see the \ref eventthread "Using an event handling thread" section
562  * below for details.
563  *
564  * If you prefer a single threaded approach with a single central event loop,
565  * see the \ref libusb_poll "polling and timing" section for how to integrate libusb
566  * into your application's main event loop.
567  *
568  * \section eventthread Using an event handling thread
569  *
570  * Lets begin with stating the obvious: If you're going to use a separate
571  * thread for libusb event handling, your callback functions MUST be
572  * thread-safe.
573  *
574  * Other then that doing event handling from a separate thread, is mostly
575  * simple. You can use an event thread function as follows:
576 \code
577 void *event_thread_func(void *ctx)
578 {
579     while (event_thread_run)
580         libusb_handle_events(ctx);
581 
582     return NULL;
583 }
584 \endcode
585  *
586  * There is one caveat though, stopping this thread requires setting the
587  * event_thread_run variable to 0, and after that libusb_handle_events() needs
588  * to return control to event_thread_func. But unless some event happens,
589  * libusb_handle_events() will not return.
590  *
591  * There are 2 different ways of dealing with this, depending on if your
592  * application uses libusb' \ref libusb_hotplug "hotplug" support or not.
593  *
594  * Applications which do not use hotplug support, should not start the event
595  * thread until after their first call to libusb_open(), and should stop the
596  * thread when closing the last open device as follows:
597 \code
598 void my_close_handle(libusb_device_handle *dev_handle)
599 {
600     if (open_devs == 1)
601         event_thread_run = 0;
602 
603     libusb_close(dev_handle); // This wakes up libusb_handle_events()
604 
605     if (open_devs == 1)
606         pthread_join(event_thread);
607 
608     open_devs--;
609 }
610 \endcode
611  *
612  * Applications using hotplug support should start the thread at program init,
613  * after having successfully called libusb_hotplug_register_callback(), and
614  * should stop the thread at program exit as follows:
615 \code
616 void my_libusb_exit(void)
617 {
618     event_thread_run = 0;
619     libusb_hotplug_deregister_callback(ctx, hotplug_cb_handle); // This wakes up libusb_handle_events()
620     pthread_join(event_thread);
621     libusb_exit(ctx);
622 }
623 \endcode
624  */
625 
626 /**
627  * @defgroup libusb_poll Polling and timing
628  *
629  * This page documents libusb's functions for polling events and timing.
630  * These functions are only necessary for users of the
631  * \ref libusb_asyncio "asynchronous API". If you are only using the simpler
632  * \ref libusb_syncio "synchronous API" then you do not need to ever call these
633  * functions.
634  *
635  * The justification for the functionality described here has already been
636  * discussed in the \ref asyncevent "event handling" section of the
637  * asynchronous API documentation. In summary, libusb does not create internal
638  * threads for event processing and hence relies on your application calling
639  * into libusb at certain points in time so that pending events can be handled.
640  *
641  * Your main loop is probably already calling poll() or select() or a
642  * variant on a set of file descriptors for other event sources (e.g. keyboard
643  * button presses, mouse movements, network sockets, etc). You then add
644  * libusb's file descriptors to your poll()/select() calls, and when activity
645  * is detected on such descriptors you know it is time to call
646  * libusb_handle_events().
647  *
648  * There is one final event handling complication. libusb supports
649  * asynchronous transfers which time out after a specified time period.
650  *
651  * On some platforms a timerfd is used, so the timeout handling is just another
652  * fd, on other platforms this requires that libusb is called into at or after
653  * the timeout to handle it. So, in addition to considering libusb's file
654  * descriptors in your main event loop, you must also consider that libusb
655  * sometimes needs to be called into at fixed points in time even when there
656  * is no file descriptor activity, see \ref polltime details.
657  *
658  * In order to know precisely when libusb needs to be called into, libusb
659  * offers you a set of pollable file descriptors and information about when
660  * the next timeout expires.
661  *
662  * If you are using the asynchronous I/O API, you must take one of the two
663  * following options, otherwise your I/O will not complete.
664  *
665  * \section pollsimple The simple option
666  *
667  * If your application revolves solely around libusb and does not need to
668  * handle other event sources, you can have a program structure as follows:
669 \code
670 // initialize libusb
671 // find and open device
672 // maybe fire off some initial async I/O
673 
674 while (user_has_not_requested_exit)
675 	libusb_handle_events(ctx);
676 
677 // clean up and exit
678 \endcode
679  *
680  * With such a simple main loop, you do not have to worry about managing
681  * sets of file descriptors or handling timeouts. libusb_handle_events() will
682  * handle those details internally.
683  *
684  * \section libusb_pollmain The more advanced option
685  *
686  * \note This functionality is currently only available on Unix-like platforms.
687  * On Windows, libusb_get_pollfds() simply returns NULL. Applications which
688  * want to support Windows are advised to use an \ref eventthread
689  * "event handling thread" instead.
690  *
691  * In more advanced applications, you will already have a main loop which
692  * is monitoring other event sources: network sockets, X11 events, mouse
693  * movements, etc. Through exposing a set of file descriptors, libusb is
694  * designed to cleanly integrate into such main loops.
695  *
696  * In addition to polling file descriptors for the other event sources, you
697  * take a set of file descriptors from libusb and monitor those too. When you
698  * detect activity on libusb's file descriptors, you call
699  * libusb_handle_events_timeout() in non-blocking mode.
700  *
701  * What's more, libusb may also need to handle events at specific moments in
702  * time. No file descriptor activity is generated at these times, so your
703  * own application needs to be continually aware of when the next one of these
704  * moments occurs (through calling libusb_get_next_timeout()), and then it
705  * needs to call libusb_handle_events_timeout() in non-blocking mode when
706  * these moments occur. This means that you need to adjust your
707  * poll()/select() timeout accordingly.
708  *
709  * libusb provides you with a set of file descriptors to poll and expects you
710  * to poll all of them, treating them as a single entity. The meaning of each
711  * file descriptor in the set is an internal implementation detail,
712  * platform-dependent and may vary from release to release. Don't try and
713  * interpret the meaning of the file descriptors, just do as libusb indicates,
714  * polling all of them at once.
715  *
716  * In pseudo-code, you want something that looks like:
717 \code
718 // initialise libusb
719 
720 libusb_get_pollfds(ctx)
721 while (user has not requested application exit) {
722 	libusb_get_next_timeout(ctx);
723 	poll(on libusb file descriptors plus any other event sources of interest,
724 		using a timeout no larger than the value libusb just suggested)
725 	if (poll() indicated activity on libusb file descriptors)
726 		libusb_handle_events_timeout(ctx, &zero_tv);
727 	if (time has elapsed to or beyond the libusb timeout)
728 		libusb_handle_events_timeout(ctx, &zero_tv);
729 	// handle events from other sources here
730 }
731 
732 // clean up and exit
733 \endcode
734  *
735  * \subsection polltime Notes on time-based events
736  *
737  * The above complication with having to track time and call into libusb at
738  * specific moments is a bit of a headache. For maximum compatibility, you do
739  * need to write your main loop as above, but you may decide that you can
740  * restrict the supported platforms of your application and get away with
741  * a more simplistic scheme.
742  *
743  * These time-based event complications are \b not required on the following
744  * platforms:
745  *  - Darwin
746  *  - Linux, provided that the following version requirements are satisfied:
747  *   - Linux v2.6.27 or newer, compiled with timerfd support
748  *   - glibc v2.9 or newer
749  *   - libusb v1.0.5 or newer
750  *
751  * Under these configurations, libusb_get_next_timeout() will \em always return
752  * 0, so your main loop can be simplified to:
753 \code
754 // initialise libusb
755 
756 libusb_get_pollfds(ctx)
757 while (user has not requested application exit) {
758 	poll(on libusb file descriptors plus any other event sources of interest,
759 		using any timeout that you like)
760 	if (poll() indicated activity on libusb file descriptors)
761 		libusb_handle_events_timeout(ctx, &zero_tv);
762 	// handle events from other sources here
763 }
764 
765 // clean up and exit
766 \endcode
767  *
768  * Do remember that if you simplify your main loop to the above, you will
769  * lose compatibility with some platforms (including legacy Linux platforms,
770  * and <em>any future platforms supported by libusb which may have time-based
771  * event requirements</em>). The resultant problems will likely appear as
772  * strange bugs in your application.
773  *
774  * You can use the libusb_pollfds_handle_timeouts() function to do a runtime
775  * check to see if it is safe to ignore the time-based event complications.
776  * If your application has taken the shortcut of ignoring libusb's next timeout
777  * in your main loop, then you are advised to check the return value of
778  * libusb_pollfds_handle_timeouts() during application startup, and to abort
779  * if the platform does suffer from these timing complications.
780  *
781  * \subsection fdsetchange Changes in the file descriptor set
782  *
783  * The set of file descriptors that libusb uses as event sources may change
784  * during the life of your application. Rather than having to repeatedly
785  * call libusb_get_pollfds(), you can set up notification functions for when
786  * the file descriptor set changes using libusb_set_pollfd_notifiers().
787  *
788  * \subsection mtissues Multi-threaded considerations
789  *
790  * Unfortunately, the situation is complicated further when multiple threads
791  * come into play. If two threads are monitoring the same file descriptors,
792  * the fact that only one thread will be woken up when an event occurs causes
793  * some headaches.
794  *
795  * The events lock, event waiters lock, and libusb_handle_events_locked()
796  * entities are added to solve these problems. You do not need to be concerned
797  * with these entities otherwise.
798  *
799  * See the extra documentation: \ref libusb_mtasync
800  */
801 
802 /** \page libusb_mtasync Multi-threaded applications and asynchronous I/O
803  *
804  * libusb is a thread-safe library, but extra considerations must be applied
805  * to applications which interact with libusb from multiple threads.
806  *
807  * The underlying issue that must be addressed is that all libusb I/O
808  * revolves around monitoring file descriptors through the poll()/select()
809  * system calls. This is directly exposed at the
810  * \ref libusb_asyncio "asynchronous interface" but it is important to note that the
811  * \ref libusb_syncio "synchronous interface" is implemented on top of the
812  * asynchronous interface, therefore the same considerations apply.
813  *
814  * The issue is that if two or more threads are concurrently calling poll()
815  * or select() on libusb's file descriptors then only one of those threads
816  * will be woken up when an event arrives. The others will be completely
817  * oblivious that anything has happened.
818  *
819  * Consider the following pseudo-code, which submits an asynchronous transfer
820  * then waits for its completion. This style is one way you could implement a
821  * synchronous interface on top of the asynchronous interface (and libusb
822  * does something similar, albeit more advanced due to the complications
823  * explained on this page).
824  *
825 \code
826 void cb(struct libusb_transfer *transfer)
827 {
828 	int *completed = transfer->user_data;
829 	*completed = 1;
830 }
831 
832 void myfunc() {
833 	struct libusb_transfer *transfer;
834 	unsigned char buffer[LIBUSB_CONTROL_SETUP_SIZE] __attribute__ ((aligned (2)));
835 	int completed = 0;
836 
837 	transfer = libusb_alloc_transfer(0);
838 	libusb_fill_control_setup(buffer,
839 		LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT, 0x04, 0x01, 0, 0);
840 	libusb_fill_control_transfer(transfer, dev, buffer, cb, &completed, 1000);
841 	libusb_submit_transfer(transfer);
842 
843 	while (!completed) {
844 		poll(libusb file descriptors, 120*1000);
845 		if (poll indicates activity)
846 			libusb_handle_events_timeout(ctx, &zero_tv);
847 	}
848 	printf("completed!");
849 	// other code here
850 }
851 \endcode
852  *
853  * Here we are <em>serializing</em> completion of an asynchronous event
854  * against a condition - the condition being completion of a specific transfer.
855  * The poll() loop has a long timeout to minimize CPU usage during situations
856  * when nothing is happening (it could reasonably be unlimited).
857  *
858  * If this is the only thread that is polling libusb's file descriptors, there
859  * is no problem: there is no danger that another thread will swallow up the
860  * event that we are interested in. On the other hand, if there is another
861  * thread polling the same descriptors, there is a chance that it will receive
862  * the event that we were interested in. In this situation, <tt>myfunc()</tt>
863  * will only realise that the transfer has completed on the next iteration of
864  * the loop, <em>up to 120 seconds later.</em> Clearly a two-minute delay is
865  * undesirable, and don't even think about using short timeouts to circumvent
866  * this issue!
867  *
868  * The solution here is to ensure that no two threads are ever polling the
869  * file descriptors at the same time. A naive implementation of this would
870  * impact the capabilities of the library, so libusb offers the scheme
871  * documented below to ensure no loss of functionality.
872  *
873  * Before we go any further, it is worth mentioning that all libusb-wrapped
874  * event handling procedures fully adhere to the scheme documented below.
875  * This includes libusb_handle_events() and its variants, and all the
876  * synchronous I/O functions - libusb hides this headache from you.
877  *
878  * \section Using libusb_handle_events() from multiple threads
879  *
880  * Even when only using libusb_handle_events() and synchronous I/O functions,
881  * you can still have a race condition. You might be tempted to solve the
882  * above with libusb_handle_events() like so:
883  *
884 \code
885 	libusb_submit_transfer(transfer);
886 
887 	while (!completed) {
888 		libusb_handle_events(ctx);
889 	}
890 	printf("completed!");
891 \endcode
892  *
893  * This however has a race between the checking of completed and
894  * libusb_handle_events() acquiring the events lock, so another thread
895  * could have completed the transfer, resulting in this thread hanging
896  * until either a timeout or another event occurs. See also commit
897  * 6696512aade99bb15d6792af90ae329af270eba6 which fixes this in the
898  * synchronous API implementation of libusb.
899  *
900  * Fixing this race requires checking the variable completed only after
901  * taking the event lock, which defeats the concept of just calling
902  * libusb_handle_events() without worrying about locking. This is why
903  * libusb-1.0.9 introduces the new libusb_handle_events_timeout_completed()
904  * and libusb_handle_events_completed() functions, which handles doing the
905  * completion check for you after they have acquired the lock:
906  *
907 \code
908 	libusb_submit_transfer(transfer);
909 
910 	while (!completed) {
911 		libusb_handle_events_completed(ctx, &completed);
912 	}
913 	printf("completed!");
914 \endcode
915  *
916  * This nicely fixes the race in our example. Note that if all you want to
917  * do is submit a single transfer and wait for its completion, then using
918  * one of the synchronous I/O functions is much easier.
919  *
920  * \note
921  * The `completed` variable must be modified while holding the event lock,
922  * otherwise a race condition can still exist. It is simplest to do so from
923  * within the transfer callback as shown above.
924  *
925  * \section eventlock The events lock
926  *
927  * The problem is when we consider the fact that libusb exposes file
928  * descriptors to allow for you to integrate asynchronous USB I/O into
929  * existing main loops, effectively allowing you to do some work behind
930  * libusb's back. If you do take libusb's file descriptors and pass them to
931  * poll()/select() yourself, you need to be aware of the associated issues.
932  *
933  * The first concept to be introduced is the events lock. The events lock
934  * is used to serialize threads that want to handle events, such that only
935  * one thread is handling events at any one time.
936  *
937  * You must take the events lock before polling libusb file descriptors,
938  * using libusb_lock_events(). You must release the lock as soon as you have
939  * aborted your poll()/select() loop, using libusb_unlock_events().
940  *
941  * \section threadwait Letting other threads do the work for you
942  *
943  * Although the events lock is a critical part of the solution, it is not
944  * enough on it's own. You might wonder if the following is sufficient...
945 \code
946 	libusb_lock_events(ctx);
947 	while (!completed) {
948 		poll(libusb file descriptors, 120*1000);
949 		if (poll indicates activity)
950 			libusb_handle_events_timeout(ctx, &zero_tv);
951 	}
952 	libusb_unlock_events(ctx);
953 \endcode
954  * ...and the answer is that it is not. This is because the transfer in the
955  * code shown above may take a long time (say 30 seconds) to complete, and
956  * the lock is not released until the transfer is completed.
957  *
958  * Another thread with similar code that wants to do event handling may be
959  * working with a transfer that completes after a few milliseconds. Despite
960  * having such a quick completion time, the other thread cannot check that
961  * status of its transfer until the code above has finished (30 seconds later)
962  * due to contention on the lock.
963  *
964  * To solve this, libusb offers you a mechanism to determine when another
965  * thread is handling events. It also offers a mechanism to block your thread
966  * until the event handling thread has completed an event (and this mechanism
967  * does not involve polling of file descriptors).
968  *
969  * After determining that another thread is currently handling events, you
970  * obtain the <em>event waiters</em> lock using libusb_lock_event_waiters().
971  * You then re-check that some other thread is still handling events, and if
972  * so, you call libusb_wait_for_event().
973  *
974  * libusb_wait_for_event() puts your application to sleep until an event
975  * occurs, or until a thread releases the events lock. When either of these
976  * things happen, your thread is woken up, and should re-check the condition
977  * it was waiting on. It should also re-check that another thread is handling
978  * events, and if not, it should start handling events itself.
979  *
980  * This looks like the following, as pseudo-code:
981 \code
982 retry:
983 if (libusb_try_lock_events(ctx) == 0) {
984 	// we obtained the event lock: do our own event handling
985 	while (!completed) {
986 		if (!libusb_event_handling_ok(ctx)) {
987 			libusb_unlock_events(ctx);
988 			goto retry;
989 		}
990 		poll(libusb file descriptors, 120*1000);
991 		if (poll indicates activity)
992 			libusb_handle_events_locked(ctx, 0);
993 	}
994 	libusb_unlock_events(ctx);
995 } else {
996 	// another thread is doing event handling. wait for it to signal us that
997 	// an event has completed
998 	libusb_lock_event_waiters(ctx);
999 
1000 	while (!completed) {
1001 		// now that we have the event waiters lock, double check that another
1002 		// thread is still handling events for us. (it may have ceased handling
1003 		// events in the time it took us to reach this point)
1004 		if (!libusb_event_handler_active(ctx)) {
1005 			// whoever was handling events is no longer doing so, try again
1006 			libusb_unlock_event_waiters(ctx);
1007 			goto retry;
1008 		}
1009 
1010 		libusb_wait_for_event(ctx, NULL);
1011 	}
1012 	libusb_unlock_event_waiters(ctx);
1013 }
1014 printf("completed!\n");
1015 \endcode
1016  *
1017  * A naive look at the above code may suggest that this can only support
1018  * one event waiter (hence a total of 2 competing threads, the other doing
1019  * event handling), because the event waiter seems to have taken the event
1020  * waiters lock while waiting for an event. However, the system does support
1021  * multiple event waiters, because libusb_wait_for_event() actually drops
1022  * the lock while waiting, and reacquires it before continuing.
1023  *
1024  * We have now implemented code which can dynamically handle situations where
1025  * nobody is handling events (so we should do it ourselves), and it can also
1026  * handle situations where another thread is doing event handling (so we can
1027  * piggyback onto them). It is also equipped to handle a combination of
1028  * the two, for example, another thread is doing event handling, but for
1029  * whatever reason it stops doing so before our condition is met, so we take
1030  * over the event handling.
1031  *
1032  * Four functions were introduced in the above pseudo-code. Their importance
1033  * should be apparent from the code shown above.
1034  * -# libusb_try_lock_events() is a non-blocking function which attempts
1035  *    to acquire the events lock but returns a failure code if it is contended.
1036  * -# libusb_event_handling_ok() checks that libusb is still happy for your
1037  *    thread to be performing event handling. Sometimes, libusb needs to
1038  *    interrupt the event handler, and this is how you can check if you have
1039  *    been interrupted. If this function returns 0, the correct behaviour is
1040  *    for you to give up the event handling lock, and then to repeat the cycle.
1041  *    The following libusb_try_lock_events() will fail, so you will become an
1042  *    events waiter. For more information on this, read \ref fullstory below.
1043  * -# libusb_handle_events_locked() is a variant of
1044  *    libusb_handle_events_timeout() that you can call while holding the
1045  *    events lock. libusb_handle_events_timeout() itself implements similar
1046  *    logic to the above, so be sure not to call it when you are
1047  *    "working behind libusb's back", as is the case here.
1048  * -# libusb_event_handler_active() determines if someone is currently
1049  *    holding the events lock
1050  *
1051  * You might be wondering why there is no function to wake up all threads
1052  * blocked on libusb_wait_for_event(). This is because libusb can do this
1053  * internally: it will wake up all such threads when someone calls
1054  * libusb_unlock_events() or when a transfer completes (at the point after its
1055  * callback has returned).
1056  *
1057  * \subsection fullstory The full story
1058  *
1059  * The above explanation should be enough to get you going, but if you're
1060  * really thinking through the issues then you may be left with some more
1061  * questions regarding libusb's internals. If you're curious, read on, and if
1062  * not, skip to the next section to avoid confusing yourself!
1063  *
1064  * The immediate question that may spring to mind is: what if one thread
1065  * modifies the set of file descriptors that need to be polled while another
1066  * thread is doing event handling?
1067  *
1068  * There are 2 situations in which this may happen.
1069  * -# libusb_open() will add another file descriptor to the poll set,
1070  *    therefore it is desirable to interrupt the event handler so that it
1071  *    restarts, picking up the new descriptor.
1072  * -# libusb_close() will remove a file descriptor from the poll set. There
1073  *    are all kinds of race conditions that could arise here, so it is
1074  *    important that nobody is doing event handling at this time.
1075  *
1076  * libusb handles these issues internally, so application developers do not
1077  * have to stop their event handlers while opening/closing devices. Here's how
1078  * it works, focusing on the libusb_close() situation first:
1079  *
1080  * -# During initialization, libusb opens an internal pipe, and it adds the read
1081  *    end of this pipe to the set of file descriptors to be polled.
1082  * -# During libusb_close(), libusb writes some dummy data on this event pipe.
1083  *    This immediately interrupts the event handler. libusb also records
1084  *    internally that it is trying to interrupt event handlers for this
1085  *    high-priority event.
1086  * -# At this point, some of the functions described above start behaving
1087  *    differently:
1088  *   - libusb_event_handling_ok() starts returning 1, indicating that it is NOT
1089  *     OK for event handling to continue.
1090  *   - libusb_try_lock_events() starts returning 1, indicating that another
1091  *     thread holds the event handling lock, even if the lock is uncontended.
1092  *   - libusb_event_handler_active() starts returning 1, indicating that
1093  *     another thread is doing event handling, even if that is not true.
1094  * -# The above changes in behaviour result in the event handler stopping and
1095  *    giving up the events lock very quickly, giving the high-priority
1096  *    libusb_close() operation a "free ride" to acquire the events lock. All
1097  *    threads that are competing to do event handling become event waiters.
1098  * -# With the events lock held inside libusb_close(), libusb can safely remove
1099  *    a file descriptor from the poll set, in the safety of knowledge that
1100  *    nobody is polling those descriptors or trying to access the poll set.
1101  * -# After obtaining the events lock, the close operation completes very
1102  *    quickly (usually a matter of milliseconds) and then immediately releases
1103  *    the events lock.
1104  * -# At the same time, the behaviour of libusb_event_handling_ok() and friends
1105  *    reverts to the original, documented behaviour.
1106  * -# The release of the events lock causes the threads that are waiting for
1107  *    events to be woken up and to start competing to become event handlers
1108  *    again. One of them will succeed; it will then re-obtain the list of poll
1109  *    descriptors, and USB I/O will then continue as normal.
1110  *
1111  * libusb_open() is similar, and is actually a more simplistic case. Upon a
1112  * call to libusb_open():
1113  *
1114  * -# The device is opened and a file descriptor is added to the poll set.
1115  * -# libusb sends some dummy data on the event pipe, and records that it
1116  *    is trying to modify the poll descriptor set.
1117  * -# The event handler is interrupted, and the same behaviour change as for
1118  *    libusb_close() takes effect, causing all event handling threads to become
1119  *    event waiters.
1120  * -# The libusb_open() implementation takes its free ride to the events lock.
1121  * -# Happy that it has successfully paused the events handler, libusb_open()
1122  *    releases the events lock.
1123  * -# The event waiter threads are all woken up and compete to become event
1124  *    handlers again. The one that succeeds will obtain the list of poll
1125  *    descriptors again, which will include the addition of the new device.
1126  *
1127  * \subsection concl Closing remarks
1128  *
1129  * The above may seem a little complicated, but hopefully I have made it clear
1130  * why such complications are necessary. Also, do not forget that this only
1131  * applies to applications that take libusb's file descriptors and integrate
1132  * them into their own polling loops.
1133  *
1134  * You may decide that it is OK for your multi-threaded application to ignore
1135  * some of the rules and locks detailed above, because you don't think that
1136  * two threads can ever be polling the descriptors at the same time. If that
1137  * is the case, then that's good news for you because you don't have to worry.
1138  * But be careful here; remember that the synchronous I/O functions do event
1139  * handling internally. If you have one thread doing event handling in a loop
1140  * (without implementing the rules and locking semantics documented above)
1141  * and another trying to send a synchronous USB transfer, you will end up with
1142  * two threads monitoring the same descriptors, and the above-described
1143  * undesirable behaviour occurring. The solution is for your polling thread to
1144  * play by the rules; the synchronous I/O functions do so, and this will result
1145  * in them getting along in perfect harmony.
1146  *
1147  * If you do have a dedicated thread doing event handling, it is perfectly
1148  * legal for it to take the event handling lock for long periods of time. Any
1149  * synchronous I/O functions you call from other threads will transparently
1150  * fall back to the "event waiters" mechanism detailed above. The only
1151  * consideration that your event handling thread must apply is the one related
1152  * to libusb_event_handling_ok(): you must call this before every poll(), and
1153  * give up the events lock if instructed.
1154  */
1155 
usbi_io_init(struct libusb_context * ctx)1156 int usbi_io_init(struct libusb_context *ctx)
1157 {
1158 	int r;
1159 
1160 	usbi_mutex_init(&ctx->flying_transfers_lock);
1161 	usbi_mutex_init(&ctx->events_lock);
1162 	usbi_mutex_init(&ctx->event_waiters_lock);
1163 	usbi_cond_init(&ctx->event_waiters_cond);
1164 	usbi_mutex_init(&ctx->event_data_lock);
1165 	usbi_tls_key_create(&ctx->event_handling_key);
1166 	list_init(&ctx->flying_transfers);
1167 	list_init(&ctx->event_sources);
1168 	list_init(&ctx->removed_event_sources);
1169 	list_init(&ctx->hotplug_msgs);
1170 	list_init(&ctx->completed_transfers);
1171 
1172 	r = usbi_create_event(&ctx->event);
1173 	if (r < 0)
1174 		goto err;
1175 
1176 	r = usbi_add_event_source(ctx, USBI_EVENT_OS_HANDLE(&ctx->event), USBI_EVENT_POLL_EVENTS);
1177 	if (r < 0)
1178 		goto err_destroy_event;
1179 
1180 #ifdef HAVE_OS_TIMER
1181 	r = usbi_create_timer(&ctx->timer);
1182 	if (r == 0) {
1183 		usbi_dbg(ctx, "using timer for timeouts");
1184 		r = usbi_add_event_source(ctx, USBI_TIMER_OS_HANDLE(&ctx->timer), USBI_TIMER_POLL_EVENTS);
1185 		if (r < 0)
1186 			goto err_destroy_timer;
1187 	} else {
1188 		usbi_dbg(ctx, "timer not available for timeouts");
1189 	}
1190 #endif
1191 
1192 	return 0;
1193 
1194 #ifdef HAVE_OS_TIMER
1195 err_destroy_timer:
1196 	usbi_destroy_timer(&ctx->timer);
1197 	usbi_remove_event_source(ctx, USBI_EVENT_OS_HANDLE(&ctx->event));
1198 #endif
1199 err_destroy_event:
1200 	usbi_destroy_event(&ctx->event);
1201 err:
1202 	usbi_mutex_destroy(&ctx->flying_transfers_lock);
1203 	usbi_mutex_destroy(&ctx->events_lock);
1204 	usbi_mutex_destroy(&ctx->event_waiters_lock);
1205 	usbi_cond_destroy(&ctx->event_waiters_cond);
1206 	usbi_mutex_destroy(&ctx->event_data_lock);
1207 	usbi_tls_key_delete(ctx->event_handling_key);
1208 	return r;
1209 }
1210 
cleanup_removed_event_sources(struct libusb_context * ctx)1211 static void cleanup_removed_event_sources(struct libusb_context *ctx)
1212 {
1213 	struct usbi_event_source *ievent_source, *tmp;
1214 
1215 	for_each_removed_event_source_safe(ctx, ievent_source, tmp) {
1216 		list_del(&ievent_source->list);
1217 		free(ievent_source);
1218 	}
1219 }
1220 
usbi_io_exit(struct libusb_context * ctx)1221 void usbi_io_exit(struct libusb_context *ctx)
1222 {
1223 #ifdef HAVE_OS_TIMER
1224 	if (usbi_using_timer(ctx)) {
1225 		usbi_remove_event_source(ctx, USBI_TIMER_OS_HANDLE(&ctx->timer));
1226 		usbi_destroy_timer(&ctx->timer);
1227 	}
1228 #endif
1229 	usbi_remove_event_source(ctx, USBI_EVENT_OS_HANDLE(&ctx->event));
1230 	usbi_destroy_event(&ctx->event);
1231 	usbi_mutex_destroy(&ctx->flying_transfers_lock);
1232 	usbi_mutex_destroy(&ctx->events_lock);
1233 	usbi_mutex_destroy(&ctx->event_waiters_lock);
1234 	usbi_cond_destroy(&ctx->event_waiters_cond);
1235 	usbi_mutex_destroy(&ctx->event_data_lock);
1236 	usbi_tls_key_delete(ctx->event_handling_key);
1237 	cleanup_removed_event_sources(ctx);
1238 	free(ctx->event_data);
1239 }
1240 
calculate_timeout(struct usbi_transfer * itransfer)1241 static void calculate_timeout(struct usbi_transfer *itransfer)
1242 {
1243 	unsigned int timeout =
1244 		USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer)->timeout;
1245 
1246 	if (!timeout) {
1247 		TIMESPEC_CLEAR(&itransfer->timeout);
1248 		return;
1249 	}
1250 
1251 	usbi_get_monotonic_time(&itransfer->timeout);
1252 
1253 	itransfer->timeout.tv_sec += timeout / 1000U;
1254 	itransfer->timeout.tv_nsec += (timeout % 1000U) * 1000000L;
1255 	if (itransfer->timeout.tv_nsec >= NSEC_PER_SEC) {
1256 		++itransfer->timeout.tv_sec;
1257 		itransfer->timeout.tv_nsec -= NSEC_PER_SEC;
1258 	}
1259 }
1260 
1261 /** \ingroup libusb_asyncio
1262  * Allocate a libusb transfer with a specified number of isochronous packet
1263  * descriptors. The returned transfer is pre-initialized for you. When the new
1264  * transfer is no longer needed, it should be freed with
1265  * libusb_free_transfer().
1266  *
1267  * Transfers intended for non-isochronous endpoints (e.g. control, bulk,
1268  * interrupt) should specify an iso_packets count of zero.
1269  *
1270  * For transfers intended for isochronous endpoints, specify an appropriate
1271  * number of packet descriptors to be allocated as part of the transfer.
1272  * The returned transfer is not specially initialized for isochronous I/O;
1273  * you are still required to set the
1274  * \ref libusb_transfer::num_iso_packets "num_iso_packets" and
1275  * \ref libusb_transfer::type "type" fields accordingly.
1276  *
1277  * It is safe to allocate a transfer with some isochronous packets and then
1278  * use it on a non-isochronous endpoint. If you do this, ensure that at time
1279  * of submission, num_iso_packets is 0 and that type is set appropriately.
1280  *
1281  * \param iso_packets number of isochronous packet descriptors to allocate. Must be non-negative.
1282  * \returns a newly allocated transfer, or NULL on error
1283  */
1284 DEFAULT_VISIBILITY
libusb_alloc_transfer(int iso_packets)1285 struct libusb_transfer * LIBUSB_CALL libusb_alloc_transfer(
1286 	int iso_packets)
1287 {
1288 	size_t priv_size;
1289 	size_t alloc_size;
1290 	unsigned char *ptr;
1291 	struct usbi_transfer *itransfer;
1292 	struct libusb_transfer *transfer;
1293 
1294 	assert(iso_packets >= 0);
1295 	if (iso_packets < 0)
1296 		return NULL;
1297 
1298 	priv_size = PTR_ALIGN(usbi_backend.transfer_priv_size);
1299 	alloc_size = priv_size
1300 		+ sizeof(struct usbi_transfer)
1301 		+ sizeof(struct libusb_transfer)
1302 		+ (sizeof(struct libusb_iso_packet_descriptor) * (size_t)iso_packets);
1303 	ptr = calloc(1, alloc_size);
1304 	if (!ptr)
1305 		return NULL;
1306 
1307 	itransfer = (struct usbi_transfer *)(ptr + priv_size);
1308 	itransfer->num_iso_packets = iso_packets;
1309 	itransfer->priv = ptr;
1310 	usbi_mutex_init(&itransfer->lock);
1311 	transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
1312 	return transfer;
1313 }
1314 
1315 /** \ingroup libusb_asyncio
1316  * Free a transfer structure. This should be called for all transfers
1317  * allocated with libusb_alloc_transfer().
1318  *
1319  * If the \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_BUFFER
1320  * "LIBUSB_TRANSFER_FREE_BUFFER" flag is set and the transfer buffer is
1321  * non-NULL, this function will also free the transfer buffer using the
1322  * standard system memory allocator (e.g. free()).
1323  *
1324  * It is legal to call this function with a NULL transfer. In this case,
1325  * the function will simply return safely.
1326  *
1327  * It is not legal to free an active transfer (one which has been submitted
1328  * and has not yet completed).
1329  *
1330  * \param transfer the transfer to free
1331  */
libusb_free_transfer(struct libusb_transfer * transfer)1332 void API_EXPORTED libusb_free_transfer(struct libusb_transfer *transfer)
1333 {
1334 	struct usbi_transfer *itransfer;
1335 	size_t priv_size;
1336 	unsigned char *ptr;
1337 
1338 	if (!transfer)
1339 		return;
1340 
1341 	usbi_dbg(TRANSFER_CTX(transfer), "transfer %p", transfer);
1342 	if (transfer->flags & LIBUSB_TRANSFER_FREE_BUFFER)
1343 		free(transfer->buffer);
1344 
1345 	itransfer = LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1346 	usbi_mutex_destroy(&itransfer->lock);
1347 	if (itransfer->dev)
1348 		libusb_unref_device(itransfer->dev);
1349 
1350 	priv_size = PTR_ALIGN(usbi_backend.transfer_priv_size);
1351 	ptr = (unsigned char *)itransfer - priv_size;
1352 	assert(ptr == itransfer->priv);
1353 	free(ptr);
1354 }
1355 
1356 /* iterates through the flying transfers, and rearms the timer based on the
1357  * next upcoming timeout.
1358  * must be called with flying_list locked.
1359  * returns 0 on success or a LIBUSB_ERROR code on failure.
1360  */
1361 #ifdef HAVE_OS_TIMER
arm_timer_for_next_timeout(struct libusb_context * ctx)1362 static int arm_timer_for_next_timeout(struct libusb_context *ctx)
1363 {
1364 	struct usbi_transfer *itransfer;
1365 
1366 	if (!usbi_using_timer(ctx))
1367 		return 0;
1368 
1369 	for_each_transfer(ctx, itransfer) {
1370 		struct timespec *cur_ts = &itransfer->timeout;
1371 
1372 		/* if we've reached transfers of infinite timeout, then we have no
1373 		 * arming to do */
1374 		if (!TIMESPEC_IS_SET(cur_ts))
1375 			break;
1376 
1377 		/* act on first transfer that has not already been handled */
1378 		if (!(itransfer->timeout_flags & (USBI_TRANSFER_TIMEOUT_HANDLED | USBI_TRANSFER_OS_HANDLES_TIMEOUT))) {
1379 			usbi_dbg(ctx, "next timeout originally %ums", USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer)->timeout);
1380 			return usbi_arm_timer(&ctx->timer, cur_ts);
1381 		}
1382 	}
1383 
1384 	usbi_dbg(ctx, "no timeouts, disarming timer");
1385 	return usbi_disarm_timer(&ctx->timer);
1386 }
1387 #else
arm_timer_for_next_timeout(struct libusb_context * ctx)1388 static inline int arm_timer_for_next_timeout(struct libusb_context *ctx)
1389 {
1390 	UNUSED(ctx);
1391 	return 0;
1392 }
1393 #endif
1394 
1395 /* add a transfer to the (timeout-sorted) active transfers list.
1396  * This function will return non 0 if fails to update the timer,
1397  * in which case the transfer is *not* on the flying_transfers list. */
add_to_flying_list(struct usbi_transfer * itransfer)1398 static int add_to_flying_list(struct usbi_transfer *itransfer)
1399 {
1400 	struct usbi_transfer *cur;
1401 	struct timespec *timeout = &itransfer->timeout;
1402 	struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
1403 	int r = 0;
1404 	int first = 1;
1405 
1406 	calculate_timeout(itransfer);
1407 
1408 	/* if we have no other flying transfers, start the list with this one */
1409 	if (list_empty(&ctx->flying_transfers)) {
1410 		list_add(&itransfer->list, &ctx->flying_transfers);
1411 		goto out;
1412 	}
1413 
1414 	/* if we have infinite timeout, append to end of list */
1415 	if (!TIMESPEC_IS_SET(timeout)) {
1416 		list_add_tail(&itransfer->list, &ctx->flying_transfers);
1417 		/* first is irrelevant in this case */
1418 		goto out;
1419 	}
1420 
1421 	/* otherwise, find appropriate place in list */
1422 	for_each_transfer(ctx, cur) {
1423 		/* find first timeout that occurs after the transfer in question */
1424 		struct timespec *cur_ts = &cur->timeout;
1425 
1426 		if (!TIMESPEC_IS_SET(cur_ts) || TIMESPEC_CMP(cur_ts, timeout, >)) {
1427 			list_add_tail(&itransfer->list, &cur->list);
1428 			goto out;
1429 		}
1430 		first = 0;
1431 	}
1432 	/* first is 0 at this stage (list not empty) */
1433 
1434 	/* otherwise we need to be inserted at the end */
1435 	list_add_tail(&itransfer->list, &ctx->flying_transfers);
1436 out:
1437 #ifdef HAVE_OS_TIMER
1438 	if (first && usbi_using_timer(ctx) && TIMESPEC_IS_SET(timeout)) {
1439 		/* if this transfer has the lowest timeout of all active transfers,
1440 		 * rearm the timer with this transfer's timeout */
1441 		usbi_dbg(ctx, "arm timer for timeout in %ums (first in line)",
1442 			USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer)->timeout);
1443 		r = usbi_arm_timer(&ctx->timer, timeout);
1444 	}
1445 #else
1446 	UNUSED(first);
1447 #endif
1448 
1449 	if (r)
1450 		list_del(&itransfer->list);
1451 
1452 	return r;
1453 }
1454 
1455 /* remove a transfer from the active transfers list.
1456  * This function will *always* remove the transfer from the
1457  * flying_transfers list. It will return a LIBUSB_ERROR code
1458  * if it fails to update the timer for the next timeout. */
remove_from_flying_list(struct usbi_transfer * itransfer)1459 static int remove_from_flying_list(struct usbi_transfer *itransfer)
1460 {
1461 	struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
1462 	int rearm_timer;
1463 	int r = 0;
1464 
1465 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1466 	rearm_timer = (TIMESPEC_IS_SET(&itransfer->timeout) &&
1467 		list_first_entry(&ctx->flying_transfers, struct usbi_transfer, list) == itransfer);
1468 	list_del(&itransfer->list);
1469 	if (rearm_timer)
1470 		r = arm_timer_for_next_timeout(ctx);
1471 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1472 
1473 	return r;
1474 }
1475 
1476 /** \ingroup libusb_asyncio
1477  * Submit a transfer. This function will fire off the USB transfer and then
1478  * return immediately.
1479  *
1480  * \param transfer the transfer to submit
1481  * \returns 0 on success
1482  * \returns LIBUSB_ERROR_NO_DEVICE if the device has been disconnected
1483  * \returns LIBUSB_ERROR_BUSY if the transfer has already been submitted.
1484  * \returns LIBUSB_ERROR_NOT_SUPPORTED if the transfer flags are not supported
1485  * by the operating system.
1486  * \returns LIBUSB_ERROR_INVALID_PARAM if the transfer size is larger than
1487  * the operating system and/or hardware can support (see \ref asynclimits)
1488  * \returns another LIBUSB_ERROR code on other failure
1489  */
libusb_submit_transfer(struct libusb_transfer * transfer)1490 int API_EXPORTED libusb_submit_transfer(struct libusb_transfer *transfer)
1491 {
1492 	struct usbi_transfer *itransfer =
1493 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1494 	struct libusb_context *ctx;
1495 	int r;
1496 
1497 	assert(transfer->dev_handle);
1498 	if (itransfer->dev)
1499 		libusb_unref_device(itransfer->dev);
1500 	itransfer->dev = libusb_ref_device(transfer->dev_handle->dev);
1501 
1502 	ctx = HANDLE_CTX(transfer->dev_handle);
1503 	usbi_dbg(ctx, "transfer %p", transfer);
1504 
1505 	/*
1506 	 * Important note on locking, this function takes / releases locks
1507 	 * in the following order:
1508 	 *  take flying_transfers_lock
1509 	 *  take itransfer->lock
1510 	 *  clear transfer
1511 	 *  add to flying_transfers list
1512 	 *  release flying_transfers_lock
1513 	 *  submit transfer
1514 	 *  release itransfer->lock
1515 	 *  if submit failed:
1516 	 *   take flying_transfers_lock
1517 	 *   remove from flying_transfers list
1518 	 *   release flying_transfers_lock
1519 	 *
1520 	 * Note that it takes locks in the order a-b and then releases them
1521 	 * in the same order a-b. This is somewhat unusual but not wrong,
1522 	 * release order is not important as long as *all* locks are released
1523 	 * before re-acquiring any locks.
1524 	 *
1525 	 * This means that the ordering of first releasing itransfer->lock
1526 	 * and then re-acquiring the flying_transfers_list on error is
1527 	 * important and must not be changed!
1528 	 *
1529 	 * This is done this way because when we take both locks we must always
1530 	 * take flying_transfers_lock first to avoid ab-ba style deadlocks with
1531 	 * the timeout handling and usbi_handle_disconnect paths.
1532 	 *
1533 	 * And we cannot release itransfer->lock before the submission is
1534 	 * complete otherwise timeout handling for transfers with short
1535 	 * timeouts may run before submission.
1536 	 */
1537 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1538 	usbi_mutex_lock(&itransfer->lock);
1539 	if (itransfer->state_flags & USBI_TRANSFER_IN_FLIGHT) {
1540 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
1541 		usbi_mutex_unlock(&itransfer->lock);
1542 		return LIBUSB_ERROR_BUSY;
1543 	}
1544 	itransfer->transferred = 0;
1545 	itransfer->state_flags = 0;
1546 	itransfer->timeout_flags = 0;
1547 	r = add_to_flying_list(itransfer);
1548 	if (r) {
1549 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
1550 		usbi_mutex_unlock(&itransfer->lock);
1551 		return r;
1552 	}
1553 	/*
1554 	 * We must release the flying transfers lock here, because with
1555 	 * some backends the submit_transfer method is synchronous.
1556 	 */
1557 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1558 
1559 	r = usbi_backend.submit_transfer(itransfer);
1560 	if (r == LIBUSB_SUCCESS) {
1561 		itransfer->state_flags |= USBI_TRANSFER_IN_FLIGHT;
1562 	}
1563 	usbi_mutex_unlock(&itransfer->lock);
1564 
1565 	if (r != LIBUSB_SUCCESS)
1566 		remove_from_flying_list(itransfer);
1567 
1568 	return r;
1569 }
1570 
1571 /** \ingroup libusb_asyncio
1572  * Asynchronously cancel a previously submitted transfer.
1573  * This function returns immediately, but this does not indicate cancellation
1574  * is complete. Your callback function will be invoked at some later time
1575  * with a transfer status of
1576  * \ref libusb_transfer_status::LIBUSB_TRANSFER_CANCELLED
1577  * "LIBUSB_TRANSFER_CANCELLED."
1578  *
1579  * This function behaves differently on Darwin-based systems (macOS and iOS):
1580  *
1581  * - Calling this function for one transfer will cause all transfers on the
1582  *   same endpoint to be cancelled. Your callback function will be invoked with
1583  *   a transfer status of
1584  *   \ref libusb_transfer_status::LIBUSB_TRANSFER_CANCELLED
1585  *   "LIBUSB_TRANSFER_CANCELLED" for each transfer that was cancelled.
1586 
1587  * - Calling this function also sends a \c ClearFeature(ENDPOINT_HALT) request
1588  *   for the transfer's endpoint. If the device does not handle this request
1589  *   correctly, the data toggle bits for the endpoint can be left out of sync
1590  *   between host and device, which can have unpredictable results when the
1591  *   next data is sent on the endpoint, including data being silently lost.
1592  *   A call to \ref libusb_clear_halt will not resolve this situation, since
1593  *   that function uses the same request. Therefore, if your program runs on
1594  *   Darwin and uses a device that does not correctly implement
1595  *   \c ClearFeature(ENDPOINT_HALT) requests, it may only be safe to cancel
1596  *   transfers when followed by a device reset using
1597  *   \ref libusb_reset_device.
1598  *
1599  * \param transfer the transfer to cancel
1600  * \returns 0 on success
1601  * \returns LIBUSB_ERROR_NOT_FOUND if the transfer is not in progress,
1602  * already complete, or already cancelled.
1603  * \returns a LIBUSB_ERROR code on failure
1604  */
libusb_cancel_transfer(struct libusb_transfer * transfer)1605 int API_EXPORTED libusb_cancel_transfer(struct libusb_transfer *transfer)
1606 {
1607 	struct usbi_transfer *itransfer =
1608 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1609 	struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
1610 	int r;
1611 
1612 	usbi_dbg(ctx, "transfer %p", transfer );
1613 	usbi_mutex_lock(&itransfer->lock);
1614 	if (!(itransfer->state_flags & USBI_TRANSFER_IN_FLIGHT)
1615 			|| (itransfer->state_flags & USBI_TRANSFER_CANCELLING)) {
1616 		r = LIBUSB_ERROR_NOT_FOUND;
1617 		goto out;
1618 	}
1619 	r = usbi_backend.cancel_transfer(itransfer);
1620 	if (r < 0) {
1621 		if (r != LIBUSB_ERROR_NOT_FOUND &&
1622 		    r != LIBUSB_ERROR_NO_DEVICE)
1623 			usbi_err(ctx, "cancel transfer failed error %d", r);
1624 		else
1625 			usbi_dbg(ctx, "cancel transfer failed error %d", r);
1626 
1627 		if (r == LIBUSB_ERROR_NO_DEVICE)
1628 			itransfer->state_flags |= USBI_TRANSFER_DEVICE_DISAPPEARED;
1629 	}
1630 
1631 	itransfer->state_flags |= USBI_TRANSFER_CANCELLING;
1632 
1633 out:
1634 	usbi_mutex_unlock(&itransfer->lock);
1635 	return r;
1636 }
1637 
1638 /** \ingroup libusb_asyncio
1639  * Set a transfers bulk stream id. Note users are advised to use
1640  * libusb_fill_bulk_stream_transfer() instead of calling this function
1641  * directly.
1642  *
1643  * Since version 1.0.19, \ref LIBUSB_API_VERSION >= 0x01000103
1644  *
1645  * \param transfer the transfer to set the stream id for
1646  * \param stream_id the stream id to set
1647  * \see libusb_alloc_streams()
1648  */
libusb_transfer_set_stream_id(struct libusb_transfer * transfer,uint32_t stream_id)1649 void API_EXPORTED libusb_transfer_set_stream_id(
1650 	struct libusb_transfer *transfer, uint32_t stream_id)
1651 {
1652 	struct usbi_transfer *itransfer =
1653 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1654 
1655 	itransfer->stream_id = stream_id;
1656 }
1657 
1658 /** \ingroup libusb_asyncio
1659  * Get a transfers bulk stream id.
1660  *
1661  * Since version 1.0.19, \ref LIBUSB_API_VERSION >= 0x01000103
1662  *
1663  * \param transfer the transfer to get the stream id for
1664  * \returns the stream id for the transfer
1665  */
libusb_transfer_get_stream_id(struct libusb_transfer * transfer)1666 uint32_t API_EXPORTED libusb_transfer_get_stream_id(
1667 	struct libusb_transfer *transfer)
1668 {
1669 	struct usbi_transfer *itransfer =
1670 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1671 
1672 	return itransfer->stream_id;
1673 }
1674 
1675 /* Handle completion of a transfer (completion might be an error condition).
1676  * This will invoke the user-supplied callback function, which may end up
1677  * freeing the transfer. Therefore you cannot use the transfer structure
1678  * after calling this function, and you should free all backend-specific
1679  * data before calling it.
1680  * Do not call this function with the usbi_transfer lock held. User-specified
1681  * callback functions may attempt to directly resubmit the transfer, which
1682  * will attempt to take the lock. */
usbi_handle_transfer_completion(struct usbi_transfer * itransfer,enum libusb_transfer_status status)1683 int usbi_handle_transfer_completion(struct usbi_transfer *itransfer,
1684 	enum libusb_transfer_status status)
1685 {
1686 	struct libusb_transfer *transfer =
1687 		USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
1688 	struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
1689 	uint8_t flags;
1690 	int r;
1691 
1692 	r = remove_from_flying_list(itransfer);
1693 	if (r < 0)
1694 		usbi_err(ctx, "failed to set timer for next timeout");
1695 
1696 	usbi_mutex_lock(&itransfer->lock);
1697 	itransfer->state_flags &= ~USBI_TRANSFER_IN_FLIGHT;
1698 	usbi_mutex_unlock(&itransfer->lock);
1699 
1700 	if (status == LIBUSB_TRANSFER_COMPLETED
1701 			&& transfer->flags & LIBUSB_TRANSFER_SHORT_NOT_OK) {
1702 		int rqlen = transfer->length;
1703 		if (transfer->type == LIBUSB_TRANSFER_TYPE_CONTROL)
1704 			rqlen -= LIBUSB_CONTROL_SETUP_SIZE;
1705 		if (rqlen != itransfer->transferred) {
1706 			usbi_dbg(ctx, "interpreting short transfer as error");
1707 			status = LIBUSB_TRANSFER_ERROR;
1708 		}
1709 	}
1710 
1711 	flags = transfer->flags;
1712 	transfer->status = status;
1713 	transfer->actual_length = itransfer->transferred;
1714 	usbi_dbg(ctx, "transfer %p has callback %p", transfer, transfer->callback);
1715 	if (transfer->callback)
1716 		transfer->callback(transfer);
1717 	/* transfer might have been freed by the above call, do not use from
1718 	 * this point. */
1719 	if (flags & LIBUSB_TRANSFER_FREE_TRANSFER)
1720 		libusb_free_transfer(transfer);
1721 	return r;
1722 }
1723 
1724 /* Similar to usbi_handle_transfer_completion() but exclusively for transfers
1725  * that were asynchronously cancelled. The same concerns w.r.t. freeing of
1726  * transfers exist here.
1727  * Do not call this function with the usbi_transfer lock held. User-specified
1728  * callback functions may attempt to directly resubmit the transfer, which
1729  * will attempt to take the lock. */
usbi_handle_transfer_cancellation(struct usbi_transfer * itransfer)1730 int usbi_handle_transfer_cancellation(struct usbi_transfer *itransfer)
1731 {
1732 	struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
1733 	uint8_t timed_out;
1734 
1735 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1736 	timed_out = itransfer->timeout_flags & USBI_TRANSFER_TIMED_OUT;
1737 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1738 
1739 	/* if the URB was cancelled due to timeout, report timeout to the user */
1740 	if (timed_out) {
1741 		usbi_dbg(ctx, "detected timeout cancellation");
1742 		return usbi_handle_transfer_completion(itransfer, LIBUSB_TRANSFER_TIMED_OUT);
1743 	}
1744 
1745 	/* otherwise its a normal async cancel */
1746 	return usbi_handle_transfer_completion(itransfer, LIBUSB_TRANSFER_CANCELLED);
1747 }
1748 
1749 /* Add a completed transfer to the completed_transfers list of the
1750  * context and signal the event. The backend's handle_transfer_completion()
1751  * function will be called the next time an event handler runs. */
usbi_signal_transfer_completion(struct usbi_transfer * itransfer)1752 void usbi_signal_transfer_completion(struct usbi_transfer *itransfer)
1753 {
1754 	struct libusb_device *dev = itransfer->dev;
1755 
1756 	if (dev) {
1757 		struct libusb_context *ctx = DEVICE_CTX(dev);
1758 		unsigned int event_flags;
1759 
1760 		usbi_mutex_lock(&ctx->event_data_lock);
1761 		event_flags = ctx->event_flags;
1762 		ctx->event_flags |= USBI_EVENT_TRANSFER_COMPLETED;
1763 		list_add_tail(&itransfer->completed_list, &ctx->completed_transfers);
1764 		if (!event_flags)
1765 			usbi_signal_event(&ctx->event);
1766 		usbi_mutex_unlock(&ctx->event_data_lock);
1767 	}
1768 }
1769 
1770 /** \ingroup libusb_poll
1771  * Attempt to acquire the event handling lock. This lock is used to ensure that
1772  * only one thread is monitoring libusb event sources at any one time.
1773  *
1774  * You only need to use this lock if you are developing an application
1775  * which calls poll() or select() on libusb's file descriptors directly.
1776  * If you stick to libusb's event handling loop functions (e.g.
1777  * libusb_handle_events()) then you do not need to be concerned with this
1778  * locking.
1779  *
1780  * While holding this lock, you are trusted to actually be handling events.
1781  * If you are no longer handling events, you must call libusb_unlock_events()
1782  * as soon as possible.
1783  *
1784  * \param ctx the context to operate on, or NULL for the default context
1785  * \returns 0 if the lock was obtained successfully
1786  * \returns 1 if the lock was not obtained (i.e. another thread holds the lock)
1787  * \ref libusb_mtasync
1788  */
libusb_try_lock_events(libusb_context * ctx)1789 int API_EXPORTED libusb_try_lock_events(libusb_context *ctx)
1790 {
1791 	int r;
1792 	unsigned int ru;
1793 
1794 	ctx = usbi_get_context(ctx);
1795 
1796 	/* is someone else waiting to close a device? if so, don't let this thread
1797 	 * start event handling */
1798 	usbi_mutex_lock(&ctx->event_data_lock);
1799 	ru = ctx->device_close;
1800 	usbi_mutex_unlock(&ctx->event_data_lock);
1801 	if (ru) {
1802 		usbi_dbg(ctx, "someone else is closing a device");
1803 		return 1;
1804 	}
1805 
1806 	r = usbi_mutex_trylock(&ctx->events_lock);
1807 	if (!r)
1808 		return 1;
1809 
1810 	ctx->event_handler_active = 1;
1811 	return 0;
1812 }
1813 
1814 /** \ingroup libusb_poll
1815  * Acquire the event handling lock, blocking until successful acquisition if
1816  * it is contended. This lock is used to ensure that only one thread is
1817  * monitoring libusb event sources at any one time.
1818  *
1819  * You only need to use this lock if you are developing an application
1820  * which calls poll() or select() on libusb's file descriptors directly.
1821  * If you stick to libusb's event handling loop functions (e.g.
1822  * libusb_handle_events()) then you do not need to be concerned with this
1823  * locking.
1824  *
1825  * While holding this lock, you are trusted to actually be handling events.
1826  * If you are no longer handling events, you must call libusb_unlock_events()
1827  * as soon as possible.
1828  *
1829  * \param ctx the context to operate on, or NULL for the default context
1830  * \ref libusb_mtasync
1831  */
libusb_lock_events(libusb_context * ctx)1832 void API_EXPORTED libusb_lock_events(libusb_context *ctx)
1833 {
1834 	ctx = usbi_get_context(ctx);
1835 	usbi_mutex_lock(&ctx->events_lock);
1836 	ctx->event_handler_active = 1;
1837 }
1838 
1839 /** \ingroup libusb_poll
1840  * Release the lock previously acquired with libusb_try_lock_events() or
1841  * libusb_lock_events(). Releasing this lock will wake up any threads blocked
1842  * on libusb_wait_for_event().
1843  *
1844  * \param ctx the context to operate on, or NULL for the default context
1845  * \ref libusb_mtasync
1846  */
libusb_unlock_events(libusb_context * ctx)1847 void API_EXPORTED libusb_unlock_events(libusb_context *ctx)
1848 {
1849 	ctx = usbi_get_context(ctx);
1850 	ctx->event_handler_active = 0;
1851 	usbi_mutex_unlock(&ctx->events_lock);
1852 
1853 	/* FIXME: perhaps we should be a bit more efficient by not broadcasting
1854 	 * the availability of the events lock when we are modifying pollfds
1855 	 * (check ctx->device_close)? */
1856 	usbi_mutex_lock(&ctx->event_waiters_lock);
1857 	usbi_cond_broadcast(&ctx->event_waiters_cond);
1858 	usbi_mutex_unlock(&ctx->event_waiters_lock);
1859 }
1860 
1861 /** \ingroup libusb_poll
1862  * Determine if it is still OK for this thread to be doing event handling.
1863  *
1864  * Sometimes, libusb needs to temporarily pause all event handlers, and this
1865  * is the function you should use before polling file descriptors to see if
1866  * this is the case.
1867  *
1868  * If this function instructs your thread to give up the events lock, you
1869  * should just continue the usual logic that is documented in \ref libusb_mtasync.
1870  * On the next iteration, your thread will fail to obtain the events lock,
1871  * and will hence become an event waiter.
1872  *
1873  * This function should be called while the events lock is held: you don't
1874  * need to worry about the results of this function if your thread is not
1875  * the current event handler.
1876  *
1877  * \param ctx the context to operate on, or NULL for the default context
1878  * \returns 1 if event handling can start or continue
1879  * \returns 0 if this thread must give up the events lock
1880  * \ref fullstory "Multi-threaded I/O: the full story"
1881  */
libusb_event_handling_ok(libusb_context * ctx)1882 int API_EXPORTED libusb_event_handling_ok(libusb_context *ctx)
1883 {
1884 	unsigned int r;
1885 
1886 	ctx = usbi_get_context(ctx);
1887 
1888 	/* is someone else waiting to close a device? if so, don't let this thread
1889 	 * continue event handling */
1890 	usbi_mutex_lock(&ctx->event_data_lock);
1891 	r = ctx->device_close;
1892 	usbi_mutex_unlock(&ctx->event_data_lock);
1893 	if (r) {
1894 		usbi_dbg(ctx, "someone else is closing a device");
1895 		return 0;
1896 	}
1897 
1898 	return 1;
1899 }
1900 
1901 
1902 /** \ingroup libusb_poll
1903  * Determine if an active thread is handling events (i.e. if anyone is holding
1904  * the event handling lock).
1905  *
1906  * \param ctx the context to operate on, or NULL for the default context
1907  * \returns 1 if a thread is handling events
1908  * \returns 0 if there are no threads currently handling events
1909  * \ref libusb_mtasync
1910  */
libusb_event_handler_active(libusb_context * ctx)1911 int API_EXPORTED libusb_event_handler_active(libusb_context *ctx)
1912 {
1913 	unsigned int r;
1914 
1915 	ctx = usbi_get_context(ctx);
1916 
1917 	/* is someone else waiting to close a device? if so, don't let this thread
1918 	 * start event handling -- indicate that event handling is happening */
1919 	usbi_mutex_lock(&ctx->event_data_lock);
1920 	r = ctx->device_close;
1921 	usbi_mutex_unlock(&ctx->event_data_lock);
1922 	if (r) {
1923 		usbi_dbg(ctx, "someone else is closing a device");
1924 		return 1;
1925 	}
1926 
1927 	return ctx->event_handler_active;
1928 }
1929 
1930 /** \ingroup libusb_poll
1931  * Interrupt any active thread that is handling events. This is mainly useful
1932  * for interrupting a dedicated event handling thread when an application
1933  * wishes to call libusb_exit().
1934  *
1935  * Since version 1.0.21, \ref LIBUSB_API_VERSION >= 0x01000105
1936  *
1937  * \param ctx the context to operate on, or NULL for the default context
1938  * \ref libusb_mtasync
1939  */
libusb_interrupt_event_handler(libusb_context * ctx)1940 void API_EXPORTED libusb_interrupt_event_handler(libusb_context *ctx)
1941 {
1942 	unsigned int event_flags;
1943 
1944 	usbi_dbg(ctx, " ");
1945 
1946 	ctx = usbi_get_context(ctx);
1947 	usbi_mutex_lock(&ctx->event_data_lock);
1948 
1949 	event_flags = ctx->event_flags;
1950 	ctx->event_flags |= USBI_EVENT_USER_INTERRUPT;
1951 	if (!event_flags)
1952 		usbi_signal_event(&ctx->event);
1953 
1954 	usbi_mutex_unlock(&ctx->event_data_lock);
1955 }
1956 
1957 /** \ingroup libusb_poll
1958  * Acquire the event waiters lock. This lock is designed to be obtained under
1959  * the situation where you want to be aware when events are completed, but
1960  * some other thread is event handling so calling libusb_handle_events() is not
1961  * allowed.
1962  *
1963  * You then obtain this lock, re-check that another thread is still handling
1964  * events, then call libusb_wait_for_event().
1965  *
1966  * You only need to use this lock if you are developing an application
1967  * which calls poll() or select() on libusb's file descriptors directly,
1968  * <b>and</b> may potentially be handling events from 2 threads simultaneously.
1969  * If you stick to libusb's event handling loop functions (e.g.
1970  * libusb_handle_events()) then you do not need to be concerned with this
1971  * locking.
1972  *
1973  * \param ctx the context to operate on, or NULL for the default context
1974  * \ref libusb_mtasync
1975  */
libusb_lock_event_waiters(libusb_context * ctx)1976 void API_EXPORTED libusb_lock_event_waiters(libusb_context *ctx)
1977 {
1978 	ctx = usbi_get_context(ctx);
1979 	usbi_mutex_lock(&ctx->event_waiters_lock);
1980 }
1981 
1982 /** \ingroup libusb_poll
1983  * Release the event waiters lock.
1984  * \param ctx the context to operate on, or NULL for the default context
1985  * \ref libusb_mtasync
1986  */
libusb_unlock_event_waiters(libusb_context * ctx)1987 void API_EXPORTED libusb_unlock_event_waiters(libusb_context *ctx)
1988 {
1989 	ctx = usbi_get_context(ctx);
1990 	usbi_mutex_unlock(&ctx->event_waiters_lock);
1991 }
1992 
1993 /** \ingroup libusb_poll
1994  * Wait for another thread to signal completion of an event. Must be called
1995  * with the event waiters lock held, see libusb_lock_event_waiters().
1996  *
1997  * This function will block until any of the following conditions are met:
1998  * -# The timeout expires
1999  * -# A transfer completes
2000  * -# A thread releases the event handling lock through libusb_unlock_events()
2001  *
2002  * Condition 1 is obvious. Condition 2 unblocks your thread <em>after</em>
2003  * the callback for the transfer has completed. Condition 3 is important
2004  * because it means that the thread that was previously handling events is no
2005  * longer doing so, so if any events are to complete, another thread needs to
2006  * step up and start event handling.
2007  *
2008  * This function releases the event waiters lock before putting your thread
2009  * to sleep, and reacquires the lock as it is being woken up.
2010  *
2011  * \param ctx the context to operate on, or NULL for the default context
2012  * \param tv maximum timeout for this blocking function. A NULL value
2013  * indicates unlimited timeout.
2014  * \returns 0 after a transfer completes or another thread stops event handling
2015  * \returns 1 if the timeout expired
2016  * \returns LIBUSB_ERROR_INVALID_PARAM if timeval is invalid
2017  * \ref libusb_mtasync
2018  */
libusb_wait_for_event(libusb_context * ctx,struct timeval * tv)2019 int API_EXPORTED libusb_wait_for_event(libusb_context *ctx, struct timeval *tv)
2020 {
2021 	int r;
2022 
2023 	ctx = usbi_get_context(ctx);
2024 	if (!tv) {
2025 		usbi_cond_wait(&ctx->event_waiters_cond, &ctx->event_waiters_lock);
2026 		return 0;
2027 	}
2028 
2029 	if (!TIMEVAL_IS_VALID(tv))
2030 		return LIBUSB_ERROR_INVALID_PARAM;
2031 
2032 	r = usbi_cond_timedwait(&ctx->event_waiters_cond,
2033 		&ctx->event_waiters_lock, tv);
2034 	if (r < 0)
2035 		return r == LIBUSB_ERROR_TIMEOUT;
2036 
2037 	return 0;
2038 }
2039 
handle_timeout(struct usbi_transfer * itransfer)2040 static void handle_timeout(struct usbi_transfer *itransfer)
2041 {
2042 	struct libusb_transfer *transfer =
2043 		USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
2044 	int r;
2045 
2046 	itransfer->timeout_flags |= USBI_TRANSFER_TIMEOUT_HANDLED;
2047 	r = libusb_cancel_transfer(transfer);
2048 	if (r == LIBUSB_SUCCESS)
2049 		itransfer->timeout_flags |= USBI_TRANSFER_TIMED_OUT;
2050 	else
2051 		usbi_warn(TRANSFER_CTX(transfer),
2052 			"async cancel failed %d", r);
2053 }
2054 
handle_timeouts_locked(struct libusb_context * ctx)2055 static void handle_timeouts_locked(struct libusb_context *ctx)
2056 {
2057 	struct timespec systime;
2058 	struct usbi_transfer *itransfer;
2059 
2060 	if (list_empty(&ctx->flying_transfers))
2061 		return;
2062 
2063 	/* get current time */
2064 	usbi_get_monotonic_time(&systime);
2065 
2066 	/* iterate through flying transfers list, finding all transfers that
2067 	 * have expired timeouts */
2068 	for_each_transfer(ctx, itransfer) {
2069 		struct timespec *cur_ts = &itransfer->timeout;
2070 
2071 		/* if we've reached transfers of infinite timeout, we're all done */
2072 		if (!TIMESPEC_IS_SET(cur_ts))
2073 			return;
2074 
2075 		/* ignore timeouts we've already handled */
2076 		if (itransfer->timeout_flags & (USBI_TRANSFER_TIMEOUT_HANDLED | USBI_TRANSFER_OS_HANDLES_TIMEOUT))
2077 			continue;
2078 
2079 		/* if transfer has non-expired timeout, nothing more to do */
2080 		if (TIMESPEC_CMP(cur_ts, &systime, >))
2081 			return;
2082 
2083 		/* otherwise, we've got an expired timeout to handle */
2084 		handle_timeout(itransfer);
2085 	}
2086 }
2087 
handle_timeouts(struct libusb_context * ctx)2088 static void handle_timeouts(struct libusb_context *ctx)
2089 {
2090 	ctx = usbi_get_context(ctx);
2091 	usbi_mutex_lock(&ctx->flying_transfers_lock);
2092 	handle_timeouts_locked(ctx);
2093 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
2094 }
2095 
handle_event_trigger(struct libusb_context * ctx)2096 static int handle_event_trigger(struct libusb_context *ctx)
2097 {
2098 	struct list_head hotplug_msgs;
2099 	int hotplug_event = 0;
2100 	int r = 0;
2101 
2102 	usbi_dbg(ctx, "event triggered");
2103 
2104 	list_init(&hotplug_msgs);
2105 
2106 	/* take the the event data lock while processing events */
2107 	usbi_mutex_lock(&ctx->event_data_lock);
2108 
2109 	/* check if someone modified the event sources */
2110 	if (ctx->event_flags & USBI_EVENT_EVENT_SOURCES_MODIFIED)
2111 		usbi_dbg(ctx, "someone updated the event sources");
2112 
2113 	if (ctx->event_flags & USBI_EVENT_USER_INTERRUPT) {
2114 		usbi_dbg(ctx, "someone purposefully interrupted");
2115 		ctx->event_flags &= ~USBI_EVENT_USER_INTERRUPT;
2116 	}
2117 
2118 	if (ctx->event_flags & USBI_EVENT_HOTPLUG_CB_DEREGISTERED) {
2119 		usbi_dbg(ctx, "someone unregistered a hotplug cb");
2120 		ctx->event_flags &= ~USBI_EVENT_HOTPLUG_CB_DEREGISTERED;
2121 		hotplug_event = 1;
2122 	}
2123 
2124 	/* check if someone is closing a device */
2125 	if (ctx->event_flags & USBI_EVENT_DEVICE_CLOSE)
2126 		usbi_dbg(ctx, "someone is closing a device");
2127 
2128 	/* check for any pending hotplug messages */
2129 	if (ctx->event_flags & USBI_EVENT_HOTPLUG_MSG_PENDING) {
2130 		usbi_dbg(ctx, "hotplug message received");
2131 		ctx->event_flags &= ~USBI_EVENT_HOTPLUG_MSG_PENDING;
2132 		hotplug_event = 1;
2133 		assert(!list_empty(&ctx->hotplug_msgs));
2134 		list_cut(&hotplug_msgs, &ctx->hotplug_msgs);
2135 	}
2136 
2137 	/* complete any pending transfers */
2138 	if (ctx->event_flags & USBI_EVENT_TRANSFER_COMPLETED) {
2139 		struct usbi_transfer *itransfer, *tmp;
2140 		struct list_head completed_transfers;
2141 
2142 		assert(!list_empty(&ctx->completed_transfers));
2143 		list_cut(&completed_transfers, &ctx->completed_transfers);
2144 		usbi_mutex_unlock(&ctx->event_data_lock);
2145 
2146 		__for_each_completed_transfer_safe(&completed_transfers, itransfer, tmp) {
2147 			list_del(&itransfer->completed_list);
2148 			r = usbi_backend.handle_transfer_completion(itransfer);
2149 			if (r) {
2150 				usbi_err(ctx, "backend handle_transfer_completion failed with error %d", r);
2151 				break;
2152 			}
2153 		}
2154 
2155 		usbi_mutex_lock(&ctx->event_data_lock);
2156 		if (!list_empty(&completed_transfers)) {
2157 			/* an error occurred, put the remaining transfers back on the list */
2158 			list_splice_front(&completed_transfers, &ctx->completed_transfers);
2159 		} else if (list_empty(&ctx->completed_transfers)) {
2160 			ctx->event_flags &= ~USBI_EVENT_TRANSFER_COMPLETED;
2161 		}
2162 	}
2163 
2164 	/* if no further pending events, clear the event */
2165 	if (!ctx->event_flags)
2166 		usbi_clear_event(&ctx->event);
2167 
2168 	usbi_mutex_unlock(&ctx->event_data_lock);
2169 
2170 	/* process the hotplug events, if any */
2171 	if (hotplug_event)
2172 		usbi_hotplug_process(ctx, &hotplug_msgs);
2173 
2174 	return r;
2175 }
2176 
2177 #ifdef HAVE_OS_TIMER
handle_timer_trigger(struct libusb_context * ctx)2178 static int handle_timer_trigger(struct libusb_context *ctx)
2179 {
2180 	int r;
2181 
2182 	usbi_mutex_lock(&ctx->flying_transfers_lock);
2183 
2184 	/* process the timeout that just happened */
2185 	handle_timeouts_locked(ctx);
2186 
2187 	/* arm for next timeout */
2188 	r = arm_timer_for_next_timeout(ctx);
2189 
2190 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
2191 
2192 	return r;
2193 }
2194 #endif
2195 
2196 /* do the actual event handling. assumes that no other thread is concurrently
2197  * doing the same thing. */
handle_events(struct libusb_context * ctx,struct timeval * tv)2198 static int handle_events(struct libusb_context *ctx, struct timeval *tv)
2199 {
2200 	struct usbi_reported_events reported_events;
2201 	int r, timeout_ms;
2202 
2203 	/* prevent attempts to recursively handle events (e.g. calling into
2204 	 * libusb_handle_events() from within a hotplug or transfer callback) */
2205 	if (usbi_handling_events(ctx))
2206 		return LIBUSB_ERROR_BUSY;
2207 
2208 	/* only reallocate the event source data when the list of event sources has
2209 	 * been modified since the last handle_events(), otherwise reuse them to
2210 	 * save the additional overhead */
2211 	usbi_mutex_lock(&ctx->event_data_lock);
2212 	if (ctx->event_flags & USBI_EVENT_EVENT_SOURCES_MODIFIED) {
2213 		usbi_dbg(ctx, "event sources modified, reallocating event data");
2214 
2215 		/* free anything removed since we last ran */
2216 		cleanup_removed_event_sources(ctx);
2217 
2218 		r = usbi_alloc_event_data(ctx);
2219 		if (r) {
2220 			usbi_mutex_unlock(&ctx->event_data_lock);
2221 			return r;
2222 		}
2223 
2224 		/* reset the flag now that we have the updated list */
2225 		ctx->event_flags &= ~USBI_EVENT_EVENT_SOURCES_MODIFIED;
2226 
2227 		/* if no further pending events, clear the event so that we do
2228 		 * not immediately return from the wait function */
2229 		if (!ctx->event_flags)
2230 			usbi_clear_event(&ctx->event);
2231 	}
2232 	usbi_mutex_unlock(&ctx->event_data_lock);
2233 
2234 	timeout_ms = (int)(tv->tv_sec * 1000) + (tv->tv_usec / 1000);
2235 
2236 	/* round up to next millisecond */
2237 	if (tv->tv_usec % 1000)
2238 		timeout_ms++;
2239 
2240 	reported_events.event_bits = 0;
2241 
2242 	usbi_start_event_handling(ctx);
2243 
2244 	r = usbi_wait_for_events(ctx, &reported_events, timeout_ms);
2245 	if (r != LIBUSB_SUCCESS) {
2246 		if (r == LIBUSB_ERROR_TIMEOUT) {
2247 			handle_timeouts(ctx);
2248 			r = LIBUSB_SUCCESS;
2249 		}
2250 		goto done;
2251 	}
2252 
2253 	if (reported_events.event_triggered) {
2254 		r = handle_event_trigger(ctx);
2255 		if (r) {
2256 			/* return error code */
2257 			goto done;
2258 		}
2259 	}
2260 
2261 #ifdef HAVE_OS_TIMER
2262 	if (reported_events.timer_triggered) {
2263 		r = handle_timer_trigger(ctx);
2264 		if (r) {
2265 			/* return error code */
2266 			goto done;
2267 		}
2268 	}
2269 #endif
2270 
2271 	if (!reported_events.num_ready)
2272 		goto done;
2273 
2274 	r = usbi_backend.handle_events(ctx, reported_events.event_data,
2275 		reported_events.event_data_count, reported_events.num_ready);
2276 	if (r)
2277 		usbi_err(ctx, "backend handle_events failed with error %d", r);
2278 
2279 done:
2280 	usbi_end_event_handling(ctx);
2281 	return r;
2282 }
2283 
2284 /* returns the smallest of:
2285  *  1. timeout of next URB
2286  *  2. user-supplied timeout
2287  * returns 1 if there is an already-expired timeout, otherwise returns 0
2288  * and populates out
2289  */
get_next_timeout(libusb_context * ctx,struct timeval * tv,struct timeval * out)2290 static int get_next_timeout(libusb_context *ctx, struct timeval *tv,
2291 	struct timeval *out)
2292 {
2293 	struct timeval timeout;
2294 	int r = libusb_get_next_timeout(ctx, &timeout);
2295 	if (r) {
2296 		/* timeout already expired? */
2297 		if (!timerisset(&timeout))
2298 			return 1;
2299 
2300 		/* choose the smallest of next URB timeout or user specified timeout */
2301 		if (timercmp(&timeout, tv, <))
2302 			*out = timeout;
2303 		else
2304 			*out = *tv;
2305 	} else {
2306 		*out = *tv;
2307 	}
2308 	return 0;
2309 }
2310 
2311 /** \ingroup libusb_poll
2312  * Handle any pending events.
2313  *
2314  * libusb determines "pending events" by checking if any timeouts have expired
2315  * and by checking the set of file descriptors for activity.
2316  *
2317  * If a zero timeval is passed, this function will handle any already-pending
2318  * events and then immediately return in non-blocking style.
2319  *
2320  * If a non-zero timeval is passed and no events are currently pending, this
2321  * function will block waiting for events to handle up until the specified
2322  * timeout. If an event arrives or a signal is raised, this function will
2323  * return early.
2324  *
2325  * If the parameter completed is not NULL then <em>after obtaining the event
2326  * handling lock</em> this function will return immediately if the integer
2327  * pointed to is not 0. This allows for race free waiting for the completion
2328  * of a specific transfer.
2329  *
2330  * \param ctx the context to operate on, or NULL for the default context
2331  * \param tv the maximum time to block waiting for events, or an all zero
2332  * timeval struct for non-blocking mode
2333  * \param completed pointer to completion integer to check, or NULL
2334  * \returns 0 on success
2335  * \returns LIBUSB_ERROR_INVALID_PARAM if timeval is invalid
2336  * \returns another LIBUSB_ERROR code on other failure
2337  * \ref libusb_mtasync
2338  */
libusb_handle_events_timeout_completed(libusb_context * ctx,struct timeval * tv,int * completed)2339 int API_EXPORTED libusb_handle_events_timeout_completed(libusb_context *ctx,
2340 	struct timeval *tv, int *completed)
2341 {
2342 	int r;
2343 	struct timeval poll_timeout;
2344 
2345 	if (!TIMEVAL_IS_VALID(tv))
2346 		return LIBUSB_ERROR_INVALID_PARAM;
2347 
2348 	ctx = usbi_get_context(ctx);
2349 	r = get_next_timeout(ctx, tv, &poll_timeout);
2350 	if (r) {
2351 		/* timeout already expired */
2352 		handle_timeouts(ctx);
2353 		return 0;
2354 	}
2355 
2356 retry:
2357 	if (libusb_try_lock_events(ctx) == 0) {
2358 		if (completed == NULL || !*completed) {
2359 			/* we obtained the event lock: do our own event handling */
2360 			usbi_dbg(ctx, "doing our own event handling");
2361 			r = handle_events(ctx, &poll_timeout);
2362 		}
2363 		libusb_unlock_events(ctx);
2364 		return r;
2365 	}
2366 
2367 	/* another thread is doing event handling. wait for thread events that
2368 	 * notify event completion. */
2369 	libusb_lock_event_waiters(ctx);
2370 
2371 	if (completed && *completed)
2372 		goto already_done;
2373 
2374 	if (!libusb_event_handler_active(ctx)) {
2375 		/* we hit a race: whoever was event handling earlier finished in the
2376 		 * time it took us to reach this point. try the cycle again. */
2377 		libusb_unlock_event_waiters(ctx);
2378 		usbi_dbg(ctx, "event handler was active but went away, retrying");
2379 		goto retry;
2380 	}
2381 
2382 	usbi_dbg(ctx, "another thread is doing event handling");
2383 	r = libusb_wait_for_event(ctx, &poll_timeout);
2384 
2385 already_done:
2386 	libusb_unlock_event_waiters(ctx);
2387 
2388 	if (r < 0)
2389 		return r;
2390 	else if (r == 1)
2391 		handle_timeouts(ctx);
2392 	return 0;
2393 }
2394 
2395 /** \ingroup libusb_poll
2396  * Handle any pending events
2397  *
2398  * Like libusb_handle_events_timeout_completed(), but without the completed
2399  * parameter, calling this function is equivalent to calling
2400  * libusb_handle_events_timeout_completed() with a NULL completed parameter.
2401  *
2402  * This function is kept primarily for backwards compatibility.
2403  * All new code should call libusb_handle_events_completed() or
2404  * libusb_handle_events_timeout_completed() to avoid race conditions.
2405  *
2406  * \param ctx the context to operate on, or NULL for the default context
2407  * \param tv the maximum time to block waiting for events, or an all zero
2408  * timeval struct for non-blocking mode
2409  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2410  */
libusb_handle_events_timeout(libusb_context * ctx,struct timeval * tv)2411 int API_EXPORTED libusb_handle_events_timeout(libusb_context *ctx,
2412 	struct timeval *tv)
2413 {
2414 	return libusb_handle_events_timeout_completed(ctx, tv, NULL);
2415 }
2416 
2417 /** \ingroup libusb_poll
2418  * Handle any pending events in blocking mode. There is currently a timeout
2419  * hard-coded at 60 seconds but we plan to make it unlimited in future. For
2420  * finer control over whether this function is blocking or non-blocking, or
2421  * for control over the timeout, use libusb_handle_events_timeout_completed()
2422  * instead.
2423  *
2424  * This function is kept primarily for backwards compatibility.
2425  * All new code should call libusb_handle_events_completed() or
2426  * libusb_handle_events_timeout_completed() to avoid race conditions.
2427  *
2428  * \param ctx the context to operate on, or NULL for the default context
2429  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2430  */
libusb_handle_events(libusb_context * ctx)2431 int API_EXPORTED libusb_handle_events(libusb_context *ctx)
2432 {
2433 	struct timeval tv;
2434 	tv.tv_sec = 60;
2435 	tv.tv_usec = 0;
2436 	return libusb_handle_events_timeout_completed(ctx, &tv, NULL);
2437 }
2438 
2439 /** \ingroup libusb_poll
2440  * Handle any pending events in blocking mode.
2441  *
2442  * Like libusb_handle_events(), with the addition of a completed parameter
2443  * to allow for race free waiting for the completion of a specific transfer.
2444  *
2445  * See libusb_handle_events_timeout_completed() for details on the completed
2446  * parameter.
2447  *
2448  * \param ctx the context to operate on, or NULL for the default context
2449  * \param completed pointer to completion integer to check, or NULL
2450  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2451  * \ref libusb_mtasync
2452  */
libusb_handle_events_completed(libusb_context * ctx,int * completed)2453 int API_EXPORTED libusb_handle_events_completed(libusb_context *ctx,
2454 	int *completed)
2455 {
2456 	struct timeval tv;
2457 	tv.tv_sec = 60;
2458 	tv.tv_usec = 0;
2459 	return libusb_handle_events_timeout_completed(ctx, &tv, completed);
2460 }
2461 
2462 /** \ingroup libusb_poll
2463  * Handle any pending events by polling file descriptors, without checking if
2464  * any other threads are already doing so. Must be called with the event lock
2465  * held, see libusb_lock_events().
2466  *
2467  * This function is designed to be called under the situation where you have
2468  * taken the event lock and are calling poll()/select() directly on libusb's
2469  * file descriptors (as opposed to using libusb_handle_events() or similar).
2470  * You detect events on libusb's descriptors, so you then call this function
2471  * with a zero timeout value (while still holding the event lock).
2472  *
2473  * \param ctx the context to operate on, or NULL for the default context
2474  * \param tv the maximum time to block waiting for events, or zero for
2475  * non-blocking mode
2476  * \returns 0 on success
2477  * \returns LIBUSB_ERROR_INVALID_PARAM if timeval is invalid
2478  * \returns another LIBUSB_ERROR code on other failure
2479  * \ref libusb_mtasync
2480  */
libusb_handle_events_locked(libusb_context * ctx,struct timeval * tv)2481 int API_EXPORTED libusb_handle_events_locked(libusb_context *ctx,
2482 	struct timeval *tv)
2483 {
2484 	int r;
2485 	struct timeval poll_timeout;
2486 
2487 	if (!TIMEVAL_IS_VALID(tv))
2488 		return LIBUSB_ERROR_INVALID_PARAM;
2489 
2490 	ctx = usbi_get_context(ctx);
2491 	r = get_next_timeout(ctx, tv, &poll_timeout);
2492 	if (r) {
2493 		/* timeout already expired */
2494 		handle_timeouts(ctx);
2495 		return 0;
2496 	}
2497 
2498 	return handle_events(ctx, &poll_timeout);
2499 }
2500 
2501 /** \ingroup libusb_poll
2502  * Determines whether your application must apply special timing considerations
2503  * when monitoring libusb's file descriptors.
2504  *
2505  * This function is only useful for applications which retrieve and poll
2506  * libusb's file descriptors in their own main loop (\ref libusb_pollmain).
2507  *
2508  * Ordinarily, libusb's event handler needs to be called into at specific
2509  * moments in time (in addition to times when there is activity on the file
2510  * descriptor set). The usual approach is to use libusb_get_next_timeout()
2511  * to learn about when the next timeout occurs, and to adjust your
2512  * poll()/select() timeout accordingly so that you can make a call into the
2513  * library at that time.
2514  *
2515  * Some platforms supported by libusb do not come with this baggage - any
2516  * events relevant to timing will be represented by activity on the file
2517  * descriptor set, and libusb_get_next_timeout() will always return 0.
2518  * This function allows you to detect whether you are running on such a
2519  * platform.
2520  *
2521  * Since v1.0.5.
2522  *
2523  * \param ctx the context to operate on, or NULL for the default context
2524  * \returns 0 if you must call into libusb at times determined by
2525  * libusb_get_next_timeout(), or 1 if all timeout events are handled internally
2526  * or through regular activity on the file descriptors.
2527  * \ref libusb_pollmain "Polling libusb file descriptors for event handling"
2528  */
libusb_pollfds_handle_timeouts(libusb_context * ctx)2529 int API_EXPORTED libusb_pollfds_handle_timeouts(libusb_context *ctx)
2530 {
2531 	ctx = usbi_get_context(ctx);
2532 	return usbi_using_timer(ctx);
2533 }
2534 
2535 /** \ingroup libusb_poll
2536  * Determine the next internal timeout that libusb needs to handle. You only
2537  * need to use this function if you are calling poll() or select() or similar
2538  * on libusb's file descriptors yourself - you do not need to use it if you
2539  * are calling libusb_handle_events() or a variant directly.
2540  *
2541  * You should call this function in your main loop in order to determine how
2542  * long to wait for select() or poll() to return results. libusb needs to be
2543  * called into at this timeout, so you should use it as an upper bound on
2544  * your select() or poll() call.
2545  *
2546  * When the timeout has expired, call into libusb_handle_events_timeout()
2547  * (perhaps in non-blocking mode) so that libusb can handle the timeout.
2548  *
2549  * This function may return 1 (success) and an all-zero timeval. If this is
2550  * the case, it indicates that libusb has a timeout that has already expired
2551  * so you should call libusb_handle_events_timeout() or similar immediately.
2552  * A return code of 0 indicates that there are no pending timeouts.
2553  *
2554  * On some platforms, this function will always returns 0 (no pending
2555  * timeouts). See \ref polltime.
2556  *
2557  * \param ctx the context to operate on, or NULL for the default context
2558  * \param tv output location for a relative time against the current
2559  * clock in which libusb must be called into in order to process timeout events
2560  * \returns 0 if there are no pending timeouts, 1 if a timeout was returned,
2561  * or LIBUSB_ERROR_OTHER on failure
2562  */
libusb_get_next_timeout(libusb_context * ctx,struct timeval * tv)2563 int API_EXPORTED libusb_get_next_timeout(libusb_context *ctx,
2564 	struct timeval *tv)
2565 {
2566 	struct usbi_transfer *itransfer;
2567 	struct timespec systime;
2568 	struct timespec next_timeout = { 0, 0 };
2569 
2570 	ctx = usbi_get_context(ctx);
2571 	if (usbi_using_timer(ctx))
2572 		return 0;
2573 
2574 	usbi_mutex_lock(&ctx->flying_transfers_lock);
2575 	if (list_empty(&ctx->flying_transfers)) {
2576 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
2577 		usbi_dbg(ctx, "no URBs, no timeout!");
2578 		return 0;
2579 	}
2580 
2581 	/* find next transfer which hasn't already been processed as timed out */
2582 	for_each_transfer(ctx, itransfer) {
2583 		if (itransfer->timeout_flags & (USBI_TRANSFER_TIMEOUT_HANDLED | USBI_TRANSFER_OS_HANDLES_TIMEOUT))
2584 			continue;
2585 
2586 		/* if we've reached transfers of infinite timeout, we're done looking */
2587 		if (!TIMESPEC_IS_SET(&itransfer->timeout))
2588 			break;
2589 
2590 		next_timeout = itransfer->timeout;
2591 		break;
2592 	}
2593 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
2594 
2595 	if (!TIMESPEC_IS_SET(&next_timeout)) {
2596 		usbi_dbg(ctx, "no URB with timeout or all handled by OS; no timeout!");
2597 		return 0;
2598 	}
2599 
2600 	usbi_get_monotonic_time(&systime);
2601 
2602 	if (!TIMESPEC_CMP(&systime, &next_timeout, <)) {
2603 		usbi_dbg(ctx, "first timeout already expired");
2604 		timerclear(tv);
2605 	} else {
2606 		TIMESPEC_SUB(&next_timeout, &systime, &next_timeout);
2607 		TIMESPEC_TO_TIMEVAL(tv, &next_timeout);
2608 		usbi_dbg(ctx, "next timeout in %ld.%06lds", (long)tv->tv_sec, (long)tv->tv_usec);
2609 	}
2610 
2611 	return 1;
2612 }
2613 
2614 /** \ingroup libusb_poll
2615  * Register notification functions for file descriptor additions/removals.
2616  * These functions will be invoked for every new or removed file descriptor
2617  * that libusb uses as an event source.
2618  *
2619  * To remove notifiers, pass NULL values for the function pointers.
2620  *
2621  * Note that file descriptors may have been added even before you register
2622  * these notifiers (e.g. at libusb_init() time).
2623  *
2624  * Additionally, note that the removal notifier may be called during
2625  * libusb_exit() (e.g. when it is closing file descriptors that were opened
2626  * and added to the poll set at libusb_init() time). If you don't want this,
2627  * remove the notifiers immediately before calling libusb_exit().
2628  *
2629  * \param ctx the context to operate on, or NULL for the default context
2630  * \param added_cb pointer to function for addition notifications
2631  * \param removed_cb pointer to function for removal notifications
2632  * \param user_data User data to be passed back to callbacks (useful for
2633  * passing context information)
2634  */
libusb_set_pollfd_notifiers(libusb_context * ctx,libusb_pollfd_added_cb added_cb,libusb_pollfd_removed_cb removed_cb,void * user_data)2635 void API_EXPORTED libusb_set_pollfd_notifiers(libusb_context *ctx,
2636 	libusb_pollfd_added_cb added_cb, libusb_pollfd_removed_cb removed_cb,
2637 	void *user_data)
2638 {
2639 #if !defined(PLATFORM_WINDOWS)
2640 	ctx = usbi_get_context(ctx);
2641 	ctx->fd_added_cb = added_cb;
2642 	ctx->fd_removed_cb = removed_cb;
2643 	ctx->fd_cb_user_data = user_data;
2644 #else
2645 	usbi_err(ctx, "external polling of libusb's internal event sources " \
2646 		"is not yet supported on Windows");
2647 	UNUSED(added_cb);
2648 	UNUSED(removed_cb);
2649 	UNUSED(user_data);
2650 #endif
2651 }
2652 
2653 /*
2654  * Interrupt the iteration of the event handling thread, so that it picks
2655  * up the event source change. Callers of this function must hold the event_data_lock.
2656  */
usbi_event_source_notification(struct libusb_context * ctx)2657 static void usbi_event_source_notification(struct libusb_context *ctx)
2658 {
2659 	unsigned int event_flags;
2660 
2661 	/* Record that there is a new poll fd.
2662 	 * Only signal an event if there are no prior pending events. */
2663 	event_flags = ctx->event_flags;
2664 	ctx->event_flags |= USBI_EVENT_EVENT_SOURCES_MODIFIED;
2665 	if (!event_flags)
2666 		usbi_signal_event(&ctx->event);
2667 }
2668 
2669 /* Add an event source to the list of event sources to be monitored.
2670  * poll_events should be specified as a bitmask of events passed to poll(), e.g.
2671  * POLLIN and/or POLLOUT. */
usbi_add_event_source(struct libusb_context * ctx,usbi_os_handle_t os_handle,short poll_events)2672 int usbi_add_event_source(struct libusb_context *ctx, usbi_os_handle_t os_handle, short poll_events)
2673 {
2674 	struct usbi_event_source *ievent_source = malloc(sizeof(*ievent_source));
2675 
2676 	if (!ievent_source)
2677 		return LIBUSB_ERROR_NO_MEM;
2678 
2679 	usbi_dbg(ctx, "add " USBI_OS_HANDLE_FORMAT_STRING " events %d", os_handle, poll_events);
2680 	ievent_source->data.os_handle = os_handle;
2681 	ievent_source->data.poll_events = poll_events;
2682 	usbi_mutex_lock(&ctx->event_data_lock);
2683 	list_add_tail(&ievent_source->list, &ctx->event_sources);
2684 	usbi_event_source_notification(ctx);
2685 	usbi_mutex_unlock(&ctx->event_data_lock);
2686 
2687 #if !defined(PLATFORM_WINDOWS)
2688 	if (ctx->fd_added_cb)
2689 		ctx->fd_added_cb(os_handle, poll_events, ctx->fd_cb_user_data);
2690 #endif
2691 
2692 	return 0;
2693 }
2694 
2695 /* Remove an event source from the list of event sources to be monitored. */
usbi_remove_event_source(struct libusb_context * ctx,usbi_os_handle_t os_handle)2696 void usbi_remove_event_source(struct libusb_context *ctx, usbi_os_handle_t os_handle)
2697 {
2698 	struct usbi_event_source *ievent_source;
2699 	int found = 0;
2700 
2701 	usbi_dbg(ctx, "remove " USBI_OS_HANDLE_FORMAT_STRING, os_handle);
2702 	usbi_mutex_lock(&ctx->event_data_lock);
2703 	for_each_event_source(ctx, ievent_source) {
2704 		if (ievent_source->data.os_handle == os_handle) {
2705 			found = 1;
2706 			break;
2707 		}
2708 	}
2709 
2710 	if (!found) {
2711 		usbi_dbg(ctx, "couldn't find " USBI_OS_HANDLE_FORMAT_STRING " to remove", os_handle);
2712 		usbi_mutex_unlock(&ctx->event_data_lock);
2713 		return;
2714 	}
2715 
2716 	list_del(&ievent_source->list);
2717 	list_add_tail(&ievent_source->list, &ctx->removed_event_sources);
2718 	usbi_event_source_notification(ctx);
2719 	usbi_mutex_unlock(&ctx->event_data_lock);
2720 
2721 #if !defined(PLATFORM_WINDOWS)
2722 	if (ctx->fd_removed_cb)
2723 		ctx->fd_removed_cb(os_handle, ctx->fd_cb_user_data);
2724 #endif
2725 }
2726 
2727 /** \ingroup libusb_poll
2728  * Retrieve a list of file descriptors that should be polled by your main loop
2729  * as libusb event sources.
2730  *
2731  * The returned list is NULL-terminated and should be freed with libusb_free_pollfds()
2732  * when done. The actual list contents must not be touched.
2733  *
2734  * As file descriptors are a Unix-specific concept, this function is not
2735  * available on Windows and will always return NULL.
2736  *
2737  * \param ctx the context to operate on, or NULL for the default context
2738  * \returns a NULL-terminated list of libusb_pollfd structures
2739  * \returns NULL on error
2740  * \returns NULL on platforms where the functionality is not available
2741  */
2742 DEFAULT_VISIBILITY
libusb_get_pollfds(libusb_context * ctx)2743 const struct libusb_pollfd ** LIBUSB_CALL libusb_get_pollfds(
2744 	libusb_context *ctx)
2745 {
2746 #if !defined(PLATFORM_WINDOWS)
2747 	struct libusb_pollfd **ret = NULL;
2748 	struct usbi_event_source *ievent_source;
2749 	size_t i;
2750 
2751 	static_assert(sizeof(struct usbi_event_source_data) == sizeof(struct libusb_pollfd),
2752 		      "mismatch between usbi_event_source_data and libusb_pollfd sizes");
2753 
2754 	ctx = usbi_get_context(ctx);
2755 
2756 	usbi_mutex_lock(&ctx->event_data_lock);
2757 
2758 	i = 0;
2759 	for_each_event_source(ctx, ievent_source)
2760 		i++;
2761 
2762 	ret = calloc(i + 1, sizeof(struct libusb_pollfd *));
2763 	if (!ret)
2764 		goto out;
2765 
2766 	i = 0;
2767 	for_each_event_source(ctx, ievent_source)
2768 		ret[i++] = (struct libusb_pollfd *)ievent_source;
2769 
2770 out:
2771 	usbi_mutex_unlock(&ctx->event_data_lock);
2772 	return (const struct libusb_pollfd **)ret;
2773 #else
2774 	usbi_err(ctx, "external polling of libusb's internal event sources " \
2775 		"is not yet supported on Windows");
2776 	return NULL;
2777 #endif
2778 }
2779 
2780 /** \ingroup libusb_poll
2781  * Free a list of libusb_pollfd structures. This should be called for all
2782  * pollfd lists allocated with libusb_get_pollfds().
2783  *
2784  * Since version 1.0.20, \ref LIBUSB_API_VERSION >= 0x01000104
2785  *
2786  * It is legal to call this function with a NULL pollfd list. In this case,
2787  * the function will simply do nothing.
2788  *
2789  * \param pollfds the list of libusb_pollfd structures to free
2790  */
libusb_free_pollfds(const struct libusb_pollfd ** pollfds)2791 void API_EXPORTED libusb_free_pollfds(const struct libusb_pollfd **pollfds)
2792 {
2793 #if !defined(PLATFORM_WINDOWS)
2794 	free((void *)pollfds);
2795 #else
2796 	UNUSED(pollfds);
2797 #endif
2798 }
2799 
2800 /* Backends may call this from handle_events to report disconnection of a
2801  * device. This function ensures transfers get cancelled appropriately.
2802  * Callers of this function must hold the events_lock.
2803  */
usbi_handle_disconnect(struct libusb_device_handle * dev_handle)2804 void usbi_handle_disconnect(struct libusb_device_handle *dev_handle)
2805 {
2806 	struct libusb_context *ctx = HANDLE_CTX(dev_handle);
2807 	struct usbi_transfer *cur;
2808 	struct usbi_transfer *to_cancel;
2809 
2810 	usbi_dbg(ctx, "device %d.%d",
2811 		dev_handle->dev->bus_number, dev_handle->dev->device_address);
2812 
2813 	/* terminate all pending transfers with the LIBUSB_TRANSFER_NO_DEVICE
2814 	 * status code.
2815 	 *
2816 	 * when we find a transfer for this device on the list, there are two
2817 	 * possible scenarios:
2818 	 * 1. the transfer is currently in-flight, in which case we terminate the
2819 	 *    transfer here
2820 	 * 2. the transfer has been added to the flying transfer list by
2821 	 *    libusb_submit_transfer, has failed to submit and
2822 	 *    libusb_submit_transfer is waiting for us to release the
2823 	 *    flying_transfers_lock to remove it, so we ignore it
2824 	 */
2825 
2826 	while (1) {
2827 		to_cancel = NULL;
2828 		usbi_mutex_lock(&ctx->flying_transfers_lock);
2829 		for_each_transfer(ctx, cur) {
2830 			if (USBI_TRANSFER_TO_LIBUSB_TRANSFER(cur)->dev_handle == dev_handle) {
2831 				usbi_mutex_lock(&cur->lock);
2832 				if (cur->state_flags & USBI_TRANSFER_IN_FLIGHT)
2833 					to_cancel = cur;
2834 				usbi_mutex_unlock(&cur->lock);
2835 
2836 				if (to_cancel)
2837 					break;
2838 			}
2839 		}
2840 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
2841 
2842 		if (!to_cancel)
2843 			break;
2844 
2845 		usbi_dbg(ctx, "cancelling transfer %p from disconnect",
2846 			 USBI_TRANSFER_TO_LIBUSB_TRANSFER(to_cancel));
2847 
2848 		usbi_mutex_lock(&to_cancel->lock);
2849 		usbi_backend.clear_transfer_priv(to_cancel);
2850 		usbi_mutex_unlock(&to_cancel->lock);
2851 		usbi_handle_transfer_completion(to_cancel, LIBUSB_TRANSFER_NO_DEVICE);
2852 	}
2853 }
2854