• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020, The Android Open Source Project
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 //! This is the Keystore 2.0 database module.
16 //! The database module provides a connection to the backing SQLite store.
17 //! We have two databases one for persistent key blob storage and one for
18 //! items that have a per boot life cycle.
19 //!
20 //! ## Persistent database
21 //! The persistent database has tables for key blobs. They are organized
22 //! as follows:
23 //! The `keyentry` table is the primary table for key entries. It is
24 //! accompanied by two tables for blobs and parameters.
25 //! Each key entry occupies exactly one row in the `keyentry` table and
26 //! zero or more rows in the tables `blobentry` and `keyparameter`.
27 //!
28 //! ## Per boot database
29 //! The per boot database stores items with a per boot lifecycle.
30 //! Currently, there is only the `grant` table in this database.
31 //! Grants are references to a key that can be used to access a key by
32 //! clients that don't own that key. Grants can only be created by the
33 //! owner of a key. And only certain components can create grants.
34 //! This is governed by SEPolicy.
35 //!
36 //! ## Access control
37 //! Some database functions that load keys or create grants perform
38 //! access control. This is because in some cases access control
39 //! can only be performed after some information about the designated
40 //! key was loaded from the database. To decouple the permission checks
41 //! from the database module these functions take permission check
42 //! callbacks.
43 
44 mod perboot;
45 pub(crate) mod utils;
46 mod versioning;
47 
48 use crate::gc::Gc;
49 use crate::globals::get_keymint_dev_by_uuid;
50 use crate::impl_metadata; // This is in db_utils.rs
51 use crate::key_parameter::{KeyParameter, Tag};
52 use crate::ks_err;
53 use crate::metrics_store::log_rkp_error_stats;
54 use crate::permission::KeyPermSet;
55 use crate::utils::{get_current_time_in_milliseconds, watchdog as wd, AID_USER_OFFSET};
56 use crate::{
57     error::{Error as KsError, ErrorCode, ResponseCode},
58     super_key::SuperKeyType,
59 };
60 use anyhow::{anyhow, Context, Result};
61 use std::{convert::TryFrom, convert::TryInto, ops::Deref, time::SystemTimeError};
62 use utils as db_utils;
63 use utils::SqlField;
64 
65 use android_hardware_security_keymint::aidl::android::hardware::security::keymint::{
66     HardwareAuthToken::HardwareAuthToken, HardwareAuthenticatorType::HardwareAuthenticatorType,
67     SecurityLevel::SecurityLevel,
68 };
69 use android_security_metrics::aidl::android::security::metrics::{
70     RkpError::RkpError as MetricsRkpError, Storage::Storage as MetricsStorage,
71     StorageStats::StorageStats,
72 };
73 use android_system_keystore2::aidl::android::system::keystore2::{
74     Domain::Domain, KeyDescriptor::KeyDescriptor,
75 };
76 
77 use keystore2_crypto::ZVec;
78 use lazy_static::lazy_static;
79 use log::error;
80 #[cfg(not(test))]
81 use rand::prelude::random;
82 use rusqlite::{
83     params, params_from_iter,
84     types::FromSql,
85     types::FromSqlResult,
86     types::ToSqlOutput,
87     types::{FromSqlError, Value, ValueRef},
88     Connection, OptionalExtension, ToSql, Transaction, TransactionBehavior, NO_PARAMS,
89 };
90 
91 use std::{
92     collections::{HashMap, HashSet},
93     path::Path,
94     sync::{Arc, Condvar, Mutex},
95     time::{Duration, SystemTime},
96 };
97 
98 #[cfg(test)]
99 use tests::random;
100 
101 impl_metadata!(
102     /// A set of metadata for key entries.
103     #[derive(Debug, Default, Eq, PartialEq)]
104     pub struct KeyMetaData;
105     /// A metadata entry for key entries.
106     #[derive(Debug, Eq, PartialEq, Ord, PartialOrd)]
107     pub enum KeyMetaEntry {
108         /// Date of the creation of the key entry.
109         CreationDate(DateTime) with accessor creation_date,
110         /// Expiration date for attestation keys.
111         AttestationExpirationDate(DateTime) with accessor attestation_expiration_date,
112         /// CBOR Blob that represents a COSE_Key and associated metadata needed for remote
113         /// provisioning
114         AttestationMacedPublicKey(Vec<u8>) with accessor attestation_maced_public_key,
115         /// Vector representing the raw public key so results from the server can be matched
116         /// to the right entry
117         AttestationRawPubKey(Vec<u8>) with accessor attestation_raw_pub_key,
118         /// SEC1 public key for ECDH encryption
119         Sec1PublicKey(Vec<u8>) with accessor sec1_public_key,
120         //  --- ADD NEW META DATA FIELDS HERE ---
121         // For backwards compatibility add new entries only to
122         // end of this list and above this comment.
123     };
124 );
125 
126 impl KeyMetaData {
load_from_db(key_id: i64, tx: &Transaction) -> Result<Self>127     fn load_from_db(key_id: i64, tx: &Transaction) -> Result<Self> {
128         let mut stmt = tx
129             .prepare(
130                 "SELECT tag, data from persistent.keymetadata
131                     WHERE keyentryid = ?;",
132             )
133             .context(ks_err!("KeyMetaData::load_from_db: prepare statement failed."))?;
134 
135         let mut metadata: HashMap<i64, KeyMetaEntry> = Default::default();
136 
137         let mut rows = stmt
138             .query(params![key_id])
139             .context(ks_err!("KeyMetaData::load_from_db: query failed."))?;
140         db_utils::with_rows_extract_all(&mut rows, |row| {
141             let db_tag: i64 = row.get(0).context("Failed to read tag.")?;
142             metadata.insert(
143                 db_tag,
144                 KeyMetaEntry::new_from_sql(db_tag, &SqlField::new(1, row))
145                     .context("Failed to read KeyMetaEntry.")?,
146             );
147             Ok(())
148         })
149         .context(ks_err!("KeyMetaData::load_from_db."))?;
150 
151         Ok(Self { data: metadata })
152     }
153 
store_in_db(&self, key_id: i64, tx: &Transaction) -> Result<()>154     fn store_in_db(&self, key_id: i64, tx: &Transaction) -> Result<()> {
155         let mut stmt = tx
156             .prepare(
157                 "INSERT or REPLACE INTO persistent.keymetadata (keyentryid, tag, data)
158                     VALUES (?, ?, ?);",
159             )
160             .context(ks_err!("KeyMetaData::store_in_db: Failed to prepare statement."))?;
161 
162         let iter = self.data.iter();
163         for (tag, entry) in iter {
164             stmt.insert(params![key_id, tag, entry,]).with_context(|| {
165                 ks_err!("KeyMetaData::store_in_db: Failed to insert {:?}", entry)
166             })?;
167         }
168         Ok(())
169     }
170 }
171 
172 impl_metadata!(
173     /// A set of metadata for key blobs.
174     #[derive(Debug, Default, Eq, PartialEq)]
175     pub struct BlobMetaData;
176     /// A metadata entry for key blobs.
177     #[derive(Debug, Eq, PartialEq, Ord, PartialOrd)]
178     pub enum BlobMetaEntry {
179         /// If present, indicates that the blob is encrypted with another key or a key derived
180         /// from a password.
181         EncryptedBy(EncryptedBy) with accessor encrypted_by,
182         /// If the blob is password encrypted this field is set to the
183         /// salt used for the key derivation.
184         Salt(Vec<u8>) with accessor salt,
185         /// If the blob is encrypted, this field is set to the initialization vector.
186         Iv(Vec<u8>) with accessor iv,
187         /// If the blob is encrypted, this field holds the AEAD TAG.
188         AeadTag(Vec<u8>) with accessor aead_tag,
189         /// The uuid of the owning KeyMint instance.
190         KmUuid(Uuid) with accessor km_uuid,
191         /// If the key is ECDH encrypted, this is the ephemeral public key
192         PublicKey(Vec<u8>) with accessor public_key,
193         /// If the key is encrypted with a MaxBootLevel key, this is the boot level
194         /// of that key
195         MaxBootLevel(i32) with accessor max_boot_level,
196         //  --- ADD NEW META DATA FIELDS HERE ---
197         // For backwards compatibility add new entries only to
198         // end of this list and above this comment.
199     };
200 );
201 
202 impl BlobMetaData {
load_from_db(blob_id: i64, tx: &Transaction) -> Result<Self>203     fn load_from_db(blob_id: i64, tx: &Transaction) -> Result<Self> {
204         let mut stmt = tx
205             .prepare(
206                 "SELECT tag, data from persistent.blobmetadata
207                     WHERE blobentryid = ?;",
208             )
209             .context(ks_err!("BlobMetaData::load_from_db: prepare statement failed."))?;
210 
211         let mut metadata: HashMap<i64, BlobMetaEntry> = Default::default();
212 
213         let mut rows = stmt.query(params![blob_id]).context(ks_err!("query failed."))?;
214         db_utils::with_rows_extract_all(&mut rows, |row| {
215             let db_tag: i64 = row.get(0).context("Failed to read tag.")?;
216             metadata.insert(
217                 db_tag,
218                 BlobMetaEntry::new_from_sql(db_tag, &SqlField::new(1, row))
219                     .context("Failed to read BlobMetaEntry.")?,
220             );
221             Ok(())
222         })
223         .context(ks_err!("BlobMetaData::load_from_db"))?;
224 
225         Ok(Self { data: metadata })
226     }
227 
store_in_db(&self, blob_id: i64, tx: &Transaction) -> Result<()>228     fn store_in_db(&self, blob_id: i64, tx: &Transaction) -> Result<()> {
229         let mut stmt = tx
230             .prepare(
231                 "INSERT or REPLACE INTO persistent.blobmetadata (blobentryid, tag, data)
232                     VALUES (?, ?, ?);",
233             )
234             .context(ks_err!("BlobMetaData::store_in_db: Failed to prepare statement.",))?;
235 
236         let iter = self.data.iter();
237         for (tag, entry) in iter {
238             stmt.insert(params![blob_id, tag, entry,]).with_context(|| {
239                 ks_err!("BlobMetaData::store_in_db: Failed to insert {:?}", entry)
240             })?;
241         }
242         Ok(())
243     }
244 }
245 
246 /// Indicates the type of the keyentry.
247 #[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
248 pub enum KeyType {
249     /// This is a client key type. These keys are created or imported through the Keystore 2.0
250     /// AIDL interface android.system.keystore2.
251     Client,
252     /// This is a super key type. These keys are created by keystore itself and used to encrypt
253     /// other key blobs to provide LSKF binding.
254     Super,
255     /// This is an attestation key. These keys are created by the remote provisioning mechanism.
256     Attestation,
257 }
258 
259 impl ToSql for KeyType {
to_sql(&self) -> rusqlite::Result<ToSqlOutput>260     fn to_sql(&self) -> rusqlite::Result<ToSqlOutput> {
261         Ok(ToSqlOutput::Owned(Value::Integer(match self {
262             KeyType::Client => 0,
263             KeyType::Super => 1,
264             KeyType::Attestation => 2,
265         })))
266     }
267 }
268 
269 impl FromSql for KeyType {
column_result(value: ValueRef) -> FromSqlResult<Self>270     fn column_result(value: ValueRef) -> FromSqlResult<Self> {
271         match i64::column_result(value)? {
272             0 => Ok(KeyType::Client),
273             1 => Ok(KeyType::Super),
274             2 => Ok(KeyType::Attestation),
275             v => Err(FromSqlError::OutOfRange(v)),
276         }
277     }
278 }
279 
280 /// Uuid representation that can be stored in the database.
281 /// Right now it can only be initialized from SecurityLevel.
282 /// Once KeyMint provides a UUID type a corresponding From impl shall be added.
283 #[derive(Debug, Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
284 pub struct Uuid([u8; 16]);
285 
286 impl Deref for Uuid {
287     type Target = [u8; 16];
288 
deref(&self) -> &Self::Target289     fn deref(&self) -> &Self::Target {
290         &self.0
291     }
292 }
293 
294 impl From<SecurityLevel> for Uuid {
from(sec_level: SecurityLevel) -> Self295     fn from(sec_level: SecurityLevel) -> Self {
296         Self((sec_level.0 as u128).to_be_bytes())
297     }
298 }
299 
300 impl ToSql for Uuid {
to_sql(&self) -> rusqlite::Result<ToSqlOutput>301     fn to_sql(&self) -> rusqlite::Result<ToSqlOutput> {
302         self.0.to_sql()
303     }
304 }
305 
306 impl FromSql for Uuid {
column_result(value: ValueRef<'_>) -> FromSqlResult<Self>307     fn column_result(value: ValueRef<'_>) -> FromSqlResult<Self> {
308         let blob = Vec::<u8>::column_result(value)?;
309         if blob.len() != 16 {
310             return Err(FromSqlError::OutOfRange(blob.len() as i64));
311         }
312         let mut arr = [0u8; 16];
313         arr.copy_from_slice(&blob);
314         Ok(Self(arr))
315     }
316 }
317 
318 /// Key entries that are not associated with any KeyMint instance, such as pure certificate
319 /// entries are associated with this UUID.
320 pub static KEYSTORE_UUID: Uuid = Uuid([
321     0x41, 0xe3, 0xb9, 0xce, 0x27, 0x58, 0x4e, 0x91, 0xbc, 0xfd, 0xa5, 0x5d, 0x91, 0x85, 0xab, 0x11,
322 ]);
323 
324 static EXPIRATION_BUFFER_MS: i64 = 12 * 60 * 60 * 1000;
325 
326 /// Indicates how the sensitive part of this key blob is encrypted.
327 #[derive(Debug, Eq, PartialEq, Ord, PartialOrd)]
328 pub enum EncryptedBy {
329     /// The keyblob is encrypted by a user password.
330     /// In the database this variant is represented as NULL.
331     Password,
332     /// The keyblob is encrypted by another key with wrapped key id.
333     /// In the database this variant is represented as non NULL value
334     /// that is convertible to i64, typically NUMERIC.
335     KeyId(i64),
336 }
337 
338 impl ToSql for EncryptedBy {
to_sql(&self) -> rusqlite::Result<ToSqlOutput>339     fn to_sql(&self) -> rusqlite::Result<ToSqlOutput> {
340         match self {
341             Self::Password => Ok(ToSqlOutput::Owned(Value::Null)),
342             Self::KeyId(id) => id.to_sql(),
343         }
344     }
345 }
346 
347 impl FromSql for EncryptedBy {
column_result(value: ValueRef) -> FromSqlResult<Self>348     fn column_result(value: ValueRef) -> FromSqlResult<Self> {
349         match value {
350             ValueRef::Null => Ok(Self::Password),
351             _ => Ok(Self::KeyId(i64::column_result(value)?)),
352         }
353     }
354 }
355 
356 /// A database representation of wall clock time. DateTime stores unix epoch time as
357 /// i64 in milliseconds.
358 #[derive(Debug, Copy, Clone, Default, Eq, PartialEq, Ord, PartialOrd)]
359 pub struct DateTime(i64);
360 
361 /// Error type returned when creating DateTime or converting it from and to
362 /// SystemTime.
363 #[derive(thiserror::Error, Debug)]
364 pub enum DateTimeError {
365     /// This is returned when SystemTime and Duration computations fail.
366     #[error(transparent)]
367     SystemTimeError(#[from] SystemTimeError),
368 
369     /// This is returned when type conversions fail.
370     #[error(transparent)]
371     TypeConversion(#[from] std::num::TryFromIntError),
372 
373     /// This is returned when checked time arithmetic failed.
374     #[error("Time arithmetic failed.")]
375     TimeArithmetic,
376 }
377 
378 impl DateTime {
379     /// Constructs a new DateTime object denoting the current time. This may fail during
380     /// conversion to unix epoch time and during conversion to the internal i64 representation.
now() -> Result<Self, DateTimeError>381     pub fn now() -> Result<Self, DateTimeError> {
382         Ok(Self(SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?.as_millis().try_into()?))
383     }
384 
385     /// Constructs a new DateTime object from milliseconds.
from_millis_epoch(millis: i64) -> Self386     pub fn from_millis_epoch(millis: i64) -> Self {
387         Self(millis)
388     }
389 
390     /// Returns unix epoch time in milliseconds.
to_millis_epoch(self) -> i64391     pub fn to_millis_epoch(self) -> i64 {
392         self.0
393     }
394 
395     /// Returns unix epoch time in seconds.
to_secs_epoch(self) -> i64396     pub fn to_secs_epoch(self) -> i64 {
397         self.0 / 1000
398     }
399 }
400 
401 impl ToSql for DateTime {
to_sql(&self) -> rusqlite::Result<ToSqlOutput>402     fn to_sql(&self) -> rusqlite::Result<ToSqlOutput> {
403         Ok(ToSqlOutput::Owned(Value::Integer(self.0)))
404     }
405 }
406 
407 impl FromSql for DateTime {
column_result(value: ValueRef) -> FromSqlResult<Self>408     fn column_result(value: ValueRef) -> FromSqlResult<Self> {
409         Ok(Self(i64::column_result(value)?))
410     }
411 }
412 
413 impl TryInto<SystemTime> for DateTime {
414     type Error = DateTimeError;
415 
try_into(self) -> Result<SystemTime, Self::Error>416     fn try_into(self) -> Result<SystemTime, Self::Error> {
417         // We want to construct a SystemTime representation equivalent to self, denoting
418         // a point in time THEN, but we cannot set the time directly. We can only construct
419         // a SystemTime denoting NOW, and we can get the duration between EPOCH and NOW,
420         // and between EPOCH and THEN. With this common reference we can construct the
421         // duration between NOW and THEN which we can add to our SystemTime representation
422         // of NOW to get a SystemTime representation of THEN.
423         // Durations can only be positive, thus the if statement below.
424         let now = SystemTime::now();
425         let now_epoch = now.duration_since(SystemTime::UNIX_EPOCH)?;
426         let then_epoch = Duration::from_millis(self.0.try_into()?);
427         Ok(if now_epoch > then_epoch {
428             // then = now - (now_epoch - then_epoch)
429             now_epoch
430                 .checked_sub(then_epoch)
431                 .and_then(|d| now.checked_sub(d))
432                 .ok_or(DateTimeError::TimeArithmetic)?
433         } else {
434             // then = now + (then_epoch - now_epoch)
435             then_epoch
436                 .checked_sub(now_epoch)
437                 .and_then(|d| now.checked_add(d))
438                 .ok_or(DateTimeError::TimeArithmetic)?
439         })
440     }
441 }
442 
443 impl TryFrom<SystemTime> for DateTime {
444     type Error = DateTimeError;
445 
try_from(t: SystemTime) -> Result<Self, Self::Error>446     fn try_from(t: SystemTime) -> Result<Self, Self::Error> {
447         Ok(Self(t.duration_since(SystemTime::UNIX_EPOCH)?.as_millis().try_into()?))
448     }
449 }
450 
451 #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
452 enum KeyLifeCycle {
453     /// Existing keys have a key ID but are not fully populated yet.
454     /// This is a transient state. If Keystore finds any such keys when it starts up, it must move
455     /// them to Unreferenced for garbage collection.
456     Existing,
457     /// A live key is fully populated and usable by clients.
458     Live,
459     /// An unreferenced key is scheduled for garbage collection.
460     Unreferenced,
461 }
462 
463 impl ToSql for KeyLifeCycle {
to_sql(&self) -> rusqlite::Result<ToSqlOutput>464     fn to_sql(&self) -> rusqlite::Result<ToSqlOutput> {
465         match self {
466             Self::Existing => Ok(ToSqlOutput::Owned(Value::Integer(0))),
467             Self::Live => Ok(ToSqlOutput::Owned(Value::Integer(1))),
468             Self::Unreferenced => Ok(ToSqlOutput::Owned(Value::Integer(2))),
469         }
470     }
471 }
472 
473 impl FromSql for KeyLifeCycle {
column_result(value: ValueRef) -> FromSqlResult<Self>474     fn column_result(value: ValueRef) -> FromSqlResult<Self> {
475         match i64::column_result(value)? {
476             0 => Ok(KeyLifeCycle::Existing),
477             1 => Ok(KeyLifeCycle::Live),
478             2 => Ok(KeyLifeCycle::Unreferenced),
479             v => Err(FromSqlError::OutOfRange(v)),
480         }
481     }
482 }
483 
484 /// Keys have a KeyMint blob component and optional public certificate and
485 /// certificate chain components.
486 /// KeyEntryLoadBits is a bitmap that indicates to `KeystoreDB::load_key_entry`
487 /// which components shall be loaded from the database if present.
488 #[derive(Debug, Clone, Copy, Eq, PartialEq, Ord, PartialOrd)]
489 pub struct KeyEntryLoadBits(u32);
490 
491 impl KeyEntryLoadBits {
492     /// Indicate to `KeystoreDB::load_key_entry` that no component shall be loaded.
493     pub const NONE: KeyEntryLoadBits = Self(0);
494     /// Indicate to `KeystoreDB::load_key_entry` that the KeyMint component shall be loaded.
495     pub const KM: KeyEntryLoadBits = Self(1);
496     /// Indicate to `KeystoreDB::load_key_entry` that the Public components shall be loaded.
497     pub const PUBLIC: KeyEntryLoadBits = Self(2);
498     /// Indicate to `KeystoreDB::load_key_entry` that both components shall be loaded.
499     pub const BOTH: KeyEntryLoadBits = Self(3);
500 
501     /// Returns true if this object indicates that the public components shall be loaded.
load_public(&self) -> bool502     pub const fn load_public(&self) -> bool {
503         self.0 & Self::PUBLIC.0 != 0
504     }
505 
506     /// Returns true if the object indicates that the KeyMint component shall be loaded.
load_km(&self) -> bool507     pub const fn load_km(&self) -> bool {
508         self.0 & Self::KM.0 != 0
509     }
510 }
511 
512 lazy_static! {
513     static ref KEY_ID_LOCK: KeyIdLockDb = KeyIdLockDb::new();
514 }
515 
516 struct KeyIdLockDb {
517     locked_keys: Mutex<HashSet<i64>>,
518     cond_var: Condvar,
519 }
520 
521 /// A locked key. While a guard exists for a given key id, the same key cannot be loaded
522 /// from the database a second time. Most functions manipulating the key blob database
523 /// require a KeyIdGuard.
524 #[derive(Debug)]
525 pub struct KeyIdGuard(i64);
526 
527 impl KeyIdLockDb {
new() -> Self528     fn new() -> Self {
529         Self { locked_keys: Mutex::new(HashSet::new()), cond_var: Condvar::new() }
530     }
531 
532     /// This function blocks until an exclusive lock for the given key entry id can
533     /// be acquired. It returns a guard object, that represents the lifecycle of the
534     /// acquired lock.
get(&self, key_id: i64) -> KeyIdGuard535     pub fn get(&self, key_id: i64) -> KeyIdGuard {
536         let mut locked_keys = self.locked_keys.lock().unwrap();
537         while locked_keys.contains(&key_id) {
538             locked_keys = self.cond_var.wait(locked_keys).unwrap();
539         }
540         locked_keys.insert(key_id);
541         KeyIdGuard(key_id)
542     }
543 
544     /// This function attempts to acquire an exclusive lock on a given key id. If the
545     /// given key id is already taken the function returns None immediately. If a lock
546     /// can be acquired this function returns a guard object, that represents the
547     /// lifecycle of the acquired lock.
try_get(&self, key_id: i64) -> Option<KeyIdGuard>548     pub fn try_get(&self, key_id: i64) -> Option<KeyIdGuard> {
549         let mut locked_keys = self.locked_keys.lock().unwrap();
550         if locked_keys.insert(key_id) {
551             Some(KeyIdGuard(key_id))
552         } else {
553             None
554         }
555     }
556 }
557 
558 impl KeyIdGuard {
559     /// Get the numeric key id of the locked key.
id(&self) -> i64560     pub fn id(&self) -> i64 {
561         self.0
562     }
563 }
564 
565 impl Drop for KeyIdGuard {
drop(&mut self)566     fn drop(&mut self) {
567         let mut locked_keys = KEY_ID_LOCK.locked_keys.lock().unwrap();
568         locked_keys.remove(&self.0);
569         drop(locked_keys);
570         KEY_ID_LOCK.cond_var.notify_all();
571     }
572 }
573 
574 /// This type represents a certificate and certificate chain entry for a key.
575 #[derive(Debug, Default)]
576 pub struct CertificateInfo {
577     cert: Option<Vec<u8>>,
578     cert_chain: Option<Vec<u8>>,
579 }
580 
581 /// This type represents a Blob with its metadata and an optional superseded blob.
582 #[derive(Debug)]
583 pub struct BlobInfo<'a> {
584     blob: &'a [u8],
585     metadata: &'a BlobMetaData,
586     /// Superseded blobs are an artifact of legacy import. In some rare occasions
587     /// the key blob needs to be upgraded during import. In that case two
588     /// blob are imported, the superseded one will have to be imported first,
589     /// so that the garbage collector can reap it.
590     superseded_blob: Option<(&'a [u8], &'a BlobMetaData)>,
591 }
592 
593 impl<'a> BlobInfo<'a> {
594     /// Create a new instance of blob info with blob and corresponding metadata
595     /// and no superseded blob info.
new(blob: &'a [u8], metadata: &'a BlobMetaData) -> Self596     pub fn new(blob: &'a [u8], metadata: &'a BlobMetaData) -> Self {
597         Self { blob, metadata, superseded_blob: None }
598     }
599 
600     /// Create a new instance of blob info with blob and corresponding metadata
601     /// as well as superseded blob info.
new_with_superseded( blob: &'a [u8], metadata: &'a BlobMetaData, superseded_blob: Option<(&'a [u8], &'a BlobMetaData)>, ) -> Self602     pub fn new_with_superseded(
603         blob: &'a [u8],
604         metadata: &'a BlobMetaData,
605         superseded_blob: Option<(&'a [u8], &'a BlobMetaData)>,
606     ) -> Self {
607         Self { blob, metadata, superseded_blob }
608     }
609 }
610 
611 impl CertificateInfo {
612     /// Constructs a new CertificateInfo object from `cert` and `cert_chain`
new(cert: Option<Vec<u8>>, cert_chain: Option<Vec<u8>>) -> Self613     pub fn new(cert: Option<Vec<u8>>, cert_chain: Option<Vec<u8>>) -> Self {
614         Self { cert, cert_chain }
615     }
616 
617     /// Take the cert
take_cert(&mut self) -> Option<Vec<u8>>618     pub fn take_cert(&mut self) -> Option<Vec<u8>> {
619         self.cert.take()
620     }
621 
622     /// Take the cert chain
take_cert_chain(&mut self) -> Option<Vec<u8>>623     pub fn take_cert_chain(&mut self) -> Option<Vec<u8>> {
624         self.cert_chain.take()
625     }
626 }
627 
628 /// This type represents a certificate chain with a private key corresponding to the leaf
629 /// certificate. TODO(jbires): This will be used in a follow-on CL, for now it's used in the tests.
630 pub struct CertificateChain {
631     /// A KM key blob
632     pub private_key: ZVec,
633     /// A batch cert for private_key
634     pub batch_cert: Vec<u8>,
635     /// A full certificate chain from root signing authority to private_key, including batch_cert
636     /// for convenience.
637     pub cert_chain: Vec<u8>,
638 }
639 
640 /// This type represents a Keystore 2.0 key entry.
641 /// An entry has a unique `id` by which it can be found in the database.
642 /// It has a security level field, key parameters, and three optional fields
643 /// for the KeyMint blob, public certificate and a public certificate chain.
644 #[derive(Debug, Default, Eq, PartialEq)]
645 pub struct KeyEntry {
646     id: i64,
647     key_blob_info: Option<(Vec<u8>, BlobMetaData)>,
648     cert: Option<Vec<u8>>,
649     cert_chain: Option<Vec<u8>>,
650     km_uuid: Uuid,
651     parameters: Vec<KeyParameter>,
652     metadata: KeyMetaData,
653     pure_cert: bool,
654 }
655 
656 impl KeyEntry {
657     /// Returns the unique id of the Key entry.
id(&self) -> i64658     pub fn id(&self) -> i64 {
659         self.id
660     }
661     /// Exposes the optional KeyMint blob.
key_blob_info(&self) -> &Option<(Vec<u8>, BlobMetaData)>662     pub fn key_blob_info(&self) -> &Option<(Vec<u8>, BlobMetaData)> {
663         &self.key_blob_info
664     }
665     /// Extracts the Optional KeyMint blob including its metadata.
take_key_blob_info(&mut self) -> Option<(Vec<u8>, BlobMetaData)>666     pub fn take_key_blob_info(&mut self) -> Option<(Vec<u8>, BlobMetaData)> {
667         self.key_blob_info.take()
668     }
669     /// Exposes the optional public certificate.
cert(&self) -> &Option<Vec<u8>>670     pub fn cert(&self) -> &Option<Vec<u8>> {
671         &self.cert
672     }
673     /// Extracts the optional public certificate.
take_cert(&mut self) -> Option<Vec<u8>>674     pub fn take_cert(&mut self) -> Option<Vec<u8>> {
675         self.cert.take()
676     }
677     /// Exposes the optional public certificate chain.
cert_chain(&self) -> &Option<Vec<u8>>678     pub fn cert_chain(&self) -> &Option<Vec<u8>> {
679         &self.cert_chain
680     }
681     /// Extracts the optional public certificate_chain.
take_cert_chain(&mut self) -> Option<Vec<u8>>682     pub fn take_cert_chain(&mut self) -> Option<Vec<u8>> {
683         self.cert_chain.take()
684     }
685     /// Returns the uuid of the owning KeyMint instance.
km_uuid(&self) -> &Uuid686     pub fn km_uuid(&self) -> &Uuid {
687         &self.km_uuid
688     }
689     /// Exposes the key parameters of this key entry.
key_parameters(&self) -> &Vec<KeyParameter>690     pub fn key_parameters(&self) -> &Vec<KeyParameter> {
691         &self.parameters
692     }
693     /// Consumes this key entry and extracts the keyparameters from it.
into_key_parameters(self) -> Vec<KeyParameter>694     pub fn into_key_parameters(self) -> Vec<KeyParameter> {
695         self.parameters
696     }
697     /// Exposes the key metadata of this key entry.
metadata(&self) -> &KeyMetaData698     pub fn metadata(&self) -> &KeyMetaData {
699         &self.metadata
700     }
701     /// This returns true if the entry is a pure certificate entry with no
702     /// private key component.
pure_cert(&self) -> bool703     pub fn pure_cert(&self) -> bool {
704         self.pure_cert
705     }
706     /// Consumes this key entry and extracts the keyparameters and metadata from it.
into_key_parameters_and_metadata(self) -> (Vec<KeyParameter>, KeyMetaData)707     pub fn into_key_parameters_and_metadata(self) -> (Vec<KeyParameter>, KeyMetaData) {
708         (self.parameters, self.metadata)
709     }
710 }
711 
712 /// Indicates the sub component of a key entry for persistent storage.
713 #[derive(Debug, Clone, Copy, Eq, PartialEq, Ord, PartialOrd)]
714 pub struct SubComponentType(u32);
715 impl SubComponentType {
716     /// Persistent identifier for a key blob.
717     pub const KEY_BLOB: SubComponentType = Self(0);
718     /// Persistent identifier for a certificate blob.
719     pub const CERT: SubComponentType = Self(1);
720     /// Persistent identifier for a certificate chain blob.
721     pub const CERT_CHAIN: SubComponentType = Self(2);
722 }
723 
724 impl ToSql for SubComponentType {
to_sql(&self) -> rusqlite::Result<ToSqlOutput>725     fn to_sql(&self) -> rusqlite::Result<ToSqlOutput> {
726         self.0.to_sql()
727     }
728 }
729 
730 impl FromSql for SubComponentType {
column_result(value: ValueRef) -> FromSqlResult<Self>731     fn column_result(value: ValueRef) -> FromSqlResult<Self> {
732         Ok(Self(u32::column_result(value)?))
733     }
734 }
735 
736 /// This trait is private to the database module. It is used to convey whether or not the garbage
737 /// collector shall be invoked after a database access. All closures passed to
738 /// `KeystoreDB::with_transaction` return a tuple (bool, T) where the bool indicates if the
739 /// gc needs to be triggered. This convenience function allows to turn any anyhow::Result<T>
740 /// into anyhow::Result<(bool, T)> by simply appending one of `.do_gc(bool)`, `.no_gc()`, or
741 /// `.need_gc()`.
742 trait DoGc<T> {
do_gc(self, need_gc: bool) -> Result<(bool, T)>743     fn do_gc(self, need_gc: bool) -> Result<(bool, T)>;
744 
no_gc(self) -> Result<(bool, T)>745     fn no_gc(self) -> Result<(bool, T)>;
746 
need_gc(self) -> Result<(bool, T)>747     fn need_gc(self) -> Result<(bool, T)>;
748 }
749 
750 impl<T> DoGc<T> for Result<T> {
do_gc(self, need_gc: bool) -> Result<(bool, T)>751     fn do_gc(self, need_gc: bool) -> Result<(bool, T)> {
752         self.map(|r| (need_gc, r))
753     }
754 
no_gc(self) -> Result<(bool, T)>755     fn no_gc(self) -> Result<(bool, T)> {
756         self.do_gc(false)
757     }
758 
need_gc(self) -> Result<(bool, T)>759     fn need_gc(self) -> Result<(bool, T)> {
760         self.do_gc(true)
761     }
762 }
763 
764 /// KeystoreDB wraps a connection to an SQLite database and tracks its
765 /// ownership. It also implements all of Keystore 2.0's database functionality.
766 pub struct KeystoreDB {
767     conn: Connection,
768     gc: Option<Arc<Gc>>,
769     perboot: Arc<perboot::PerbootDB>,
770 }
771 
772 /// Database representation of the monotonic time retrieved from the system call clock_gettime with
773 /// CLOCK_MONOTONIC_RAW. Stores monotonic time as i64 in milliseconds.
774 #[derive(Debug, Copy, Clone, Default, Eq, PartialEq, Ord, PartialOrd)]
775 pub struct MonotonicRawTime(i64);
776 
777 impl MonotonicRawTime {
778     /// Constructs a new MonotonicRawTime
now() -> Self779     pub fn now() -> Self {
780         Self(get_current_time_in_milliseconds())
781     }
782 
783     /// Returns the value of MonotonicRawTime in milliseconds as i64
milliseconds(&self) -> i64784     pub fn milliseconds(&self) -> i64 {
785         self.0
786     }
787 
788     /// Returns the integer value of MonotonicRawTime as i64
seconds(&self) -> i64789     pub fn seconds(&self) -> i64 {
790         self.0 / 1000
791     }
792 
793     /// Like i64::checked_sub.
checked_sub(&self, other: &Self) -> Option<Self>794     pub fn checked_sub(&self, other: &Self) -> Option<Self> {
795         self.0.checked_sub(other.0).map(Self)
796     }
797 }
798 
799 impl ToSql for MonotonicRawTime {
to_sql(&self) -> rusqlite::Result<ToSqlOutput>800     fn to_sql(&self) -> rusqlite::Result<ToSqlOutput> {
801         Ok(ToSqlOutput::Owned(Value::Integer(self.0)))
802     }
803 }
804 
805 impl FromSql for MonotonicRawTime {
column_result(value: ValueRef) -> FromSqlResult<Self>806     fn column_result(value: ValueRef) -> FromSqlResult<Self> {
807         Ok(Self(i64::column_result(value)?))
808     }
809 }
810 
811 /// This struct encapsulates the information to be stored in the database about the auth tokens
812 /// received by keystore.
813 #[derive(Clone)]
814 pub struct AuthTokenEntry {
815     auth_token: HardwareAuthToken,
816     // Time received in milliseconds
817     time_received: MonotonicRawTime,
818 }
819 
820 impl AuthTokenEntry {
new(auth_token: HardwareAuthToken, time_received: MonotonicRawTime) -> Self821     fn new(auth_token: HardwareAuthToken, time_received: MonotonicRawTime) -> Self {
822         AuthTokenEntry { auth_token, time_received }
823     }
824 
825     /// Checks if this auth token satisfies the given authentication information.
satisfies(&self, user_secure_ids: &[i64], auth_type: HardwareAuthenticatorType) -> bool826     pub fn satisfies(&self, user_secure_ids: &[i64], auth_type: HardwareAuthenticatorType) -> bool {
827         user_secure_ids.iter().any(|&sid| {
828             (sid == self.auth_token.userId || sid == self.auth_token.authenticatorId)
829                 && ((auth_type.0 & self.auth_token.authenticatorType.0) != 0)
830         })
831     }
832 
833     /// Returns the auth token wrapped by the AuthTokenEntry
auth_token(&self) -> &HardwareAuthToken834     pub fn auth_token(&self) -> &HardwareAuthToken {
835         &self.auth_token
836     }
837 
838     /// Returns the auth token wrapped by the AuthTokenEntry
take_auth_token(self) -> HardwareAuthToken839     pub fn take_auth_token(self) -> HardwareAuthToken {
840         self.auth_token
841     }
842 
843     /// Returns the time that this auth token was received.
time_received(&self) -> MonotonicRawTime844     pub fn time_received(&self) -> MonotonicRawTime {
845         self.time_received
846     }
847 
848     /// Returns the challenge value of the auth token.
challenge(&self) -> i64849     pub fn challenge(&self) -> i64 {
850         self.auth_token.challenge
851     }
852 }
853 
854 /// Shared in-memory databases get destroyed as soon as the last connection to them gets closed.
855 /// This object does not allow access to the database connection. But it keeps a database
856 /// connection alive in order to keep the in memory per boot database alive.
857 pub struct PerBootDbKeepAlive(Connection);
858 
859 impl KeystoreDB {
860     const UNASSIGNED_KEY_ID: i64 = -1i64;
861     const CURRENT_DB_VERSION: u32 = 1;
862     const UPGRADERS: &'static [fn(&Transaction) -> Result<u32>] = &[Self::from_0_to_1];
863 
864     /// Name of the file that holds the cross-boot persistent database.
865     pub const PERSISTENT_DB_FILENAME: &'static str = "persistent.sqlite";
866 
867     /// This will create a new database connection connecting the two
868     /// files persistent.sqlite and perboot.sqlite in the given directory.
869     /// It also attempts to initialize all of the tables.
870     /// KeystoreDB cannot be used by multiple threads.
871     /// Each thread should open their own connection using `thread_local!`.
new(db_root: &Path, gc: Option<Arc<Gc>>) -> Result<Self>872     pub fn new(db_root: &Path, gc: Option<Arc<Gc>>) -> Result<Self> {
873         let _wp = wd::watch_millis("KeystoreDB::new", 500);
874 
875         let persistent_path = Self::make_persistent_path(db_root)?;
876         let conn = Self::make_connection(&persistent_path)?;
877 
878         let mut db = Self { conn, gc, perboot: perboot::PERBOOT_DB.clone() };
879         db.with_transaction(TransactionBehavior::Immediate, |tx| {
880             versioning::upgrade_database(tx, Self::CURRENT_DB_VERSION, Self::UPGRADERS)
881                 .context(ks_err!("KeystoreDB::new: trying to upgrade database."))?;
882             Self::init_tables(tx).context("Trying to initialize tables.").no_gc()
883         })?;
884         Ok(db)
885     }
886 
887     // This upgrade function deletes all MAX_BOOT_LEVEL keys, that were generated before
888     // cryptographic binding to the boot level keys was implemented.
from_0_to_1(tx: &Transaction) -> Result<u32>889     fn from_0_to_1(tx: &Transaction) -> Result<u32> {
890         tx.execute(
891             "UPDATE persistent.keyentry SET state = ?
892              WHERE
893                  id IN (SELECT keyentryid FROM persistent.keyparameter WHERE tag = ?)
894              AND
895                  id NOT IN (
896                      SELECT keyentryid FROM persistent.blobentry
897                      WHERE id IN (
898                          SELECT blobentryid FROM persistent.blobmetadata WHERE tag = ?
899                      )
900                  );",
901             params![KeyLifeCycle::Unreferenced, Tag::MAX_BOOT_LEVEL.0, BlobMetaData::MaxBootLevel],
902         )
903         .context(ks_err!("Failed to delete logical boot level keys."))?;
904         Ok(1)
905     }
906 
init_tables(tx: &Transaction) -> Result<()>907     fn init_tables(tx: &Transaction) -> Result<()> {
908         tx.execute(
909             "CREATE TABLE IF NOT EXISTS persistent.keyentry (
910                      id INTEGER UNIQUE,
911                      key_type INTEGER,
912                      domain INTEGER,
913                      namespace INTEGER,
914                      alias BLOB,
915                      state INTEGER,
916                      km_uuid BLOB);",
917             NO_PARAMS,
918         )
919         .context("Failed to initialize \"keyentry\" table.")?;
920 
921         tx.execute(
922             "CREATE INDEX IF NOT EXISTS persistent.keyentry_id_index
923             ON keyentry(id);",
924             NO_PARAMS,
925         )
926         .context("Failed to create index keyentry_id_index.")?;
927 
928         tx.execute(
929             "CREATE INDEX IF NOT EXISTS persistent.keyentry_domain_namespace_index
930             ON keyentry(domain, namespace, alias);",
931             NO_PARAMS,
932         )
933         .context("Failed to create index keyentry_domain_namespace_index.")?;
934 
935         tx.execute(
936             "CREATE TABLE IF NOT EXISTS persistent.blobentry (
937                     id INTEGER PRIMARY KEY,
938                     subcomponent_type INTEGER,
939                     keyentryid INTEGER,
940                     blob BLOB);",
941             NO_PARAMS,
942         )
943         .context("Failed to initialize \"blobentry\" table.")?;
944 
945         tx.execute(
946             "CREATE INDEX IF NOT EXISTS persistent.blobentry_keyentryid_index
947             ON blobentry(keyentryid);",
948             NO_PARAMS,
949         )
950         .context("Failed to create index blobentry_keyentryid_index.")?;
951 
952         tx.execute(
953             "CREATE TABLE IF NOT EXISTS persistent.blobmetadata (
954                      id INTEGER PRIMARY KEY,
955                      blobentryid INTEGER,
956                      tag INTEGER,
957                      data ANY,
958                      UNIQUE (blobentryid, tag));",
959             NO_PARAMS,
960         )
961         .context("Failed to initialize \"blobmetadata\" table.")?;
962 
963         tx.execute(
964             "CREATE INDEX IF NOT EXISTS persistent.blobmetadata_blobentryid_index
965             ON blobmetadata(blobentryid);",
966             NO_PARAMS,
967         )
968         .context("Failed to create index blobmetadata_blobentryid_index.")?;
969 
970         tx.execute(
971             "CREATE TABLE IF NOT EXISTS persistent.keyparameter (
972                      keyentryid INTEGER,
973                      tag INTEGER,
974                      data ANY,
975                      security_level INTEGER);",
976             NO_PARAMS,
977         )
978         .context("Failed to initialize \"keyparameter\" table.")?;
979 
980         tx.execute(
981             "CREATE INDEX IF NOT EXISTS persistent.keyparameter_keyentryid_index
982             ON keyparameter(keyentryid);",
983             NO_PARAMS,
984         )
985         .context("Failed to create index keyparameter_keyentryid_index.")?;
986 
987         tx.execute(
988             "CREATE TABLE IF NOT EXISTS persistent.keymetadata (
989                      keyentryid INTEGER,
990                      tag INTEGER,
991                      data ANY,
992                      UNIQUE (keyentryid, tag));",
993             NO_PARAMS,
994         )
995         .context("Failed to initialize \"keymetadata\" table.")?;
996 
997         tx.execute(
998             "CREATE INDEX IF NOT EXISTS persistent.keymetadata_keyentryid_index
999             ON keymetadata(keyentryid);",
1000             NO_PARAMS,
1001         )
1002         .context("Failed to create index keymetadata_keyentryid_index.")?;
1003 
1004         tx.execute(
1005             "CREATE TABLE IF NOT EXISTS persistent.grant (
1006                     id INTEGER UNIQUE,
1007                     grantee INTEGER,
1008                     keyentryid INTEGER,
1009                     access_vector INTEGER);",
1010             NO_PARAMS,
1011         )
1012         .context("Failed to initialize \"grant\" table.")?;
1013 
1014         Ok(())
1015     }
1016 
make_persistent_path(db_root: &Path) -> Result<String>1017     fn make_persistent_path(db_root: &Path) -> Result<String> {
1018         // Build the path to the sqlite file.
1019         let mut persistent_path = db_root.to_path_buf();
1020         persistent_path.push(Self::PERSISTENT_DB_FILENAME);
1021 
1022         // Now convert them to strings prefixed with "file:"
1023         let mut persistent_path_str = "file:".to_owned();
1024         persistent_path_str.push_str(&persistent_path.to_string_lossy());
1025 
1026         Ok(persistent_path_str)
1027     }
1028 
make_connection(persistent_file: &str) -> Result<Connection>1029     fn make_connection(persistent_file: &str) -> Result<Connection> {
1030         let conn =
1031             Connection::open_in_memory().context("Failed to initialize SQLite connection.")?;
1032 
1033         loop {
1034             if let Err(e) = conn
1035                 .execute("ATTACH DATABASE ? as persistent;", params![persistent_file])
1036                 .context("Failed to attach database persistent.")
1037             {
1038                 if Self::is_locked_error(&e) {
1039                     std::thread::sleep(std::time::Duration::from_micros(500));
1040                     continue;
1041                 } else {
1042                     return Err(e);
1043                 }
1044             }
1045             break;
1046         }
1047 
1048         // Drop the cache size from default (2M) to 0.5M
1049         conn.execute("PRAGMA persistent.cache_size = -500;", params![])
1050             .context("Failed to decrease cache size for persistent db")?;
1051 
1052         Ok(conn)
1053     }
1054 
do_table_size_query( &mut self, storage_type: MetricsStorage, query: &str, params: &[&str], ) -> Result<StorageStats>1055     fn do_table_size_query(
1056         &mut self,
1057         storage_type: MetricsStorage,
1058         query: &str,
1059         params: &[&str],
1060     ) -> Result<StorageStats> {
1061         let (total, unused) = self.with_transaction(TransactionBehavior::Deferred, |tx| {
1062             tx.query_row(query, params_from_iter(params), |row| Ok((row.get(0)?, row.get(1)?)))
1063                 .with_context(|| {
1064                     ks_err!("get_storage_stat: Error size of storage type {}", storage_type.0)
1065                 })
1066                 .no_gc()
1067         })?;
1068         Ok(StorageStats { storage_type, size: total, unused_size: unused })
1069     }
1070 
get_total_size(&mut self) -> Result<StorageStats>1071     fn get_total_size(&mut self) -> Result<StorageStats> {
1072         self.do_table_size_query(
1073             MetricsStorage::DATABASE,
1074             "SELECT page_count * page_size, freelist_count * page_size
1075              FROM pragma_page_count('persistent'),
1076                   pragma_page_size('persistent'),
1077                   persistent.pragma_freelist_count();",
1078             &[],
1079         )
1080     }
1081 
get_table_size( &mut self, storage_type: MetricsStorage, schema: &str, table: &str, ) -> Result<StorageStats>1082     fn get_table_size(
1083         &mut self,
1084         storage_type: MetricsStorage,
1085         schema: &str,
1086         table: &str,
1087     ) -> Result<StorageStats> {
1088         self.do_table_size_query(
1089             storage_type,
1090             "SELECT pgsize,unused FROM dbstat(?1)
1091              WHERE name=?2 AND aggregate=TRUE;",
1092             &[schema, table],
1093         )
1094     }
1095 
1096     /// Fetches a storage statisitics atom for a given storage type. For storage
1097     /// types that map to a table, information about the table's storage is
1098     /// returned. Requests for storage types that are not DB tables return None.
get_storage_stat(&mut self, storage_type: MetricsStorage) -> Result<StorageStats>1099     pub fn get_storage_stat(&mut self, storage_type: MetricsStorage) -> Result<StorageStats> {
1100         let _wp = wd::watch_millis("KeystoreDB::get_storage_stat", 500);
1101 
1102         match storage_type {
1103             MetricsStorage::DATABASE => self.get_total_size(),
1104             MetricsStorage::KEY_ENTRY => {
1105                 self.get_table_size(storage_type, "persistent", "keyentry")
1106             }
1107             MetricsStorage::KEY_ENTRY_ID_INDEX => {
1108                 self.get_table_size(storage_type, "persistent", "keyentry_id_index")
1109             }
1110             MetricsStorage::KEY_ENTRY_DOMAIN_NAMESPACE_INDEX => {
1111                 self.get_table_size(storage_type, "persistent", "keyentry_domain_namespace_index")
1112             }
1113             MetricsStorage::BLOB_ENTRY => {
1114                 self.get_table_size(storage_type, "persistent", "blobentry")
1115             }
1116             MetricsStorage::BLOB_ENTRY_KEY_ENTRY_ID_INDEX => {
1117                 self.get_table_size(storage_type, "persistent", "blobentry_keyentryid_index")
1118             }
1119             MetricsStorage::KEY_PARAMETER => {
1120                 self.get_table_size(storage_type, "persistent", "keyparameter")
1121             }
1122             MetricsStorage::KEY_PARAMETER_KEY_ENTRY_ID_INDEX => {
1123                 self.get_table_size(storage_type, "persistent", "keyparameter_keyentryid_index")
1124             }
1125             MetricsStorage::KEY_METADATA => {
1126                 self.get_table_size(storage_type, "persistent", "keymetadata")
1127             }
1128             MetricsStorage::KEY_METADATA_KEY_ENTRY_ID_INDEX => {
1129                 self.get_table_size(storage_type, "persistent", "keymetadata_keyentryid_index")
1130             }
1131             MetricsStorage::GRANT => self.get_table_size(storage_type, "persistent", "grant"),
1132             MetricsStorage::AUTH_TOKEN => {
1133                 // Since the table is actually a BTreeMap now, unused_size is not meaningfully
1134                 // reportable
1135                 // Size provided is only an approximation
1136                 Ok(StorageStats {
1137                     storage_type,
1138                     size: (self.perboot.auth_tokens_len() * std::mem::size_of::<AuthTokenEntry>())
1139                         as i32,
1140                     unused_size: 0,
1141                 })
1142             }
1143             MetricsStorage::BLOB_METADATA => {
1144                 self.get_table_size(storage_type, "persistent", "blobmetadata")
1145             }
1146             MetricsStorage::BLOB_METADATA_BLOB_ENTRY_ID_INDEX => {
1147                 self.get_table_size(storage_type, "persistent", "blobmetadata_blobentryid_index")
1148             }
1149             _ => Err(anyhow::Error::msg(format!("Unsupported storage type: {}", storage_type.0))),
1150         }
1151     }
1152 
1153     /// This function is intended to be used by the garbage collector.
1154     /// It deletes the blobs given by `blob_ids_to_delete`. It then tries to find up to `max_blobs`
1155     /// superseded key blobs that might need special handling by the garbage collector.
1156     /// If no further superseded blobs can be found it deletes all other superseded blobs that don't
1157     /// need special handling and returns None.
handle_next_superseded_blobs( &mut self, blob_ids_to_delete: &[i64], max_blobs: usize, ) -> Result<Vec<(i64, Vec<u8>, BlobMetaData)>>1158     pub fn handle_next_superseded_blobs(
1159         &mut self,
1160         blob_ids_to_delete: &[i64],
1161         max_blobs: usize,
1162     ) -> Result<Vec<(i64, Vec<u8>, BlobMetaData)>> {
1163         let _wp = wd::watch_millis("KeystoreDB::handle_next_superseded_blob", 500);
1164         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1165             // Delete the given blobs.
1166             for blob_id in blob_ids_to_delete {
1167                 tx.execute(
1168                     "DELETE FROM persistent.blobmetadata WHERE blobentryid = ?;",
1169                     params![blob_id],
1170                 )
1171                 .context("Trying to delete blob metadata.")?;
1172                 tx.execute("DELETE FROM persistent.blobentry WHERE id = ?;", params![blob_id])
1173                     .context("Trying to blob.")?;
1174             }
1175 
1176             Self::cleanup_unreferenced(tx).context("Trying to cleanup unreferenced.")?;
1177 
1178             // Find up to max_blobx more superseded key blobs, load their metadata and return it.
1179             let result: Vec<(i64, Vec<u8>)> = {
1180                 let mut stmt = tx
1181                     .prepare(
1182                         "SELECT id, blob FROM persistent.blobentry
1183                         WHERE subcomponent_type = ?
1184                         AND (
1185                             id NOT IN (
1186                                 SELECT MAX(id) FROM persistent.blobentry
1187                                 WHERE subcomponent_type = ?
1188                                 GROUP BY keyentryid, subcomponent_type
1189                             )
1190                         OR keyentryid NOT IN (SELECT id FROM persistent.keyentry)
1191                     ) LIMIT ?;",
1192                     )
1193                     .context("Trying to prepare query for superseded blobs.")?;
1194 
1195                 let rows = stmt
1196                     .query_map(
1197                         params![
1198                             SubComponentType::KEY_BLOB,
1199                             SubComponentType::KEY_BLOB,
1200                             max_blobs as i64,
1201                         ],
1202                         |row| Ok((row.get(0)?, row.get(1)?)),
1203                     )
1204                     .context("Trying to query superseded blob.")?;
1205 
1206                 rows.collect::<Result<Vec<(i64, Vec<u8>)>, rusqlite::Error>>()
1207                     .context("Trying to extract superseded blobs.")?
1208             };
1209 
1210             let result = result
1211                 .into_iter()
1212                 .map(|(blob_id, blob)| {
1213                     Ok((blob_id, blob, BlobMetaData::load_from_db(blob_id, tx)?))
1214                 })
1215                 .collect::<Result<Vec<(i64, Vec<u8>, BlobMetaData)>>>()
1216                 .context("Trying to load blob metadata.")?;
1217             if !result.is_empty() {
1218                 return Ok(result).no_gc();
1219             }
1220 
1221             // We did not find any superseded key blob, so let's remove other superseded blob in
1222             // one transaction.
1223             tx.execute(
1224                 "DELETE FROM persistent.blobentry
1225                  WHERE NOT subcomponent_type = ?
1226                  AND (
1227                      id NOT IN (
1228                         SELECT MAX(id) FROM persistent.blobentry
1229                         WHERE NOT subcomponent_type = ?
1230                         GROUP BY keyentryid, subcomponent_type
1231                      ) OR keyentryid NOT IN (SELECT id FROM persistent.keyentry)
1232                  );",
1233                 params![SubComponentType::KEY_BLOB, SubComponentType::KEY_BLOB],
1234             )
1235             .context("Trying to purge superseded blobs.")?;
1236 
1237             Ok(vec![]).no_gc()
1238         })
1239         .context(ks_err!())
1240     }
1241 
1242     /// This maintenance function should be called only once before the database is used for the
1243     /// first time. It restores the invariant that `KeyLifeCycle::Existing` is a transient state.
1244     /// The function transitions all key entries from Existing to Unreferenced unconditionally and
1245     /// returns the number of rows affected. If this returns a value greater than 0, it means that
1246     /// Keystore crashed at some point during key generation. Callers may want to log such
1247     /// occurrences.
1248     /// Unlike with `mark_unreferenced`, we don't need to purge grants, because only keys that made
1249     /// it to `KeyLifeCycle::Live` may have grants.
cleanup_leftovers(&mut self) -> Result<usize>1250     pub fn cleanup_leftovers(&mut self) -> Result<usize> {
1251         let _wp = wd::watch_millis("KeystoreDB::cleanup_leftovers", 500);
1252 
1253         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1254             tx.execute(
1255                 "UPDATE persistent.keyentry SET state = ? WHERE state = ?;",
1256                 params![KeyLifeCycle::Unreferenced, KeyLifeCycle::Existing],
1257             )
1258             .context("Failed to execute query.")
1259             .need_gc()
1260         })
1261         .context(ks_err!())
1262     }
1263 
1264     /// Checks if a key exists with given key type and key descriptor properties.
key_exists( &mut self, domain: Domain, nspace: i64, alias: &str, key_type: KeyType, ) -> Result<bool>1265     pub fn key_exists(
1266         &mut self,
1267         domain: Domain,
1268         nspace: i64,
1269         alias: &str,
1270         key_type: KeyType,
1271     ) -> Result<bool> {
1272         let _wp = wd::watch_millis("KeystoreDB::key_exists", 500);
1273 
1274         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1275             let key_descriptor =
1276                 KeyDescriptor { domain, nspace, alias: Some(alias.to_string()), blob: None };
1277             let result = Self::load_key_entry_id(tx, &key_descriptor, key_type);
1278             match result {
1279                 Ok(_) => Ok(true),
1280                 Err(error) => match error.root_cause().downcast_ref::<KsError>() {
1281                     Some(KsError::Rc(ResponseCode::KEY_NOT_FOUND)) => Ok(false),
1282                     _ => Err(error).context(ks_err!("Failed to find if the key exists.")),
1283                 },
1284             }
1285             .no_gc()
1286         })
1287         .context(ks_err!())
1288     }
1289 
1290     /// Stores a super key in the database.
store_super_key( &mut self, user_id: u32, key_type: &SuperKeyType, blob: &[u8], blob_metadata: &BlobMetaData, key_metadata: &KeyMetaData, ) -> Result<KeyEntry>1291     pub fn store_super_key(
1292         &mut self,
1293         user_id: u32,
1294         key_type: &SuperKeyType,
1295         blob: &[u8],
1296         blob_metadata: &BlobMetaData,
1297         key_metadata: &KeyMetaData,
1298     ) -> Result<KeyEntry> {
1299         let _wp = wd::watch_millis("KeystoreDB::store_super_key", 500);
1300 
1301         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1302             let key_id = Self::insert_with_retry(|id| {
1303                 tx.execute(
1304                     "INSERT into persistent.keyentry
1305                             (id, key_type, domain, namespace, alias, state, km_uuid)
1306                             VALUES(?, ?, ?, ?, ?, ?, ?);",
1307                     params![
1308                         id,
1309                         KeyType::Super,
1310                         Domain::APP.0,
1311                         user_id as i64,
1312                         key_type.alias,
1313                         KeyLifeCycle::Live,
1314                         &KEYSTORE_UUID,
1315                     ],
1316                 )
1317             })
1318             .context("Failed to insert into keyentry table.")?;
1319 
1320             key_metadata.store_in_db(key_id, tx).context("KeyMetaData::store_in_db failed")?;
1321 
1322             Self::set_blob_internal(
1323                 tx,
1324                 key_id,
1325                 SubComponentType::KEY_BLOB,
1326                 Some(blob),
1327                 Some(blob_metadata),
1328             )
1329             .context("Failed to store key blob.")?;
1330 
1331             Self::load_key_components(tx, KeyEntryLoadBits::KM, key_id)
1332                 .context("Trying to load key components.")
1333                 .no_gc()
1334         })
1335         .context(ks_err!())
1336     }
1337 
1338     /// Loads super key of a given user, if exists
load_super_key( &mut self, key_type: &SuperKeyType, user_id: u32, ) -> Result<Option<(KeyIdGuard, KeyEntry)>>1339     pub fn load_super_key(
1340         &mut self,
1341         key_type: &SuperKeyType,
1342         user_id: u32,
1343     ) -> Result<Option<(KeyIdGuard, KeyEntry)>> {
1344         let _wp = wd::watch_millis("KeystoreDB::load_super_key", 500);
1345 
1346         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1347             let key_descriptor = KeyDescriptor {
1348                 domain: Domain::APP,
1349                 nspace: user_id as i64,
1350                 alias: Some(key_type.alias.into()),
1351                 blob: None,
1352             };
1353             let id = Self::load_key_entry_id(tx, &key_descriptor, KeyType::Super);
1354             match id {
1355                 Ok(id) => {
1356                     let key_entry = Self::load_key_components(tx, KeyEntryLoadBits::KM, id)
1357                         .context(ks_err!("Failed to load key entry."))?;
1358                     Ok(Some((KEY_ID_LOCK.get(id), key_entry)))
1359                 }
1360                 Err(error) => match error.root_cause().downcast_ref::<KsError>() {
1361                     Some(KsError::Rc(ResponseCode::KEY_NOT_FOUND)) => Ok(None),
1362                     _ => Err(error).context(ks_err!()),
1363                 },
1364             }
1365             .no_gc()
1366         })
1367         .context(ks_err!())
1368     }
1369 
1370     /// Atomically loads a key entry and associated metadata or creates it using the
1371     /// callback create_new_key callback. The callback is called during a database
1372     /// transaction. This means that implementers should be mindful about using
1373     /// blocking operations such as IPC or grabbing mutexes.
get_or_create_key_with<F>( &mut self, domain: Domain, namespace: i64, alias: &str, km_uuid: Uuid, create_new_key: F, ) -> Result<(KeyIdGuard, KeyEntry)> where F: Fn() -> Result<(Vec<u8>, BlobMetaData)>,1374     pub fn get_or_create_key_with<F>(
1375         &mut self,
1376         domain: Domain,
1377         namespace: i64,
1378         alias: &str,
1379         km_uuid: Uuid,
1380         create_new_key: F,
1381     ) -> Result<(KeyIdGuard, KeyEntry)>
1382     where
1383         F: Fn() -> Result<(Vec<u8>, BlobMetaData)>,
1384     {
1385         let _wp = wd::watch_millis("KeystoreDB::get_or_create_key_with", 500);
1386 
1387         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1388             let id = {
1389                 let mut stmt = tx
1390                     .prepare(
1391                         "SELECT id FROM persistent.keyentry
1392                     WHERE
1393                     key_type = ?
1394                     AND domain = ?
1395                     AND namespace = ?
1396                     AND alias = ?
1397                     AND state = ?;",
1398                     )
1399                     .context(ks_err!("Failed to select from keyentry table."))?;
1400                 let mut rows = stmt
1401                     .query(params![KeyType::Super, domain.0, namespace, alias, KeyLifeCycle::Live])
1402                     .context(ks_err!("Failed to query from keyentry table."))?;
1403 
1404                 db_utils::with_rows_extract_one(&mut rows, |row| {
1405                     Ok(match row {
1406                         Some(r) => r.get(0).context("Failed to unpack id.")?,
1407                         None => None,
1408                     })
1409                 })
1410                 .context(ks_err!())?
1411             };
1412 
1413             let (id, entry) = match id {
1414                 Some(id) => (
1415                     id,
1416                     Self::load_key_components(tx, KeyEntryLoadBits::KM, id).context(ks_err!())?,
1417                 ),
1418 
1419                 None => {
1420                     let id = Self::insert_with_retry(|id| {
1421                         tx.execute(
1422                             "INSERT into persistent.keyentry
1423                         (id, key_type, domain, namespace, alias, state, km_uuid)
1424                         VALUES(?, ?, ?, ?, ?, ?, ?);",
1425                             params![
1426                                 id,
1427                                 KeyType::Super,
1428                                 domain.0,
1429                                 namespace,
1430                                 alias,
1431                                 KeyLifeCycle::Live,
1432                                 km_uuid,
1433                             ],
1434                         )
1435                     })
1436                     .context(ks_err!())?;
1437 
1438                     let (blob, metadata) = create_new_key().context(ks_err!())?;
1439                     Self::set_blob_internal(
1440                         tx,
1441                         id,
1442                         SubComponentType::KEY_BLOB,
1443                         Some(&blob),
1444                         Some(&metadata),
1445                     )
1446                     .context(ks_err!())?;
1447                     (
1448                         id,
1449                         KeyEntry {
1450                             id,
1451                             key_blob_info: Some((blob, metadata)),
1452                             pure_cert: false,
1453                             ..Default::default()
1454                         },
1455                     )
1456                 }
1457             };
1458             Ok((KEY_ID_LOCK.get(id), entry)).no_gc()
1459         })
1460         .context(ks_err!())
1461     }
1462 
1463     /// Creates a transaction with the given behavior and executes f with the new transaction.
1464     /// The transaction is committed only if f returns Ok and retried if DatabaseBusy
1465     /// or DatabaseLocked is encountered.
with_transaction<T, F>(&mut self, behavior: TransactionBehavior, f: F) -> Result<T> where F: Fn(&Transaction) -> Result<(bool, T)>,1466     fn with_transaction<T, F>(&mut self, behavior: TransactionBehavior, f: F) -> Result<T>
1467     where
1468         F: Fn(&Transaction) -> Result<(bool, T)>,
1469     {
1470         loop {
1471             match self
1472                 .conn
1473                 .transaction_with_behavior(behavior)
1474                 .context(ks_err!())
1475                 .and_then(|tx| f(&tx).map(|result| (result, tx)))
1476                 .and_then(|(result, tx)| {
1477                     tx.commit().context(ks_err!("Failed to commit transaction."))?;
1478                     Ok(result)
1479                 }) {
1480                 Ok(result) => break Ok(result),
1481                 Err(e) => {
1482                     if Self::is_locked_error(&e) {
1483                         std::thread::sleep(std::time::Duration::from_micros(500));
1484                         continue;
1485                     } else {
1486                         return Err(e).context(ks_err!());
1487                     }
1488                 }
1489             }
1490         }
1491         .map(|(need_gc, result)| {
1492             if need_gc {
1493                 if let Some(ref gc) = self.gc {
1494                     gc.notify_gc();
1495                 }
1496             }
1497             result
1498         })
1499     }
1500 
is_locked_error(e: &anyhow::Error) -> bool1501     fn is_locked_error(e: &anyhow::Error) -> bool {
1502         matches!(
1503             e.root_cause().downcast_ref::<rusqlite::ffi::Error>(),
1504             Some(rusqlite::ffi::Error { code: rusqlite::ErrorCode::DatabaseBusy, .. })
1505                 | Some(rusqlite::ffi::Error { code: rusqlite::ErrorCode::DatabaseLocked, .. })
1506         )
1507     }
1508 
1509     /// Creates a new key entry and allocates a new randomized id for the new key.
1510     /// The key id gets associated with a domain and namespace but not with an alias.
1511     /// To complete key generation `rebind_alias` should be called after all of the
1512     /// key artifacts, i.e., blobs and parameters have been associated with the new
1513     /// key id. Finalizing with `rebind_alias` makes the creation of a new key entry
1514     /// atomic even if key generation is not.
create_key_entry( &mut self, domain: &Domain, namespace: &i64, key_type: KeyType, km_uuid: &Uuid, ) -> Result<KeyIdGuard>1515     pub fn create_key_entry(
1516         &mut self,
1517         domain: &Domain,
1518         namespace: &i64,
1519         key_type: KeyType,
1520         km_uuid: &Uuid,
1521     ) -> Result<KeyIdGuard> {
1522         let _wp = wd::watch_millis("KeystoreDB::create_key_entry", 500);
1523 
1524         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1525             Self::create_key_entry_internal(tx, domain, namespace, key_type, km_uuid).no_gc()
1526         })
1527         .context(ks_err!())
1528     }
1529 
create_key_entry_internal( tx: &Transaction, domain: &Domain, namespace: &i64, key_type: KeyType, km_uuid: &Uuid, ) -> Result<KeyIdGuard>1530     fn create_key_entry_internal(
1531         tx: &Transaction,
1532         domain: &Domain,
1533         namespace: &i64,
1534         key_type: KeyType,
1535         km_uuid: &Uuid,
1536     ) -> Result<KeyIdGuard> {
1537         match *domain {
1538             Domain::APP | Domain::SELINUX => {}
1539             _ => {
1540                 return Err(KsError::sys())
1541                     .context(ks_err!("Domain {:?} must be either App or SELinux.", domain));
1542             }
1543         }
1544         Ok(KEY_ID_LOCK.get(
1545             Self::insert_with_retry(|id| {
1546                 tx.execute(
1547                     "INSERT into persistent.keyentry
1548                      (id, key_type, domain, namespace, alias, state, km_uuid)
1549                      VALUES(?, ?, ?, ?, NULL, ?, ?);",
1550                     params![
1551                         id,
1552                         key_type,
1553                         domain.0 as u32,
1554                         *namespace,
1555                         KeyLifeCycle::Existing,
1556                         km_uuid,
1557                     ],
1558                 )
1559             })
1560             .context(ks_err!())?,
1561         ))
1562     }
1563 
1564     /// Creates a new attestation key entry and allocates a new randomized id for the new key.
1565     /// The key id gets associated with a domain and namespace later but not with an alias. The
1566     /// alias will be used to denote if a key has been signed as each key can only be bound to one
1567     /// domain and namespace pairing so there is no need to use them as a value for indexing into
1568     /// a key.
create_attestation_key_entry( &mut self, maced_public_key: &[u8], raw_public_key: &[u8], private_key: &[u8], km_uuid: &Uuid, ) -> Result<()>1569     pub fn create_attestation_key_entry(
1570         &mut self,
1571         maced_public_key: &[u8],
1572         raw_public_key: &[u8],
1573         private_key: &[u8],
1574         km_uuid: &Uuid,
1575     ) -> Result<()> {
1576         let _wp = wd::watch_millis("KeystoreDB::create_attestation_key_entry", 500);
1577 
1578         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1579             let key_id = KEY_ID_LOCK.get(
1580                 Self::insert_with_retry(|id| {
1581                     tx.execute(
1582                         "INSERT into persistent.keyentry
1583                             (id, key_type, domain, namespace, alias, state, km_uuid)
1584                             VALUES(?, ?, NULL, NULL, NULL, ?, ?);",
1585                         params![id, KeyType::Attestation, KeyLifeCycle::Live, km_uuid],
1586                     )
1587                 })
1588                 .context(ks_err!())?,
1589             );
1590             Self::set_blob_internal(
1591                 tx,
1592                 key_id.0,
1593                 SubComponentType::KEY_BLOB,
1594                 Some(private_key),
1595                 None,
1596             )?;
1597             let mut metadata = KeyMetaData::new();
1598             metadata.add(KeyMetaEntry::AttestationMacedPublicKey(maced_public_key.to_vec()));
1599             metadata.add(KeyMetaEntry::AttestationRawPubKey(raw_public_key.to_vec()));
1600             metadata.store_in_db(key_id.0, tx)?;
1601             Ok(()).no_gc()
1602         })
1603         .context(ks_err!())
1604     }
1605 
1606     /// Set a new blob and associates it with the given key id. Each blob
1607     /// has a sub component type.
1608     /// Each key can have one of each sub component type associated. If more
1609     /// are added only the most recent can be retrieved, and superseded blobs
1610     /// will get garbage collected.
1611     /// Components SubComponentType::CERT and SubComponentType::CERT_CHAIN can be
1612     /// removed by setting blob to None.
set_blob( &mut self, key_id: &KeyIdGuard, sc_type: SubComponentType, blob: Option<&[u8]>, blob_metadata: Option<&BlobMetaData>, ) -> Result<()>1613     pub fn set_blob(
1614         &mut self,
1615         key_id: &KeyIdGuard,
1616         sc_type: SubComponentType,
1617         blob: Option<&[u8]>,
1618         blob_metadata: Option<&BlobMetaData>,
1619     ) -> Result<()> {
1620         let _wp = wd::watch_millis("KeystoreDB::set_blob", 500);
1621 
1622         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1623             Self::set_blob_internal(tx, key_id.0, sc_type, blob, blob_metadata).need_gc()
1624         })
1625         .context(ks_err!())
1626     }
1627 
1628     /// Why would we insert a deleted blob? This weird function is for the purpose of legacy
1629     /// key migration in the case where we bulk delete all the keys of an app or even a user.
1630     /// We use this to insert key blobs into the database which can then be garbage collected
1631     /// lazily by the key garbage collector.
set_deleted_blob(&mut self, blob: &[u8], blob_metadata: &BlobMetaData) -> Result<()>1632     pub fn set_deleted_blob(&mut self, blob: &[u8], blob_metadata: &BlobMetaData) -> Result<()> {
1633         let _wp = wd::watch_millis("KeystoreDB::set_deleted_blob", 500);
1634 
1635         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1636             Self::set_blob_internal(
1637                 tx,
1638                 Self::UNASSIGNED_KEY_ID,
1639                 SubComponentType::KEY_BLOB,
1640                 Some(blob),
1641                 Some(blob_metadata),
1642             )
1643             .need_gc()
1644         })
1645         .context(ks_err!())
1646     }
1647 
set_blob_internal( tx: &Transaction, key_id: i64, sc_type: SubComponentType, blob: Option<&[u8]>, blob_metadata: Option<&BlobMetaData>, ) -> Result<()>1648     fn set_blob_internal(
1649         tx: &Transaction,
1650         key_id: i64,
1651         sc_type: SubComponentType,
1652         blob: Option<&[u8]>,
1653         blob_metadata: Option<&BlobMetaData>,
1654     ) -> Result<()> {
1655         match (blob, sc_type) {
1656             (Some(blob), _) => {
1657                 tx.execute(
1658                     "INSERT INTO persistent.blobentry
1659                      (subcomponent_type, keyentryid, blob) VALUES (?, ?, ?);",
1660                     params![sc_type, key_id, blob],
1661                 )
1662                 .context(ks_err!("Failed to insert blob."))?;
1663                 if let Some(blob_metadata) = blob_metadata {
1664                     let blob_id = tx
1665                         .query_row("SELECT MAX(id) FROM persistent.blobentry;", NO_PARAMS, |row| {
1666                             row.get(0)
1667                         })
1668                         .context(ks_err!("Failed to get new blob id."))?;
1669                     blob_metadata
1670                         .store_in_db(blob_id, tx)
1671                         .context(ks_err!("Trying to store blob metadata."))?;
1672                 }
1673             }
1674             (None, SubComponentType::CERT) | (None, SubComponentType::CERT_CHAIN) => {
1675                 tx.execute(
1676                     "DELETE FROM persistent.blobentry
1677                     WHERE subcomponent_type = ? AND keyentryid = ?;",
1678                     params![sc_type, key_id],
1679                 )
1680                 .context(ks_err!("Failed to delete blob."))?;
1681             }
1682             (None, _) => {
1683                 return Err(KsError::sys())
1684                     .context(ks_err!("Other blobs cannot be deleted in this way."));
1685             }
1686         }
1687         Ok(())
1688     }
1689 
1690     /// Inserts a collection of key parameters into the `persistent.keyparameter` table
1691     /// and associates them with the given `key_id`.
1692     #[cfg(test)]
insert_keyparameter(&mut self, key_id: &KeyIdGuard, params: &[KeyParameter]) -> Result<()>1693     fn insert_keyparameter(&mut self, key_id: &KeyIdGuard, params: &[KeyParameter]) -> Result<()> {
1694         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1695             Self::insert_keyparameter_internal(tx, key_id, params).no_gc()
1696         })
1697         .context(ks_err!())
1698     }
1699 
insert_keyparameter_internal( tx: &Transaction, key_id: &KeyIdGuard, params: &[KeyParameter], ) -> Result<()>1700     fn insert_keyparameter_internal(
1701         tx: &Transaction,
1702         key_id: &KeyIdGuard,
1703         params: &[KeyParameter],
1704     ) -> Result<()> {
1705         let mut stmt = tx
1706             .prepare(
1707                 "INSERT into persistent.keyparameter (keyentryid, tag, data, security_level)
1708                 VALUES (?, ?, ?, ?);",
1709             )
1710             .context(ks_err!("Failed to prepare statement."))?;
1711 
1712         for p in params.iter() {
1713             stmt.insert(params![
1714                 key_id.0,
1715                 p.get_tag().0,
1716                 p.key_parameter_value(),
1717                 p.security_level().0
1718             ])
1719             .with_context(|| ks_err!("Failed to insert {:?}", p))?;
1720         }
1721         Ok(())
1722     }
1723 
1724     /// Insert a set of key entry specific metadata into the database.
1725     #[cfg(test)]
insert_key_metadata(&mut self, key_id: &KeyIdGuard, metadata: &KeyMetaData) -> Result<()>1726     fn insert_key_metadata(&mut self, key_id: &KeyIdGuard, metadata: &KeyMetaData) -> Result<()> {
1727         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1728             metadata.store_in_db(key_id.0, tx).no_gc()
1729         })
1730         .context(ks_err!())
1731     }
1732 
1733     /// Stores a signed certificate chain signed by a remote provisioning server, keyed
1734     /// on the public key.
store_signed_attestation_certificate_chain( &mut self, raw_public_key: &[u8], batch_cert: &[u8], cert_chain: &[u8], expiration_date: i64, km_uuid: &Uuid, ) -> Result<()>1735     pub fn store_signed_attestation_certificate_chain(
1736         &mut self,
1737         raw_public_key: &[u8],
1738         batch_cert: &[u8],
1739         cert_chain: &[u8],
1740         expiration_date: i64,
1741         km_uuid: &Uuid,
1742     ) -> Result<()> {
1743         let _wp = wd::watch_millis("KeystoreDB::store_signed_attestation_certificate_chain", 500);
1744 
1745         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1746             let mut stmt = tx
1747                 .prepare(
1748                     "SELECT keyentryid
1749                     FROM persistent.keymetadata
1750                     WHERE tag = ? AND data = ? AND keyentryid IN
1751                     (SELECT id
1752                      FROM persistent.keyentry
1753                      WHERE
1754                         alias IS NULL AND
1755                         domain IS NULL AND
1756                         namespace IS NULL AND
1757                         key_type = ? AND
1758                         km_uuid = ?);",
1759                 )
1760                 .context("Failed to store attestation certificate chain.")?;
1761             let mut rows = stmt
1762                 .query(params![
1763                     KeyMetaData::AttestationRawPubKey,
1764                     raw_public_key,
1765                     KeyType::Attestation,
1766                     km_uuid
1767                 ])
1768                 .context("Failed to fetch keyid")?;
1769             let key_id = db_utils::with_rows_extract_one(&mut rows, |row| {
1770                 row.map_or_else(|| Err(KsError::Rc(ResponseCode::KEY_NOT_FOUND)), Ok)?
1771                     .get(0)
1772                     .context("Failed to unpack id.")
1773             })
1774             .context("Failed to get key_id.")?;
1775             let num_updated = tx
1776                 .execute(
1777                     "UPDATE persistent.keyentry
1778                     SET alias = ?
1779                     WHERE id = ?;",
1780                     params!["signed", key_id],
1781                 )
1782                 .context("Failed to update alias.")?;
1783             if num_updated != 1 {
1784                 return Err(KsError::sys()).context("Alias not updated for the key.");
1785             }
1786             let mut metadata = KeyMetaData::new();
1787             metadata.add(KeyMetaEntry::AttestationExpirationDate(DateTime::from_millis_epoch(
1788                 expiration_date,
1789             )));
1790             metadata.store_in_db(key_id, tx).context("Failed to insert key metadata.")?;
1791             Self::set_blob_internal(
1792                 tx,
1793                 key_id,
1794                 SubComponentType::CERT_CHAIN,
1795                 Some(cert_chain),
1796                 None,
1797             )
1798             .context("Failed to insert cert chain")?;
1799             Self::set_blob_internal(tx, key_id, SubComponentType::CERT, Some(batch_cert), None)
1800                 .context("Failed to insert cert")?;
1801             Ok(()).no_gc()
1802         })
1803         .context(ks_err!())
1804     }
1805 
1806     /// Assigns the next unassigned attestation key to a domain/namespace combo that does not
1807     /// currently have a key assigned to it.
assign_attestation_key( &mut self, domain: Domain, namespace: i64, km_uuid: &Uuid, ) -> Result<()>1808     pub fn assign_attestation_key(
1809         &mut self,
1810         domain: Domain,
1811         namespace: i64,
1812         km_uuid: &Uuid,
1813     ) -> Result<()> {
1814         let _wp = wd::watch_millis("KeystoreDB::assign_attestation_key", 500);
1815 
1816         match domain {
1817             Domain::APP | Domain::SELINUX => {}
1818             _ => {
1819                 return Err(KsError::sys())
1820                     .context(ks_err!("Domain {:?} must be either App or SELinux.", domain));
1821             }
1822         }
1823         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1824             let result = tx
1825                 .execute(
1826                     "UPDATE persistent.keyentry
1827                         SET domain=?1, namespace=?2
1828                         WHERE
1829                             id =
1830                                 (SELECT MIN(id)
1831                                 FROM persistent.keyentry
1832                                 WHERE ALIAS IS NOT NULL
1833                                     AND domain IS NULL
1834                                     AND key_type IS ?3
1835                                     AND state IS ?4
1836                                     AND km_uuid IS ?5)
1837                             AND
1838                                 (SELECT COUNT(*)
1839                                 FROM persistent.keyentry
1840                                 WHERE domain=?1
1841                                     AND namespace=?2
1842                                     AND key_type IS ?3
1843                                     AND state IS ?4
1844                                     AND km_uuid IS ?5) = 0;",
1845                     params![
1846                         domain.0 as u32,
1847                         namespace,
1848                         KeyType::Attestation,
1849                         KeyLifeCycle::Live,
1850                         km_uuid,
1851                     ],
1852                 )
1853                 .context("Failed to assign attestation key")?;
1854             if result == 0 {
1855                 let (_, hw_info) = get_keymint_dev_by_uuid(km_uuid)
1856                     .context("Error in retrieving keymint device by UUID.")?;
1857                 log_rkp_error_stats(MetricsRkpError::OUT_OF_KEYS, &hw_info.securityLevel);
1858                 return Err(KsError::Rc(ResponseCode::OUT_OF_KEYS_TRANSIENT_ERROR))
1859                     .context("Out of keys.");
1860             } else if result > 1 {
1861                 return Err(KsError::sys())
1862                     .context(format!("Expected to update 1 entry, instead updated {}", result));
1863             }
1864             Ok(()).no_gc()
1865         })
1866         .context(ks_err!())
1867     }
1868 
1869     /// Retrieves num_keys number of attestation keys that have not yet been signed by a remote
1870     /// provisioning server, or the maximum number available if there are not num_keys number of
1871     /// entries in the table.
fetch_unsigned_attestation_keys( &mut self, num_keys: i32, km_uuid: &Uuid, ) -> Result<Vec<Vec<u8>>>1872     pub fn fetch_unsigned_attestation_keys(
1873         &mut self,
1874         num_keys: i32,
1875         km_uuid: &Uuid,
1876     ) -> Result<Vec<Vec<u8>>> {
1877         let _wp = wd::watch_millis("KeystoreDB::fetch_unsigned_attestation_keys", 500);
1878 
1879         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1880             let mut stmt = tx
1881                 .prepare(
1882                     "SELECT data
1883                     FROM persistent.keymetadata
1884                     WHERE tag = ? AND keyentryid IN
1885                         (SELECT id
1886                         FROM persistent.keyentry
1887                         WHERE
1888                             alias IS NULL AND
1889                             domain IS NULL AND
1890                             namespace IS NULL AND
1891                             key_type = ? AND
1892                             km_uuid = ?
1893                         LIMIT ?);",
1894                 )
1895                 .context("Failed to prepare statement")?;
1896             let rows = stmt
1897                 .query_map(
1898                     params![
1899                         KeyMetaData::AttestationMacedPublicKey,
1900                         KeyType::Attestation,
1901                         km_uuid,
1902                         num_keys
1903                     ],
1904                     |row| row.get(0),
1905                 )?
1906                 .collect::<rusqlite::Result<Vec<Vec<u8>>>>()
1907                 .context("Failed to execute statement")?;
1908             Ok(rows).no_gc()
1909         })
1910         .context(ks_err!())
1911     }
1912 
1913     /// Removes any keys that have expired as of the current time. Returns the number of keys
1914     /// marked unreferenced that are bound to be garbage collected.
delete_expired_attestation_keys(&mut self) -> Result<i32>1915     pub fn delete_expired_attestation_keys(&mut self) -> Result<i32> {
1916         let _wp = wd::watch_millis("KeystoreDB::delete_expired_attestation_keys", 500);
1917 
1918         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1919             let mut stmt = tx
1920                 .prepare(
1921                     "SELECT keyentryid, data
1922                      FROM persistent.keymetadata
1923                      WHERE tag = ? AND keyentryid IN
1924                          (SELECT id
1925                          FROM persistent.keyentry
1926                          WHERE key_type = ?);",
1927                 )
1928                 .context("Failed to prepare query")?;
1929             let key_ids_to_check = stmt
1930                 .query_map(
1931                     params![KeyMetaData::AttestationExpirationDate, KeyType::Attestation],
1932                     |row| Ok((row.get(0)?, row.get(1)?)),
1933                 )?
1934                 .collect::<rusqlite::Result<Vec<(i64, DateTime)>>>()
1935                 .context("Failed to get date metadata")?;
1936             // Calculate curr_time with a discount factor to avoid a key that's milliseconds away
1937             // from expiration dodging this delete call.
1938             let curr_time = DateTime::from_millis_epoch(
1939                 SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?.as_millis() as i64
1940                     + EXPIRATION_BUFFER_MS,
1941             );
1942             let mut num_deleted = 0;
1943             for id in key_ids_to_check.iter().filter(|kt| kt.1 < curr_time).map(|kt| kt.0) {
1944                 if Self::mark_unreferenced(tx, id)? {
1945                     num_deleted += 1;
1946                 }
1947             }
1948             Ok(num_deleted).do_gc(num_deleted != 0)
1949         })
1950         .context(ks_err!())
1951     }
1952 
1953     /// Deletes all remotely provisioned attestation keys in the system, regardless of the state
1954     /// they are in. This is useful primarily as a testing mechanism.
delete_all_attestation_keys(&mut self) -> Result<i64>1955     pub fn delete_all_attestation_keys(&mut self) -> Result<i64> {
1956         let _wp = wd::watch_millis("KeystoreDB::delete_all_attestation_keys", 500);
1957 
1958         self.with_transaction(TransactionBehavior::Immediate, |tx| {
1959             let mut stmt = tx
1960                 .prepare(
1961                     "SELECT id FROM persistent.keyentry
1962                     WHERE key_type IS ?;",
1963                 )
1964                 .context("Failed to prepare statement")?;
1965             let keys_to_delete = stmt
1966                 .query_map(params![KeyType::Attestation], |row| row.get(0))?
1967                 .collect::<rusqlite::Result<Vec<i64>>>()
1968                 .context("Failed to execute statement")?;
1969             let num_deleted = keys_to_delete
1970                 .iter()
1971                 .map(|id| Self::mark_unreferenced(tx, *id))
1972                 .collect::<Result<Vec<bool>>>()
1973                 .context("Failed to execute mark_unreferenced on a keyid")?
1974                 .into_iter()
1975                 .filter(|result| *result)
1976                 .count() as i64;
1977             Ok(num_deleted).do_gc(num_deleted != 0)
1978         })
1979         .context(ks_err!())
1980     }
1981 
query_kid_for_attestation_key_and_cert_chain( &self, tx: &Transaction, domain: Domain, namespace: i64, km_uuid: &Uuid, ) -> Result<Option<i64>>1982     fn query_kid_for_attestation_key_and_cert_chain(
1983         &self,
1984         tx: &Transaction,
1985         domain: Domain,
1986         namespace: i64,
1987         km_uuid: &Uuid,
1988     ) -> Result<Option<i64>> {
1989         let mut stmt = tx.prepare(
1990             "SELECT id
1991              FROM persistent.keyentry
1992              WHERE key_type = ?
1993                    AND domain = ?
1994                    AND namespace = ?
1995                    AND state = ?
1996                    AND km_uuid = ?;",
1997         )?;
1998         let rows = stmt
1999             .query_map(
2000                 params![
2001                     KeyType::Attestation,
2002                     domain.0 as u32,
2003                     namespace,
2004                     KeyLifeCycle::Live,
2005                     km_uuid
2006                 ],
2007                 |row| row.get(0),
2008             )?
2009             .collect::<rusqlite::Result<Vec<i64>>>()
2010             .context("query failed.")?;
2011         if rows.is_empty() {
2012             return Ok(None);
2013         }
2014         Ok(Some(rows[0]))
2015     }
2016 
2017     /// Fetches the private key and corresponding certificate chain assigned to a
2018     /// domain/namespace pair. Will either return nothing if the domain/namespace is
2019     /// not assigned, or one CertificateChain.
retrieve_attestation_key_and_cert_chain( &mut self, domain: Domain, namespace: i64, km_uuid: &Uuid, ) -> Result<Option<(KeyIdGuard, CertificateChain)>>2020     pub fn retrieve_attestation_key_and_cert_chain(
2021         &mut self,
2022         domain: Domain,
2023         namespace: i64,
2024         km_uuid: &Uuid,
2025     ) -> Result<Option<(KeyIdGuard, CertificateChain)>> {
2026         let _wp = wd::watch_millis("KeystoreDB::retrieve_attestation_key_and_cert_chain", 500);
2027 
2028         match domain {
2029             Domain::APP | Domain::SELINUX => {}
2030             _ => {
2031                 return Err(KsError::sys())
2032                     .context(format!("Domain {:?} must be either App or SELinux.", domain));
2033             }
2034         }
2035 
2036         self.delete_expired_attestation_keys()
2037             .context(ks_err!("Failed to prune expired attestation keys",))?;
2038         let tx = self
2039             .conn
2040             .unchecked_transaction()
2041             .context(ks_err!("Failed to initialize transaction."))?;
2042         let key_id: i64 = match self
2043             .query_kid_for_attestation_key_and_cert_chain(&tx, domain, namespace, km_uuid)?
2044         {
2045             None => return Ok(None),
2046             Some(kid) => kid,
2047         };
2048         tx.commit().context(ks_err!("Failed to commit keyid query"))?;
2049         let key_id_guard = KEY_ID_LOCK.get(key_id);
2050         let tx = self
2051             .conn
2052             .unchecked_transaction()
2053             .context(ks_err!("Failed to initialize transaction."))?;
2054         let mut stmt = tx.prepare(
2055             "SELECT subcomponent_type, blob
2056             FROM persistent.blobentry
2057             WHERE keyentryid = ?;",
2058         )?;
2059         let rows = stmt
2060             .query_map(params![key_id_guard.id()], |row| Ok((row.get(0)?, row.get(1)?)))?
2061             .collect::<rusqlite::Result<Vec<(SubComponentType, Vec<u8>)>>>()
2062             .context("query failed.")?;
2063         if rows.is_empty() {
2064             return Ok(None);
2065         } else if rows.len() != 3 {
2066             return Err(KsError::sys()).context(format!(
2067                 concat!(
2068                     "Expected to get a single attestation",
2069                     "key, cert, and cert chain for a total of 3 entries, but instead got {}."
2070                 ),
2071                 rows.len()
2072             ));
2073         }
2074         let mut km_blob: Vec<u8> = Vec::new();
2075         let mut cert_chain_blob: Vec<u8> = Vec::new();
2076         let mut batch_cert_blob: Vec<u8> = Vec::new();
2077         for row in rows {
2078             let sub_type: SubComponentType = row.0;
2079             match sub_type {
2080                 SubComponentType::KEY_BLOB => {
2081                     km_blob = row.1;
2082                 }
2083                 SubComponentType::CERT_CHAIN => {
2084                     cert_chain_blob = row.1;
2085                 }
2086                 SubComponentType::CERT => {
2087                     batch_cert_blob = row.1;
2088                 }
2089                 _ => Err(KsError::sys()).context("Unknown or incorrect subcomponent type.")?,
2090             }
2091         }
2092         Ok(Some((
2093             key_id_guard,
2094             CertificateChain {
2095                 private_key: ZVec::try_from(km_blob)?,
2096                 batch_cert: batch_cert_blob,
2097                 cert_chain: cert_chain_blob,
2098             },
2099         )))
2100     }
2101 
2102     /// Updates the alias column of the given key id `newid` with the given alias,
2103     /// and atomically, removes the alias, domain, and namespace from another row
2104     /// with the same alias-domain-namespace tuple if such row exits.
2105     /// Returns Ok(true) if an old key was marked unreferenced as a hint to the garbage
2106     /// collector.
rebind_alias( tx: &Transaction, newid: &KeyIdGuard, alias: &str, domain: &Domain, namespace: &i64, key_type: KeyType, ) -> Result<bool>2107     fn rebind_alias(
2108         tx: &Transaction,
2109         newid: &KeyIdGuard,
2110         alias: &str,
2111         domain: &Domain,
2112         namespace: &i64,
2113         key_type: KeyType,
2114     ) -> Result<bool> {
2115         match *domain {
2116             Domain::APP | Domain::SELINUX => {}
2117             _ => {
2118                 return Err(KsError::sys())
2119                     .context(ks_err!("Domain {:?} must be either App or SELinux.", domain));
2120             }
2121         }
2122         let updated = tx
2123             .execute(
2124                 "UPDATE persistent.keyentry
2125                  SET alias = NULL, domain = NULL, namespace = NULL, state = ?
2126                  WHERE alias = ? AND domain = ? AND namespace = ? AND key_type = ?;",
2127                 params![KeyLifeCycle::Unreferenced, alias, domain.0 as u32, namespace, key_type],
2128             )
2129             .context(ks_err!("Failed to rebind existing entry."))?;
2130         let result = tx
2131             .execute(
2132                 "UPDATE persistent.keyentry
2133                     SET alias = ?, state = ?
2134                     WHERE id = ? AND domain = ? AND namespace = ? AND state = ? AND key_type = ?;",
2135                 params![
2136                     alias,
2137                     KeyLifeCycle::Live,
2138                     newid.0,
2139                     domain.0 as u32,
2140                     *namespace,
2141                     KeyLifeCycle::Existing,
2142                     key_type,
2143                 ],
2144             )
2145             .context(ks_err!("Failed to set alias."))?;
2146         if result != 1 {
2147             return Err(KsError::sys()).context(ks_err!(
2148                 "Expected to update a single entry but instead updated {}.",
2149                 result
2150             ));
2151         }
2152         Ok(updated != 0)
2153     }
2154 
2155     /// Moves the key given by KeyIdGuard to the new location at `destination`. If the destination
2156     /// is already occupied by a key, this function fails with `ResponseCode::INVALID_ARGUMENT`.
migrate_key_namespace( &mut self, key_id_guard: KeyIdGuard, destination: &KeyDescriptor, caller_uid: u32, check_permission: impl Fn(&KeyDescriptor) -> Result<()>, ) -> Result<()>2157     pub fn migrate_key_namespace(
2158         &mut self,
2159         key_id_guard: KeyIdGuard,
2160         destination: &KeyDescriptor,
2161         caller_uid: u32,
2162         check_permission: impl Fn(&KeyDescriptor) -> Result<()>,
2163     ) -> Result<()> {
2164         let _wp = wd::watch_millis("KeystoreDB::migrate_key_namespace", 500);
2165 
2166         let destination = match destination.domain {
2167             Domain::APP => KeyDescriptor { nspace: caller_uid as i64, ..(*destination).clone() },
2168             Domain::SELINUX => (*destination).clone(),
2169             domain => {
2170                 return Err(KsError::Rc(ResponseCode::INVALID_ARGUMENT))
2171                     .context(format!("Domain {:?} must be either APP or SELINUX.", domain));
2172             }
2173         };
2174 
2175         // Security critical: Must return immediately on failure. Do not remove the '?';
2176         check_permission(&destination).context(ks_err!("Trying to check permission."))?;
2177 
2178         let alias = destination
2179             .alias
2180             .as_ref()
2181             .ok_or(KsError::Rc(ResponseCode::INVALID_ARGUMENT))
2182             .context(ks_err!("Alias must be specified."))?;
2183 
2184         self.with_transaction(TransactionBehavior::Immediate, |tx| {
2185             // Query the destination location. If there is a key, the migration request fails.
2186             if tx
2187                 .query_row(
2188                     "SELECT id FROM persistent.keyentry
2189                      WHERE alias = ? AND domain = ? AND namespace = ?;",
2190                     params![alias, destination.domain.0, destination.nspace],
2191                     |_| Ok(()),
2192                 )
2193                 .optional()
2194                 .context("Failed to query destination.")?
2195                 .is_some()
2196             {
2197                 return Err(KsError::Rc(ResponseCode::INVALID_ARGUMENT))
2198                     .context("Target already exists.");
2199             }
2200 
2201             let updated = tx
2202                 .execute(
2203                     "UPDATE persistent.keyentry
2204                  SET alias = ?, domain = ?, namespace = ?
2205                  WHERE id = ?;",
2206                     params![alias, destination.domain.0, destination.nspace, key_id_guard.id()],
2207                 )
2208                 .context("Failed to update key entry.")?;
2209 
2210             if updated != 1 {
2211                 return Err(KsError::sys())
2212                     .context(format!("Update succeeded, but {} rows were updated.", updated));
2213             }
2214             Ok(()).no_gc()
2215         })
2216         .context(ks_err!())
2217     }
2218 
2219     /// Store a new key in a single transaction.
2220     /// The function creates a new key entry, populates the blob, key parameter, and metadata
2221     /// fields, and rebinds the given alias to the new key.
2222     /// The boolean returned is a hint for the garbage collector. If true, a key was replaced,
2223     /// is now unreferenced and needs to be collected.
2224     #[allow(clippy::too_many_arguments)]
store_new_key( &mut self, key: &KeyDescriptor, key_type: KeyType, params: &[KeyParameter], blob_info: &BlobInfo, cert_info: &CertificateInfo, metadata: &KeyMetaData, km_uuid: &Uuid, ) -> Result<KeyIdGuard>2225     pub fn store_new_key(
2226         &mut self,
2227         key: &KeyDescriptor,
2228         key_type: KeyType,
2229         params: &[KeyParameter],
2230         blob_info: &BlobInfo,
2231         cert_info: &CertificateInfo,
2232         metadata: &KeyMetaData,
2233         km_uuid: &Uuid,
2234     ) -> Result<KeyIdGuard> {
2235         let _wp = wd::watch_millis("KeystoreDB::store_new_key", 500);
2236 
2237         let (alias, domain, namespace) = match key {
2238             KeyDescriptor { alias: Some(alias), domain: Domain::APP, nspace, blob: None }
2239             | KeyDescriptor { alias: Some(alias), domain: Domain::SELINUX, nspace, blob: None } => {
2240                 (alias, key.domain, nspace)
2241             }
2242             _ => {
2243                 return Err(KsError::Rc(ResponseCode::INVALID_ARGUMENT))
2244                     .context(ks_err!("Need alias and domain must be APP or SELINUX."));
2245             }
2246         };
2247         self.with_transaction(TransactionBehavior::Immediate, |tx| {
2248             let key_id = Self::create_key_entry_internal(tx, &domain, namespace, key_type, km_uuid)
2249                 .context("Trying to create new key entry.")?;
2250             let BlobInfo { blob, metadata: blob_metadata, superseded_blob } = *blob_info;
2251 
2252             // In some occasions the key blob is already upgraded during the import.
2253             // In order to make sure it gets properly deleted it is inserted into the
2254             // database here and then immediately replaced by the superseding blob.
2255             // The garbage collector will then subject the blob to deleteKey of the
2256             // KM back end to permanently invalidate the key.
2257             let need_gc = if let Some((blob, blob_metadata)) = superseded_blob {
2258                 Self::set_blob_internal(
2259                     tx,
2260                     key_id.id(),
2261                     SubComponentType::KEY_BLOB,
2262                     Some(blob),
2263                     Some(blob_metadata),
2264                 )
2265                 .context("Trying to insert superseded key blob.")?;
2266                 true
2267             } else {
2268                 false
2269             };
2270 
2271             Self::set_blob_internal(
2272                 tx,
2273                 key_id.id(),
2274                 SubComponentType::KEY_BLOB,
2275                 Some(blob),
2276                 Some(blob_metadata),
2277             )
2278             .context("Trying to insert the key blob.")?;
2279             if let Some(cert) = &cert_info.cert {
2280                 Self::set_blob_internal(tx, key_id.id(), SubComponentType::CERT, Some(cert), None)
2281                     .context("Trying to insert the certificate.")?;
2282             }
2283             if let Some(cert_chain) = &cert_info.cert_chain {
2284                 Self::set_blob_internal(
2285                     tx,
2286                     key_id.id(),
2287                     SubComponentType::CERT_CHAIN,
2288                     Some(cert_chain),
2289                     None,
2290                 )
2291                 .context("Trying to insert the certificate chain.")?;
2292             }
2293             Self::insert_keyparameter_internal(tx, &key_id, params)
2294                 .context("Trying to insert key parameters.")?;
2295             metadata.store_in_db(key_id.id(), tx).context("Trying to insert key metadata.")?;
2296             let need_gc = Self::rebind_alias(tx, &key_id, alias, &domain, namespace, key_type)
2297                 .context("Trying to rebind alias.")?
2298                 || need_gc;
2299             Ok(key_id).do_gc(need_gc)
2300         })
2301         .context(ks_err!())
2302     }
2303 
2304     /// Store a new certificate
2305     /// The function creates a new key entry, populates the blob field and metadata, and rebinds
2306     /// the given alias to the new cert.
store_new_certificate( &mut self, key: &KeyDescriptor, key_type: KeyType, cert: &[u8], km_uuid: &Uuid, ) -> Result<KeyIdGuard>2307     pub fn store_new_certificate(
2308         &mut self,
2309         key: &KeyDescriptor,
2310         key_type: KeyType,
2311         cert: &[u8],
2312         km_uuid: &Uuid,
2313     ) -> Result<KeyIdGuard> {
2314         let _wp = wd::watch_millis("KeystoreDB::store_new_certificate", 500);
2315 
2316         let (alias, domain, namespace) = match key {
2317             KeyDescriptor { alias: Some(alias), domain: Domain::APP, nspace, blob: None }
2318             | KeyDescriptor { alias: Some(alias), domain: Domain::SELINUX, nspace, blob: None } => {
2319                 (alias, key.domain, nspace)
2320             }
2321             _ => {
2322                 return Err(KsError::Rc(ResponseCode::INVALID_ARGUMENT))
2323                     .context(ks_err!("Need alias and domain must be APP or SELINUX."));
2324             }
2325         };
2326         self.with_transaction(TransactionBehavior::Immediate, |tx| {
2327             let key_id = Self::create_key_entry_internal(tx, &domain, namespace, key_type, km_uuid)
2328                 .context("Trying to create new key entry.")?;
2329 
2330             Self::set_blob_internal(
2331                 tx,
2332                 key_id.id(),
2333                 SubComponentType::CERT_CHAIN,
2334                 Some(cert),
2335                 None,
2336             )
2337             .context("Trying to insert certificate.")?;
2338 
2339             let mut metadata = KeyMetaData::new();
2340             metadata.add(KeyMetaEntry::CreationDate(
2341                 DateTime::now().context("Trying to make creation time.")?,
2342             ));
2343 
2344             metadata.store_in_db(key_id.id(), tx).context("Trying to insert key metadata.")?;
2345 
2346             let need_gc = Self::rebind_alias(tx, &key_id, alias, &domain, namespace, key_type)
2347                 .context("Trying to rebind alias.")?;
2348             Ok(key_id).do_gc(need_gc)
2349         })
2350         .context(ks_err!())
2351     }
2352 
2353     // Helper function loading the key_id given the key descriptor
2354     // tuple comprising domain, namespace, and alias.
2355     // Requires a valid transaction.
load_key_entry_id(tx: &Transaction, key: &KeyDescriptor, key_type: KeyType) -> Result<i64>2356     fn load_key_entry_id(tx: &Transaction, key: &KeyDescriptor, key_type: KeyType) -> Result<i64> {
2357         let alias = key
2358             .alias
2359             .as_ref()
2360             .map_or_else(|| Err(KsError::sys()), Ok)
2361             .context("In load_key_entry_id: Alias must be specified.")?;
2362         let mut stmt = tx
2363             .prepare(
2364                 "SELECT id FROM persistent.keyentry
2365                     WHERE
2366                     key_type = ?
2367                     AND domain = ?
2368                     AND namespace = ?
2369                     AND alias = ?
2370                     AND state = ?;",
2371             )
2372             .context("In load_key_entry_id: Failed to select from keyentry table.")?;
2373         let mut rows = stmt
2374             .query(params![key_type, key.domain.0 as u32, key.nspace, alias, KeyLifeCycle::Live])
2375             .context("In load_key_entry_id: Failed to read from keyentry table.")?;
2376         db_utils::with_rows_extract_one(&mut rows, |row| {
2377             row.map_or_else(|| Err(KsError::Rc(ResponseCode::KEY_NOT_FOUND)), Ok)?
2378                 .get(0)
2379                 .context("Failed to unpack id.")
2380         })
2381         .context(ks_err!())
2382     }
2383 
2384     /// This helper function completes the access tuple of a key, which is required
2385     /// to perform access control. The strategy depends on the `domain` field in the
2386     /// key descriptor.
2387     /// * Domain::SELINUX: The access tuple is complete and this function only loads
2388     ///       the key_id for further processing.
2389     /// * Domain::APP: Like Domain::SELINUX, but the tuple is completed by `caller_uid`
2390     ///       which serves as the namespace.
2391     /// * Domain::GRANT: The grant table is queried for the `key_id` and the
2392     ///       `access_vector`.
2393     /// * Domain::KEY_ID: The keyentry table is queried for the owning `domain` and
2394     ///       `namespace`.
2395     /// In each case the information returned is sufficient to perform the access
2396     /// check and the key id can be used to load further key artifacts.
load_access_tuple( tx: &Transaction, key: &KeyDescriptor, key_type: KeyType, caller_uid: u32, ) -> Result<(i64, KeyDescriptor, Option<KeyPermSet>)>2397     fn load_access_tuple(
2398         tx: &Transaction,
2399         key: &KeyDescriptor,
2400         key_type: KeyType,
2401         caller_uid: u32,
2402     ) -> Result<(i64, KeyDescriptor, Option<KeyPermSet>)> {
2403         match key.domain {
2404             // Domain App or SELinux. In this case we load the key_id from
2405             // the keyentry database for further loading of key components.
2406             // We already have the full access tuple to perform access control.
2407             // The only distinction is that we use the caller_uid instead
2408             // of the caller supplied namespace if the domain field is
2409             // Domain::APP.
2410             Domain::APP | Domain::SELINUX => {
2411                 let mut access_key = key.clone();
2412                 if access_key.domain == Domain::APP {
2413                     access_key.nspace = caller_uid as i64;
2414                 }
2415                 let key_id = Self::load_key_entry_id(tx, &access_key, key_type)
2416                     .with_context(|| format!("With key.domain = {:?}.", access_key.domain))?;
2417 
2418                 Ok((key_id, access_key, None))
2419             }
2420 
2421             // Domain::GRANT. In this case we load the key_id and the access_vector
2422             // from the grant table.
2423             Domain::GRANT => {
2424                 let mut stmt = tx
2425                     .prepare(
2426                         "SELECT keyentryid, access_vector FROM persistent.grant
2427                             WHERE grantee = ? AND id = ? AND
2428                             (SELECT state FROM persistent.keyentry WHERE id = keyentryid) = ?;",
2429                     )
2430                     .context("Domain::GRANT prepare statement failed")?;
2431                 let mut rows = stmt
2432                     .query(params![caller_uid as i64, key.nspace, KeyLifeCycle::Live])
2433                     .context("Domain:Grant: query failed.")?;
2434                 let (key_id, access_vector): (i64, i32) =
2435                     db_utils::with_rows_extract_one(&mut rows, |row| {
2436                         let r =
2437                             row.map_or_else(|| Err(KsError::Rc(ResponseCode::KEY_NOT_FOUND)), Ok)?;
2438                         Ok((
2439                             r.get(0).context("Failed to unpack key_id.")?,
2440                             r.get(1).context("Failed to unpack access_vector.")?,
2441                         ))
2442                     })
2443                     .context("Domain::GRANT.")?;
2444                 Ok((key_id, key.clone(), Some(access_vector.into())))
2445             }
2446 
2447             // Domain::KEY_ID. In this case we load the domain and namespace from the
2448             // keyentry database because we need them for access control.
2449             Domain::KEY_ID => {
2450                 let (domain, namespace): (Domain, i64) = {
2451                     let mut stmt = tx
2452                         .prepare(
2453                             "SELECT domain, namespace FROM persistent.keyentry
2454                                 WHERE
2455                                 id = ?
2456                                 AND state = ?;",
2457                         )
2458                         .context("Domain::KEY_ID: prepare statement failed")?;
2459                     let mut rows = stmt
2460                         .query(params![key.nspace, KeyLifeCycle::Live])
2461                         .context("Domain::KEY_ID: query failed.")?;
2462                     db_utils::with_rows_extract_one(&mut rows, |row| {
2463                         let r =
2464                             row.map_or_else(|| Err(KsError::Rc(ResponseCode::KEY_NOT_FOUND)), Ok)?;
2465                         Ok((
2466                             Domain(r.get(0).context("Failed to unpack domain.")?),
2467                             r.get(1).context("Failed to unpack namespace.")?,
2468                         ))
2469                     })
2470                     .context("Domain::KEY_ID.")?
2471                 };
2472 
2473                 // We may use a key by id after loading it by grant.
2474                 // In this case we have to check if the caller has a grant for this particular
2475                 // key. We can skip this if we already know that the caller is the owner.
2476                 // But we cannot know this if domain is anything but App. E.g. in the case
2477                 // of Domain::SELINUX we have to speculatively check for grants because we have to
2478                 // consult the SEPolicy before we know if the caller is the owner.
2479                 let access_vector: Option<KeyPermSet> =
2480                     if domain != Domain::APP || namespace != caller_uid as i64 {
2481                         let access_vector: Option<i32> = tx
2482                             .query_row(
2483                                 "SELECT access_vector FROM persistent.grant
2484                                 WHERE grantee = ? AND keyentryid = ?;",
2485                                 params![caller_uid as i64, key.nspace],
2486                                 |row| row.get(0),
2487                             )
2488                             .optional()
2489                             .context("Domain::KEY_ID: query grant failed.")?;
2490                         access_vector.map(|p| p.into())
2491                     } else {
2492                         None
2493                     };
2494 
2495                 let key_id = key.nspace;
2496                 let mut access_key: KeyDescriptor = key.clone();
2497                 access_key.domain = domain;
2498                 access_key.nspace = namespace;
2499 
2500                 Ok((key_id, access_key, access_vector))
2501             }
2502             _ => Err(anyhow!(KsError::Rc(ResponseCode::INVALID_ARGUMENT))),
2503         }
2504     }
2505 
load_blob_components( key_id: i64, load_bits: KeyEntryLoadBits, tx: &Transaction, ) -> Result<(bool, Option<(Vec<u8>, BlobMetaData)>, Option<Vec<u8>>, Option<Vec<u8>>)>2506     fn load_blob_components(
2507         key_id: i64,
2508         load_bits: KeyEntryLoadBits,
2509         tx: &Transaction,
2510     ) -> Result<(bool, Option<(Vec<u8>, BlobMetaData)>, Option<Vec<u8>>, Option<Vec<u8>>)> {
2511         let mut stmt = tx
2512             .prepare(
2513                 "SELECT MAX(id), subcomponent_type, blob FROM persistent.blobentry
2514                     WHERE keyentryid = ? GROUP BY subcomponent_type;",
2515             )
2516             .context(ks_err!("prepare statement failed."))?;
2517 
2518         let mut rows = stmt.query(params![key_id]).context(ks_err!("query failed."))?;
2519 
2520         let mut key_blob: Option<(i64, Vec<u8>)> = None;
2521         let mut cert_blob: Option<Vec<u8>> = None;
2522         let mut cert_chain_blob: Option<Vec<u8>> = None;
2523         let mut has_km_blob: bool = false;
2524         db_utils::with_rows_extract_all(&mut rows, |row| {
2525             let sub_type: SubComponentType =
2526                 row.get(1).context("Failed to extract subcomponent_type.")?;
2527             has_km_blob = has_km_blob || sub_type == SubComponentType::KEY_BLOB;
2528             match (sub_type, load_bits.load_public(), load_bits.load_km()) {
2529                 (SubComponentType::KEY_BLOB, _, true) => {
2530                     key_blob = Some((
2531                         row.get(0).context("Failed to extract key blob id.")?,
2532                         row.get(2).context("Failed to extract key blob.")?,
2533                     ));
2534                 }
2535                 (SubComponentType::CERT, true, _) => {
2536                     cert_blob =
2537                         Some(row.get(2).context("Failed to extract public certificate blob.")?);
2538                 }
2539                 (SubComponentType::CERT_CHAIN, true, _) => {
2540                     cert_chain_blob =
2541                         Some(row.get(2).context("Failed to extract certificate chain blob.")?);
2542                 }
2543                 (SubComponentType::CERT, _, _)
2544                 | (SubComponentType::CERT_CHAIN, _, _)
2545                 | (SubComponentType::KEY_BLOB, _, _) => {}
2546                 _ => Err(KsError::sys()).context("Unknown subcomponent type.")?,
2547             }
2548             Ok(())
2549         })
2550         .context(ks_err!())?;
2551 
2552         let blob_info = key_blob.map_or::<Result<_>, _>(Ok(None), |(blob_id, blob)| {
2553             Ok(Some((
2554                 blob,
2555                 BlobMetaData::load_from_db(blob_id, tx)
2556                     .context(ks_err!("Trying to load blob_metadata."))?,
2557             )))
2558         })?;
2559 
2560         Ok((has_km_blob, blob_info, cert_blob, cert_chain_blob))
2561     }
2562 
load_key_parameters(key_id: i64, tx: &Transaction) -> Result<Vec<KeyParameter>>2563     fn load_key_parameters(key_id: i64, tx: &Transaction) -> Result<Vec<KeyParameter>> {
2564         let mut stmt = tx
2565             .prepare(
2566                 "SELECT tag, data, security_level from persistent.keyparameter
2567                     WHERE keyentryid = ?;",
2568             )
2569             .context("In load_key_parameters: prepare statement failed.")?;
2570 
2571         let mut parameters: Vec<KeyParameter> = Vec::new();
2572 
2573         let mut rows =
2574             stmt.query(params![key_id]).context("In load_key_parameters: query failed.")?;
2575         db_utils::with_rows_extract_all(&mut rows, |row| {
2576             let tag = Tag(row.get(0).context("Failed to read tag.")?);
2577             let sec_level = SecurityLevel(row.get(2).context("Failed to read sec_level.")?);
2578             parameters.push(
2579                 KeyParameter::new_from_sql(tag, &SqlField::new(1, row), sec_level)
2580                     .context("Failed to read KeyParameter.")?,
2581             );
2582             Ok(())
2583         })
2584         .context(ks_err!())?;
2585 
2586         Ok(parameters)
2587     }
2588 
2589     /// Decrements the usage count of a limited use key. This function first checks whether the
2590     /// usage has been exhausted, if not, decreases the usage count. If the usage count reaches
2591     /// zero, the key also gets marked unreferenced and scheduled for deletion.
2592     /// Returns Ok(true) if the key was marked unreferenced as a hint to the garbage collector.
check_and_update_key_usage_count(&mut self, key_id: i64) -> Result<()>2593     pub fn check_and_update_key_usage_count(&mut self, key_id: i64) -> Result<()> {
2594         let _wp = wd::watch_millis("KeystoreDB::check_and_update_key_usage_count", 500);
2595 
2596         self.with_transaction(TransactionBehavior::Immediate, |tx| {
2597             let limit: Option<i32> = tx
2598                 .query_row(
2599                     "SELECT data FROM persistent.keyparameter WHERE keyentryid = ? AND tag = ?;",
2600                     params![key_id, Tag::USAGE_COUNT_LIMIT.0],
2601                     |row| row.get(0),
2602                 )
2603                 .optional()
2604                 .context("Trying to load usage count")?;
2605 
2606             let limit = limit
2607                 .ok_or(KsError::Km(ErrorCode::INVALID_KEY_BLOB))
2608                 .context("The Key no longer exists. Key is exhausted.")?;
2609 
2610             tx.execute(
2611                 "UPDATE persistent.keyparameter
2612                  SET data = data - 1
2613                  WHERE keyentryid = ? AND tag = ? AND data > 0;",
2614                 params![key_id, Tag::USAGE_COUNT_LIMIT.0],
2615             )
2616             .context("Failed to update key usage count.")?;
2617 
2618             match limit {
2619                 1 => Self::mark_unreferenced(tx, key_id)
2620                     .map(|need_gc| (need_gc, ()))
2621                     .context("Trying to mark limited use key for deletion."),
2622                 0 => Err(KsError::Km(ErrorCode::INVALID_KEY_BLOB)).context("Key is exhausted."),
2623                 _ => Ok(()).no_gc(),
2624             }
2625         })
2626         .context(ks_err!())
2627     }
2628 
2629     /// Load a key entry by the given key descriptor.
2630     /// It uses the `check_permission` callback to verify if the access is allowed
2631     /// given the key access tuple read from the database using `load_access_tuple`.
2632     /// With `load_bits` the caller may specify which blobs shall be loaded from
2633     /// the blob database.
load_key_entry( &mut self, key: &KeyDescriptor, key_type: KeyType, load_bits: KeyEntryLoadBits, caller_uid: u32, check_permission: impl Fn(&KeyDescriptor, Option<KeyPermSet>) -> Result<()>, ) -> Result<(KeyIdGuard, KeyEntry)>2634     pub fn load_key_entry(
2635         &mut self,
2636         key: &KeyDescriptor,
2637         key_type: KeyType,
2638         load_bits: KeyEntryLoadBits,
2639         caller_uid: u32,
2640         check_permission: impl Fn(&KeyDescriptor, Option<KeyPermSet>) -> Result<()>,
2641     ) -> Result<(KeyIdGuard, KeyEntry)> {
2642         let _wp = wd::watch_millis("KeystoreDB::load_key_entry", 500);
2643 
2644         loop {
2645             match self.load_key_entry_internal(
2646                 key,
2647                 key_type,
2648                 load_bits,
2649                 caller_uid,
2650                 &check_permission,
2651             ) {
2652                 Ok(result) => break Ok(result),
2653                 Err(e) => {
2654                     if Self::is_locked_error(&e) {
2655                         std::thread::sleep(std::time::Duration::from_micros(500));
2656                         continue;
2657                     } else {
2658                         return Err(e).context(ks_err!());
2659                     }
2660                 }
2661             }
2662         }
2663     }
2664 
load_key_entry_internal( &mut self, key: &KeyDescriptor, key_type: KeyType, load_bits: KeyEntryLoadBits, caller_uid: u32, check_permission: &impl Fn(&KeyDescriptor, Option<KeyPermSet>) -> Result<()>, ) -> Result<(KeyIdGuard, KeyEntry)>2665     fn load_key_entry_internal(
2666         &mut self,
2667         key: &KeyDescriptor,
2668         key_type: KeyType,
2669         load_bits: KeyEntryLoadBits,
2670         caller_uid: u32,
2671         check_permission: &impl Fn(&KeyDescriptor, Option<KeyPermSet>) -> Result<()>,
2672     ) -> Result<(KeyIdGuard, KeyEntry)> {
2673         // KEY ID LOCK 1/2
2674         // If we got a key descriptor with a key id we can get the lock right away.
2675         // Otherwise we have to defer it until we know the key id.
2676         let key_id_guard = match key.domain {
2677             Domain::KEY_ID => Some(KEY_ID_LOCK.get(key.nspace)),
2678             _ => None,
2679         };
2680 
2681         let tx = self
2682             .conn
2683             .unchecked_transaction()
2684             .context(ks_err!("Failed to initialize transaction."))?;
2685 
2686         // Load the key_id and complete the access control tuple.
2687         let (key_id, access_key_descriptor, access_vector) =
2688             Self::load_access_tuple(&tx, key, key_type, caller_uid).context(ks_err!())?;
2689 
2690         // Perform access control. It is vital that we return here if the permission is denied.
2691         // So do not touch that '?' at the end.
2692         check_permission(&access_key_descriptor, access_vector).context(ks_err!())?;
2693 
2694         // KEY ID LOCK 2/2
2695         // If we did not get a key id lock by now, it was because we got a key descriptor
2696         // without a key id. At this point we got the key id, so we can try and get a lock.
2697         // However, we cannot block here, because we are in the middle of the transaction.
2698         // So first we try to get the lock non blocking. If that fails, we roll back the
2699         // transaction and block until we get the lock. After we successfully got the lock,
2700         // we start a new transaction and load the access tuple again.
2701         //
2702         // We don't need to perform access control again, because we already established
2703         // that the caller had access to the given key. But we need to make sure that the
2704         // key id still exists. So we have to load the key entry by key id this time.
2705         let (key_id_guard, tx) = match key_id_guard {
2706             None => match KEY_ID_LOCK.try_get(key_id) {
2707                 None => {
2708                     // Roll back the transaction.
2709                     tx.rollback().context(ks_err!("Failed to roll back transaction."))?;
2710 
2711                     // Block until we have a key id lock.
2712                     let key_id_guard = KEY_ID_LOCK.get(key_id);
2713 
2714                     // Create a new transaction.
2715                     let tx = self
2716                         .conn
2717                         .unchecked_transaction()
2718                         .context(ks_err!("Failed to initialize transaction."))?;
2719 
2720                     Self::load_access_tuple(
2721                         &tx,
2722                         // This time we have to load the key by the retrieved key id, because the
2723                         // alias may have been rebound after we rolled back the transaction.
2724                         &KeyDescriptor {
2725                             domain: Domain::KEY_ID,
2726                             nspace: key_id,
2727                             ..Default::default()
2728                         },
2729                         key_type,
2730                         caller_uid,
2731                     )
2732                     .context(ks_err!("(deferred key lock)"))?;
2733                     (key_id_guard, tx)
2734                 }
2735                 Some(l) => (l, tx),
2736             },
2737             Some(key_id_guard) => (key_id_guard, tx),
2738         };
2739 
2740         let key_entry =
2741             Self::load_key_components(&tx, load_bits, key_id_guard.id()).context(ks_err!())?;
2742 
2743         tx.commit().context(ks_err!("Failed to commit transaction."))?;
2744 
2745         Ok((key_id_guard, key_entry))
2746     }
2747 
mark_unreferenced(tx: &Transaction, key_id: i64) -> Result<bool>2748     fn mark_unreferenced(tx: &Transaction, key_id: i64) -> Result<bool> {
2749         let updated = tx
2750             .execute("DELETE FROM persistent.keyentry WHERE id = ?;", params![key_id])
2751             .context("Trying to delete keyentry.")?;
2752         tx.execute("DELETE FROM persistent.keymetadata WHERE keyentryid = ?;", params![key_id])
2753             .context("Trying to delete keymetadata.")?;
2754         tx.execute("DELETE FROM persistent.keyparameter WHERE keyentryid = ?;", params![key_id])
2755             .context("Trying to delete keyparameters.")?;
2756         tx.execute("DELETE FROM persistent.grant WHERE keyentryid = ?;", params![key_id])
2757             .context("Trying to delete grants.")?;
2758         Ok(updated != 0)
2759     }
2760 
2761     /// Marks the given key as unreferenced and removes all of the grants to this key.
2762     /// Returns Ok(true) if a key was marked unreferenced as a hint for the garbage collector.
unbind_key( &mut self, key: &KeyDescriptor, key_type: KeyType, caller_uid: u32, check_permission: impl Fn(&KeyDescriptor, Option<KeyPermSet>) -> Result<()>, ) -> Result<()>2763     pub fn unbind_key(
2764         &mut self,
2765         key: &KeyDescriptor,
2766         key_type: KeyType,
2767         caller_uid: u32,
2768         check_permission: impl Fn(&KeyDescriptor, Option<KeyPermSet>) -> Result<()>,
2769     ) -> Result<()> {
2770         let _wp = wd::watch_millis("KeystoreDB::unbind_key", 500);
2771 
2772         self.with_transaction(TransactionBehavior::Immediate, |tx| {
2773             let (key_id, access_key_descriptor, access_vector) =
2774                 Self::load_access_tuple(tx, key, key_type, caller_uid)
2775                     .context("Trying to get access tuple.")?;
2776 
2777             // Perform access control. It is vital that we return here if the permission is denied.
2778             // So do not touch that '?' at the end.
2779             check_permission(&access_key_descriptor, access_vector)
2780                 .context("While checking permission.")?;
2781 
2782             Self::mark_unreferenced(tx, key_id)
2783                 .map(|need_gc| (need_gc, ()))
2784                 .context("Trying to mark the key unreferenced.")
2785         })
2786         .context(ks_err!())
2787     }
2788 
get_key_km_uuid(tx: &Transaction, key_id: i64) -> Result<Uuid>2789     fn get_key_km_uuid(tx: &Transaction, key_id: i64) -> Result<Uuid> {
2790         tx.query_row(
2791             "SELECT km_uuid FROM persistent.keyentry WHERE id = ?",
2792             params![key_id],
2793             |row| row.get(0),
2794         )
2795         .context(ks_err!())
2796     }
2797 
2798     /// Delete all artifacts belonging to the namespace given by the domain-namespace tuple.
2799     /// This leaves all of the blob entries orphaned for subsequent garbage collection.
unbind_keys_for_namespace(&mut self, domain: Domain, namespace: i64) -> Result<()>2800     pub fn unbind_keys_for_namespace(&mut self, domain: Domain, namespace: i64) -> Result<()> {
2801         let _wp = wd::watch_millis("KeystoreDB::unbind_keys_for_namespace", 500);
2802 
2803         if !(domain == Domain::APP || domain == Domain::SELINUX) {
2804             return Err(KsError::Rc(ResponseCode::INVALID_ARGUMENT)).context(ks_err!());
2805         }
2806         self.with_transaction(TransactionBehavior::Immediate, |tx| {
2807             tx.execute(
2808                 "DELETE FROM persistent.keymetadata
2809                 WHERE keyentryid IN (
2810                     SELECT id FROM persistent.keyentry
2811                     WHERE domain = ? AND namespace = ? AND (key_type = ? OR key_type = ?)
2812                 );",
2813                 params![domain.0, namespace, KeyType::Client, KeyType::Attestation],
2814             )
2815             .context("Trying to delete keymetadata.")?;
2816             tx.execute(
2817                 "DELETE FROM persistent.keyparameter
2818                 WHERE keyentryid IN (
2819                     SELECT id FROM persistent.keyentry
2820                     WHERE domain = ? AND namespace = ? AND (key_type = ? OR key_type = ?)
2821                 );",
2822                 params![domain.0, namespace, KeyType::Client, KeyType::Attestation],
2823             )
2824             .context("Trying to delete keyparameters.")?;
2825             tx.execute(
2826                 "DELETE FROM persistent.grant
2827                 WHERE keyentryid IN (
2828                     SELECT id FROM persistent.keyentry
2829                     WHERE domain = ? AND namespace = ? AND (key_type = ? OR key_type = ?)
2830                 );",
2831                 params![domain.0, namespace, KeyType::Client, KeyType::Attestation],
2832             )
2833             .context("Trying to delete grants.")?;
2834             tx.execute(
2835                 "DELETE FROM persistent.keyentry
2836                  WHERE domain = ? AND namespace = ? AND (key_type = ? OR key_type = ?);",
2837                 params![domain.0, namespace, KeyType::Client, KeyType::Attestation],
2838             )
2839             .context("Trying to delete keyentry.")?;
2840             Ok(()).need_gc()
2841         })
2842         .context(ks_err!())
2843     }
2844 
cleanup_unreferenced(tx: &Transaction) -> Result<()>2845     fn cleanup_unreferenced(tx: &Transaction) -> Result<()> {
2846         let _wp = wd::watch_millis("KeystoreDB::cleanup_unreferenced", 500);
2847         {
2848             tx.execute(
2849                 "DELETE FROM persistent.keymetadata
2850             WHERE keyentryid IN (
2851                 SELECT id FROM persistent.keyentry
2852                 WHERE state = ?
2853             );",
2854                 params![KeyLifeCycle::Unreferenced],
2855             )
2856             .context("Trying to delete keymetadata.")?;
2857             tx.execute(
2858                 "DELETE FROM persistent.keyparameter
2859             WHERE keyentryid IN (
2860                 SELECT id FROM persistent.keyentry
2861                 WHERE state = ?
2862             );",
2863                 params![KeyLifeCycle::Unreferenced],
2864             )
2865             .context("Trying to delete keyparameters.")?;
2866             tx.execute(
2867                 "DELETE FROM persistent.grant
2868             WHERE keyentryid IN (
2869                 SELECT id FROM persistent.keyentry
2870                 WHERE state = ?
2871             );",
2872                 params![KeyLifeCycle::Unreferenced],
2873             )
2874             .context("Trying to delete grants.")?;
2875             tx.execute(
2876                 "DELETE FROM persistent.keyentry
2877                 WHERE state = ?;",
2878                 params![KeyLifeCycle::Unreferenced],
2879             )
2880             .context("Trying to delete keyentry.")?;
2881             Result::<()>::Ok(())
2882         }
2883         .context(ks_err!())
2884     }
2885 
2886     /// Delete the keys created on behalf of the user, denoted by the user id.
2887     /// Delete all the keys unless 'keep_non_super_encrypted_keys' set to true.
2888     /// Returned boolean is to hint the garbage collector to delete the unbound keys.
2889     /// The caller of this function should notify the gc if the returned value is true.
unbind_keys_for_user( &mut self, user_id: u32, keep_non_super_encrypted_keys: bool, ) -> Result<()>2890     pub fn unbind_keys_for_user(
2891         &mut self,
2892         user_id: u32,
2893         keep_non_super_encrypted_keys: bool,
2894     ) -> Result<()> {
2895         let _wp = wd::watch_millis("KeystoreDB::unbind_keys_for_user", 500);
2896 
2897         self.with_transaction(TransactionBehavior::Immediate, |tx| {
2898             let mut stmt = tx
2899                 .prepare(&format!(
2900                     "SELECT id from persistent.keyentry
2901                      WHERE (
2902                          key_type = ?
2903                          AND domain = ?
2904                          AND cast ( (namespace/{aid_user_offset}) as int) = ?
2905                          AND state = ?
2906                      ) OR (
2907                          key_type = ?
2908                          AND namespace = ?
2909                          AND state = ?
2910                      );",
2911                     aid_user_offset = AID_USER_OFFSET
2912                 ))
2913                 .context(concat!(
2914                     "In unbind_keys_for_user. ",
2915                     "Failed to prepare the query to find the keys created by apps."
2916                 ))?;
2917 
2918             let mut rows = stmt
2919                 .query(params![
2920                     // WHERE client key:
2921                     KeyType::Client,
2922                     Domain::APP.0 as u32,
2923                     user_id,
2924                     KeyLifeCycle::Live,
2925                     // OR super key:
2926                     KeyType::Super,
2927                     user_id,
2928                     KeyLifeCycle::Live
2929                 ])
2930                 .context(ks_err!("Failed to query the keys created by apps."))?;
2931 
2932             let mut key_ids: Vec<i64> = Vec::new();
2933             db_utils::with_rows_extract_all(&mut rows, |row| {
2934                 key_ids
2935                     .push(row.get(0).context("Failed to read key id of a key created by an app.")?);
2936                 Ok(())
2937             })
2938             .context(ks_err!())?;
2939 
2940             let mut notify_gc = false;
2941             for key_id in key_ids {
2942                 if keep_non_super_encrypted_keys {
2943                     // Load metadata and filter out non-super-encrypted keys.
2944                     if let (_, Some((_, blob_metadata)), _, _) =
2945                         Self::load_blob_components(key_id, KeyEntryLoadBits::KM, tx)
2946                             .context(ks_err!("Trying to load blob info."))?
2947                     {
2948                         if blob_metadata.encrypted_by().is_none() {
2949                             continue;
2950                         }
2951                     }
2952                 }
2953                 notify_gc = Self::mark_unreferenced(tx, key_id)
2954                     .context("In unbind_keys_for_user.")?
2955                     || notify_gc;
2956             }
2957             Ok(()).do_gc(notify_gc)
2958         })
2959         .context(ks_err!())
2960     }
2961 
load_key_components( tx: &Transaction, load_bits: KeyEntryLoadBits, key_id: i64, ) -> Result<KeyEntry>2962     fn load_key_components(
2963         tx: &Transaction,
2964         load_bits: KeyEntryLoadBits,
2965         key_id: i64,
2966     ) -> Result<KeyEntry> {
2967         let metadata = KeyMetaData::load_from_db(key_id, tx).context("In load_key_components.")?;
2968 
2969         let (has_km_blob, key_blob_info, cert_blob, cert_chain_blob) =
2970             Self::load_blob_components(key_id, load_bits, tx).context("In load_key_components.")?;
2971 
2972         let parameters = Self::load_key_parameters(key_id, tx)
2973             .context("In load_key_components: Trying to load key parameters.")?;
2974 
2975         let km_uuid = Self::get_key_km_uuid(tx, key_id)
2976             .context("In load_key_components: Trying to get KM uuid.")?;
2977 
2978         Ok(KeyEntry {
2979             id: key_id,
2980             key_blob_info,
2981             cert: cert_blob,
2982             cert_chain: cert_chain_blob,
2983             km_uuid,
2984             parameters,
2985             metadata,
2986             pure_cert: !has_km_blob,
2987         })
2988     }
2989 
2990     /// Returns a list of KeyDescriptors in the selected domain/namespace whose
2991     /// aliases are greater than the specified 'start_past_alias'. If no value
2992     /// is provided, returns all KeyDescriptors.
2993     /// The key descriptors will have the domain, nspace, and alias field set.
2994     /// The returned list will be sorted by alias.
2995     /// Domain must be APP or SELINUX, the caller must make sure of that.
list_past_alias( &mut self, domain: Domain, namespace: i64, key_type: KeyType, start_past_alias: Option<&str>, ) -> Result<Vec<KeyDescriptor>>2996     pub fn list_past_alias(
2997         &mut self,
2998         domain: Domain,
2999         namespace: i64,
3000         key_type: KeyType,
3001         start_past_alias: Option<&str>,
3002     ) -> Result<Vec<KeyDescriptor>> {
3003         let _wp = wd::watch_millis("KeystoreDB::list_past_alias", 500);
3004 
3005         let query = format!(
3006             "SELECT DISTINCT alias FROM persistent.keyentry
3007                      WHERE domain = ?
3008                      AND namespace = ?
3009                      AND alias IS NOT NULL
3010                      AND state = ?
3011                      AND key_type = ?
3012                      {}
3013                      ORDER BY alias ASC;",
3014             if start_past_alias.is_some() { " AND alias > ?" } else { "" }
3015         );
3016 
3017         self.with_transaction(TransactionBehavior::Deferred, |tx| {
3018             let mut stmt = tx.prepare(&query).context(ks_err!("Failed to prepare."))?;
3019 
3020             let mut rows = match start_past_alias {
3021                 Some(past_alias) => stmt
3022                     .query(params![
3023                         domain.0 as u32,
3024                         namespace,
3025                         KeyLifeCycle::Live,
3026                         key_type,
3027                         past_alias
3028                     ])
3029                     .context(ks_err!("Failed to query."))?,
3030                 None => stmt
3031                     .query(params![domain.0 as u32, namespace, KeyLifeCycle::Live, key_type,])
3032                     .context(ks_err!("Failed to query."))?,
3033             };
3034 
3035             let mut descriptors: Vec<KeyDescriptor> = Vec::new();
3036             db_utils::with_rows_extract_all(&mut rows, |row| {
3037                 descriptors.push(KeyDescriptor {
3038                     domain,
3039                     nspace: namespace,
3040                     alias: Some(row.get(0).context("Trying to extract alias.")?),
3041                     blob: None,
3042                 });
3043                 Ok(())
3044             })
3045             .context(ks_err!("Failed to extract rows."))?;
3046             Ok(descriptors).no_gc()
3047         })
3048     }
3049 
3050     /// Returns a number of KeyDescriptors in the selected domain/namespace.
3051     /// Domain must be APP or SELINUX, the caller must make sure of that.
count_keys( &mut self, domain: Domain, namespace: i64, key_type: KeyType, ) -> Result<usize>3052     pub fn count_keys(
3053         &mut self,
3054         domain: Domain,
3055         namespace: i64,
3056         key_type: KeyType,
3057     ) -> Result<usize> {
3058         let _wp = wd::watch_millis("KeystoreDB::countKeys", 500);
3059 
3060         let num_keys = self.with_transaction(TransactionBehavior::Deferred, |tx| {
3061             tx.query_row(
3062                 "SELECT COUNT(alias) FROM persistent.keyentry
3063                      WHERE domain = ?
3064                      AND namespace = ?
3065                      AND alias IS NOT NULL
3066                      AND state = ?
3067                      AND key_type = ?;",
3068                 params![domain.0 as u32, namespace, KeyLifeCycle::Live, key_type],
3069                 |row| row.get(0),
3070             )
3071             .context(ks_err!("Failed to count number of keys."))
3072             .no_gc()
3073         })?;
3074         Ok(num_keys)
3075     }
3076 
3077     /// Adds a grant to the grant table.
3078     /// Like `load_key_entry` this function loads the access tuple before
3079     /// it uses the callback for a permission check. Upon success,
3080     /// it inserts the `grantee_uid`, `key_id`, and `access_vector` into the
3081     /// grant table. The new row will have a randomized id, which is used as
3082     /// grant id in the namespace field of the resulting KeyDescriptor.
grant( &mut self, key: &KeyDescriptor, caller_uid: u32, grantee_uid: u32, access_vector: KeyPermSet, check_permission: impl Fn(&KeyDescriptor, &KeyPermSet) -> Result<()>, ) -> Result<KeyDescriptor>3083     pub fn grant(
3084         &mut self,
3085         key: &KeyDescriptor,
3086         caller_uid: u32,
3087         grantee_uid: u32,
3088         access_vector: KeyPermSet,
3089         check_permission: impl Fn(&KeyDescriptor, &KeyPermSet) -> Result<()>,
3090     ) -> Result<KeyDescriptor> {
3091         let _wp = wd::watch_millis("KeystoreDB::grant", 500);
3092 
3093         self.with_transaction(TransactionBehavior::Immediate, |tx| {
3094             // Load the key_id and complete the access control tuple.
3095             // We ignore the access vector here because grants cannot be granted.
3096             // The access vector returned here expresses the permissions the
3097             // grantee has if key.domain == Domain::GRANT. But this vector
3098             // cannot include the grant permission by design, so there is no way the
3099             // subsequent permission check can pass.
3100             // We could check key.domain == Domain::GRANT and fail early.
3101             // But even if we load the access tuple by grant here, the permission
3102             // check denies the attempt to create a grant by grant descriptor.
3103             let (key_id, access_key_descriptor, _) =
3104                 Self::load_access_tuple(tx, key, KeyType::Client, caller_uid).context(ks_err!())?;
3105 
3106             // Perform access control. It is vital that we return here if the permission
3107             // was denied. So do not touch that '?' at the end of the line.
3108             // This permission check checks if the caller has the grant permission
3109             // for the given key and in addition to all of the permissions
3110             // expressed in `access_vector`.
3111             check_permission(&access_key_descriptor, &access_vector)
3112                 .context(ks_err!("check_permission failed"))?;
3113 
3114             let grant_id = if let Some(grant_id) = tx
3115                 .query_row(
3116                     "SELECT id FROM persistent.grant
3117                 WHERE keyentryid = ? AND grantee = ?;",
3118                     params![key_id, grantee_uid],
3119                     |row| row.get(0),
3120                 )
3121                 .optional()
3122                 .context(ks_err!("Failed get optional existing grant id."))?
3123             {
3124                 tx.execute(
3125                     "UPDATE persistent.grant
3126                     SET access_vector = ?
3127                     WHERE id = ?;",
3128                     params![i32::from(access_vector), grant_id],
3129                 )
3130                 .context(ks_err!("Failed to update existing grant."))?;
3131                 grant_id
3132             } else {
3133                 Self::insert_with_retry(|id| {
3134                     tx.execute(
3135                         "INSERT INTO persistent.grant (id, grantee, keyentryid, access_vector)
3136                         VALUES (?, ?, ?, ?);",
3137                         params![id, grantee_uid, key_id, i32::from(access_vector)],
3138                     )
3139                 })
3140                 .context(ks_err!())?
3141             };
3142 
3143             Ok(KeyDescriptor { domain: Domain::GRANT, nspace: grant_id, alias: None, blob: None })
3144                 .no_gc()
3145         })
3146     }
3147 
3148     /// This function checks permissions like `grant` and `load_key_entry`
3149     /// before removing a grant from the grant table.
ungrant( &mut self, key: &KeyDescriptor, caller_uid: u32, grantee_uid: u32, check_permission: impl Fn(&KeyDescriptor) -> Result<()>, ) -> Result<()>3150     pub fn ungrant(
3151         &mut self,
3152         key: &KeyDescriptor,
3153         caller_uid: u32,
3154         grantee_uid: u32,
3155         check_permission: impl Fn(&KeyDescriptor) -> Result<()>,
3156     ) -> Result<()> {
3157         let _wp = wd::watch_millis("KeystoreDB::ungrant", 500);
3158 
3159         self.with_transaction(TransactionBehavior::Immediate, |tx| {
3160             // Load the key_id and complete the access control tuple.
3161             // We ignore the access vector here because grants cannot be granted.
3162             let (key_id, access_key_descriptor, _) =
3163                 Self::load_access_tuple(tx, key, KeyType::Client, caller_uid).context(ks_err!())?;
3164 
3165             // Perform access control. We must return here if the permission
3166             // was denied. So do not touch the '?' at the end of this line.
3167             check_permission(&access_key_descriptor)
3168                 .context(ks_err!("check_permission failed."))?;
3169 
3170             tx.execute(
3171                 "DELETE FROM persistent.grant
3172                 WHERE keyentryid = ? AND grantee = ?;",
3173                 params![key_id, grantee_uid],
3174             )
3175             .context("Failed to delete grant.")?;
3176 
3177             Ok(()).no_gc()
3178         })
3179     }
3180 
3181     // Generates a random id and passes it to the given function, which will
3182     // try to insert it into a database.  If that insertion fails, retry;
3183     // otherwise return the id.
insert_with_retry(inserter: impl Fn(i64) -> rusqlite::Result<usize>) -> Result<i64>3184     fn insert_with_retry(inserter: impl Fn(i64) -> rusqlite::Result<usize>) -> Result<i64> {
3185         loop {
3186             let newid: i64 = match random() {
3187                 Self::UNASSIGNED_KEY_ID => continue, // UNASSIGNED_KEY_ID cannot be assigned.
3188                 i => i,
3189             };
3190             match inserter(newid) {
3191                 // If the id already existed, try again.
3192                 Err(rusqlite::Error::SqliteFailure(
3193                     libsqlite3_sys::Error {
3194                         code: libsqlite3_sys::ErrorCode::ConstraintViolation,
3195                         extended_code: libsqlite3_sys::SQLITE_CONSTRAINT_UNIQUE,
3196                     },
3197                     _,
3198                 )) => (),
3199                 Err(e) => {
3200                     return Err(e).context(ks_err!("failed to insert into database."));
3201                 }
3202                 _ => return Ok(newid),
3203             }
3204         }
3205     }
3206 
3207     /// Insert or replace the auth token based on (user_id, auth_id, auth_type)
insert_auth_token(&mut self, auth_token: &HardwareAuthToken)3208     pub fn insert_auth_token(&mut self, auth_token: &HardwareAuthToken) {
3209         self.perboot.insert_auth_token_entry(AuthTokenEntry::new(
3210             auth_token.clone(),
3211             MonotonicRawTime::now(),
3212         ))
3213     }
3214 
3215     /// Find the newest auth token matching the given predicate.
find_auth_token_entry<F>(&self, p: F) -> Option<(AuthTokenEntry, MonotonicRawTime)> where F: Fn(&AuthTokenEntry) -> bool,3216     pub fn find_auth_token_entry<F>(&self, p: F) -> Option<(AuthTokenEntry, MonotonicRawTime)>
3217     where
3218         F: Fn(&AuthTokenEntry) -> bool,
3219     {
3220         self.perboot.find_auth_token_entry(p).map(|entry| (entry, self.get_last_off_body()))
3221     }
3222 
3223     /// Insert last_off_body into the metadata table at the initialization of auth token table
insert_last_off_body(&self, last_off_body: MonotonicRawTime)3224     pub fn insert_last_off_body(&self, last_off_body: MonotonicRawTime) {
3225         self.perboot.set_last_off_body(last_off_body)
3226     }
3227 
3228     /// Update last_off_body when on_device_off_body is called
update_last_off_body(&self, last_off_body: MonotonicRawTime)3229     pub fn update_last_off_body(&self, last_off_body: MonotonicRawTime) {
3230         self.perboot.set_last_off_body(last_off_body)
3231     }
3232 
3233     /// Get last_off_body time when finding auth tokens
get_last_off_body(&self) -> MonotonicRawTime3234     fn get_last_off_body(&self) -> MonotonicRawTime {
3235         self.perboot.get_last_off_body()
3236     }
3237 
3238     /// Load descriptor of a key by key id
load_key_descriptor(&mut self, key_id: i64) -> Result<Option<KeyDescriptor>>3239     pub fn load_key_descriptor(&mut self, key_id: i64) -> Result<Option<KeyDescriptor>> {
3240         let _wp = wd::watch_millis("KeystoreDB::load_key_descriptor", 500);
3241 
3242         self.with_transaction(TransactionBehavior::Deferred, |tx| {
3243             tx.query_row(
3244                 "SELECT domain, namespace, alias FROM persistent.keyentry WHERE id = ?;",
3245                 params![key_id],
3246                 |row| {
3247                     Ok(KeyDescriptor {
3248                         domain: Domain(row.get(0)?),
3249                         nspace: row.get(1)?,
3250                         alias: row.get(2)?,
3251                         blob: None,
3252                     })
3253                 },
3254             )
3255             .optional()
3256             .context("Trying to load key descriptor")
3257             .no_gc()
3258         })
3259         .context(ks_err!())
3260     }
3261 }
3262 
3263 #[cfg(test)]
3264 pub mod tests {
3265 
3266     use super::*;
3267     use crate::key_parameter::{
3268         Algorithm, BlockMode, Digest, EcCurve, HardwareAuthenticatorType, KeyOrigin, KeyParameter,
3269         KeyParameterValue, KeyPurpose, PaddingMode, SecurityLevel,
3270     };
3271     use crate::key_perm_set;
3272     use crate::permission::{KeyPerm, KeyPermSet};
3273     use crate::super_key::{SuperKeyManager, USER_SUPER_KEY, SuperEncryptionAlgorithm, SuperKeyType};
3274     use keystore2_test_utils::TempDir;
3275     use android_hardware_security_keymint::aidl::android::hardware::security::keymint::{
3276         HardwareAuthToken::HardwareAuthToken,
3277         HardwareAuthenticatorType::HardwareAuthenticatorType as kmhw_authenticator_type,
3278     };
3279     use android_hardware_security_secureclock::aidl::android::hardware::security::secureclock::{
3280         Timestamp::Timestamp,
3281     };
3282     use rusqlite::NO_PARAMS;
3283     use rusqlite::TransactionBehavior;
3284     use std::cell::RefCell;
3285     use std::collections::BTreeMap;
3286     use std::fmt::Write;
3287     use std::sync::atomic::{AtomicU8, Ordering};
3288     use std::sync::{Arc, RwLock};
3289     use std::thread;
3290     use std::time::{Duration, SystemTime};
3291     use crate::utils::AesGcm;
3292     #[cfg(disabled)]
3293     use std::time::Instant;
3294 
new_test_db() -> Result<KeystoreDB>3295     pub fn new_test_db() -> Result<KeystoreDB> {
3296         let conn = KeystoreDB::make_connection("file::memory:")?;
3297 
3298         let mut db = KeystoreDB { conn, gc: None, perboot: Arc::new(perboot::PerbootDB::new()) };
3299         db.with_transaction(TransactionBehavior::Immediate, |tx| {
3300             KeystoreDB::init_tables(tx).context("Failed to initialize tables.").no_gc()
3301         })?;
3302         Ok(db)
3303     }
3304 
new_test_db_with_gc<F>(path: &Path, cb: F) -> Result<KeystoreDB> where F: Fn(&Uuid, &[u8]) -> Result<()> + Send + 'static,3305     fn new_test_db_with_gc<F>(path: &Path, cb: F) -> Result<KeystoreDB>
3306     where
3307         F: Fn(&Uuid, &[u8]) -> Result<()> + Send + 'static,
3308     {
3309         let super_key: Arc<RwLock<SuperKeyManager>> = Default::default();
3310 
3311         let gc_db = KeystoreDB::new(path, None).expect("Failed to open test gc db_connection.");
3312         let gc = Gc::new_init_with(Default::default(), move || (Box::new(cb), gc_db, super_key));
3313 
3314         KeystoreDB::new(path, Some(Arc::new(gc)))
3315     }
3316 
rebind_alias( db: &mut KeystoreDB, newid: &KeyIdGuard, alias: &str, domain: Domain, namespace: i64, ) -> Result<bool>3317     fn rebind_alias(
3318         db: &mut KeystoreDB,
3319         newid: &KeyIdGuard,
3320         alias: &str,
3321         domain: Domain,
3322         namespace: i64,
3323     ) -> Result<bool> {
3324         db.with_transaction(TransactionBehavior::Immediate, |tx| {
3325             KeystoreDB::rebind_alias(tx, newid, alias, &domain, &namespace, KeyType::Client).no_gc()
3326         })
3327         .context(ks_err!())
3328     }
3329 
3330     #[test]
datetime() -> Result<()>3331     fn datetime() -> Result<()> {
3332         let conn = Connection::open_in_memory()?;
3333         conn.execute("CREATE TABLE test (ts DATETIME);", NO_PARAMS)?;
3334         let now = SystemTime::now();
3335         let duration = Duration::from_secs(1000);
3336         let then = now.checked_sub(duration).unwrap();
3337         let soon = now.checked_add(duration).unwrap();
3338         conn.execute(
3339             "INSERT INTO test (ts) VALUES (?), (?), (?);",
3340             params![DateTime::try_from(now)?, DateTime::try_from(then)?, DateTime::try_from(soon)?],
3341         )?;
3342         let mut stmt = conn.prepare("SELECT ts FROM test ORDER BY ts ASC;")?;
3343         let mut rows = stmt.query(NO_PARAMS)?;
3344         assert_eq!(DateTime::try_from(then)?, rows.next()?.unwrap().get(0)?);
3345         assert_eq!(DateTime::try_from(now)?, rows.next()?.unwrap().get(0)?);
3346         assert_eq!(DateTime::try_from(soon)?, rows.next()?.unwrap().get(0)?);
3347         assert!(rows.next()?.is_none());
3348         assert!(DateTime::try_from(then)? < DateTime::try_from(now)?);
3349         assert!(DateTime::try_from(then)? < DateTime::try_from(soon)?);
3350         assert!(DateTime::try_from(now)? < DateTime::try_from(soon)?);
3351         Ok(())
3352     }
3353 
3354     // Ensure that we're using the "injected" random function, not the real one.
3355     #[test]
test_mocked_random()3356     fn test_mocked_random() {
3357         let rand1 = random();
3358         let rand2 = random();
3359         let rand3 = random();
3360         if rand1 == rand2 {
3361             assert_eq!(rand2 + 1, rand3);
3362         } else {
3363             assert_eq!(rand1 + 1, rand2);
3364             assert_eq!(rand2, rand3);
3365         }
3366     }
3367 
3368     // Test that we have the correct tables.
3369     #[test]
test_tables() -> Result<()>3370     fn test_tables() -> Result<()> {
3371         let db = new_test_db()?;
3372         let tables = db
3373             .conn
3374             .prepare("SELECT name from persistent.sqlite_master WHERE type='table' ORDER BY name;")?
3375             .query_map(params![], |row| row.get(0))?
3376             .collect::<rusqlite::Result<Vec<String>>>()?;
3377         assert_eq!(tables.len(), 6);
3378         assert_eq!(tables[0], "blobentry");
3379         assert_eq!(tables[1], "blobmetadata");
3380         assert_eq!(tables[2], "grant");
3381         assert_eq!(tables[3], "keyentry");
3382         assert_eq!(tables[4], "keymetadata");
3383         assert_eq!(tables[5], "keyparameter");
3384         Ok(())
3385     }
3386 
3387     #[test]
test_auth_token_table_invariant() -> Result<()>3388     fn test_auth_token_table_invariant() -> Result<()> {
3389         let mut db = new_test_db()?;
3390         let auth_token1 = HardwareAuthToken {
3391             challenge: i64::MAX,
3392             userId: 200,
3393             authenticatorId: 200,
3394             authenticatorType: kmhw_authenticator_type(kmhw_authenticator_type::PASSWORD.0),
3395             timestamp: Timestamp { milliSeconds: 500 },
3396             mac: String::from("mac").into_bytes(),
3397         };
3398         db.insert_auth_token(&auth_token1);
3399         let auth_tokens_returned = get_auth_tokens(&db);
3400         assert_eq!(auth_tokens_returned.len(), 1);
3401 
3402         // insert another auth token with the same values for the columns in the UNIQUE constraint
3403         // of the auth token table and different value for timestamp
3404         let auth_token2 = HardwareAuthToken {
3405             challenge: i64::MAX,
3406             userId: 200,
3407             authenticatorId: 200,
3408             authenticatorType: kmhw_authenticator_type(kmhw_authenticator_type::PASSWORD.0),
3409             timestamp: Timestamp { milliSeconds: 600 },
3410             mac: String::from("mac").into_bytes(),
3411         };
3412 
3413         db.insert_auth_token(&auth_token2);
3414         let mut auth_tokens_returned = get_auth_tokens(&db);
3415         assert_eq!(auth_tokens_returned.len(), 1);
3416 
3417         if let Some(auth_token) = auth_tokens_returned.pop() {
3418             assert_eq!(auth_token.auth_token.timestamp.milliSeconds, 600);
3419         }
3420 
3421         // insert another auth token with the different values for the columns in the UNIQUE
3422         // constraint of the auth token table
3423         let auth_token3 = HardwareAuthToken {
3424             challenge: i64::MAX,
3425             userId: 201,
3426             authenticatorId: 200,
3427             authenticatorType: kmhw_authenticator_type(kmhw_authenticator_type::PASSWORD.0),
3428             timestamp: Timestamp { milliSeconds: 600 },
3429             mac: String::from("mac").into_bytes(),
3430         };
3431 
3432         db.insert_auth_token(&auth_token3);
3433         let auth_tokens_returned = get_auth_tokens(&db);
3434         assert_eq!(auth_tokens_returned.len(), 2);
3435 
3436         Ok(())
3437     }
3438 
3439     // utility function for test_auth_token_table_invariant()
get_auth_tokens(db: &KeystoreDB) -> Vec<AuthTokenEntry>3440     fn get_auth_tokens(db: &KeystoreDB) -> Vec<AuthTokenEntry> {
3441         db.perboot.get_all_auth_token_entries()
3442     }
3443 
3444     #[test]
test_persistence_for_files() -> Result<()>3445     fn test_persistence_for_files() -> Result<()> {
3446         let temp_dir = TempDir::new("persistent_db_test")?;
3447         let mut db = KeystoreDB::new(temp_dir.path(), None)?;
3448 
3449         db.create_key_entry(&Domain::APP, &100, KeyType::Client, &KEYSTORE_UUID)?;
3450         let entries = get_keyentry(&db)?;
3451         assert_eq!(entries.len(), 1);
3452 
3453         let db = KeystoreDB::new(temp_dir.path(), None)?;
3454 
3455         let entries_new = get_keyentry(&db)?;
3456         assert_eq!(entries, entries_new);
3457         Ok(())
3458     }
3459 
3460     #[test]
test_create_key_entry() -> Result<()>3461     fn test_create_key_entry() -> Result<()> {
3462         fn extractor(ke: &KeyEntryRow) -> (Domain, i64, Option<&str>, Uuid) {
3463             (ke.domain.unwrap(), ke.namespace.unwrap(), ke.alias.as_deref(), ke.km_uuid.unwrap())
3464         }
3465 
3466         let mut db = new_test_db()?;
3467 
3468         db.create_key_entry(&Domain::APP, &100, KeyType::Client, &KEYSTORE_UUID)?;
3469         db.create_key_entry(&Domain::SELINUX, &101, KeyType::Client, &KEYSTORE_UUID)?;
3470 
3471         let entries = get_keyentry(&db)?;
3472         assert_eq!(entries.len(), 2);
3473         assert_eq!(extractor(&entries[0]), (Domain::APP, 100, None, KEYSTORE_UUID));
3474         assert_eq!(extractor(&entries[1]), (Domain::SELINUX, 101, None, KEYSTORE_UUID));
3475 
3476         // Test that we must pass in a valid Domain.
3477         check_result_is_error_containing_string(
3478             db.create_key_entry(&Domain::GRANT, &102, KeyType::Client, &KEYSTORE_UUID),
3479             &format!("Domain {:?} must be either App or SELinux.", Domain::GRANT),
3480         );
3481         check_result_is_error_containing_string(
3482             db.create_key_entry(&Domain::BLOB, &103, KeyType::Client, &KEYSTORE_UUID),
3483             &format!("Domain {:?} must be either App or SELinux.", Domain::BLOB),
3484         );
3485         check_result_is_error_containing_string(
3486             db.create_key_entry(&Domain::KEY_ID, &104, KeyType::Client, &KEYSTORE_UUID),
3487             &format!("Domain {:?} must be either App or SELinux.", Domain::KEY_ID),
3488         );
3489 
3490         Ok(())
3491     }
3492 
3493     #[test]
test_add_unsigned_key() -> Result<()>3494     fn test_add_unsigned_key() -> Result<()> {
3495         let mut db = new_test_db()?;
3496         let public_key: Vec<u8> = vec![0x01, 0x02, 0x03];
3497         let private_key: Vec<u8> = vec![0x04, 0x05, 0x06];
3498         let raw_public_key: Vec<u8> = vec![0x07, 0x08, 0x09];
3499         db.create_attestation_key_entry(
3500             &public_key,
3501             &raw_public_key,
3502             &private_key,
3503             &KEYSTORE_UUID,
3504         )?;
3505         let keys = db.fetch_unsigned_attestation_keys(5, &KEYSTORE_UUID)?;
3506         assert_eq!(keys.len(), 1);
3507         assert_eq!(keys[0], public_key);
3508         Ok(())
3509     }
3510 
3511     #[test]
test_store_signed_attestation_certificate_chain() -> Result<()>3512     fn test_store_signed_attestation_certificate_chain() -> Result<()> {
3513         let mut db = new_test_db()?;
3514         let expiration_date: i64 =
3515             SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?.as_millis() as i64
3516                 + EXPIRATION_BUFFER_MS
3517                 + 10000;
3518         let namespace: i64 = 30;
3519         let base_byte: u8 = 1;
3520         let loaded_values =
3521             load_attestation_key_pool(&mut db, expiration_date, namespace, base_byte)?;
3522         let chain =
3523             db.retrieve_attestation_key_and_cert_chain(Domain::APP, namespace, &KEYSTORE_UUID)?;
3524         assert!(chain.is_some());
3525         let (_, cert_chain) = chain.unwrap();
3526         assert_eq!(cert_chain.private_key.to_vec(), loaded_values.priv_key);
3527         assert_eq!(cert_chain.batch_cert, loaded_values.batch_cert);
3528         assert_eq!(cert_chain.cert_chain, loaded_values.cert_chain);
3529         Ok(())
3530     }
3531 
3532     #[test]
test_remove_expired_certs() -> Result<()>3533     fn test_remove_expired_certs() -> Result<()> {
3534         let temp_dir =
3535             TempDir::new("test_remove_expired_certs_").expect("Failed to create temp dir.");
3536         let mut db = new_test_db_with_gc(temp_dir.path(), |_, _| Ok(()))?;
3537         let expiration_date: i64 =
3538             SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?.as_millis() as i64
3539                 + EXPIRATION_BUFFER_MS
3540                 + 10000;
3541         let namespace: i64 = 30;
3542         let namespace_del1: i64 = 45;
3543         let namespace_del2: i64 = 60;
3544         let entry_values = load_attestation_key_pool(
3545             &mut db,
3546             expiration_date,
3547             namespace,
3548             0x01, /* base_byte */
3549         )?;
3550         load_attestation_key_pool(&mut db, 45, namespace_del1, 0x02)?;
3551         load_attestation_key_pool(&mut db, expiration_date - 10001, namespace_del2, 0x03)?;
3552 
3553         let blob_entry_row_count: u32 = db
3554             .conn
3555             .query_row("SELECT COUNT(id) FROM persistent.blobentry;", NO_PARAMS, |row| row.get(0))
3556             .expect("Failed to get blob entry row count.");
3557         // We expect 9 rows here because there are three blobs per attestation key, i.e.,
3558         // one key, one certificate chain, and one certificate.
3559         assert_eq!(blob_entry_row_count, 9);
3560 
3561         assert_eq!(db.delete_expired_attestation_keys()?, 2);
3562 
3563         let mut cert_chain =
3564             db.retrieve_attestation_key_and_cert_chain(Domain::APP, namespace, &KEYSTORE_UUID)?;
3565         assert!(cert_chain.is_some());
3566         let (_, value) = cert_chain.unwrap();
3567         assert_eq!(entry_values.batch_cert, value.batch_cert);
3568         assert_eq!(entry_values.cert_chain, value.cert_chain);
3569         assert_eq!(entry_values.priv_key, value.private_key.to_vec());
3570 
3571         cert_chain = db.retrieve_attestation_key_and_cert_chain(
3572             Domain::APP,
3573             namespace_del1,
3574             &KEYSTORE_UUID,
3575         )?;
3576         assert!(cert_chain.is_none());
3577         cert_chain = db.retrieve_attestation_key_and_cert_chain(
3578             Domain::APP,
3579             namespace_del2,
3580             &KEYSTORE_UUID,
3581         )?;
3582         assert!(cert_chain.is_none());
3583 
3584         // Give the garbage collector half a second to catch up.
3585         std::thread::sleep(Duration::from_millis(500));
3586 
3587         let blob_entry_row_count: u32 = db
3588             .conn
3589             .query_row("SELECT COUNT(id) FROM persistent.blobentry;", NO_PARAMS, |row| row.get(0))
3590             .expect("Failed to get blob entry row count.");
3591         // There shound be 3 blob entries left, because we deleted two of the attestation
3592         // key entries with three blobs each.
3593         assert_eq!(blob_entry_row_count, 3);
3594 
3595         Ok(())
3596     }
3597 
compare_rem_prov_values( expected: &RemoteProvValues, actual: Option<(KeyIdGuard, CertificateChain)>, )3598     fn compare_rem_prov_values(
3599         expected: &RemoteProvValues,
3600         actual: Option<(KeyIdGuard, CertificateChain)>,
3601     ) {
3602         assert!(actual.is_some());
3603         let (_, value) = actual.unwrap();
3604         assert_eq!(expected.batch_cert, value.batch_cert);
3605         assert_eq!(expected.cert_chain, value.cert_chain);
3606         assert_eq!(expected.priv_key, value.private_key.to_vec());
3607     }
3608 
3609     #[test]
test_dont_remove_valid_certs() -> Result<()>3610     fn test_dont_remove_valid_certs() -> Result<()> {
3611         let temp_dir =
3612             TempDir::new("test_remove_expired_certs_").expect("Failed to create temp dir.");
3613         let mut db = new_test_db_with_gc(temp_dir.path(), |_, _| Ok(()))?;
3614         let expiration_date: i64 =
3615             SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?.as_millis() as i64
3616                 + EXPIRATION_BUFFER_MS
3617                 + 10000;
3618         let namespace1: i64 = 30;
3619         let namespace2: i64 = 45;
3620         let namespace3: i64 = 60;
3621         let entry_values1 = load_attestation_key_pool(
3622             &mut db,
3623             expiration_date,
3624             namespace1,
3625             0x01, /* base_byte */
3626         )?;
3627         let entry_values2 =
3628             load_attestation_key_pool(&mut db, expiration_date + 40000, namespace2, 0x02)?;
3629         let entry_values3 =
3630             load_attestation_key_pool(&mut db, expiration_date - 9000, namespace3, 0x03)?;
3631 
3632         let blob_entry_row_count: u32 = db
3633             .conn
3634             .query_row("SELECT COUNT(id) FROM persistent.blobentry;", NO_PARAMS, |row| row.get(0))
3635             .expect("Failed to get blob entry row count.");
3636         // We expect 9 rows here because there are three blobs per attestation key, i.e.,
3637         // one key, one certificate chain, and one certificate.
3638         assert_eq!(blob_entry_row_count, 9);
3639 
3640         let mut cert_chain =
3641             db.retrieve_attestation_key_and_cert_chain(Domain::APP, namespace1, &KEYSTORE_UUID)?;
3642         compare_rem_prov_values(&entry_values1, cert_chain);
3643 
3644         cert_chain =
3645             db.retrieve_attestation_key_and_cert_chain(Domain::APP, namespace2, &KEYSTORE_UUID)?;
3646         compare_rem_prov_values(&entry_values2, cert_chain);
3647 
3648         cert_chain =
3649             db.retrieve_attestation_key_and_cert_chain(Domain::APP, namespace3, &KEYSTORE_UUID)?;
3650         compare_rem_prov_values(&entry_values3, cert_chain);
3651 
3652         // Give the garbage collector half a second to catch up.
3653         std::thread::sleep(Duration::from_millis(500));
3654 
3655         let blob_entry_row_count: u32 = db
3656             .conn
3657             .query_row("SELECT COUNT(id) FROM persistent.blobentry;", NO_PARAMS, |row| row.get(0))
3658             .expect("Failed to get blob entry row count.");
3659         // There shound be 9 blob entries left, because all three keys are valid with
3660         // three blobs each.
3661         assert_eq!(blob_entry_row_count, 9);
3662 
3663         Ok(())
3664     }
3665     #[test]
test_delete_all_attestation_keys() -> Result<()>3666     fn test_delete_all_attestation_keys() -> Result<()> {
3667         let mut db = new_test_db()?;
3668         load_attestation_key_pool(&mut db, 45 /* expiration */, 1 /* namespace */, 0x02)?;
3669         load_attestation_key_pool(&mut db, 80 /* expiration */, 2 /* namespace */, 0x03)?;
3670         db.create_key_entry(&Domain::APP, &42, KeyType::Client, &KEYSTORE_UUID)?;
3671         let result = db.delete_all_attestation_keys()?;
3672 
3673         // Give the garbage collector half a second to catch up.
3674         std::thread::sleep(Duration::from_millis(500));
3675 
3676         // Attestation keys should be deleted, and the regular key should remain.
3677         assert_eq!(result, 2);
3678 
3679         Ok(())
3680     }
3681 
3682     #[test]
test_rebind_alias() -> Result<()>3683     fn test_rebind_alias() -> Result<()> {
3684         fn extractor(
3685             ke: &KeyEntryRow,
3686         ) -> (Option<Domain>, Option<i64>, Option<&str>, Option<Uuid>) {
3687             (ke.domain, ke.namespace, ke.alias.as_deref(), ke.km_uuid)
3688         }
3689 
3690         let mut db = new_test_db()?;
3691         db.create_key_entry(&Domain::APP, &42, KeyType::Client, &KEYSTORE_UUID)?;
3692         db.create_key_entry(&Domain::APP, &42, KeyType::Client, &KEYSTORE_UUID)?;
3693         let entries = get_keyentry(&db)?;
3694         assert_eq!(entries.len(), 2);
3695         assert_eq!(
3696             extractor(&entries[0]),
3697             (Some(Domain::APP), Some(42), None, Some(KEYSTORE_UUID))
3698         );
3699         assert_eq!(
3700             extractor(&entries[1]),
3701             (Some(Domain::APP), Some(42), None, Some(KEYSTORE_UUID))
3702         );
3703 
3704         // Test that the first call to rebind_alias sets the alias.
3705         rebind_alias(&mut db, &KEY_ID_LOCK.get(entries[0].id), "foo", Domain::APP, 42)?;
3706         let entries = get_keyentry(&db)?;
3707         assert_eq!(entries.len(), 2);
3708         assert_eq!(
3709             extractor(&entries[0]),
3710             (Some(Domain::APP), Some(42), Some("foo"), Some(KEYSTORE_UUID))
3711         );
3712         assert_eq!(
3713             extractor(&entries[1]),
3714             (Some(Domain::APP), Some(42), None, Some(KEYSTORE_UUID))
3715         );
3716 
3717         // Test that the second call to rebind_alias also empties the old one.
3718         rebind_alias(&mut db, &KEY_ID_LOCK.get(entries[1].id), "foo", Domain::APP, 42)?;
3719         let entries = get_keyentry(&db)?;
3720         assert_eq!(entries.len(), 2);
3721         assert_eq!(extractor(&entries[0]), (None, None, None, Some(KEYSTORE_UUID)));
3722         assert_eq!(
3723             extractor(&entries[1]),
3724             (Some(Domain::APP), Some(42), Some("foo"), Some(KEYSTORE_UUID))
3725         );
3726 
3727         // Test that we must pass in a valid Domain.
3728         check_result_is_error_containing_string(
3729             rebind_alias(&mut db, &KEY_ID_LOCK.get(0), "foo", Domain::GRANT, 42),
3730             &format!("Domain {:?} must be either App or SELinux.", Domain::GRANT),
3731         );
3732         check_result_is_error_containing_string(
3733             rebind_alias(&mut db, &KEY_ID_LOCK.get(0), "foo", Domain::BLOB, 42),
3734             &format!("Domain {:?} must be either App or SELinux.", Domain::BLOB),
3735         );
3736         check_result_is_error_containing_string(
3737             rebind_alias(&mut db, &KEY_ID_LOCK.get(0), "foo", Domain::KEY_ID, 42),
3738             &format!("Domain {:?} must be either App or SELinux.", Domain::KEY_ID),
3739         );
3740 
3741         // Test that we correctly handle setting an alias for something that does not exist.
3742         check_result_is_error_containing_string(
3743             rebind_alias(&mut db, &KEY_ID_LOCK.get(0), "foo", Domain::SELINUX, 42),
3744             "Expected to update a single entry but instead updated 0",
3745         );
3746         // Test that we correctly abort the transaction in this case.
3747         let entries = get_keyentry(&db)?;
3748         assert_eq!(entries.len(), 2);
3749         assert_eq!(extractor(&entries[0]), (None, None, None, Some(KEYSTORE_UUID)));
3750         assert_eq!(
3751             extractor(&entries[1]),
3752             (Some(Domain::APP), Some(42), Some("foo"), Some(KEYSTORE_UUID))
3753         );
3754 
3755         Ok(())
3756     }
3757 
3758     #[test]
test_grant_ungrant() -> Result<()>3759     fn test_grant_ungrant() -> Result<()> {
3760         const CALLER_UID: u32 = 15;
3761         const GRANTEE_UID: u32 = 12;
3762         const SELINUX_NAMESPACE: i64 = 7;
3763 
3764         let mut db = new_test_db()?;
3765         db.conn.execute(
3766             "INSERT INTO persistent.keyentry (id, key_type, domain, namespace, alias, state, km_uuid)
3767                 VALUES (1, 0, 0, 15, 'key', 1, ?), (2, 0, 2, 7, 'yek', 1, ?);",
3768             params![KEYSTORE_UUID, KEYSTORE_UUID],
3769         )?;
3770         let app_key = KeyDescriptor {
3771             domain: super::Domain::APP,
3772             nspace: 0,
3773             alias: Some("key".to_string()),
3774             blob: None,
3775         };
3776         const PVEC1: KeyPermSet = key_perm_set![KeyPerm::Use, KeyPerm::GetInfo];
3777         const PVEC2: KeyPermSet = key_perm_set![KeyPerm::Use];
3778 
3779         // Reset totally predictable random number generator in case we
3780         // are not the first test running on this thread.
3781         reset_random();
3782         let next_random = 0i64;
3783 
3784         let app_granted_key = db
3785             .grant(&app_key, CALLER_UID, GRANTEE_UID, PVEC1, |k, a| {
3786                 assert_eq!(*a, PVEC1);
3787                 assert_eq!(
3788                     *k,
3789                     KeyDescriptor {
3790                         domain: super::Domain::APP,
3791                         // namespace must be set to the caller_uid.
3792                         nspace: CALLER_UID as i64,
3793                         alias: Some("key".to_string()),
3794                         blob: None,
3795                     }
3796                 );
3797                 Ok(())
3798             })
3799             .unwrap();
3800 
3801         assert_eq!(
3802             app_granted_key,
3803             KeyDescriptor {
3804                 domain: super::Domain::GRANT,
3805                 // The grantid is next_random due to the mock random number generator.
3806                 nspace: next_random,
3807                 alias: None,
3808                 blob: None,
3809             }
3810         );
3811 
3812         let selinux_key = KeyDescriptor {
3813             domain: super::Domain::SELINUX,
3814             nspace: SELINUX_NAMESPACE,
3815             alias: Some("yek".to_string()),
3816             blob: None,
3817         };
3818 
3819         let selinux_granted_key = db
3820             .grant(&selinux_key, CALLER_UID, 12, PVEC1, |k, a| {
3821                 assert_eq!(*a, PVEC1);
3822                 assert_eq!(
3823                     *k,
3824                     KeyDescriptor {
3825                         domain: super::Domain::SELINUX,
3826                         // namespace must be the supplied SELinux
3827                         // namespace.
3828                         nspace: SELINUX_NAMESPACE,
3829                         alias: Some("yek".to_string()),
3830                         blob: None,
3831                     }
3832                 );
3833                 Ok(())
3834             })
3835             .unwrap();
3836 
3837         assert_eq!(
3838             selinux_granted_key,
3839             KeyDescriptor {
3840                 domain: super::Domain::GRANT,
3841                 // The grantid is next_random + 1 due to the mock random number generator.
3842                 nspace: next_random + 1,
3843                 alias: None,
3844                 blob: None,
3845             }
3846         );
3847 
3848         // This should update the existing grant with PVEC2.
3849         let selinux_granted_key = db
3850             .grant(&selinux_key, CALLER_UID, 12, PVEC2, |k, a| {
3851                 assert_eq!(*a, PVEC2);
3852                 assert_eq!(
3853                     *k,
3854                     KeyDescriptor {
3855                         domain: super::Domain::SELINUX,
3856                         // namespace must be the supplied SELinux
3857                         // namespace.
3858                         nspace: SELINUX_NAMESPACE,
3859                         alias: Some("yek".to_string()),
3860                         blob: None,
3861                     }
3862                 );
3863                 Ok(())
3864             })
3865             .unwrap();
3866 
3867         assert_eq!(
3868             selinux_granted_key,
3869             KeyDescriptor {
3870                 domain: super::Domain::GRANT,
3871                 // Same grant id as before. The entry was only updated.
3872                 nspace: next_random + 1,
3873                 alias: None,
3874                 blob: None,
3875             }
3876         );
3877 
3878         {
3879             // Limiting scope of stmt, because it borrows db.
3880             let mut stmt = db
3881                 .conn
3882                 .prepare("SELECT id, grantee, keyentryid, access_vector FROM persistent.grant;")?;
3883             let mut rows =
3884                 stmt.query_map::<(i64, u32, i64, KeyPermSet), _, _>(NO_PARAMS, |row| {
3885                     Ok((
3886                         row.get(0)?,
3887                         row.get(1)?,
3888                         row.get(2)?,
3889                         KeyPermSet::from(row.get::<_, i32>(3)?),
3890                     ))
3891                 })?;
3892 
3893             let r = rows.next().unwrap().unwrap();
3894             assert_eq!(r, (next_random, GRANTEE_UID, 1, PVEC1));
3895             let r = rows.next().unwrap().unwrap();
3896             assert_eq!(r, (next_random + 1, GRANTEE_UID, 2, PVEC2));
3897             assert!(rows.next().is_none());
3898         }
3899 
3900         debug_dump_keyentry_table(&mut db)?;
3901         println!("app_key {:?}", app_key);
3902         println!("selinux_key {:?}", selinux_key);
3903 
3904         db.ungrant(&app_key, CALLER_UID, GRANTEE_UID, |_| Ok(()))?;
3905         db.ungrant(&selinux_key, CALLER_UID, GRANTEE_UID, |_| Ok(()))?;
3906 
3907         Ok(())
3908     }
3909 
3910     static TEST_KEY_BLOB: &[u8] = b"my test blob";
3911     static TEST_CERT_BLOB: &[u8] = b"my test cert";
3912     static TEST_CERT_CHAIN_BLOB: &[u8] = b"my test cert_chain";
3913 
3914     #[test]
test_set_blob() -> Result<()>3915     fn test_set_blob() -> Result<()> {
3916         let key_id = KEY_ID_LOCK.get(3000);
3917         let mut db = new_test_db()?;
3918         let mut blob_metadata = BlobMetaData::new();
3919         blob_metadata.add(BlobMetaEntry::KmUuid(KEYSTORE_UUID));
3920         db.set_blob(
3921             &key_id,
3922             SubComponentType::KEY_BLOB,
3923             Some(TEST_KEY_BLOB),
3924             Some(&blob_metadata),
3925         )?;
3926         db.set_blob(&key_id, SubComponentType::CERT, Some(TEST_CERT_BLOB), None)?;
3927         db.set_blob(&key_id, SubComponentType::CERT_CHAIN, Some(TEST_CERT_CHAIN_BLOB), None)?;
3928         drop(key_id);
3929 
3930         let mut stmt = db.conn.prepare(
3931             "SELECT subcomponent_type, keyentryid, blob, id FROM persistent.blobentry
3932                 ORDER BY subcomponent_type ASC;",
3933         )?;
3934         let mut rows = stmt
3935             .query_map::<((SubComponentType, i64, Vec<u8>), i64), _, _>(NO_PARAMS, |row| {
3936                 Ok(((row.get(0)?, row.get(1)?, row.get(2)?), row.get(3)?))
3937             })?;
3938         let (r, id) = rows.next().unwrap().unwrap();
3939         assert_eq!(r, (SubComponentType::KEY_BLOB, 3000, TEST_KEY_BLOB.to_vec()));
3940         let (r, _) = rows.next().unwrap().unwrap();
3941         assert_eq!(r, (SubComponentType::CERT, 3000, TEST_CERT_BLOB.to_vec()));
3942         let (r, _) = rows.next().unwrap().unwrap();
3943         assert_eq!(r, (SubComponentType::CERT_CHAIN, 3000, TEST_CERT_CHAIN_BLOB.to_vec()));
3944 
3945         drop(rows);
3946         drop(stmt);
3947 
3948         assert_eq!(
3949             db.with_transaction(TransactionBehavior::Immediate, |tx| {
3950                 BlobMetaData::load_from_db(id, tx).no_gc()
3951             })
3952             .expect("Should find blob metadata."),
3953             blob_metadata
3954         );
3955         Ok(())
3956     }
3957 
3958     static TEST_ALIAS: &str = "my super duper key";
3959 
3960     #[test]
test_insert_and_load_full_keyentry_domain_app() -> Result<()>3961     fn test_insert_and_load_full_keyentry_domain_app() -> Result<()> {
3962         let mut db = new_test_db()?;
3963         let key_id = make_test_key_entry(&mut db, Domain::APP, 1, TEST_ALIAS, None)
3964             .context("test_insert_and_load_full_keyentry_domain_app")?
3965             .0;
3966         let (_key_guard, key_entry) = db
3967             .load_key_entry(
3968                 &KeyDescriptor {
3969                     domain: Domain::APP,
3970                     nspace: 0,
3971                     alias: Some(TEST_ALIAS.to_string()),
3972                     blob: None,
3973                 },
3974                 KeyType::Client,
3975                 KeyEntryLoadBits::BOTH,
3976                 1,
3977                 |_k, _av| Ok(()),
3978             )
3979             .unwrap();
3980         assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None));
3981 
3982         db.unbind_key(
3983             &KeyDescriptor {
3984                 domain: Domain::APP,
3985                 nspace: 0,
3986                 alias: Some(TEST_ALIAS.to_string()),
3987                 blob: None,
3988             },
3989             KeyType::Client,
3990             1,
3991             |_, _| Ok(()),
3992         )
3993         .unwrap();
3994 
3995         assert_eq!(
3996             Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)),
3997             db.load_key_entry(
3998                 &KeyDescriptor {
3999                     domain: Domain::APP,
4000                     nspace: 0,
4001                     alias: Some(TEST_ALIAS.to_string()),
4002                     blob: None,
4003                 },
4004                 KeyType::Client,
4005                 KeyEntryLoadBits::NONE,
4006                 1,
4007                 |_k, _av| Ok(()),
4008             )
4009             .unwrap_err()
4010             .root_cause()
4011             .downcast_ref::<KsError>()
4012         );
4013 
4014         Ok(())
4015     }
4016 
4017     #[test]
test_insert_and_load_certificate_entry_domain_app() -> Result<()>4018     fn test_insert_and_load_certificate_entry_domain_app() -> Result<()> {
4019         let mut db = new_test_db()?;
4020 
4021         db.store_new_certificate(
4022             &KeyDescriptor {
4023                 domain: Domain::APP,
4024                 nspace: 1,
4025                 alias: Some(TEST_ALIAS.to_string()),
4026                 blob: None,
4027             },
4028             KeyType::Client,
4029             TEST_CERT_BLOB,
4030             &KEYSTORE_UUID,
4031         )
4032         .expect("Trying to insert cert.");
4033 
4034         let (_key_guard, mut key_entry) = db
4035             .load_key_entry(
4036                 &KeyDescriptor {
4037                     domain: Domain::APP,
4038                     nspace: 1,
4039                     alias: Some(TEST_ALIAS.to_string()),
4040                     blob: None,
4041                 },
4042                 KeyType::Client,
4043                 KeyEntryLoadBits::PUBLIC,
4044                 1,
4045                 |_k, _av| Ok(()),
4046             )
4047             .expect("Trying to read certificate entry.");
4048 
4049         assert!(key_entry.pure_cert());
4050         assert!(key_entry.cert().is_none());
4051         assert_eq!(key_entry.take_cert_chain(), Some(TEST_CERT_BLOB.to_vec()));
4052 
4053         db.unbind_key(
4054             &KeyDescriptor {
4055                 domain: Domain::APP,
4056                 nspace: 1,
4057                 alias: Some(TEST_ALIAS.to_string()),
4058                 blob: None,
4059             },
4060             KeyType::Client,
4061             1,
4062             |_, _| Ok(()),
4063         )
4064         .unwrap();
4065 
4066         assert_eq!(
4067             Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)),
4068             db.load_key_entry(
4069                 &KeyDescriptor {
4070                     domain: Domain::APP,
4071                     nspace: 1,
4072                     alias: Some(TEST_ALIAS.to_string()),
4073                     blob: None,
4074                 },
4075                 KeyType::Client,
4076                 KeyEntryLoadBits::NONE,
4077                 1,
4078                 |_k, _av| Ok(()),
4079             )
4080             .unwrap_err()
4081             .root_cause()
4082             .downcast_ref::<KsError>()
4083         );
4084 
4085         Ok(())
4086     }
4087 
4088     #[test]
test_insert_and_load_full_keyentry_domain_selinux() -> Result<()>4089     fn test_insert_and_load_full_keyentry_domain_selinux() -> Result<()> {
4090         let mut db = new_test_db()?;
4091         let key_id = make_test_key_entry(&mut db, Domain::SELINUX, 1, TEST_ALIAS, None)
4092             .context("test_insert_and_load_full_keyentry_domain_selinux")?
4093             .0;
4094         let (_key_guard, key_entry) = db
4095             .load_key_entry(
4096                 &KeyDescriptor {
4097                     domain: Domain::SELINUX,
4098                     nspace: 1,
4099                     alias: Some(TEST_ALIAS.to_string()),
4100                     blob: None,
4101                 },
4102                 KeyType::Client,
4103                 KeyEntryLoadBits::BOTH,
4104                 1,
4105                 |_k, _av| Ok(()),
4106             )
4107             .unwrap();
4108         assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None));
4109 
4110         db.unbind_key(
4111             &KeyDescriptor {
4112                 domain: Domain::SELINUX,
4113                 nspace: 1,
4114                 alias: Some(TEST_ALIAS.to_string()),
4115                 blob: None,
4116             },
4117             KeyType::Client,
4118             1,
4119             |_, _| Ok(()),
4120         )
4121         .unwrap();
4122 
4123         assert_eq!(
4124             Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)),
4125             db.load_key_entry(
4126                 &KeyDescriptor {
4127                     domain: Domain::SELINUX,
4128                     nspace: 1,
4129                     alias: Some(TEST_ALIAS.to_string()),
4130                     blob: None,
4131                 },
4132                 KeyType::Client,
4133                 KeyEntryLoadBits::NONE,
4134                 1,
4135                 |_k, _av| Ok(()),
4136             )
4137             .unwrap_err()
4138             .root_cause()
4139             .downcast_ref::<KsError>()
4140         );
4141 
4142         Ok(())
4143     }
4144 
4145     #[test]
test_insert_and_load_full_keyentry_domain_key_id() -> Result<()>4146     fn test_insert_and_load_full_keyentry_domain_key_id() -> Result<()> {
4147         let mut db = new_test_db()?;
4148         let key_id = make_test_key_entry(&mut db, Domain::SELINUX, 1, TEST_ALIAS, None)
4149             .context("test_insert_and_load_full_keyentry_domain_key_id")?
4150             .0;
4151         let (_, key_entry) = db
4152             .load_key_entry(
4153                 &KeyDescriptor { domain: Domain::KEY_ID, nspace: key_id, alias: None, blob: None },
4154                 KeyType::Client,
4155                 KeyEntryLoadBits::BOTH,
4156                 1,
4157                 |_k, _av| Ok(()),
4158             )
4159             .unwrap();
4160 
4161         assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None));
4162 
4163         db.unbind_key(
4164             &KeyDescriptor { domain: Domain::KEY_ID, nspace: key_id, alias: None, blob: None },
4165             KeyType::Client,
4166             1,
4167             |_, _| Ok(()),
4168         )
4169         .unwrap();
4170 
4171         assert_eq!(
4172             Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)),
4173             db.load_key_entry(
4174                 &KeyDescriptor { domain: Domain::KEY_ID, nspace: key_id, alias: None, blob: None },
4175                 KeyType::Client,
4176                 KeyEntryLoadBits::NONE,
4177                 1,
4178                 |_k, _av| Ok(()),
4179             )
4180             .unwrap_err()
4181             .root_cause()
4182             .downcast_ref::<KsError>()
4183         );
4184 
4185         Ok(())
4186     }
4187 
4188     #[test]
test_check_and_update_key_usage_count_with_limited_use_key() -> Result<()>4189     fn test_check_and_update_key_usage_count_with_limited_use_key() -> Result<()> {
4190         let mut db = new_test_db()?;
4191         let key_id = make_test_key_entry(&mut db, Domain::SELINUX, 1, TEST_ALIAS, Some(123))
4192             .context("test_check_and_update_key_usage_count_with_limited_use_key")?
4193             .0;
4194         // Update the usage count of the limited use key.
4195         db.check_and_update_key_usage_count(key_id)?;
4196 
4197         let (_key_guard, key_entry) = db.load_key_entry(
4198             &KeyDescriptor { domain: Domain::KEY_ID, nspace: key_id, alias: None, blob: None },
4199             KeyType::Client,
4200             KeyEntryLoadBits::BOTH,
4201             1,
4202             |_k, _av| Ok(()),
4203         )?;
4204 
4205         // The usage count is decremented now.
4206         assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, Some(122)));
4207 
4208         Ok(())
4209     }
4210 
4211     #[test]
test_check_and_update_key_usage_count_with_exhausted_limited_use_key() -> Result<()>4212     fn test_check_and_update_key_usage_count_with_exhausted_limited_use_key() -> Result<()> {
4213         let mut db = new_test_db()?;
4214         let key_id = make_test_key_entry(&mut db, Domain::SELINUX, 1, TEST_ALIAS, Some(1))
4215             .context("test_check_and_update_key_usage_count_with_exhausted_limited_use_key")?
4216             .0;
4217         // Update the usage count of the limited use key.
4218         db.check_and_update_key_usage_count(key_id).expect(concat!(
4219             "In test_check_and_update_key_usage_count_with_exhausted_limited_use_key: ",
4220             "This should succeed."
4221         ));
4222 
4223         // Try to update the exhausted limited use key.
4224         let e = db.check_and_update_key_usage_count(key_id).expect_err(concat!(
4225             "In test_check_and_update_key_usage_count_with_exhausted_limited_use_key: ",
4226             "This should fail."
4227         ));
4228         assert_eq!(
4229             &KsError::Km(ErrorCode::INVALID_KEY_BLOB),
4230             e.root_cause().downcast_ref::<KsError>().unwrap()
4231         );
4232 
4233         Ok(())
4234     }
4235 
4236     #[test]
test_insert_and_load_full_keyentry_from_grant() -> Result<()>4237     fn test_insert_and_load_full_keyentry_from_grant() -> Result<()> {
4238         let mut db = new_test_db()?;
4239         let key_id = make_test_key_entry(&mut db, Domain::APP, 1, TEST_ALIAS, None)
4240             .context("test_insert_and_load_full_keyentry_from_grant")?
4241             .0;
4242 
4243         let granted_key = db
4244             .grant(
4245                 &KeyDescriptor {
4246                     domain: Domain::APP,
4247                     nspace: 0,
4248                     alias: Some(TEST_ALIAS.to_string()),
4249                     blob: None,
4250                 },
4251                 1,
4252                 2,
4253                 key_perm_set![KeyPerm::Use],
4254                 |_k, _av| Ok(()),
4255             )
4256             .unwrap();
4257 
4258         debug_dump_grant_table(&mut db)?;
4259 
4260         let (_key_guard, key_entry) = db
4261             .load_key_entry(&granted_key, KeyType::Client, KeyEntryLoadBits::BOTH, 2, |k, av| {
4262                 assert_eq!(Domain::GRANT, k.domain);
4263                 assert!(av.unwrap().includes(KeyPerm::Use));
4264                 Ok(())
4265             })
4266             .unwrap();
4267 
4268         assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None));
4269 
4270         db.unbind_key(&granted_key, KeyType::Client, 2, |_, _| Ok(())).unwrap();
4271 
4272         assert_eq!(
4273             Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)),
4274             db.load_key_entry(
4275                 &granted_key,
4276                 KeyType::Client,
4277                 KeyEntryLoadBits::NONE,
4278                 2,
4279                 |_k, _av| Ok(()),
4280             )
4281             .unwrap_err()
4282             .root_cause()
4283             .downcast_ref::<KsError>()
4284         );
4285 
4286         Ok(())
4287     }
4288 
4289     // This test attempts to load a key by key id while the caller is not the owner
4290     // but a grant exists for the given key and the caller.
4291     #[test]
test_insert_and_load_full_keyentry_from_grant_by_key_id() -> Result<()>4292     fn test_insert_and_load_full_keyentry_from_grant_by_key_id() -> Result<()> {
4293         let mut db = new_test_db()?;
4294         const OWNER_UID: u32 = 1u32;
4295         const GRANTEE_UID: u32 = 2u32;
4296         const SOMEONE_ELSE_UID: u32 = 3u32;
4297         let key_id = make_test_key_entry(&mut db, Domain::APP, OWNER_UID as i64, TEST_ALIAS, None)
4298             .context("test_insert_and_load_full_keyentry_from_grant_by_key_id")?
4299             .0;
4300 
4301         db.grant(
4302             &KeyDescriptor {
4303                 domain: Domain::APP,
4304                 nspace: 0,
4305                 alias: Some(TEST_ALIAS.to_string()),
4306                 blob: None,
4307             },
4308             OWNER_UID,
4309             GRANTEE_UID,
4310             key_perm_set![KeyPerm::Use],
4311             |_k, _av| Ok(()),
4312         )
4313         .unwrap();
4314 
4315         debug_dump_grant_table(&mut db)?;
4316 
4317         let id_descriptor =
4318             KeyDescriptor { domain: Domain::KEY_ID, nspace: key_id, ..Default::default() };
4319 
4320         let (_, key_entry) = db
4321             .load_key_entry(
4322                 &id_descriptor,
4323                 KeyType::Client,
4324                 KeyEntryLoadBits::BOTH,
4325                 GRANTEE_UID,
4326                 |k, av| {
4327                     assert_eq!(Domain::APP, k.domain);
4328                     assert_eq!(OWNER_UID as i64, k.nspace);
4329                     assert!(av.unwrap().includes(KeyPerm::Use));
4330                     Ok(())
4331                 },
4332             )
4333             .unwrap();
4334 
4335         assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None));
4336 
4337         let (_, key_entry) = db
4338             .load_key_entry(
4339                 &id_descriptor,
4340                 KeyType::Client,
4341                 KeyEntryLoadBits::BOTH,
4342                 SOMEONE_ELSE_UID,
4343                 |k, av| {
4344                     assert_eq!(Domain::APP, k.domain);
4345                     assert_eq!(OWNER_UID as i64, k.nspace);
4346                     assert!(av.is_none());
4347                     Ok(())
4348                 },
4349             )
4350             .unwrap();
4351 
4352         assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None));
4353 
4354         db.unbind_key(&id_descriptor, KeyType::Client, OWNER_UID, |_, _| Ok(())).unwrap();
4355 
4356         assert_eq!(
4357             Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)),
4358             db.load_key_entry(
4359                 &id_descriptor,
4360                 KeyType::Client,
4361                 KeyEntryLoadBits::NONE,
4362                 GRANTEE_UID,
4363                 |_k, _av| Ok(()),
4364             )
4365             .unwrap_err()
4366             .root_cause()
4367             .downcast_ref::<KsError>()
4368         );
4369 
4370         Ok(())
4371     }
4372 
4373     // Creates a key migrates it to a different location and then tries to access it by the old
4374     // and new location.
4375     #[test]
test_migrate_key_app_to_app() -> Result<()>4376     fn test_migrate_key_app_to_app() -> Result<()> {
4377         let mut db = new_test_db()?;
4378         const SOURCE_UID: u32 = 1u32;
4379         const DESTINATION_UID: u32 = 2u32;
4380         static SOURCE_ALIAS: &str = "SOURCE_ALIAS";
4381         static DESTINATION_ALIAS: &str = "DESTINATION_ALIAS";
4382         let key_id_guard =
4383             make_test_key_entry(&mut db, Domain::APP, SOURCE_UID as i64, SOURCE_ALIAS, None)
4384                 .context("test_insert_and_load_full_keyentry_from_grant_by_key_id")?;
4385 
4386         let source_descriptor: KeyDescriptor = KeyDescriptor {
4387             domain: Domain::APP,
4388             nspace: -1,
4389             alias: Some(SOURCE_ALIAS.to_string()),
4390             blob: None,
4391         };
4392 
4393         let destination_descriptor: KeyDescriptor = KeyDescriptor {
4394             domain: Domain::APP,
4395             nspace: -1,
4396             alias: Some(DESTINATION_ALIAS.to_string()),
4397             blob: None,
4398         };
4399 
4400         let key_id = key_id_guard.id();
4401 
4402         db.migrate_key_namespace(key_id_guard, &destination_descriptor, DESTINATION_UID, |_k| {
4403             Ok(())
4404         })
4405         .unwrap();
4406 
4407         let (_, key_entry) = db
4408             .load_key_entry(
4409                 &destination_descriptor,
4410                 KeyType::Client,
4411                 KeyEntryLoadBits::BOTH,
4412                 DESTINATION_UID,
4413                 |k, av| {
4414                     assert_eq!(Domain::APP, k.domain);
4415                     assert_eq!(DESTINATION_UID as i64, k.nspace);
4416                     assert!(av.is_none());
4417                     Ok(())
4418                 },
4419             )
4420             .unwrap();
4421 
4422         assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None));
4423 
4424         assert_eq!(
4425             Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)),
4426             db.load_key_entry(
4427                 &source_descriptor,
4428                 KeyType::Client,
4429                 KeyEntryLoadBits::NONE,
4430                 SOURCE_UID,
4431                 |_k, _av| Ok(()),
4432             )
4433             .unwrap_err()
4434             .root_cause()
4435             .downcast_ref::<KsError>()
4436         );
4437 
4438         Ok(())
4439     }
4440 
4441     // Creates a key migrates it to a different location and then tries to access it by the old
4442     // and new location.
4443     #[test]
test_migrate_key_app_to_selinux() -> Result<()>4444     fn test_migrate_key_app_to_selinux() -> Result<()> {
4445         let mut db = new_test_db()?;
4446         const SOURCE_UID: u32 = 1u32;
4447         const DESTINATION_UID: u32 = 2u32;
4448         const DESTINATION_NAMESPACE: i64 = 1000i64;
4449         static SOURCE_ALIAS: &str = "SOURCE_ALIAS";
4450         static DESTINATION_ALIAS: &str = "DESTINATION_ALIAS";
4451         let key_id_guard =
4452             make_test_key_entry(&mut db, Domain::APP, SOURCE_UID as i64, SOURCE_ALIAS, None)
4453                 .context("test_insert_and_load_full_keyentry_from_grant_by_key_id")?;
4454 
4455         let source_descriptor: KeyDescriptor = KeyDescriptor {
4456             domain: Domain::APP,
4457             nspace: -1,
4458             alias: Some(SOURCE_ALIAS.to_string()),
4459             blob: None,
4460         };
4461 
4462         let destination_descriptor: KeyDescriptor = KeyDescriptor {
4463             domain: Domain::SELINUX,
4464             nspace: DESTINATION_NAMESPACE,
4465             alias: Some(DESTINATION_ALIAS.to_string()),
4466             blob: None,
4467         };
4468 
4469         let key_id = key_id_guard.id();
4470 
4471         db.migrate_key_namespace(key_id_guard, &destination_descriptor, DESTINATION_UID, |_k| {
4472             Ok(())
4473         })
4474         .unwrap();
4475 
4476         let (_, key_entry) = db
4477             .load_key_entry(
4478                 &destination_descriptor,
4479                 KeyType::Client,
4480                 KeyEntryLoadBits::BOTH,
4481                 DESTINATION_UID,
4482                 |k, av| {
4483                     assert_eq!(Domain::SELINUX, k.domain);
4484                     assert_eq!(DESTINATION_NAMESPACE, k.nspace);
4485                     assert!(av.is_none());
4486                     Ok(())
4487                 },
4488             )
4489             .unwrap();
4490 
4491         assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None));
4492 
4493         assert_eq!(
4494             Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)),
4495             db.load_key_entry(
4496                 &source_descriptor,
4497                 KeyType::Client,
4498                 KeyEntryLoadBits::NONE,
4499                 SOURCE_UID,
4500                 |_k, _av| Ok(()),
4501             )
4502             .unwrap_err()
4503             .root_cause()
4504             .downcast_ref::<KsError>()
4505         );
4506 
4507         Ok(())
4508     }
4509 
4510     // Creates two keys and tries to migrate the first to the location of the second which
4511     // is expected to fail.
4512     #[test]
test_migrate_key_destination_occupied() -> Result<()>4513     fn test_migrate_key_destination_occupied() -> Result<()> {
4514         let mut db = new_test_db()?;
4515         const SOURCE_UID: u32 = 1u32;
4516         const DESTINATION_UID: u32 = 2u32;
4517         static SOURCE_ALIAS: &str = "SOURCE_ALIAS";
4518         static DESTINATION_ALIAS: &str = "DESTINATION_ALIAS";
4519         let key_id_guard =
4520             make_test_key_entry(&mut db, Domain::APP, SOURCE_UID as i64, SOURCE_ALIAS, None)
4521                 .context("test_insert_and_load_full_keyentry_from_grant_by_key_id")?;
4522         make_test_key_entry(&mut db, Domain::APP, DESTINATION_UID as i64, DESTINATION_ALIAS, None)
4523             .context("test_insert_and_load_full_keyentry_from_grant_by_key_id")?;
4524 
4525         let destination_descriptor: KeyDescriptor = KeyDescriptor {
4526             domain: Domain::APP,
4527             nspace: -1,
4528             alias: Some(DESTINATION_ALIAS.to_string()),
4529             blob: None,
4530         };
4531 
4532         assert_eq!(
4533             Some(&KsError::Rc(ResponseCode::INVALID_ARGUMENT)),
4534             db.migrate_key_namespace(
4535                 key_id_guard,
4536                 &destination_descriptor,
4537                 DESTINATION_UID,
4538                 |_k| Ok(())
4539             )
4540             .unwrap_err()
4541             .root_cause()
4542             .downcast_ref::<KsError>()
4543         );
4544 
4545         Ok(())
4546     }
4547 
4548     #[test]
test_upgrade_0_to_1()4549     fn test_upgrade_0_to_1() {
4550         const ALIAS1: &str = "test_upgrade_0_to_1_1";
4551         const ALIAS2: &str = "test_upgrade_0_to_1_2";
4552         const ALIAS3: &str = "test_upgrade_0_to_1_3";
4553         const UID: u32 = 33;
4554         let temp_dir = Arc::new(TempDir::new("test_upgrade_0_to_1").unwrap());
4555         let mut db = KeystoreDB::new(temp_dir.path(), None).unwrap();
4556         let key_id_untouched1 =
4557             make_test_key_entry(&mut db, Domain::APP, UID as i64, ALIAS1, None).unwrap().id();
4558         let key_id_untouched2 =
4559             make_bootlevel_key_entry(&mut db, Domain::APP, UID as i64, ALIAS2, false).unwrap().id();
4560         let key_id_deleted =
4561             make_bootlevel_key_entry(&mut db, Domain::APP, UID as i64, ALIAS3, true).unwrap().id();
4562 
4563         let (_, key_entry) = db
4564             .load_key_entry(
4565                 &KeyDescriptor {
4566                     domain: Domain::APP,
4567                     nspace: -1,
4568                     alias: Some(ALIAS1.to_string()),
4569                     blob: None,
4570                 },
4571                 KeyType::Client,
4572                 KeyEntryLoadBits::BOTH,
4573                 UID,
4574                 |k, av| {
4575                     assert_eq!(Domain::APP, k.domain);
4576                     assert_eq!(UID as i64, k.nspace);
4577                     assert!(av.is_none());
4578                     Ok(())
4579                 },
4580             )
4581             .unwrap();
4582         assert_eq!(key_entry, make_test_key_entry_test_vector(key_id_untouched1, None));
4583         let (_, key_entry) = db
4584             .load_key_entry(
4585                 &KeyDescriptor {
4586                     domain: Domain::APP,
4587                     nspace: -1,
4588                     alias: Some(ALIAS2.to_string()),
4589                     blob: None,
4590                 },
4591                 KeyType::Client,
4592                 KeyEntryLoadBits::BOTH,
4593                 UID,
4594                 |k, av| {
4595                     assert_eq!(Domain::APP, k.domain);
4596                     assert_eq!(UID as i64, k.nspace);
4597                     assert!(av.is_none());
4598                     Ok(())
4599                 },
4600             )
4601             .unwrap();
4602         assert_eq!(key_entry, make_bootlevel_test_key_entry_test_vector(key_id_untouched2, false));
4603         let (_, key_entry) = db
4604             .load_key_entry(
4605                 &KeyDescriptor {
4606                     domain: Domain::APP,
4607                     nspace: -1,
4608                     alias: Some(ALIAS3.to_string()),
4609                     blob: None,
4610                 },
4611                 KeyType::Client,
4612                 KeyEntryLoadBits::BOTH,
4613                 UID,
4614                 |k, av| {
4615                     assert_eq!(Domain::APP, k.domain);
4616                     assert_eq!(UID as i64, k.nspace);
4617                     assert!(av.is_none());
4618                     Ok(())
4619                 },
4620             )
4621             .unwrap();
4622         assert_eq!(key_entry, make_bootlevel_test_key_entry_test_vector(key_id_deleted, true));
4623 
4624         db.with_transaction(TransactionBehavior::Immediate, |tx| {
4625             KeystoreDB::from_0_to_1(tx).no_gc()
4626         })
4627         .unwrap();
4628 
4629         let (_, key_entry) = db
4630             .load_key_entry(
4631                 &KeyDescriptor {
4632                     domain: Domain::APP,
4633                     nspace: -1,
4634                     alias: Some(ALIAS1.to_string()),
4635                     blob: None,
4636                 },
4637                 KeyType::Client,
4638                 KeyEntryLoadBits::BOTH,
4639                 UID,
4640                 |k, av| {
4641                     assert_eq!(Domain::APP, k.domain);
4642                     assert_eq!(UID as i64, k.nspace);
4643                     assert!(av.is_none());
4644                     Ok(())
4645                 },
4646             )
4647             .unwrap();
4648         assert_eq!(key_entry, make_test_key_entry_test_vector(key_id_untouched1, None));
4649         let (_, key_entry) = db
4650             .load_key_entry(
4651                 &KeyDescriptor {
4652                     domain: Domain::APP,
4653                     nspace: -1,
4654                     alias: Some(ALIAS2.to_string()),
4655                     blob: None,
4656                 },
4657                 KeyType::Client,
4658                 KeyEntryLoadBits::BOTH,
4659                 UID,
4660                 |k, av| {
4661                     assert_eq!(Domain::APP, k.domain);
4662                     assert_eq!(UID as i64, k.nspace);
4663                     assert!(av.is_none());
4664                     Ok(())
4665                 },
4666             )
4667             .unwrap();
4668         assert_eq!(key_entry, make_bootlevel_test_key_entry_test_vector(key_id_untouched2, false));
4669         assert_eq!(
4670             Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)),
4671             db.load_key_entry(
4672                 &KeyDescriptor {
4673                     domain: Domain::APP,
4674                     nspace: -1,
4675                     alias: Some(ALIAS3.to_string()),
4676                     blob: None,
4677                 },
4678                 KeyType::Client,
4679                 KeyEntryLoadBits::BOTH,
4680                 UID,
4681                 |k, av| {
4682                     assert_eq!(Domain::APP, k.domain);
4683                     assert_eq!(UID as i64, k.nspace);
4684                     assert!(av.is_none());
4685                     Ok(())
4686                 },
4687             )
4688             .unwrap_err()
4689             .root_cause()
4690             .downcast_ref::<KsError>()
4691         );
4692     }
4693 
4694     static KEY_LOCK_TEST_ALIAS: &str = "my super duper locked key";
4695 
4696     #[test]
test_insert_and_load_full_keyentry_domain_app_concurrently() -> Result<()>4697     fn test_insert_and_load_full_keyentry_domain_app_concurrently() -> Result<()> {
4698         let handle = {
4699             let temp_dir = Arc::new(TempDir::new("id_lock_test")?);
4700             let temp_dir_clone = temp_dir.clone();
4701             let mut db = KeystoreDB::new(temp_dir.path(), None)?;
4702             let key_id = make_test_key_entry(&mut db, Domain::APP, 33, KEY_LOCK_TEST_ALIAS, None)
4703                 .context("test_insert_and_load_full_keyentry_domain_app")?
4704                 .0;
4705             let (_key_guard, key_entry) = db
4706                 .load_key_entry(
4707                     &KeyDescriptor {
4708                         domain: Domain::APP,
4709                         nspace: 0,
4710                         alias: Some(KEY_LOCK_TEST_ALIAS.to_string()),
4711                         blob: None,
4712                     },
4713                     KeyType::Client,
4714                     KeyEntryLoadBits::BOTH,
4715                     33,
4716                     |_k, _av| Ok(()),
4717                 )
4718                 .unwrap();
4719             assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None));
4720             let state = Arc::new(AtomicU8::new(1));
4721             let state2 = state.clone();
4722 
4723             // Spawning a second thread that attempts to acquire the key id lock
4724             // for the same key as the primary thread. The primary thread then
4725             // waits, thereby forcing the secondary thread into the second stage
4726             // of acquiring the lock (see KEY ID LOCK 2/2 above).
4727             // The test succeeds if the secondary thread observes the transition
4728             // of `state` from 1 to 2, despite having a whole second to overtake
4729             // the primary thread.
4730             let handle = thread::spawn(move || {
4731                 let temp_dir = temp_dir_clone;
4732                 let mut db = KeystoreDB::new(temp_dir.path(), None).unwrap();
4733                 assert!(db
4734                     .load_key_entry(
4735                         &KeyDescriptor {
4736                             domain: Domain::APP,
4737                             nspace: 0,
4738                             alias: Some(KEY_LOCK_TEST_ALIAS.to_string()),
4739                             blob: None,
4740                         },
4741                         KeyType::Client,
4742                         KeyEntryLoadBits::BOTH,
4743                         33,
4744                         |_k, _av| Ok(()),
4745                     )
4746                     .is_ok());
4747                 // We should only see a 2 here because we can only return
4748                 // from load_key_entry when the `_key_guard` expires,
4749                 // which happens at the end of the scope.
4750                 assert_eq!(2, state2.load(Ordering::Relaxed));
4751             });
4752 
4753             thread::sleep(std::time::Duration::from_millis(1000));
4754 
4755             assert_eq!(Ok(1), state.compare_exchange(1, 2, Ordering::Relaxed, Ordering::Relaxed));
4756 
4757             // Return the handle from this scope so we can join with the
4758             // secondary thread after the key id lock has expired.
4759             handle
4760             // This is where the `_key_guard` goes out of scope,
4761             // which is the reason for concurrent load_key_entry on the same key
4762             // to unblock.
4763         };
4764         // Join with the secondary thread and unwrap, to propagate failing asserts to the
4765         // main test thread. We will not see failing asserts in secondary threads otherwise.
4766         handle.join().unwrap();
4767         Ok(())
4768     }
4769 
4770     #[test]
test_database_busy_error_code()4771     fn test_database_busy_error_code() {
4772         let temp_dir =
4773             TempDir::new("test_database_busy_error_code_").expect("Failed to create temp dir.");
4774 
4775         let mut db1 = KeystoreDB::new(temp_dir.path(), None).expect("Failed to open database1.");
4776         let mut db2 = KeystoreDB::new(temp_dir.path(), None).expect("Failed to open database2.");
4777 
4778         let _tx1 = db1
4779             .conn
4780             .transaction_with_behavior(TransactionBehavior::Immediate)
4781             .expect("Failed to create first transaction.");
4782 
4783         let error = db2
4784             .conn
4785             .transaction_with_behavior(TransactionBehavior::Immediate)
4786             .context("Transaction begin failed.")
4787             .expect_err("This should fail.");
4788         let root_cause = error.root_cause();
4789         if let Some(rusqlite::ffi::Error { code: rusqlite::ErrorCode::DatabaseBusy, .. }) =
4790             root_cause.downcast_ref::<rusqlite::ffi::Error>()
4791         {
4792             return;
4793         }
4794         panic!(
4795             "Unexpected error {:?} \n{:?} \n{:?}",
4796             error,
4797             root_cause,
4798             root_cause.downcast_ref::<rusqlite::ffi::Error>()
4799         )
4800     }
4801 
4802     #[cfg(disabled)]
4803     #[test]
test_large_number_of_concurrent_db_manipulations() -> Result<()>4804     fn test_large_number_of_concurrent_db_manipulations() -> Result<()> {
4805         let temp_dir = Arc::new(
4806             TempDir::new("test_large_number_of_concurrent_db_manipulations_")
4807                 .expect("Failed to create temp dir."),
4808         );
4809 
4810         let test_begin = Instant::now();
4811 
4812         const KEY_COUNT: u32 = 500u32;
4813         let mut db =
4814             new_test_db_with_gc(temp_dir.path(), |_, _| Ok(())).expect("Failed to open database.");
4815         const OPEN_DB_COUNT: u32 = 50u32;
4816 
4817         let mut actual_key_count = KEY_COUNT;
4818         // First insert KEY_COUNT keys.
4819         for count in 0..KEY_COUNT {
4820             if Instant::now().duration_since(test_begin) >= Duration::from_secs(15) {
4821                 actual_key_count = count;
4822                 break;
4823             }
4824             let alias = format!("test_alias_{}", count);
4825             make_test_key_entry(&mut db, Domain::APP, 1, &alias, None)
4826                 .expect("Failed to make key entry.");
4827         }
4828 
4829         // Insert more keys from a different thread and into a different namespace.
4830         let temp_dir1 = temp_dir.clone();
4831         let handle1 = thread::spawn(move || {
4832             let mut db = new_test_db_with_gc(temp_dir1.path(), |_, _| Ok(()))
4833                 .expect("Failed to open database.");
4834 
4835             for count in 0..actual_key_count {
4836                 if Instant::now().duration_since(test_begin) >= Duration::from_secs(40) {
4837                     return;
4838                 }
4839                 let alias = format!("test_alias_{}", count);
4840                 make_test_key_entry(&mut db, Domain::APP, 2, &alias, None)
4841                     .expect("Failed to make key entry.");
4842             }
4843 
4844             // then unbind them again.
4845             for count in 0..actual_key_count {
4846                 if Instant::now().duration_since(test_begin) >= Duration::from_secs(40) {
4847                     return;
4848                 }
4849                 let key = KeyDescriptor {
4850                     domain: Domain::APP,
4851                     nspace: -1,
4852                     alias: Some(format!("test_alias_{}", count)),
4853                     blob: None,
4854                 };
4855                 db.unbind_key(&key, KeyType::Client, 2, |_, _| Ok(())).expect("Unbind Failed.");
4856             }
4857         });
4858 
4859         // And start unbinding the first set of keys.
4860         let temp_dir2 = temp_dir.clone();
4861         let handle2 = thread::spawn(move || {
4862             let mut db = new_test_db_with_gc(temp_dir2.path(), |_, _| Ok(()))
4863                 .expect("Failed to open database.");
4864 
4865             for count in 0..actual_key_count {
4866                 if Instant::now().duration_since(test_begin) >= Duration::from_secs(40) {
4867                     return;
4868                 }
4869                 let key = KeyDescriptor {
4870                     domain: Domain::APP,
4871                     nspace: -1,
4872                     alias: Some(format!("test_alias_{}", count)),
4873                     blob: None,
4874                 };
4875                 db.unbind_key(&key, KeyType::Client, 1, |_, _| Ok(())).expect("Unbind Failed.");
4876             }
4877         });
4878 
4879         // While a lot of inserting and deleting is going on we have to open database connections
4880         // successfully and use them.
4881         // This clone is not redundant, because temp_dir needs to be kept alive until db goes
4882         // out of scope.
4883         #[allow(clippy::redundant_clone)]
4884         let temp_dir4 = temp_dir.clone();
4885         let handle4 = thread::spawn(move || {
4886             for count in 0..OPEN_DB_COUNT {
4887                 if Instant::now().duration_since(test_begin) >= Duration::from_secs(40) {
4888                     return;
4889                 }
4890                 let mut db = new_test_db_with_gc(temp_dir4.path(), |_, _| Ok(()))
4891                     .expect("Failed to open database.");
4892 
4893                 let alias = format!("test_alias_{}", count);
4894                 make_test_key_entry(&mut db, Domain::APP, 3, &alias, None)
4895                     .expect("Failed to make key entry.");
4896                 let key = KeyDescriptor {
4897                     domain: Domain::APP,
4898                     nspace: -1,
4899                     alias: Some(alias),
4900                     blob: None,
4901                 };
4902                 db.unbind_key(&key, KeyType::Client, 3, |_, _| Ok(())).expect("Unbind Failed.");
4903             }
4904         });
4905 
4906         handle1.join().expect("Thread 1 panicked.");
4907         handle2.join().expect("Thread 2 panicked.");
4908         handle4.join().expect("Thread 4 panicked.");
4909 
4910         Ok(())
4911     }
4912 
4913     #[test]
list() -> Result<()>4914     fn list() -> Result<()> {
4915         let temp_dir = TempDir::new("list_test")?;
4916         let mut db = KeystoreDB::new(temp_dir.path(), None)?;
4917         static LIST_O_ENTRIES: &[(Domain, i64, &str)] = &[
4918             (Domain::APP, 1, "test1"),
4919             (Domain::APP, 1, "test2"),
4920             (Domain::APP, 1, "test3"),
4921             (Domain::APP, 1, "test4"),
4922             (Domain::APP, 1, "test5"),
4923             (Domain::APP, 1, "test6"),
4924             (Domain::APP, 1, "test7"),
4925             (Domain::APP, 2, "test1"),
4926             (Domain::APP, 2, "test2"),
4927             (Domain::APP, 2, "test3"),
4928             (Domain::APP, 2, "test4"),
4929             (Domain::APP, 2, "test5"),
4930             (Domain::APP, 2, "test6"),
4931             (Domain::APP, 2, "test8"),
4932             (Domain::SELINUX, 100, "test1"),
4933             (Domain::SELINUX, 100, "test2"),
4934             (Domain::SELINUX, 100, "test3"),
4935             (Domain::SELINUX, 100, "test4"),
4936             (Domain::SELINUX, 100, "test5"),
4937             (Domain::SELINUX, 100, "test6"),
4938             (Domain::SELINUX, 100, "test9"),
4939         ];
4940 
4941         let list_o_keys: Vec<(i64, i64)> = LIST_O_ENTRIES
4942             .iter()
4943             .map(|(domain, ns, alias)| {
4944                 let entry =
4945                     make_test_key_entry(&mut db, *domain, *ns, alias, None).unwrap_or_else(|e| {
4946                         panic!("Failed to insert {:?} {} {}. Error {:?}", domain, ns, alias, e)
4947                     });
4948                 (entry.id(), *ns)
4949             })
4950             .collect();
4951 
4952         for (domain, namespace) in
4953             &[(Domain::APP, 1i64), (Domain::APP, 2i64), (Domain::SELINUX, 100i64)]
4954         {
4955             let mut list_o_descriptors: Vec<KeyDescriptor> = LIST_O_ENTRIES
4956                 .iter()
4957                 .filter_map(|(domain, ns, alias)| match ns {
4958                     ns if *ns == *namespace => Some(KeyDescriptor {
4959                         domain: *domain,
4960                         nspace: *ns,
4961                         alias: Some(alias.to_string()),
4962                         blob: None,
4963                     }),
4964                     _ => None,
4965                 })
4966                 .collect();
4967             list_o_descriptors.sort();
4968             let mut list_result = db.list_past_alias(*domain, *namespace, KeyType::Client, None)?;
4969             list_result.sort();
4970             assert_eq!(list_o_descriptors, list_result);
4971 
4972             let mut list_o_ids: Vec<i64> = list_o_descriptors
4973                 .into_iter()
4974                 .map(|d| {
4975                     let (_, entry) = db
4976                         .load_key_entry(
4977                             &d,
4978                             KeyType::Client,
4979                             KeyEntryLoadBits::NONE,
4980                             *namespace as u32,
4981                             |_, _| Ok(()),
4982                         )
4983                         .unwrap();
4984                     entry.id()
4985                 })
4986                 .collect();
4987             list_o_ids.sort_unstable();
4988             let mut loaded_entries: Vec<i64> = list_o_keys
4989                 .iter()
4990                 .filter_map(|(id, ns)| match ns {
4991                     ns if *ns == *namespace => Some(*id),
4992                     _ => None,
4993                 })
4994                 .collect();
4995             loaded_entries.sort_unstable();
4996             assert_eq!(list_o_ids, loaded_entries);
4997         }
4998         assert_eq!(
4999             Vec::<KeyDescriptor>::new(),
5000             db.list_past_alias(Domain::SELINUX, 101, KeyType::Client, None)?
5001         );
5002 
5003         Ok(())
5004     }
5005 
5006     // Helpers
5007 
5008     // Checks that the given result is an error containing the given string.
check_result_is_error_containing_string<T>(result: Result<T>, target: &str)5009     fn check_result_is_error_containing_string<T>(result: Result<T>, target: &str) {
5010         let error_str = format!(
5011             "{:#?}",
5012             result.err().unwrap_or_else(|| panic!("Expected the error: {}", target))
5013         );
5014         assert!(
5015             error_str.contains(target),
5016             "The string \"{}\" should contain \"{}\"",
5017             error_str,
5018             target
5019         );
5020     }
5021 
5022     #[derive(Debug, PartialEq)]
5023     struct KeyEntryRow {
5024         id: i64,
5025         key_type: KeyType,
5026         domain: Option<Domain>,
5027         namespace: Option<i64>,
5028         alias: Option<String>,
5029         state: KeyLifeCycle,
5030         km_uuid: Option<Uuid>,
5031     }
5032 
get_keyentry(db: &KeystoreDB) -> Result<Vec<KeyEntryRow>>5033     fn get_keyentry(db: &KeystoreDB) -> Result<Vec<KeyEntryRow>> {
5034         db.conn
5035             .prepare("SELECT * FROM persistent.keyentry;")?
5036             .query_map(NO_PARAMS, |row| {
5037                 Ok(KeyEntryRow {
5038                     id: row.get(0)?,
5039                     key_type: row.get(1)?,
5040                     domain: row.get::<_, Option<_>>(2)?.map(Domain),
5041                     namespace: row.get(3)?,
5042                     alias: row.get(4)?,
5043                     state: row.get(5)?,
5044                     km_uuid: row.get(6)?,
5045                 })
5046             })?
5047             .map(|r| r.context("Could not read keyentry row."))
5048             .collect::<Result<Vec<_>>>()
5049     }
5050 
5051     struct RemoteProvValues {
5052         cert_chain: Vec<u8>,
5053         priv_key: Vec<u8>,
5054         batch_cert: Vec<u8>,
5055     }
5056 
load_attestation_key_pool( db: &mut KeystoreDB, expiration_date: i64, namespace: i64, base_byte: u8, ) -> Result<RemoteProvValues>5057     fn load_attestation_key_pool(
5058         db: &mut KeystoreDB,
5059         expiration_date: i64,
5060         namespace: i64,
5061         base_byte: u8,
5062     ) -> Result<RemoteProvValues> {
5063         let public_key: Vec<u8> = vec![base_byte, 0x02 * base_byte];
5064         let cert_chain: Vec<u8> = vec![0x03 * base_byte, 0x04 * base_byte];
5065         let priv_key: Vec<u8> = vec![0x05 * base_byte, 0x06 * base_byte];
5066         let raw_public_key: Vec<u8> = vec![0x0b * base_byte, 0x0c * base_byte];
5067         let batch_cert: Vec<u8> = vec![base_byte * 0x0d, base_byte * 0x0e];
5068         db.create_attestation_key_entry(&public_key, &raw_public_key, &priv_key, &KEYSTORE_UUID)?;
5069         db.store_signed_attestation_certificate_chain(
5070             &raw_public_key,
5071             &batch_cert,
5072             &cert_chain,
5073             expiration_date,
5074             &KEYSTORE_UUID,
5075         )?;
5076         db.assign_attestation_key(Domain::APP, namespace, &KEYSTORE_UUID)?;
5077         Ok(RemoteProvValues { cert_chain, priv_key, batch_cert })
5078     }
5079 
5080     // Note: The parameters and SecurityLevel associations are nonsensical. This
5081     // collection is only used to check if the parameters are preserved as expected by the
5082     // database.
make_test_params(max_usage_count: Option<i32>) -> Vec<KeyParameter>5083     fn make_test_params(max_usage_count: Option<i32>) -> Vec<KeyParameter> {
5084         let mut params = vec![
5085             KeyParameter::new(KeyParameterValue::Invalid, SecurityLevel::TRUSTED_ENVIRONMENT),
5086             KeyParameter::new(
5087                 KeyParameterValue::KeyPurpose(KeyPurpose::SIGN),
5088                 SecurityLevel::TRUSTED_ENVIRONMENT,
5089             ),
5090             KeyParameter::new(
5091                 KeyParameterValue::KeyPurpose(KeyPurpose::DECRYPT),
5092                 SecurityLevel::TRUSTED_ENVIRONMENT,
5093             ),
5094             KeyParameter::new(
5095                 KeyParameterValue::Algorithm(Algorithm::RSA),
5096                 SecurityLevel::TRUSTED_ENVIRONMENT,
5097             ),
5098             KeyParameter::new(KeyParameterValue::KeySize(1024), SecurityLevel::TRUSTED_ENVIRONMENT),
5099             KeyParameter::new(
5100                 KeyParameterValue::BlockMode(BlockMode::ECB),
5101                 SecurityLevel::TRUSTED_ENVIRONMENT,
5102             ),
5103             KeyParameter::new(
5104                 KeyParameterValue::BlockMode(BlockMode::GCM),
5105                 SecurityLevel::TRUSTED_ENVIRONMENT,
5106             ),
5107             KeyParameter::new(KeyParameterValue::Digest(Digest::NONE), SecurityLevel::STRONGBOX),
5108             KeyParameter::new(
5109                 KeyParameterValue::Digest(Digest::MD5),
5110                 SecurityLevel::TRUSTED_ENVIRONMENT,
5111             ),
5112             KeyParameter::new(
5113                 KeyParameterValue::Digest(Digest::SHA_2_224),
5114                 SecurityLevel::TRUSTED_ENVIRONMENT,
5115             ),
5116             KeyParameter::new(
5117                 KeyParameterValue::Digest(Digest::SHA_2_256),
5118                 SecurityLevel::STRONGBOX,
5119             ),
5120             KeyParameter::new(
5121                 KeyParameterValue::PaddingMode(PaddingMode::NONE),
5122                 SecurityLevel::TRUSTED_ENVIRONMENT,
5123             ),
5124             KeyParameter::new(
5125                 KeyParameterValue::PaddingMode(PaddingMode::RSA_OAEP),
5126                 SecurityLevel::TRUSTED_ENVIRONMENT,
5127             ),
5128             KeyParameter::new(
5129                 KeyParameterValue::PaddingMode(PaddingMode::RSA_PSS),
5130                 SecurityLevel::STRONGBOX,
5131             ),
5132             KeyParameter::new(
5133                 KeyParameterValue::PaddingMode(PaddingMode::RSA_PKCS1_1_5_SIGN),
5134                 SecurityLevel::TRUSTED_ENVIRONMENT,
5135             ),
5136             KeyParameter::new(KeyParameterValue::CallerNonce, SecurityLevel::TRUSTED_ENVIRONMENT),
5137             KeyParameter::new(KeyParameterValue::MinMacLength(256), SecurityLevel::STRONGBOX),
5138             KeyParameter::new(
5139                 KeyParameterValue::EcCurve(EcCurve::P_224),
5140                 SecurityLevel::TRUSTED_ENVIRONMENT,
5141             ),
5142             KeyParameter::new(KeyParameterValue::EcCurve(EcCurve::P_256), SecurityLevel::STRONGBOX),
5143             KeyParameter::new(
5144                 KeyParameterValue::EcCurve(EcCurve::P_384),
5145                 SecurityLevel::TRUSTED_ENVIRONMENT,
5146             ),
5147             KeyParameter::new(
5148                 KeyParameterValue::EcCurve(EcCurve::P_521),
5149                 SecurityLevel::TRUSTED_ENVIRONMENT,
5150             ),
5151             KeyParameter::new(
5152                 KeyParameterValue::RSAPublicExponent(3),
5153                 SecurityLevel::TRUSTED_ENVIRONMENT,
5154             ),
5155             KeyParameter::new(
5156                 KeyParameterValue::IncludeUniqueID,
5157                 SecurityLevel::TRUSTED_ENVIRONMENT,
5158             ),
5159             KeyParameter::new(KeyParameterValue::BootLoaderOnly, SecurityLevel::STRONGBOX),
5160             KeyParameter::new(KeyParameterValue::RollbackResistance, SecurityLevel::STRONGBOX),
5161             KeyParameter::new(
5162                 KeyParameterValue::ActiveDateTime(1234567890),
5163                 SecurityLevel::STRONGBOX,
5164             ),
5165             KeyParameter::new(
5166                 KeyParameterValue::OriginationExpireDateTime(1234567890),
5167                 SecurityLevel::TRUSTED_ENVIRONMENT,
5168             ),
5169             KeyParameter::new(
5170                 KeyParameterValue::UsageExpireDateTime(1234567890),
5171                 SecurityLevel::TRUSTED_ENVIRONMENT,
5172             ),
5173             KeyParameter::new(
5174                 KeyParameterValue::MinSecondsBetweenOps(1234567890),
5175                 SecurityLevel::TRUSTED_ENVIRONMENT,
5176             ),
5177             KeyParameter::new(
5178                 KeyParameterValue::MaxUsesPerBoot(1234567890),
5179                 SecurityLevel::TRUSTED_ENVIRONMENT,
5180             ),
5181             KeyParameter::new(KeyParameterValue::UserID(1), SecurityLevel::STRONGBOX),
5182             KeyParameter::new(KeyParameterValue::UserSecureID(42), SecurityLevel::STRONGBOX),
5183             KeyParameter::new(
5184                 KeyParameterValue::NoAuthRequired,
5185                 SecurityLevel::TRUSTED_ENVIRONMENT,
5186             ),
5187             KeyParameter::new(
5188                 KeyParameterValue::HardwareAuthenticatorType(HardwareAuthenticatorType::PASSWORD),
5189                 SecurityLevel::TRUSTED_ENVIRONMENT,
5190             ),
5191             KeyParameter::new(KeyParameterValue::AuthTimeout(1234567890), SecurityLevel::SOFTWARE),
5192             KeyParameter::new(KeyParameterValue::AllowWhileOnBody, SecurityLevel::SOFTWARE),
5193             KeyParameter::new(
5194                 KeyParameterValue::TrustedUserPresenceRequired,
5195                 SecurityLevel::TRUSTED_ENVIRONMENT,
5196             ),
5197             KeyParameter::new(
5198                 KeyParameterValue::TrustedConfirmationRequired,
5199                 SecurityLevel::TRUSTED_ENVIRONMENT,
5200             ),
5201             KeyParameter::new(
5202                 KeyParameterValue::UnlockedDeviceRequired,
5203                 SecurityLevel::TRUSTED_ENVIRONMENT,
5204             ),
5205             KeyParameter::new(
5206                 KeyParameterValue::ApplicationID(vec![1u8, 2u8, 3u8, 4u8]),
5207                 SecurityLevel::SOFTWARE,
5208             ),
5209             KeyParameter::new(
5210                 KeyParameterValue::ApplicationData(vec![4u8, 3u8, 2u8, 1u8]),
5211                 SecurityLevel::SOFTWARE,
5212             ),
5213             KeyParameter::new(
5214                 KeyParameterValue::CreationDateTime(12345677890),
5215                 SecurityLevel::SOFTWARE,
5216             ),
5217             KeyParameter::new(
5218                 KeyParameterValue::KeyOrigin(KeyOrigin::GENERATED),
5219                 SecurityLevel::TRUSTED_ENVIRONMENT,
5220             ),
5221             KeyParameter::new(
5222                 KeyParameterValue::RootOfTrust(vec![3u8, 2u8, 1u8, 4u8]),
5223                 SecurityLevel::TRUSTED_ENVIRONMENT,
5224             ),
5225             KeyParameter::new(KeyParameterValue::OSVersion(1), SecurityLevel::TRUSTED_ENVIRONMENT),
5226             KeyParameter::new(KeyParameterValue::OSPatchLevel(2), SecurityLevel::SOFTWARE),
5227             KeyParameter::new(
5228                 KeyParameterValue::UniqueID(vec![4u8, 3u8, 1u8, 2u8]),
5229                 SecurityLevel::SOFTWARE,
5230             ),
5231             KeyParameter::new(
5232                 KeyParameterValue::AttestationChallenge(vec![4u8, 3u8, 1u8, 2u8]),
5233                 SecurityLevel::TRUSTED_ENVIRONMENT,
5234             ),
5235             KeyParameter::new(
5236                 KeyParameterValue::AttestationApplicationID(vec![4u8, 3u8, 1u8, 2u8]),
5237                 SecurityLevel::TRUSTED_ENVIRONMENT,
5238             ),
5239             KeyParameter::new(
5240                 KeyParameterValue::AttestationIdBrand(vec![4u8, 3u8, 1u8, 2u8]),
5241                 SecurityLevel::TRUSTED_ENVIRONMENT,
5242             ),
5243             KeyParameter::new(
5244                 KeyParameterValue::AttestationIdDevice(vec![4u8, 3u8, 1u8, 2u8]),
5245                 SecurityLevel::TRUSTED_ENVIRONMENT,
5246             ),
5247             KeyParameter::new(
5248                 KeyParameterValue::AttestationIdProduct(vec![4u8, 3u8, 1u8, 2u8]),
5249                 SecurityLevel::TRUSTED_ENVIRONMENT,
5250             ),
5251             KeyParameter::new(
5252                 KeyParameterValue::AttestationIdSerial(vec![4u8, 3u8, 1u8, 2u8]),
5253                 SecurityLevel::TRUSTED_ENVIRONMENT,
5254             ),
5255             KeyParameter::new(
5256                 KeyParameterValue::AttestationIdIMEI(vec![4u8, 3u8, 1u8, 2u8]),
5257                 SecurityLevel::TRUSTED_ENVIRONMENT,
5258             ),
5259             KeyParameter::new(
5260                 KeyParameterValue::AttestationIdSecondIMEI(vec![4u8, 3u8, 1u8, 2u8]),
5261                 SecurityLevel::TRUSTED_ENVIRONMENT,
5262             ),
5263             KeyParameter::new(
5264                 KeyParameterValue::AttestationIdMEID(vec![4u8, 3u8, 1u8, 2u8]),
5265                 SecurityLevel::TRUSTED_ENVIRONMENT,
5266             ),
5267             KeyParameter::new(
5268                 KeyParameterValue::AttestationIdManufacturer(vec![4u8, 3u8, 1u8, 2u8]),
5269                 SecurityLevel::TRUSTED_ENVIRONMENT,
5270             ),
5271             KeyParameter::new(
5272                 KeyParameterValue::AttestationIdModel(vec![4u8, 3u8, 1u8, 2u8]),
5273                 SecurityLevel::TRUSTED_ENVIRONMENT,
5274             ),
5275             KeyParameter::new(
5276                 KeyParameterValue::VendorPatchLevel(3),
5277                 SecurityLevel::TRUSTED_ENVIRONMENT,
5278             ),
5279             KeyParameter::new(
5280                 KeyParameterValue::BootPatchLevel(4),
5281                 SecurityLevel::TRUSTED_ENVIRONMENT,
5282             ),
5283             KeyParameter::new(
5284                 KeyParameterValue::AssociatedData(vec![4u8, 3u8, 1u8, 2u8]),
5285                 SecurityLevel::TRUSTED_ENVIRONMENT,
5286             ),
5287             KeyParameter::new(
5288                 KeyParameterValue::Nonce(vec![4u8, 3u8, 1u8, 2u8]),
5289                 SecurityLevel::TRUSTED_ENVIRONMENT,
5290             ),
5291             KeyParameter::new(
5292                 KeyParameterValue::MacLength(256),
5293                 SecurityLevel::TRUSTED_ENVIRONMENT,
5294             ),
5295             KeyParameter::new(
5296                 KeyParameterValue::ResetSinceIdRotation,
5297                 SecurityLevel::TRUSTED_ENVIRONMENT,
5298             ),
5299             KeyParameter::new(
5300                 KeyParameterValue::ConfirmationToken(vec![5u8, 5u8, 5u8, 5u8]),
5301                 SecurityLevel::TRUSTED_ENVIRONMENT,
5302             ),
5303         ];
5304         if let Some(value) = max_usage_count {
5305             params.push(KeyParameter::new(
5306                 KeyParameterValue::UsageCountLimit(value),
5307                 SecurityLevel::SOFTWARE,
5308             ));
5309         }
5310         params
5311     }
5312 
make_test_key_entry( db: &mut KeystoreDB, domain: Domain, namespace: i64, alias: &str, max_usage_count: Option<i32>, ) -> Result<KeyIdGuard>5313     fn make_test_key_entry(
5314         db: &mut KeystoreDB,
5315         domain: Domain,
5316         namespace: i64,
5317         alias: &str,
5318         max_usage_count: Option<i32>,
5319     ) -> Result<KeyIdGuard> {
5320         let key_id = db.create_key_entry(&domain, &namespace, KeyType::Client, &KEYSTORE_UUID)?;
5321         let mut blob_metadata = BlobMetaData::new();
5322         blob_metadata.add(BlobMetaEntry::EncryptedBy(EncryptedBy::Password));
5323         blob_metadata.add(BlobMetaEntry::Salt(vec![1, 2, 3]));
5324         blob_metadata.add(BlobMetaEntry::Iv(vec![2, 3, 1]));
5325         blob_metadata.add(BlobMetaEntry::AeadTag(vec![3, 1, 2]));
5326         blob_metadata.add(BlobMetaEntry::KmUuid(KEYSTORE_UUID));
5327 
5328         db.set_blob(
5329             &key_id,
5330             SubComponentType::KEY_BLOB,
5331             Some(TEST_KEY_BLOB),
5332             Some(&blob_metadata),
5333         )?;
5334         db.set_blob(&key_id, SubComponentType::CERT, Some(TEST_CERT_BLOB), None)?;
5335         db.set_blob(&key_id, SubComponentType::CERT_CHAIN, Some(TEST_CERT_CHAIN_BLOB), None)?;
5336 
5337         let params = make_test_params(max_usage_count);
5338         db.insert_keyparameter(&key_id, &params)?;
5339 
5340         let mut metadata = KeyMetaData::new();
5341         metadata.add(KeyMetaEntry::CreationDate(DateTime::from_millis_epoch(123456789)));
5342         db.insert_key_metadata(&key_id, &metadata)?;
5343         rebind_alias(db, &key_id, alias, domain, namespace)?;
5344         Ok(key_id)
5345     }
5346 
make_test_key_entry_test_vector(key_id: i64, max_usage_count: Option<i32>) -> KeyEntry5347     fn make_test_key_entry_test_vector(key_id: i64, max_usage_count: Option<i32>) -> KeyEntry {
5348         let params = make_test_params(max_usage_count);
5349 
5350         let mut blob_metadata = BlobMetaData::new();
5351         blob_metadata.add(BlobMetaEntry::EncryptedBy(EncryptedBy::Password));
5352         blob_metadata.add(BlobMetaEntry::Salt(vec![1, 2, 3]));
5353         blob_metadata.add(BlobMetaEntry::Iv(vec![2, 3, 1]));
5354         blob_metadata.add(BlobMetaEntry::AeadTag(vec![3, 1, 2]));
5355         blob_metadata.add(BlobMetaEntry::KmUuid(KEYSTORE_UUID));
5356 
5357         let mut metadata = KeyMetaData::new();
5358         metadata.add(KeyMetaEntry::CreationDate(DateTime::from_millis_epoch(123456789)));
5359 
5360         KeyEntry {
5361             id: key_id,
5362             key_blob_info: Some((TEST_KEY_BLOB.to_vec(), blob_metadata)),
5363             cert: Some(TEST_CERT_BLOB.to_vec()),
5364             cert_chain: Some(TEST_CERT_CHAIN_BLOB.to_vec()),
5365             km_uuid: KEYSTORE_UUID,
5366             parameters: params,
5367             metadata,
5368             pure_cert: false,
5369         }
5370     }
5371 
make_bootlevel_key_entry( db: &mut KeystoreDB, domain: Domain, namespace: i64, alias: &str, logical_only: bool, ) -> Result<KeyIdGuard>5372     fn make_bootlevel_key_entry(
5373         db: &mut KeystoreDB,
5374         domain: Domain,
5375         namespace: i64,
5376         alias: &str,
5377         logical_only: bool,
5378     ) -> Result<KeyIdGuard> {
5379         let key_id = db.create_key_entry(&domain, &namespace, KeyType::Client, &KEYSTORE_UUID)?;
5380         let mut blob_metadata = BlobMetaData::new();
5381         if !logical_only {
5382             blob_metadata.add(BlobMetaEntry::MaxBootLevel(3));
5383         }
5384         blob_metadata.add(BlobMetaEntry::KmUuid(KEYSTORE_UUID));
5385 
5386         db.set_blob(
5387             &key_id,
5388             SubComponentType::KEY_BLOB,
5389             Some(TEST_KEY_BLOB),
5390             Some(&blob_metadata),
5391         )?;
5392         db.set_blob(&key_id, SubComponentType::CERT, Some(TEST_CERT_BLOB), None)?;
5393         db.set_blob(&key_id, SubComponentType::CERT_CHAIN, Some(TEST_CERT_CHAIN_BLOB), None)?;
5394 
5395         let mut params = make_test_params(None);
5396         params.push(KeyParameter::new(KeyParameterValue::MaxBootLevel(3), SecurityLevel::KEYSTORE));
5397 
5398         db.insert_keyparameter(&key_id, &params)?;
5399 
5400         let mut metadata = KeyMetaData::new();
5401         metadata.add(KeyMetaEntry::CreationDate(DateTime::from_millis_epoch(123456789)));
5402         db.insert_key_metadata(&key_id, &metadata)?;
5403         rebind_alias(db, &key_id, alias, domain, namespace)?;
5404         Ok(key_id)
5405     }
5406 
make_bootlevel_test_key_entry_test_vector(key_id: i64, logical_only: bool) -> KeyEntry5407     fn make_bootlevel_test_key_entry_test_vector(key_id: i64, logical_only: bool) -> KeyEntry {
5408         let mut params = make_test_params(None);
5409         params.push(KeyParameter::new(KeyParameterValue::MaxBootLevel(3), SecurityLevel::KEYSTORE));
5410 
5411         let mut blob_metadata = BlobMetaData::new();
5412         if !logical_only {
5413             blob_metadata.add(BlobMetaEntry::MaxBootLevel(3));
5414         }
5415         blob_metadata.add(BlobMetaEntry::KmUuid(KEYSTORE_UUID));
5416 
5417         let mut metadata = KeyMetaData::new();
5418         metadata.add(KeyMetaEntry::CreationDate(DateTime::from_millis_epoch(123456789)));
5419 
5420         KeyEntry {
5421             id: key_id,
5422             key_blob_info: Some((TEST_KEY_BLOB.to_vec(), blob_metadata)),
5423             cert: Some(TEST_CERT_BLOB.to_vec()),
5424             cert_chain: Some(TEST_CERT_CHAIN_BLOB.to_vec()),
5425             km_uuid: KEYSTORE_UUID,
5426             parameters: params,
5427             metadata,
5428             pure_cert: false,
5429         }
5430     }
5431 
debug_dump_keyentry_table(db: &mut KeystoreDB) -> Result<()>5432     fn debug_dump_keyentry_table(db: &mut KeystoreDB) -> Result<()> {
5433         let mut stmt = db.conn.prepare(
5434             "SELECT id, key_type, domain, namespace, alias, state, km_uuid FROM persistent.keyentry;",
5435         )?;
5436         let rows = stmt.query_map::<(i64, KeyType, i32, i64, String, KeyLifeCycle, Uuid), _, _>(
5437             NO_PARAMS,
5438             |row| {
5439                 Ok((
5440                     row.get(0)?,
5441                     row.get(1)?,
5442                     row.get(2)?,
5443                     row.get(3)?,
5444                     row.get(4)?,
5445                     row.get(5)?,
5446                     row.get(6)?,
5447                 ))
5448             },
5449         )?;
5450 
5451         println!("Key entry table rows:");
5452         for r in rows {
5453             let (id, key_type, domain, namespace, alias, state, km_uuid) = r.unwrap();
5454             println!(
5455                 "    id: {} KeyType: {:?} Domain: {} Namespace: {} Alias: {} State: {:?} KmUuid: {:?}",
5456                 id, key_type, domain, namespace, alias, state, km_uuid
5457             );
5458         }
5459         Ok(())
5460     }
5461 
debug_dump_grant_table(db: &mut KeystoreDB) -> Result<()>5462     fn debug_dump_grant_table(db: &mut KeystoreDB) -> Result<()> {
5463         let mut stmt = db
5464             .conn
5465             .prepare("SELECT id, grantee, keyentryid, access_vector FROM persistent.grant;")?;
5466         let rows = stmt.query_map::<(i64, i64, i64, i64), _, _>(NO_PARAMS, |row| {
5467             Ok((row.get(0)?, row.get(1)?, row.get(2)?, row.get(3)?))
5468         })?;
5469 
5470         println!("Grant table rows:");
5471         for r in rows {
5472             let (id, gt, ki, av) = r.unwrap();
5473             println!("    id: {} grantee: {} key_id: {} access_vector: {}", id, gt, ki, av);
5474         }
5475         Ok(())
5476     }
5477 
5478     // Use a custom random number generator that repeats each number once.
5479     // This allows us to test repeated elements.
5480 
5481     thread_local! {
5482         static RANDOM_COUNTER: RefCell<i64> = RefCell::new(0);
5483     }
5484 
reset_random()5485     fn reset_random() {
5486         RANDOM_COUNTER.with(|counter| {
5487             *counter.borrow_mut() = 0;
5488         })
5489     }
5490 
random() -> i645491     pub fn random() -> i64 {
5492         RANDOM_COUNTER.with(|counter| {
5493             let result = *counter.borrow() / 2;
5494             *counter.borrow_mut() += 1;
5495             result
5496         })
5497     }
5498 
5499     #[test]
test_last_off_body() -> Result<()>5500     fn test_last_off_body() -> Result<()> {
5501         let mut db = new_test_db()?;
5502         db.insert_last_off_body(MonotonicRawTime::now());
5503         let tx = db.conn.transaction_with_behavior(TransactionBehavior::Immediate)?;
5504         tx.commit()?;
5505         let last_off_body_1 = db.get_last_off_body();
5506         let one_second = Duration::from_secs(1);
5507         thread::sleep(one_second);
5508         db.update_last_off_body(MonotonicRawTime::now());
5509         let tx2 = db.conn.transaction_with_behavior(TransactionBehavior::Immediate)?;
5510         tx2.commit()?;
5511         let last_off_body_2 = db.get_last_off_body();
5512         assert!(last_off_body_1 < last_off_body_2);
5513         Ok(())
5514     }
5515 
5516     #[test]
test_unbind_keys_for_user() -> Result<()>5517     fn test_unbind_keys_for_user() -> Result<()> {
5518         let mut db = new_test_db()?;
5519         db.unbind_keys_for_user(1, false)?;
5520 
5521         make_test_key_entry(&mut db, Domain::APP, 210000, TEST_ALIAS, None)?;
5522         make_test_key_entry(&mut db, Domain::APP, 110000, TEST_ALIAS, None)?;
5523         db.unbind_keys_for_user(2, false)?;
5524 
5525         assert_eq!(1, db.list_past_alias(Domain::APP, 110000, KeyType::Client, None)?.len());
5526         assert_eq!(0, db.list_past_alias(Domain::APP, 210000, KeyType::Client, None)?.len());
5527 
5528         db.unbind_keys_for_user(1, true)?;
5529         assert_eq!(0, db.list_past_alias(Domain::APP, 110000, KeyType::Client, None)?.len());
5530 
5531         Ok(())
5532     }
5533 
5534     #[test]
test_unbind_keys_for_user_removes_superkeys() -> Result<()>5535     fn test_unbind_keys_for_user_removes_superkeys() -> Result<()> {
5536         let mut db = new_test_db()?;
5537         let super_key = keystore2_crypto::generate_aes256_key()?;
5538         let pw: keystore2_crypto::Password = (&b"xyzabc"[..]).into();
5539         let (encrypted_super_key, metadata) =
5540             SuperKeyManager::encrypt_with_password(&super_key, &pw)?;
5541 
5542         let key_name_enc = SuperKeyType {
5543             alias: "test_super_key_1",
5544             algorithm: SuperEncryptionAlgorithm::Aes256Gcm,
5545         };
5546 
5547         let key_name_nonenc = SuperKeyType {
5548             alias: "test_super_key_2",
5549             algorithm: SuperEncryptionAlgorithm::Aes256Gcm,
5550         };
5551 
5552         // Install two super keys.
5553         db.store_super_key(
5554             1,
5555             &key_name_nonenc,
5556             &super_key,
5557             &BlobMetaData::new(),
5558             &KeyMetaData::new(),
5559         )?;
5560         db.store_super_key(1, &key_name_enc, &encrypted_super_key, &metadata, &KeyMetaData::new())?;
5561 
5562         // Check that both can be found in the database.
5563         assert!(db.load_super_key(&key_name_enc, 1)?.is_some());
5564         assert!(db.load_super_key(&key_name_nonenc, 1)?.is_some());
5565 
5566         // Install the same keys for a different user.
5567         db.store_super_key(
5568             2,
5569             &key_name_nonenc,
5570             &super_key,
5571             &BlobMetaData::new(),
5572             &KeyMetaData::new(),
5573         )?;
5574         db.store_super_key(2, &key_name_enc, &encrypted_super_key, &metadata, &KeyMetaData::new())?;
5575 
5576         // Check that the second pair of keys can be found in the database.
5577         assert!(db.load_super_key(&key_name_enc, 2)?.is_some());
5578         assert!(db.load_super_key(&key_name_nonenc, 2)?.is_some());
5579 
5580         // Delete only encrypted keys.
5581         db.unbind_keys_for_user(1, true)?;
5582 
5583         // The encrypted superkey should be gone now.
5584         assert!(db.load_super_key(&key_name_enc, 1)?.is_none());
5585         assert!(db.load_super_key(&key_name_nonenc, 1)?.is_some());
5586 
5587         // Reinsert the encrypted key.
5588         db.store_super_key(1, &key_name_enc, &encrypted_super_key, &metadata, &KeyMetaData::new())?;
5589 
5590         // Check that both can be found in the database, again..
5591         assert!(db.load_super_key(&key_name_enc, 1)?.is_some());
5592         assert!(db.load_super_key(&key_name_nonenc, 1)?.is_some());
5593 
5594         // Delete all even unencrypted keys.
5595         db.unbind_keys_for_user(1, false)?;
5596 
5597         // Both should be gone now.
5598         assert!(db.load_super_key(&key_name_enc, 1)?.is_none());
5599         assert!(db.load_super_key(&key_name_nonenc, 1)?.is_none());
5600 
5601         // Check that the second pair of keys was untouched.
5602         assert!(db.load_super_key(&key_name_enc, 2)?.is_some());
5603         assert!(db.load_super_key(&key_name_nonenc, 2)?.is_some());
5604 
5605         Ok(())
5606     }
5607 
5608     #[test]
test_store_super_key() -> Result<()>5609     fn test_store_super_key() -> Result<()> {
5610         let mut db = new_test_db()?;
5611         let pw: keystore2_crypto::Password = (&b"xyzabc"[..]).into();
5612         let super_key = keystore2_crypto::generate_aes256_key()?;
5613         let secret_bytes = b"keystore2 is great.";
5614         let (encrypted_secret, iv, tag) =
5615             keystore2_crypto::aes_gcm_encrypt(secret_bytes, &super_key)?;
5616 
5617         let (encrypted_super_key, metadata) =
5618             SuperKeyManager::encrypt_with_password(&super_key, &pw)?;
5619         db.store_super_key(
5620             1,
5621             &USER_SUPER_KEY,
5622             &encrypted_super_key,
5623             &metadata,
5624             &KeyMetaData::new(),
5625         )?;
5626 
5627         // Check if super key exists.
5628         assert!(db.key_exists(Domain::APP, 1, USER_SUPER_KEY.alias, KeyType::Super)?);
5629 
5630         let (_, key_entry) = db.load_super_key(&USER_SUPER_KEY, 1)?.unwrap();
5631         let loaded_super_key = SuperKeyManager::extract_super_key_from_key_entry(
5632             USER_SUPER_KEY.algorithm,
5633             key_entry,
5634             &pw,
5635             None,
5636         )?;
5637 
5638         let decrypted_secret_bytes = loaded_super_key.decrypt(&encrypted_secret, &iv, &tag)?;
5639         assert_eq!(secret_bytes, &*decrypted_secret_bytes);
5640 
5641         Ok(())
5642     }
5643 
get_valid_statsd_storage_types() -> Vec<MetricsStorage>5644     fn get_valid_statsd_storage_types() -> Vec<MetricsStorage> {
5645         vec![
5646             MetricsStorage::KEY_ENTRY,
5647             MetricsStorage::KEY_ENTRY_ID_INDEX,
5648             MetricsStorage::KEY_ENTRY_DOMAIN_NAMESPACE_INDEX,
5649             MetricsStorage::BLOB_ENTRY,
5650             MetricsStorage::BLOB_ENTRY_KEY_ENTRY_ID_INDEX,
5651             MetricsStorage::KEY_PARAMETER,
5652             MetricsStorage::KEY_PARAMETER_KEY_ENTRY_ID_INDEX,
5653             MetricsStorage::KEY_METADATA,
5654             MetricsStorage::KEY_METADATA_KEY_ENTRY_ID_INDEX,
5655             MetricsStorage::GRANT,
5656             MetricsStorage::AUTH_TOKEN,
5657             MetricsStorage::BLOB_METADATA,
5658             MetricsStorage::BLOB_METADATA_BLOB_ENTRY_ID_INDEX,
5659         ]
5660     }
5661 
5662     /// Perform a simple check to ensure that we can query all the storage types
5663     /// that are supported by the DB. Check for reasonable values.
5664     #[test]
test_query_all_valid_table_sizes() -> Result<()>5665     fn test_query_all_valid_table_sizes() -> Result<()> {
5666         const PAGE_SIZE: i32 = 4096;
5667 
5668         let mut db = new_test_db()?;
5669 
5670         for t in get_valid_statsd_storage_types() {
5671             let stat = db.get_storage_stat(t)?;
5672             // AuthToken can be less than a page since it's in a btree, not sqlite
5673             // TODO(b/187474736) stop using if-let here
5674             if let MetricsStorage::AUTH_TOKEN = t {
5675             } else {
5676                 assert!(stat.size >= PAGE_SIZE);
5677             }
5678             assert!(stat.size >= stat.unused_size);
5679         }
5680 
5681         Ok(())
5682     }
5683 
get_storage_stats_map(db: &mut KeystoreDB) -> BTreeMap<i32, StorageStats>5684     fn get_storage_stats_map(db: &mut KeystoreDB) -> BTreeMap<i32, StorageStats> {
5685         get_valid_statsd_storage_types()
5686             .into_iter()
5687             .map(|t| (t.0, db.get_storage_stat(t).unwrap()))
5688             .collect()
5689     }
5690 
assert_storage_increased( db: &mut KeystoreDB, increased_storage_types: Vec<MetricsStorage>, baseline: &mut BTreeMap<i32, StorageStats>, )5691     fn assert_storage_increased(
5692         db: &mut KeystoreDB,
5693         increased_storage_types: Vec<MetricsStorage>,
5694         baseline: &mut BTreeMap<i32, StorageStats>,
5695     ) {
5696         for storage in increased_storage_types {
5697             // Verify the expected storage increased.
5698             let new = db.get_storage_stat(storage).unwrap();
5699             let storage = storage;
5700             let old = &baseline[&storage.0];
5701             assert!(new.size >= old.size, "{}: {} >= {}", storage.0, new.size, old.size);
5702             assert!(
5703                 new.unused_size <= old.unused_size,
5704                 "{}: {} <= {}",
5705                 storage.0,
5706                 new.unused_size,
5707                 old.unused_size
5708             );
5709 
5710             // Update the baseline with the new value so that it succeeds in the
5711             // later comparison.
5712             baseline.insert(storage.0, new);
5713         }
5714 
5715         // Get an updated map of the storage and verify there were no unexpected changes.
5716         let updated_stats = get_storage_stats_map(db);
5717         assert_eq!(updated_stats.len(), baseline.len());
5718 
5719         for &k in baseline.keys() {
5720             let stringify = |map: &BTreeMap<i32, StorageStats>| -> String {
5721                 let mut s = String::new();
5722                 for &k in map.keys() {
5723                     writeln!(&mut s, "  {}: {}, {}", &k, map[&k].size, map[&k].unused_size)
5724                         .expect("string concat failed");
5725                 }
5726                 s
5727             };
5728 
5729             assert!(
5730                 updated_stats[&k].size == baseline[&k].size
5731                     && updated_stats[&k].unused_size == baseline[&k].unused_size,
5732                 "updated_stats:\n{}\nbaseline:\n{}",
5733                 stringify(&updated_stats),
5734                 stringify(baseline)
5735             );
5736         }
5737     }
5738 
5739     #[test]
test_verify_key_table_size_reporting() -> Result<()>5740     fn test_verify_key_table_size_reporting() -> Result<()> {
5741         let mut db = new_test_db()?;
5742         let mut working_stats = get_storage_stats_map(&mut db);
5743 
5744         let key_id = db.create_key_entry(&Domain::APP, &42, KeyType::Client, &KEYSTORE_UUID)?;
5745         assert_storage_increased(
5746             &mut db,
5747             vec![
5748                 MetricsStorage::KEY_ENTRY,
5749                 MetricsStorage::KEY_ENTRY_ID_INDEX,
5750                 MetricsStorage::KEY_ENTRY_DOMAIN_NAMESPACE_INDEX,
5751             ],
5752             &mut working_stats,
5753         );
5754 
5755         let mut blob_metadata = BlobMetaData::new();
5756         blob_metadata.add(BlobMetaEntry::EncryptedBy(EncryptedBy::Password));
5757         db.set_blob(&key_id, SubComponentType::KEY_BLOB, Some(TEST_KEY_BLOB), None)?;
5758         assert_storage_increased(
5759             &mut db,
5760             vec![
5761                 MetricsStorage::BLOB_ENTRY,
5762                 MetricsStorage::BLOB_ENTRY_KEY_ENTRY_ID_INDEX,
5763                 MetricsStorage::BLOB_METADATA,
5764                 MetricsStorage::BLOB_METADATA_BLOB_ENTRY_ID_INDEX,
5765             ],
5766             &mut working_stats,
5767         );
5768 
5769         let params = make_test_params(None);
5770         db.insert_keyparameter(&key_id, &params)?;
5771         assert_storage_increased(
5772             &mut db,
5773             vec![MetricsStorage::KEY_PARAMETER, MetricsStorage::KEY_PARAMETER_KEY_ENTRY_ID_INDEX],
5774             &mut working_stats,
5775         );
5776 
5777         let mut metadata = KeyMetaData::new();
5778         metadata.add(KeyMetaEntry::CreationDate(DateTime::from_millis_epoch(123456789)));
5779         db.insert_key_metadata(&key_id, &metadata)?;
5780         assert_storage_increased(
5781             &mut db,
5782             vec![MetricsStorage::KEY_METADATA, MetricsStorage::KEY_METADATA_KEY_ENTRY_ID_INDEX],
5783             &mut working_stats,
5784         );
5785 
5786         let mut sum = 0;
5787         for stat in working_stats.values() {
5788             sum += stat.size;
5789         }
5790         let total = db.get_storage_stat(MetricsStorage::DATABASE)?.size;
5791         assert!(sum <= total, "Expected sum <= total. sum: {}, total: {}", sum, total);
5792 
5793         Ok(())
5794     }
5795 
5796     #[test]
test_verify_auth_table_size_reporting() -> Result<()>5797     fn test_verify_auth_table_size_reporting() -> Result<()> {
5798         let mut db = new_test_db()?;
5799         let mut working_stats = get_storage_stats_map(&mut db);
5800         db.insert_auth_token(&HardwareAuthToken {
5801             challenge: 123,
5802             userId: 456,
5803             authenticatorId: 789,
5804             authenticatorType: kmhw_authenticator_type::ANY,
5805             timestamp: Timestamp { milliSeconds: 10 },
5806             mac: b"mac".to_vec(),
5807         });
5808         assert_storage_increased(&mut db, vec![MetricsStorage::AUTH_TOKEN], &mut working_stats);
5809         Ok(())
5810     }
5811 
5812     #[test]
test_verify_grant_table_size_reporting() -> Result<()>5813     fn test_verify_grant_table_size_reporting() -> Result<()> {
5814         const OWNER: i64 = 1;
5815         let mut db = new_test_db()?;
5816         make_test_key_entry(&mut db, Domain::APP, OWNER, TEST_ALIAS, None)?;
5817 
5818         let mut working_stats = get_storage_stats_map(&mut db);
5819         db.grant(
5820             &KeyDescriptor {
5821                 domain: Domain::APP,
5822                 nspace: 0,
5823                 alias: Some(TEST_ALIAS.to_string()),
5824                 blob: None,
5825             },
5826             OWNER as u32,
5827             123,
5828             key_perm_set![KeyPerm::Use],
5829             |_, _| Ok(()),
5830         )?;
5831 
5832         assert_storage_increased(&mut db, vec![MetricsStorage::GRANT], &mut working_stats);
5833 
5834         Ok(())
5835     }
5836 
5837     #[test]
find_auth_token_entry_returns_latest() -> Result<()>5838     fn find_auth_token_entry_returns_latest() -> Result<()> {
5839         let mut db = new_test_db()?;
5840         db.insert_auth_token(&HardwareAuthToken {
5841             challenge: 123,
5842             userId: 456,
5843             authenticatorId: 789,
5844             authenticatorType: kmhw_authenticator_type::ANY,
5845             timestamp: Timestamp { milliSeconds: 10 },
5846             mac: b"mac0".to_vec(),
5847         });
5848         std::thread::sleep(std::time::Duration::from_millis(1));
5849         db.insert_auth_token(&HardwareAuthToken {
5850             challenge: 123,
5851             userId: 457,
5852             authenticatorId: 789,
5853             authenticatorType: kmhw_authenticator_type::ANY,
5854             timestamp: Timestamp { milliSeconds: 12 },
5855             mac: b"mac1".to_vec(),
5856         });
5857         std::thread::sleep(std::time::Duration::from_millis(1));
5858         db.insert_auth_token(&HardwareAuthToken {
5859             challenge: 123,
5860             userId: 458,
5861             authenticatorId: 789,
5862             authenticatorType: kmhw_authenticator_type::ANY,
5863             timestamp: Timestamp { milliSeconds: 3 },
5864             mac: b"mac2".to_vec(),
5865         });
5866         // All three entries are in the database
5867         assert_eq!(db.perboot.auth_tokens_len(), 3);
5868         // It selected the most recent timestamp
5869         assert_eq!(db.find_auth_token_entry(|_| true).unwrap().0.auth_token.mac, b"mac2".to_vec());
5870         Ok(())
5871     }
5872 
5873     #[test]
test_load_key_descriptor() -> Result<()>5874     fn test_load_key_descriptor() -> Result<()> {
5875         let mut db = new_test_db()?;
5876         let key_id = make_test_key_entry(&mut db, Domain::APP, 1, TEST_ALIAS, None)?.0;
5877 
5878         let key = db.load_key_descriptor(key_id)?.unwrap();
5879 
5880         assert_eq!(key.domain, Domain::APP);
5881         assert_eq!(key.nspace, 1);
5882         assert_eq!(key.alias, Some(TEST_ALIAS.to_string()));
5883 
5884         // No such id
5885         assert_eq!(db.load_key_descriptor(key_id + 1)?, None);
5886         Ok(())
5887     }
5888 }
5889