1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 // Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11
12 #ifndef EIGEN_SPARSE_LU_H
13 #define EIGEN_SPARSE_LU_H
14
15 namespace Eigen {
16
17 template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::StorageIndex> > class SparseLU;
18 template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
19 template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
20
21 template <bool Conjugate,class SparseLUType>
22 class SparseLUTransposeView : public SparseSolverBase<SparseLUTransposeView<Conjugate,SparseLUType> >
23 {
24 protected:
25 typedef SparseSolverBase<SparseLUTransposeView<Conjugate,SparseLUType> > APIBase;
26 using APIBase::m_isInitialized;
27 public:
28 typedef typename SparseLUType::Scalar Scalar;
29 typedef typename SparseLUType::StorageIndex StorageIndex;
30 typedef typename SparseLUType::MatrixType MatrixType;
31 typedef typename SparseLUType::OrderingType OrderingType;
32
33 enum {
34 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
35 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
36 };
37
SparseLUTransposeView()38 SparseLUTransposeView() : m_sparseLU(NULL) {}
SparseLUTransposeView(const SparseLUTransposeView & view)39 SparseLUTransposeView(const SparseLUTransposeView& view) {
40 this->m_sparseLU = view.m_sparseLU;
41 }
setIsInitialized(const bool isInitialized)42 void setIsInitialized(const bool isInitialized) {this->m_isInitialized = isInitialized;}
setSparseLU(SparseLUType * sparseLU)43 void setSparseLU(SparseLUType* sparseLU) {m_sparseLU = sparseLU;}
44 using APIBase::_solve_impl;
45 template<typename Rhs, typename Dest>
_solve_impl(const MatrixBase<Rhs> & B,MatrixBase<Dest> & X_base)46 bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
47 {
48 Dest& X(X_base.derived());
49 eigen_assert(m_sparseLU->info() == Success && "The matrix should be factorized first");
50 EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
51 THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
52
53
54 // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
55 for(Index j = 0; j < B.cols(); ++j){
56 X.col(j) = m_sparseLU->colsPermutation() * B.const_cast_derived().col(j);
57 }
58 //Forward substitution with transposed or adjoint of U
59 m_sparseLU->matrixU().template solveTransposedInPlace<Conjugate>(X);
60
61 //Backward substitution with transposed or adjoint of L
62 m_sparseLU->matrixL().template solveTransposedInPlace<Conjugate>(X);
63
64 // Permute back the solution
65 for (Index j = 0; j < B.cols(); ++j)
66 X.col(j) = m_sparseLU->rowsPermutation().transpose() * X.col(j);
67 return true;
68 }
rows()69 inline Index rows() const { return m_sparseLU->rows(); }
cols()70 inline Index cols() const { return m_sparseLU->cols(); }
71
72 private:
73 SparseLUType *m_sparseLU;
74 SparseLUTransposeView& operator=(const SparseLUTransposeView&);
75 };
76
77
78 /** \ingroup SparseLU_Module
79 * \class SparseLU
80 *
81 * \brief Sparse supernodal LU factorization for general matrices
82 *
83 * This class implements the supernodal LU factorization for general matrices.
84 * It uses the main techniques from the sequential SuperLU package
85 * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
86 * and complex arithmetic with single and double precision, depending on the
87 * scalar type of your input matrix.
88 * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
89 * It benefits directly from the built-in high-performant Eigen BLAS routines.
90 * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
91 * enable a better optimization from the compiler. For best performance,
92 * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
93 *
94 * An important parameter of this class is the ordering method. It is used to reorder the columns
95 * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
96 * numerical factorization. The cheapest method available is COLAMD.
97 * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
98 * built-in and external ordering methods.
99 *
100 * Simple example with key steps
101 * \code
102 * VectorXd x(n), b(n);
103 * SparseMatrix<double> A;
104 * SparseLU<SparseMatrix<double>, COLAMDOrdering<int> > solver;
105 * // fill A and b;
106 * // Compute the ordering permutation vector from the structural pattern of A
107 * solver.analyzePattern(A);
108 * // Compute the numerical factorization
109 * solver.factorize(A);
110 * //Use the factors to solve the linear system
111 * x = solver.solve(b);
112 * \endcode
113 *
114 * \warning The input matrix A should be in a \b compressed and \b column-major form.
115 * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
116 *
117 * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
118 * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
119 * If this is the case for your matrices, you can try the basic scaling method at
120 * "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
121 *
122 * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
123 * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
124 *
125 * \implsparsesolverconcept
126 *
127 * \sa \ref TutorialSparseSolverConcept
128 * \sa \ref OrderingMethods_Module
129 */
130 template <typename _MatrixType, typename _OrderingType>
131 class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >, public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::StorageIndex>
132 {
133 protected:
134 typedef SparseSolverBase<SparseLU<_MatrixType,_OrderingType> > APIBase;
135 using APIBase::m_isInitialized;
136 public:
137 using APIBase::_solve_impl;
138
139 typedef _MatrixType MatrixType;
140 typedef _OrderingType OrderingType;
141 typedef typename MatrixType::Scalar Scalar;
142 typedef typename MatrixType::RealScalar RealScalar;
143 typedef typename MatrixType::StorageIndex StorageIndex;
144 typedef SparseMatrix<Scalar,ColMajor,StorageIndex> NCMatrix;
145 typedef internal::MappedSuperNodalMatrix<Scalar, StorageIndex> SCMatrix;
146 typedef Matrix<Scalar,Dynamic,1> ScalarVector;
147 typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
148 typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
149 typedef internal::SparseLUImpl<Scalar, StorageIndex> Base;
150
151 enum {
152 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
153 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
154 };
155
156 public:
157
SparseLU()158 SparseLU():m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
159 {
160 initperfvalues();
161 }
SparseLU(const MatrixType & matrix)162 explicit SparseLU(const MatrixType& matrix)
163 : m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
164 {
165 initperfvalues();
166 compute(matrix);
167 }
168
~SparseLU()169 ~SparseLU()
170 {
171 // Free all explicit dynamic pointers
172 }
173
174 void analyzePattern (const MatrixType& matrix);
175 void factorize (const MatrixType& matrix);
176 void simplicialfactorize(const MatrixType& matrix);
177
178 /**
179 * Compute the symbolic and numeric factorization of the input sparse matrix.
180 * The input matrix should be in column-major storage.
181 */
compute(const MatrixType & matrix)182 void compute (const MatrixType& matrix)
183 {
184 // Analyze
185 analyzePattern(matrix);
186 //Factorize
187 factorize(matrix);
188 }
189
190 /** \returns an expression of the transposed of the factored matrix.
191 *
192 * A typical usage is to solve for the transposed problem A^T x = b:
193 * \code
194 * solver.compute(A);
195 * x = solver.transpose().solve(b);
196 * \endcode
197 *
198 * \sa adjoint(), solve()
199 */
transpose()200 const SparseLUTransposeView<false,SparseLU<_MatrixType,_OrderingType> > transpose()
201 {
202 SparseLUTransposeView<false, SparseLU<_MatrixType,_OrderingType> > transposeView;
203 transposeView.setSparseLU(this);
204 transposeView.setIsInitialized(this->m_isInitialized);
205 return transposeView;
206 }
207
208
209 /** \returns an expression of the adjoint of the factored matrix
210 *
211 * A typical usage is to solve for the adjoint problem A' x = b:
212 * \code
213 * solver.compute(A);
214 * x = solver.adjoint().solve(b);
215 * \endcode
216 *
217 * For real scalar types, this function is equivalent to transpose().
218 *
219 * \sa transpose(), solve()
220 */
adjoint()221 const SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjoint()
222 {
223 SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjointView;
224 adjointView.setSparseLU(this);
225 adjointView.setIsInitialized(this->m_isInitialized);
226 return adjointView;
227 }
228
rows()229 inline Index rows() const { return m_mat.rows(); }
cols()230 inline Index cols() const { return m_mat.cols(); }
231 /** Indicate that the pattern of the input matrix is symmetric */
isSymmetric(bool sym)232 void isSymmetric(bool sym)
233 {
234 m_symmetricmode = sym;
235 }
236
237 /** \returns an expression of the matrix L, internally stored as supernodes
238 * The only operation available with this expression is the triangular solve
239 * \code
240 * y = b; matrixL().solveInPlace(y);
241 * \endcode
242 */
matrixL()243 SparseLUMatrixLReturnType<SCMatrix> matrixL() const
244 {
245 return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore);
246 }
247 /** \returns an expression of the matrix U,
248 * The only operation available with this expression is the triangular solve
249 * \code
250 * y = b; matrixU().solveInPlace(y);
251 * \endcode
252 */
matrixU()253 SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,StorageIndex> > matrixU() const
254 {
255 return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,StorageIndex> >(m_Lstore, m_Ustore);
256 }
257
258 /**
259 * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$
260 * \sa colsPermutation()
261 */
rowsPermutation()262 inline const PermutationType& rowsPermutation() const
263 {
264 return m_perm_r;
265 }
266 /**
267 * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$
268 * \sa rowsPermutation()
269 */
colsPermutation()270 inline const PermutationType& colsPermutation() const
271 {
272 return m_perm_c;
273 }
274 /** Set the threshold used for a diagonal entry to be an acceptable pivot. */
setPivotThreshold(const RealScalar & thresh)275 void setPivotThreshold(const RealScalar& thresh)
276 {
277 m_diagpivotthresh = thresh;
278 }
279
280 #ifdef EIGEN_PARSED_BY_DOXYGEN
281 /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
282 *
283 * \warning the destination matrix X in X = this->solve(B) must be colmun-major.
284 *
285 * \sa compute()
286 */
287 template<typename Rhs>
288 inline const Solve<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const;
289 #endif // EIGEN_PARSED_BY_DOXYGEN
290
291 /** \brief Reports whether previous computation was successful.
292 *
293 * \returns \c Success if computation was successful,
294 * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance
295 * \c InvalidInput if the input matrix is invalid
296 *
297 * \sa iparm()
298 */
info()299 ComputationInfo info() const
300 {
301 eigen_assert(m_isInitialized && "Decomposition is not initialized.");
302 return m_info;
303 }
304
305 /**
306 * \returns A string describing the type of error
307 */
lastErrorMessage()308 std::string lastErrorMessage() const
309 {
310 return m_lastError;
311 }
312
313 template<typename Rhs, typename Dest>
_solve_impl(const MatrixBase<Rhs> & B,MatrixBase<Dest> & X_base)314 bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
315 {
316 Dest& X(X_base.derived());
317 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
318 EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
319 THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
320
321 // Permute the right hand side to form X = Pr*B
322 // on return, X is overwritten by the computed solution
323 X.resize(B.rows(),B.cols());
324
325 // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
326 for(Index j = 0; j < B.cols(); ++j)
327 X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
328
329 //Forward substitution with L
330 this->matrixL().solveInPlace(X);
331 this->matrixU().solveInPlace(X);
332
333 // Permute back the solution
334 for (Index j = 0; j < B.cols(); ++j)
335 X.col(j) = colsPermutation().inverse() * X.col(j);
336
337 return true;
338 }
339
340 /**
341 * \returns the absolute value of the determinant of the matrix of which
342 * *this is the QR decomposition.
343 *
344 * \warning a determinant can be very big or small, so for matrices
345 * of large enough dimension, there is a risk of overflow/underflow.
346 * One way to work around that is to use logAbsDeterminant() instead.
347 *
348 * \sa logAbsDeterminant(), signDeterminant()
349 */
absDeterminant()350 Scalar absDeterminant()
351 {
352 using std::abs;
353 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
354 // Initialize with the determinant of the row matrix
355 Scalar det = Scalar(1.);
356 // Note that the diagonal blocks of U are stored in supernodes,
357 // which are available in the L part :)
358 for (Index j = 0; j < this->cols(); ++j)
359 {
360 for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
361 {
362 if(it.index() == j)
363 {
364 det *= abs(it.value());
365 break;
366 }
367 }
368 }
369 return det;
370 }
371
372 /** \returns the natural log of the absolute value of the determinant of the matrix
373 * of which **this is the QR decomposition
374 *
375 * \note This method is useful to work around the risk of overflow/underflow that's
376 * inherent to the determinant computation.
377 *
378 * \sa absDeterminant(), signDeterminant()
379 */
logAbsDeterminant()380 Scalar logAbsDeterminant() const
381 {
382 using std::log;
383 using std::abs;
384
385 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
386 Scalar det = Scalar(0.);
387 for (Index j = 0; j < this->cols(); ++j)
388 {
389 for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
390 {
391 if(it.row() < j) continue;
392 if(it.row() == j)
393 {
394 det += log(abs(it.value()));
395 break;
396 }
397 }
398 }
399 return det;
400 }
401
402 /** \returns A number representing the sign of the determinant
403 *
404 * \sa absDeterminant(), logAbsDeterminant()
405 */
signDeterminant()406 Scalar signDeterminant()
407 {
408 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
409 // Initialize with the determinant of the row matrix
410 Index det = 1;
411 // Note that the diagonal blocks of U are stored in supernodes,
412 // which are available in the L part :)
413 for (Index j = 0; j < this->cols(); ++j)
414 {
415 for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
416 {
417 if(it.index() == j)
418 {
419 if(it.value()<0)
420 det = -det;
421 else if(it.value()==0)
422 return 0;
423 break;
424 }
425 }
426 }
427 return det * m_detPermR * m_detPermC;
428 }
429
430 /** \returns The determinant of the matrix.
431 *
432 * \sa absDeterminant(), logAbsDeterminant()
433 */
determinant()434 Scalar determinant()
435 {
436 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
437 // Initialize with the determinant of the row matrix
438 Scalar det = Scalar(1.);
439 // Note that the diagonal blocks of U are stored in supernodes,
440 // which are available in the L part :)
441 for (Index j = 0; j < this->cols(); ++j)
442 {
443 for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
444 {
445 if(it.index() == j)
446 {
447 det *= it.value();
448 break;
449 }
450 }
451 }
452 return (m_detPermR * m_detPermC) > 0 ? det : -det;
453 }
454
nnzL()455 Index nnzL() const { return m_nnzL; };
nnzU()456 Index nnzU() const { return m_nnzU; };
457
458 protected:
459 // Functions
initperfvalues()460 void initperfvalues()
461 {
462 m_perfv.panel_size = 16;
463 m_perfv.relax = 1;
464 m_perfv.maxsuper = 128;
465 m_perfv.rowblk = 16;
466 m_perfv.colblk = 8;
467 m_perfv.fillfactor = 20;
468 }
469
470 // Variables
471 mutable ComputationInfo m_info;
472 bool m_factorizationIsOk;
473 bool m_analysisIsOk;
474 std::string m_lastError;
475 NCMatrix m_mat; // The input (permuted ) matrix
476 SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
477 MappedSparseMatrix<Scalar,ColMajor,StorageIndex> m_Ustore; // The upper triangular matrix
478 PermutationType m_perm_c; // Column permutation
479 PermutationType m_perm_r ; // Row permutation
480 IndexVector m_etree; // Column elimination tree
481
482 typename Base::GlobalLU_t m_glu;
483
484 // SparseLU options
485 bool m_symmetricmode;
486 // values for performance
487 internal::perfvalues m_perfv;
488 RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
489 Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
490 Index m_detPermR, m_detPermC; // Determinants of the permutation matrices
491 private:
492 // Disable copy constructor
493 SparseLU (const SparseLU& );
494 }; // End class SparseLU
495
496
497
498 // Functions needed by the anaysis phase
499 /**
500 * Compute the column permutation to minimize the fill-in
501 *
502 * - Apply this permutation to the input matrix -
503 *
504 * - Compute the column elimination tree on the permuted matrix
505 *
506 * - Postorder the elimination tree and the column permutation
507 *
508 */
509 template <typename MatrixType, typename OrderingType>
analyzePattern(const MatrixType & mat)510 void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
511 {
512
513 //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
514
515 // Firstly, copy the whole input matrix.
516 m_mat = mat;
517
518 // Compute fill-in ordering
519 OrderingType ord;
520 ord(m_mat,m_perm_c);
521
522 // Apply the permutation to the column of the input matrix
523 if (m_perm_c.size())
524 {
525 m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
526 // Then, permute only the column pointers
527 ei_declare_aligned_stack_constructed_variable(StorageIndex,outerIndexPtr,mat.cols()+1,mat.isCompressed()?const_cast<StorageIndex*>(mat.outerIndexPtr()):0);
528
529 // If the input matrix 'mat' is uncompressed, then the outer-indices do not match the ones of m_mat, and a copy is thus needed.
530 if(!mat.isCompressed())
531 IndexVector::Map(outerIndexPtr, mat.cols()+1) = IndexVector::Map(m_mat.outerIndexPtr(),mat.cols()+1);
532
533 // Apply the permutation and compute the nnz per column.
534 for (Index i = 0; i < mat.cols(); i++)
535 {
536 m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
537 m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
538 }
539 }
540
541 // Compute the column elimination tree of the permuted matrix
542 IndexVector firstRowElt;
543 internal::coletree(m_mat, m_etree,firstRowElt);
544
545 // In symmetric mode, do not do postorder here
546 if (!m_symmetricmode) {
547 IndexVector post, iwork;
548 // Post order etree
549 internal::treePostorder(StorageIndex(m_mat.cols()), m_etree, post);
550
551
552 // Renumber etree in postorder
553 Index m = m_mat.cols();
554 iwork.resize(m+1);
555 for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
556 m_etree = iwork;
557
558 // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
559 PermutationType post_perm(m);
560 for (Index i = 0; i < m; i++)
561 post_perm.indices()(i) = post(i);
562
563 // Combine the two permutations : postorder the permutation for future use
564 if(m_perm_c.size()) {
565 m_perm_c = post_perm * m_perm_c;
566 }
567
568 } // end postordering
569
570 m_analysisIsOk = true;
571 }
572
573 // Functions needed by the numerical factorization phase
574
575
576 /**
577 * - Numerical factorization
578 * - Interleaved with the symbolic factorization
579 * On exit, info is
580 *
581 * = 0: successful factorization
582 *
583 * > 0: if info = i, and i is
584 *
585 * <= A->ncol: U(i,i) is exactly zero. The factorization has
586 * been completed, but the factor U is exactly singular,
587 * and division by zero will occur if it is used to solve a
588 * system of equations.
589 *
590 * > A->ncol: number of bytes allocated when memory allocation
591 * failure occurred, plus A->ncol. If lwork = -1, it is
592 * the estimated amount of space needed, plus A->ncol.
593 */
594 template <typename MatrixType, typename OrderingType>
factorize(const MatrixType & matrix)595 void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
596 {
597 using internal::emptyIdxLU;
598 eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
599 eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
600
601 m_isInitialized = true;
602
603 // Apply the column permutation computed in analyzepattern()
604 // m_mat = matrix * m_perm_c.inverse();
605 m_mat = matrix;
606 if (m_perm_c.size())
607 {
608 m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
609 //Then, permute only the column pointers
610 const StorageIndex * outerIndexPtr;
611 if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
612 else
613 {
614 StorageIndex* outerIndexPtr_t = new StorageIndex[matrix.cols()+1];
615 for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
616 outerIndexPtr = outerIndexPtr_t;
617 }
618 for (Index i = 0; i < matrix.cols(); i++)
619 {
620 m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
621 m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
622 }
623 if(!matrix.isCompressed()) delete[] outerIndexPtr;
624 }
625 else
626 { //FIXME This should not be needed if the empty permutation is handled transparently
627 m_perm_c.resize(matrix.cols());
628 for(StorageIndex i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
629 }
630
631 Index m = m_mat.rows();
632 Index n = m_mat.cols();
633 Index nnz = m_mat.nonZeros();
634 Index maxpanel = m_perfv.panel_size * m;
635 // Allocate working storage common to the factor routines
636 Index lwork = 0;
637 Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
638 if (info)
639 {
640 m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
641 m_factorizationIsOk = false;
642 return ;
643 }
644
645 // Set up pointers for integer working arrays
646 IndexVector segrep(m); segrep.setZero();
647 IndexVector parent(m); parent.setZero();
648 IndexVector xplore(m); xplore.setZero();
649 IndexVector repfnz(maxpanel);
650 IndexVector panel_lsub(maxpanel);
651 IndexVector xprune(n); xprune.setZero();
652 IndexVector marker(m*internal::LUNoMarker); marker.setZero();
653
654 repfnz.setConstant(-1);
655 panel_lsub.setConstant(-1);
656
657 // Set up pointers for scalar working arrays
658 ScalarVector dense;
659 dense.setZero(maxpanel);
660 ScalarVector tempv;
661 tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
662
663 // Compute the inverse of perm_c
664 PermutationType iperm_c(m_perm_c.inverse());
665
666 // Identify initial relaxed snodes
667 IndexVector relax_end(n);
668 if ( m_symmetricmode == true )
669 Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
670 else
671 Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
672
673
674 m_perm_r.resize(m);
675 m_perm_r.indices().setConstant(-1);
676 marker.setConstant(-1);
677 m_detPermR = 1; // Record the determinant of the row permutation
678
679 m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
680 m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
681
682 // Work on one 'panel' at a time. A panel is one of the following :
683 // (a) a relaxed supernode at the bottom of the etree, or
684 // (b) panel_size contiguous columns, <panel_size> defined by the user
685 Index jcol;
686 Index pivrow; // Pivotal row number in the original row matrix
687 Index nseg1; // Number of segments in U-column above panel row jcol
688 Index nseg; // Number of segments in each U-column
689 Index irep;
690 Index i, k, jj;
691 for (jcol = 0; jcol < n; )
692 {
693 // Adjust panel size so that a panel won't overlap with the next relaxed snode.
694 Index panel_size = m_perfv.panel_size; // upper bound on panel width
695 for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
696 {
697 if (relax_end(k) != emptyIdxLU)
698 {
699 panel_size = k - jcol;
700 break;
701 }
702 }
703 if (k == n)
704 panel_size = n - jcol;
705
706 // Symbolic outer factorization on a panel of columns
707 Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
708
709 // Numeric sup-panel updates in topological order
710 Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
711
712 // Sparse LU within the panel, and below the panel diagonal
713 for ( jj = jcol; jj< jcol + panel_size; jj++)
714 {
715 k = (jj - jcol) * m; // Column index for w-wide arrays
716
717 nseg = nseg1; // begin after all the panel segments
718 //Depth-first-search for the current column
719 VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
720 VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
721 info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
722 if ( info )
723 {
724 m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
725 m_info = NumericalIssue;
726 m_factorizationIsOk = false;
727 return;
728 }
729 // Numeric updates to this column
730 VectorBlock<ScalarVector> dense_k(dense, k, m);
731 VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
732 info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
733 if ( info )
734 {
735 m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
736 m_info = NumericalIssue;
737 m_factorizationIsOk = false;
738 return;
739 }
740
741 // Copy the U-segments to ucol(*)
742 info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
743 if ( info )
744 {
745 m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
746 m_info = NumericalIssue;
747 m_factorizationIsOk = false;
748 return;
749 }
750
751 // Form the L-segment
752 info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
753 if ( info )
754 {
755 m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
756 std::ostringstream returnInfo;
757 returnInfo << info;
758 m_lastError += returnInfo.str();
759 m_info = NumericalIssue;
760 m_factorizationIsOk = false;
761 return;
762 }
763
764 // Update the determinant of the row permutation matrix
765 // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot.
766 if (pivrow != jj) m_detPermR = -m_detPermR;
767
768 // Prune columns (0:jj-1) using column jj
769 Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
770
771 // Reset repfnz for this column
772 for (i = 0; i < nseg; i++)
773 {
774 irep = segrep(i);
775 repfnz_k(irep) = emptyIdxLU;
776 }
777 } // end SparseLU within the panel
778 jcol += panel_size; // Move to the next panel
779 } // end for -- end elimination
780
781 m_detPermR = m_perm_r.determinant();
782 m_detPermC = m_perm_c.determinant();
783
784 // Count the number of nonzeros in factors
785 Base::countnz(n, m_nnzL, m_nnzU, m_glu);
786 // Apply permutation to the L subscripts
787 Base::fixupL(n, m_perm_r.indices(), m_glu);
788
789 // Create supernode matrix L
790 m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
791 // Create the column major upper sparse matrix U;
792 new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, StorageIndex> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
793
794 m_info = Success;
795 m_factorizationIsOk = true;
796 }
797
798 template<typename MappedSupernodalType>
799 struct SparseLUMatrixLReturnType : internal::no_assignment_operator
800 {
801 typedef typename MappedSupernodalType::Scalar Scalar;
SparseLUMatrixLReturnTypeSparseLUMatrixLReturnType802 explicit SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
803 { }
rowsSparseLUMatrixLReturnType804 Index rows() const { return m_mapL.rows(); }
colsSparseLUMatrixLReturnType805 Index cols() const { return m_mapL.cols(); }
806 template<typename Dest>
solveInPlaceSparseLUMatrixLReturnType807 void solveInPlace( MatrixBase<Dest> &X) const
808 {
809 m_mapL.solveInPlace(X);
810 }
811 template<bool Conjugate, typename Dest>
solveTransposedInPlaceSparseLUMatrixLReturnType812 void solveTransposedInPlace( MatrixBase<Dest> &X) const
813 {
814 m_mapL.template solveTransposedInPlace<Conjugate>(X);
815 }
816
817 const MappedSupernodalType& m_mapL;
818 };
819
820 template<typename MatrixLType, typename MatrixUType>
821 struct SparseLUMatrixUReturnType : internal::no_assignment_operator
822 {
823 typedef typename MatrixLType::Scalar Scalar;
SparseLUMatrixUReturnTypeSparseLUMatrixUReturnType824 SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
825 : m_mapL(mapL),m_mapU(mapU)
826 { }
rowsSparseLUMatrixUReturnType827 Index rows() const { return m_mapL.rows(); }
colsSparseLUMatrixUReturnType828 Index cols() const { return m_mapL.cols(); }
829
solveInPlaceSparseLUMatrixUReturnType830 template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const
831 {
832 Index nrhs = X.cols();
833 Index n = X.rows();
834 // Backward solve with U
835 for (Index k = m_mapL.nsuper(); k >= 0; k--)
836 {
837 Index fsupc = m_mapL.supToCol()[k];
838 Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
839 Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
840 Index luptr = m_mapL.colIndexPtr()[fsupc];
841
842 if (nsupc == 1)
843 {
844 for (Index j = 0; j < nrhs; j++)
845 {
846 X(fsupc, j) /= m_mapL.valuePtr()[luptr];
847 }
848 }
849 else
850 {
851 // FIXME: the following lines should use Block expressions and not Map!
852 Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
853 Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X.coeffRef(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
854 U = A.template triangularView<Upper>().solve(U);
855 }
856
857 for (Index j = 0; j < nrhs; ++j)
858 {
859 for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
860 {
861 typename MatrixUType::InnerIterator it(m_mapU, jcol);
862 for ( ; it; ++it)
863 {
864 Index irow = it.index();
865 X(irow, j) -= X(jcol, j) * it.value();
866 }
867 }
868 }
869 } // End For U-solve
870 }
871
solveTransposedInPlaceSparseLUMatrixUReturnType872 template<bool Conjugate, typename Dest> void solveTransposedInPlace(MatrixBase<Dest> &X) const
873 {
874 using numext::conj;
875 Index nrhs = X.cols();
876 Index n = X.rows();
877 // Forward solve with U
878 for (Index k = 0; k <= m_mapL.nsuper(); k++)
879 {
880 Index fsupc = m_mapL.supToCol()[k];
881 Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
882 Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
883 Index luptr = m_mapL.colIndexPtr()[fsupc];
884
885 for (Index j = 0; j < nrhs; ++j)
886 {
887 for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
888 {
889 typename MatrixUType::InnerIterator it(m_mapU, jcol);
890 for ( ; it; ++it)
891 {
892 Index irow = it.index();
893 X(jcol, j) -= X(irow, j) * (Conjugate? conj(it.value()): it.value());
894 }
895 }
896 }
897 if (nsupc == 1)
898 {
899 for (Index j = 0; j < nrhs; j++)
900 {
901 X(fsupc, j) /= (Conjugate? conj(m_mapL.valuePtr()[luptr]) : m_mapL.valuePtr()[luptr]);
902 }
903 }
904 else
905 {
906 Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
907 Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
908 if(Conjugate)
909 U = A.adjoint().template triangularView<Lower>().solve(U);
910 else
911 U = A.transpose().template triangularView<Lower>().solve(U);
912 }
913 }// End For U-solve
914 }
915
916
917 const MatrixLType& m_mapL;
918 const MatrixUType& m_mapU;
919 };
920
921 } // End namespace Eigen
922
923 #endif
924