1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <numeric>
28 #include <array>
29 #include <stack>
30 #include <map>
31
32 #include "ac_shader_util.h"
33 #include "aco_ir.h"
34 #include "aco_builder.h"
35 #include "aco_interface.h"
36 #include "aco_instruction_selection.h"
37 #include "util/fast_idiv_by_const.h"
38 #include "util/memstream.h"
39
40 #include "ac_exp_param.h"
41 #include "sid.h"
42 #include "vulkan/radv_descriptor_set.h"
43 #include "vulkan/radv_shader.h"
44
45 namespace aco {
46 namespace {
47
48 #define isel_err(...) _isel_err(ctx, __FILE__, __LINE__, __VA_ARGS__)
49
_isel_err(isel_context * ctx,const char * file,unsigned line,const nir_instr * instr,const char * msg)50 static void _isel_err(isel_context *ctx, const char *file, unsigned line,
51 const nir_instr *instr, const char *msg)
52 {
53 char *out;
54 size_t outsize;
55 struct u_memstream mem;
56 u_memstream_open(&mem, &out, &outsize);
57 FILE *const memf = u_memstream_get(&mem);
58
59 fprintf(memf, "%s: ", msg);
60 nir_print_instr(instr, memf);
61 u_memstream_close(&mem);
62
63 _aco_err(ctx->program, file, line, out);
64 free(out);
65 }
66
67 struct if_context {
68 Temp cond;
69
70 bool divergent_old;
71 bool exec_potentially_empty_discard_old;
72 bool exec_potentially_empty_break_old;
73 uint16_t exec_potentially_empty_break_depth_old;
74
75 unsigned BB_if_idx;
76 unsigned invert_idx;
77 bool uniform_has_then_branch;
78 bool then_branch_divergent;
79 Block BB_invert;
80 Block BB_endif;
81 };
82
83 struct loop_context {
84 Block loop_exit;
85
86 unsigned header_idx_old;
87 Block* exit_old;
88 bool divergent_cont_old;
89 bool divergent_branch_old;
90 bool divergent_if_old;
91 };
92
93 static bool visit_cf_list(struct isel_context *ctx,
94 struct exec_list *list);
95
add_logical_edge(unsigned pred_idx,Block * succ)96 static void add_logical_edge(unsigned pred_idx, Block *succ)
97 {
98 succ->logical_preds.emplace_back(pred_idx);
99 }
100
101
add_linear_edge(unsigned pred_idx,Block * succ)102 static void add_linear_edge(unsigned pred_idx, Block *succ)
103 {
104 succ->linear_preds.emplace_back(pred_idx);
105 }
106
add_edge(unsigned pred_idx,Block * succ)107 static void add_edge(unsigned pred_idx, Block *succ)
108 {
109 add_logical_edge(pred_idx, succ);
110 add_linear_edge(pred_idx, succ);
111 }
112
append_logical_start(Block * b)113 static void append_logical_start(Block *b)
114 {
115 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
116 }
117
append_logical_end(Block * b)118 static void append_logical_end(Block *b)
119 {
120 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
121 }
122
get_ssa_temp(struct isel_context * ctx,nir_ssa_def * def)123 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
124 {
125 uint32_t id = ctx->first_temp_id + def->index;
126 return Temp(id, ctx->program->temp_rc[id]);
127 }
128
emit_mbcnt(isel_context * ctx,Temp dst,Operand mask=Operand (),Operand base=Operand (0u))129 Temp emit_mbcnt(isel_context *ctx, Temp dst, Operand mask = Operand(), Operand base = Operand(0u))
130 {
131 Builder bld(ctx->program, ctx->block);
132 assert(mask.isUndefined() || mask.isTemp() || (mask.isFixed() && mask.physReg() == exec));
133 assert(mask.isUndefined() || mask.regClass() == bld.lm);
134
135 if (ctx->program->wave_size == 32) {
136 Operand mask_lo = mask.isUndefined() ? Operand(-1u) : mask;
137 return bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, Definition(dst), mask_lo, base);
138 }
139
140 Operand mask_lo(-1u);
141 Operand mask_hi(-1u);
142
143 if (mask.isTemp()) {
144 Builder::Result mask_split = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), mask);
145 mask_lo = Operand(mask_split.def(0).getTemp());
146 mask_hi = Operand(mask_split.def(1).getTemp());
147 } else if (mask.physReg() == exec) {
148 mask_lo = Operand(exec_lo, s1);
149 mask_hi = Operand(exec_hi, s1);
150 }
151
152 Temp mbcnt_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), mask_lo, base);
153
154 if (ctx->program->chip_class <= GFX7)
155 return bld.vop2(aco_opcode::v_mbcnt_hi_u32_b32, Definition(dst), mask_hi, mbcnt_lo);
156 else
157 return bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32_e64, Definition(dst), mask_hi, mbcnt_lo);
158 }
159
emit_wqm(isel_context * ctx,Temp src,Temp dst=Temp (0,s1),bool program_needs_wqm=false)160 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
161 {
162 Builder bld(ctx->program, ctx->block);
163
164 if (!dst.id())
165 dst = bld.tmp(src.regClass());
166
167 assert(src.size() == dst.size());
168
169 if (ctx->stage != fragment_fs) {
170 if (!dst.id())
171 return src;
172
173 bld.copy(Definition(dst), src);
174 return dst;
175 }
176
177 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
178 ctx->program->needs_wqm |= program_needs_wqm;
179 return dst;
180 }
181
emit_bpermute(isel_context * ctx,Builder & bld,Temp index,Temp data)182 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
183 {
184 if (index.regClass() == s1)
185 return bld.readlane(bld.def(s1), data, index);
186
187 if (ctx->options->chip_class <= GFX7) {
188 /* GFX6-7: there is no bpermute instruction */
189 Operand index_op(index);
190 Operand input_data(data);
191 index_op.setLateKill(true);
192 input_data.setLateKill(true);
193
194 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(bld.lm), bld.def(bld.lm, vcc), index_op, input_data);
195 } else if (ctx->options->chip_class >= GFX10 && ctx->program->wave_size == 64) {
196 /* GFX10 wave64 mode: emulate full-wave bpermute */
197 if (!ctx->has_gfx10_wave64_bpermute) {
198 ctx->has_gfx10_wave64_bpermute = true;
199 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
200 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
201 }
202
203 Temp index_is_lo = bld.vopc(aco_opcode::v_cmp_ge_u32, bld.def(bld.lm), Operand(31u), index);
204 Builder::Result index_is_lo_split = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), index_is_lo);
205 Temp index_is_lo_n1 = bld.sop1(aco_opcode::s_not_b32, bld.def(s1), bld.def(s1, scc), index_is_lo_split.def(1).getTemp());
206 Operand same_half = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), index_is_lo_split.def(0).getTemp(), index_is_lo_n1);
207 Operand index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
208 Operand input_data(data);
209
210 index_x4.setLateKill(true);
211 input_data.setLateKill(true);
212 same_half.setLateKill(true);
213
214 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc), index_x4, input_data, same_half);
215 } else {
216 /* GFX8-9 or GFX10 wave32: bpermute works normally */
217 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
218 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
219 }
220 }
221
emit_masked_swizzle(isel_context * ctx,Builder & bld,Temp src,unsigned mask)222 static Temp emit_masked_swizzle(isel_context *ctx, Builder &bld, Temp src, unsigned mask)
223 {
224 if (ctx->options->chip_class >= GFX8) {
225 unsigned and_mask = mask & 0x1f;
226 unsigned or_mask = (mask >> 5) & 0x1f;
227 unsigned xor_mask = (mask >> 10) & 0x1f;
228
229 uint16_t dpp_ctrl = 0xffff;
230
231 // TODO: we could use DPP8 for some swizzles
232 if (and_mask == 0x1f && or_mask < 4 && xor_mask < 4) {
233 unsigned res[4] = {0, 1, 2, 3};
234 for (unsigned i = 0; i < 4; i++)
235 res[i] = ((res[i] | or_mask) ^ xor_mask) & 0x3;
236 dpp_ctrl = dpp_quad_perm(res[0], res[1], res[2], res[3]);
237 } else if (and_mask == 0x1f && !or_mask && xor_mask == 8) {
238 dpp_ctrl = dpp_row_rr(8);
239 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0xf) {
240 dpp_ctrl = dpp_row_mirror;
241 } else if (and_mask == 0x1f && !or_mask && xor_mask == 0x7) {
242 dpp_ctrl = dpp_row_half_mirror;
243 }
244
245 if (dpp_ctrl != 0xffff)
246 return bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
247 }
248
249 return bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false);
250 }
251
as_vgpr(isel_context * ctx,Temp val)252 Temp as_vgpr(isel_context *ctx, Temp val)
253 {
254 if (val.type() == RegType::sgpr) {
255 Builder bld(ctx->program, ctx->block);
256 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
257 }
258 assert(val.type() == RegType::vgpr);
259 return val;
260 }
261
262 //assumes a != 0xffffffff
emit_v_div_u32(isel_context * ctx,Temp dst,Temp a,uint32_t b)263 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
264 {
265 assert(b != 0);
266 Builder bld(ctx->program, ctx->block);
267
268 if (util_is_power_of_two_or_zero(b)) {
269 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
270 return;
271 }
272
273 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
274
275 assert(info.multiplier <= 0xffffffff);
276
277 bool pre_shift = info.pre_shift != 0;
278 bool increment = info.increment != 0;
279 bool multiply = true;
280 bool post_shift = info.post_shift != 0;
281
282 if (!pre_shift && !increment && !multiply && !post_shift) {
283 bld.copy(Definition(dst), a);
284 return;
285 }
286
287 Temp pre_shift_dst = a;
288 if (pre_shift) {
289 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
290 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
291 }
292
293 Temp increment_dst = pre_shift_dst;
294 if (increment) {
295 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
296 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
297 }
298
299 Temp multiply_dst = increment_dst;
300 if (multiply) {
301 multiply_dst = post_shift ? bld.tmp(v1) : dst;
302 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
303 bld.copy(bld.def(v1), Operand((uint32_t)info.multiplier)));
304 }
305
306 if (post_shift) {
307 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
308 }
309 }
310
emit_extract_vector(isel_context * ctx,Temp src,uint32_t idx,Temp dst)311 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
312 {
313 Builder bld(ctx->program, ctx->block);
314 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
315 }
316
317
emit_extract_vector(isel_context * ctx,Temp src,uint32_t idx,RegClass dst_rc)318 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
319 {
320 /* no need to extract the whole vector */
321 if (src.regClass() == dst_rc) {
322 assert(idx == 0);
323 return src;
324 }
325
326 assert(src.bytes() > (idx * dst_rc.bytes()));
327 Builder bld(ctx->program, ctx->block);
328 auto it = ctx->allocated_vec.find(src.id());
329 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
330 if (it->second[idx].regClass() == dst_rc) {
331 return it->second[idx];
332 } else {
333 assert(!dst_rc.is_subdword());
334 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
335 return bld.copy(bld.def(dst_rc), it->second[idx]);
336 }
337 }
338
339 if (dst_rc.is_subdword())
340 src = as_vgpr(ctx, src);
341
342 if (src.bytes() == dst_rc.bytes()) {
343 assert(idx == 0);
344 return bld.copy(bld.def(dst_rc), src);
345 } else {
346 Temp dst = bld.tmp(dst_rc);
347 emit_extract_vector(ctx, src, idx, dst);
348 return dst;
349 }
350 }
351
emit_split_vector(isel_context * ctx,Temp vec_src,unsigned num_components)352 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
353 {
354 if (num_components == 1)
355 return;
356 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
357 return;
358 RegClass rc;
359 if (num_components > vec_src.size()) {
360 if (vec_src.type() == RegType::sgpr) {
361 /* should still help get_alu_src() */
362 emit_split_vector(ctx, vec_src, vec_src.size());
363 return;
364 }
365 /* sub-dword split */
366 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
367 } else {
368 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
369 }
370 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
371 split->operands[0] = Operand(vec_src);
372 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
373 for (unsigned i = 0; i < num_components; i++) {
374 elems[i] = ctx->program->allocateTmp(rc);
375 split->definitions[i] = Definition(elems[i]);
376 }
377 ctx->block->instructions.emplace_back(std::move(split));
378 ctx->allocated_vec.emplace(vec_src.id(), elems);
379 }
380
381 /* This vector expansion uses a mask to determine which elements in the new vector
382 * come from the original vector. The other elements are undefined. */
expand_vector(isel_context * ctx,Temp vec_src,Temp dst,unsigned num_components,unsigned mask)383 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
384 {
385 emit_split_vector(ctx, vec_src, util_bitcount(mask));
386
387 if (vec_src == dst)
388 return;
389
390 Builder bld(ctx->program, ctx->block);
391 if (num_components == 1) {
392 if (dst.type() == RegType::sgpr)
393 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
394 else
395 bld.copy(Definition(dst), vec_src);
396 return;
397 }
398
399 unsigned component_size = dst.size() / num_components;
400 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
401
402 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
403 vec->definitions[0] = Definition(dst);
404 unsigned k = 0;
405 for (unsigned i = 0; i < num_components; i++) {
406 if (mask & (1 << i)) {
407 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
408 if (dst.type() == RegType::sgpr)
409 src = bld.as_uniform(src);
410 vec->operands[i] = Operand(src);
411 } else {
412 vec->operands[i] = Operand(0u, component_size == 2);
413 }
414 elems[i] = vec->operands[i].getTemp();
415 }
416 ctx->block->instructions.emplace_back(std::move(vec));
417 ctx->allocated_vec.emplace(dst.id(), elems);
418 }
419
420 /* adjust misaligned small bit size loads */
byte_align_scalar(isel_context * ctx,Temp vec,Operand offset,Temp dst)421 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
422 {
423 Builder bld(ctx->program, ctx->block);
424 Operand shift;
425 Temp select = Temp();
426 if (offset.isConstant()) {
427 assert(offset.constantValue() && offset.constantValue() < 4);
428 shift = Operand(offset.constantValue() * 8);
429 } else {
430 /* bit_offset = 8 * (offset & 0x3) */
431 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
432 select = bld.tmp(s1);
433 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
434 }
435
436 if (vec.size() == 1) {
437 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
438 } else if (vec.size() == 2) {
439 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
440 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
441 if (tmp == dst)
442 emit_split_vector(ctx, dst, 2);
443 else
444 emit_extract_vector(ctx, tmp, 0, dst);
445 } else if (vec.size() == 3 || vec.size() == 4) {
446 Temp lo = bld.tmp(s2), hi;
447 if (vec.size() == 3) {
448 /* this can happen if we use VMEM for a uniform load */
449 hi = bld.tmp(s1);
450 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
451 } else {
452 hi = bld.tmp(s2);
453 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
454 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
455 }
456 if (select != Temp())
457 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), bld.scc(select));
458 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
459 Temp mid = bld.tmp(s1);
460 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
461 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
462 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
463 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
464 emit_split_vector(ctx, dst, 2);
465 }
466 }
467
byte_align_vector(isel_context * ctx,Temp vec,Operand offset,Temp dst,unsigned component_size)468 void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst, unsigned component_size)
469 {
470 Builder bld(ctx->program, ctx->block);
471 if (offset.isTemp()) {
472 Temp tmp[4] = {vec, vec, vec, vec};
473
474 if (vec.size() == 4) {
475 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1), tmp[3] = bld.tmp(v1);
476 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), Definition(tmp[3]), vec);
477 } else if (vec.size() == 3) {
478 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
479 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
480 } else if (vec.size() == 2) {
481 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
482 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
483 }
484 for (unsigned i = 0; i < dst.size(); i++)
485 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
486
487 vec = tmp[0];
488 if (dst.size() == 2)
489 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
490
491 offset = Operand(0u);
492 }
493
494 unsigned num_components = vec.bytes() / component_size;
495 if (vec.regClass() == dst.regClass()) {
496 assert(offset.constantValue() == 0);
497 bld.copy(Definition(dst), vec);
498 emit_split_vector(ctx, dst, num_components);
499 return;
500 }
501
502 emit_split_vector(ctx, vec, num_components);
503 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
504 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
505
506 assert(offset.constantValue() % component_size == 0);
507 unsigned skip = offset.constantValue() / component_size;
508 for (unsigned i = skip; i < num_components; i++)
509 elems[i - skip] = emit_extract_vector(ctx, vec, i, rc);
510
511 /* if dst is vgpr - split the src and create a shrunk version according to the mask. */
512 if (dst.type() == RegType::vgpr) {
513 num_components = dst.bytes() / component_size;
514 aco_ptr<Pseudo_instruction> create_vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
515 for (unsigned i = 0; i < num_components; i++)
516 create_vec->operands[i] = Operand(elems[i]);
517 create_vec->definitions[0] = Definition(dst);
518 bld.insert(std::move(create_vec));
519
520 /* if dst is sgpr - split the src, but move the original to sgpr. */
521 } else if (skip) {
522 vec = bld.pseudo(aco_opcode::p_as_uniform, bld.def(RegClass(RegType::sgpr, vec.size())), vec);
523 byte_align_scalar(ctx, vec, offset, dst);
524 } else {
525 assert(dst.size() == vec.size());
526 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
527 }
528
529 ctx->allocated_vec.emplace(dst.id(), elems);
530 }
531
bool_to_vector_condition(isel_context * ctx,Temp val,Temp dst=Temp (0,s2))532 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
533 {
534 Builder bld(ctx->program, ctx->block);
535 if (!dst.id())
536 dst = bld.tmp(bld.lm);
537
538 assert(val.regClass() == s1);
539 assert(dst.regClass() == bld.lm);
540
541 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
542 }
543
bool_to_scalar_condition(isel_context * ctx,Temp val,Temp dst=Temp (0,s1))544 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
545 {
546 Builder bld(ctx->program, ctx->block);
547 if (!dst.id())
548 dst = bld.tmp(s1);
549
550 assert(val.regClass() == bld.lm);
551 assert(dst.regClass() == s1);
552
553 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
554 Temp tmp = bld.tmp(s1);
555 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
556 return emit_wqm(ctx, tmp, dst);
557 }
558
convert_int(isel_context * ctx,Builder & bld,Temp src,unsigned src_bits,unsigned dst_bits,bool is_signed,Temp dst=Temp ())559 Temp convert_int(isel_context *ctx, Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp())
560 {
561 if (!dst.id()) {
562 if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
563 dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
564 else
565 dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
566 }
567
568 if (dst.bytes() == src.bytes() && dst_bits < src_bits)
569 return bld.copy(Definition(dst), src);
570 else if (dst.bytes() < src.bytes())
571 return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
572
573 Temp tmp = dst;
574 if (dst_bits == 64)
575 tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
576
577 if (tmp == src) {
578 } else if (src.regClass() == s1) {
579 if (is_signed)
580 bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
581 else
582 bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
583 } else if (ctx->options->chip_class >= GFX8) {
584 assert(src_bits != 8 || src.regClass() == v1b);
585 assert(src_bits != 16 || src.regClass() == v2b);
586 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
587 sdwa->operands[0] = Operand(src);
588 sdwa->definitions[0] = Definition(tmp);
589 if (is_signed)
590 sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
591 else
592 sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
593 sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
594 bld.insert(std::move(sdwa));
595 } else {
596 assert(ctx->options->chip_class == GFX6 || ctx->options->chip_class == GFX7);
597 aco_opcode opcode = is_signed ? aco_opcode::v_bfe_i32 : aco_opcode::v_bfe_u32;
598 bld.vop3(opcode, Definition(tmp), src, Operand(0u), Operand(src_bits == 8 ? 8u : 16u));
599 }
600
601 if (dst_bits == 64) {
602 if (is_signed && dst.regClass() == s2) {
603 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
604 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
605 } else if (is_signed && dst.regClass() == v2) {
606 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
607 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
608 } else {
609 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
610 }
611 }
612
613 return dst;
614 }
615
616 enum sgpr_extract_mode {
617 sgpr_extract_sext,
618 sgpr_extract_zext,
619 sgpr_extract_undef,
620 };
621
extract_8_16_bit_sgpr_element(isel_context * ctx,Temp dst,nir_alu_src * src,sgpr_extract_mode mode)622 Temp extract_8_16_bit_sgpr_element(isel_context *ctx, Temp dst, nir_alu_src *src, sgpr_extract_mode mode)
623 {
624 Temp vec = get_ssa_temp(ctx, src->src.ssa);
625 unsigned src_size = src->src.ssa->bit_size;
626 unsigned swizzle = src->swizzle[0];
627
628 if (vec.size() > 1) {
629 assert(src_size == 16);
630 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
631 swizzle = swizzle & 1;
632 }
633
634 Builder bld(ctx->program, ctx->block);
635 unsigned offset = src_size * swizzle;
636 Temp tmp = dst.regClass() == s2 ? bld.tmp(s1) : dst;
637
638 if (mode == sgpr_extract_undef && swizzle == 0) {
639 bld.copy(Definition(tmp), vec);
640 } else if (mode == sgpr_extract_undef || (offset == 24 && mode == sgpr_extract_zext)) {
641 bld.sop2(aco_opcode::s_lshr_b32, Definition(tmp), bld.def(s1, scc), vec, Operand(offset));
642 } else if (src_size == 8 && swizzle == 0 && mode == sgpr_extract_sext) {
643 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(tmp), vec);
644 } else if (src_size == 16 && swizzle == 0 && mode == sgpr_extract_sext) {
645 bld.sop1(aco_opcode::s_sext_i32_i16, Definition(tmp), vec);
646 } else {
647 aco_opcode op = mode == sgpr_extract_zext ? aco_opcode::s_bfe_u32 : aco_opcode::s_bfe_i32;
648 bld.sop2(op, Definition(tmp), bld.def(s1, scc), vec, Operand((src_size << 16) | offset));
649 }
650
651 if (dst.regClass() == s2)
652 convert_int(ctx, bld, tmp, 32, 64, mode == sgpr_extract_sext, dst);
653
654 return dst;
655 }
656
get_alu_src(struct isel_context * ctx,nir_alu_src src,unsigned size=1)657 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
658 {
659 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
660 return get_ssa_temp(ctx, src.src.ssa);
661
662 if (src.src.ssa->num_components == size) {
663 bool identity_swizzle = true;
664 for (unsigned i = 0; identity_swizzle && i < size; i++) {
665 if (src.swizzle[i] != i)
666 identity_swizzle = false;
667 }
668 if (identity_swizzle)
669 return get_ssa_temp(ctx, src.src.ssa);
670 }
671
672 Temp vec = get_ssa_temp(ctx, src.src.ssa);
673 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
674 assert(elem_size > 0);
675 assert(vec.bytes() % elem_size == 0);
676
677 if (elem_size < 4 && vec.type() == RegType::sgpr) {
678 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
679 assert(size == 1);
680 return extract_8_16_bit_sgpr_element(
681 ctx, ctx->program->allocateTmp(s1), &src, sgpr_extract_undef);
682 }
683
684 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
685 if (size == 1) {
686 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
687 } else {
688 assert(size <= 4);
689 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
690 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
691 for (unsigned i = 0; i < size; ++i) {
692 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
693 vec_instr->operands[i] = Operand{elems[i]};
694 }
695 Temp dst = ctx->program->allocateTmp(RegClass(vec.type(), elem_size * size / 4));
696 vec_instr->definitions[0] = Definition(dst);
697 ctx->block->instructions.emplace_back(std::move(vec_instr));
698 ctx->allocated_vec.emplace(dst.id(), elems);
699 return dst;
700 }
701 }
702
get_alu_src_ub(isel_context * ctx,nir_alu_instr * instr,int src_idx)703 uint32_t get_alu_src_ub(isel_context *ctx, nir_alu_instr *instr, int src_idx)
704 {
705 nir_ssa_scalar scalar = (nir_ssa_scalar){instr->src[src_idx].src.ssa,
706 instr->src[src_idx].swizzle[0]};
707 return nir_unsigned_upper_bound(ctx->shader, ctx->range_ht, scalar, &ctx->ub_config);
708 }
709
convert_pointer_to_64_bit(isel_context * ctx,Temp ptr)710 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
711 {
712 if (ptr.size() == 2)
713 return ptr;
714 Builder bld(ctx->program, ctx->block);
715 if (ptr.type() == RegType::vgpr)
716 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
717 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
718 ptr, Operand((unsigned)ctx->options->address32_hi));
719 }
720
emit_sop2_instruction(isel_context * ctx,nir_alu_instr * instr,aco_opcode op,Temp dst,bool writes_scc)721 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
722 {
723 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
724 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
725 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
726 sop2->definitions[0] = Definition(dst);
727 if (instr->no_unsigned_wrap)
728 sop2->definitions[0].setNUW(true);
729 if (writes_scc)
730 sop2->definitions[1] = Definition(ctx->program->allocateId(s1), scc, s1);
731 ctx->block->instructions.emplace_back(std::move(sop2));
732 }
733
emit_vop2_instruction(isel_context * ctx,nir_alu_instr * instr,aco_opcode op,Temp dst,bool commutative,bool swap_srcs=false,bool flush_denorms=false)734 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
735 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
736 {
737 Builder bld(ctx->program, ctx->block);
738 bld.is_precise = instr->exact;
739
740 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
741 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
742 if (src1.type() == RegType::sgpr) {
743 if (commutative && src0.type() == RegType::vgpr) {
744 Temp t = src0;
745 src0 = src1;
746 src1 = t;
747 } else {
748 src1 = as_vgpr(ctx, src1);
749 }
750 }
751
752 if (flush_denorms && ctx->program->chip_class < GFX9) {
753 assert(dst.size() == 1);
754 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
755 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
756 } else {
757 bld.vop2(op, Definition(dst), src0, src1);
758 }
759 }
760
emit_vop2_instruction_logic64(isel_context * ctx,nir_alu_instr * instr,aco_opcode op,Temp dst)761 void emit_vop2_instruction_logic64(isel_context *ctx, nir_alu_instr *instr,
762 aco_opcode op, Temp dst)
763 {
764 Builder bld(ctx->program, ctx->block);
765 bld.is_precise = instr->exact;
766
767 Temp src0 = get_alu_src(ctx, instr->src[0]);
768 Temp src1 = get_alu_src(ctx, instr->src[1]);
769
770 if (src1.type() == RegType::sgpr) {
771 assert(src0.type() == RegType::vgpr);
772 std::swap(src0, src1);
773 }
774
775 Temp src00 = bld.tmp(src0.type(), 1);
776 Temp src01 = bld.tmp(src0.type(), 1);
777 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
778 Temp src10 = bld.tmp(v1);
779 Temp src11 = bld.tmp(v1);
780 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
781 Temp lo = bld.vop2(op, bld.def(v1), src00, src10);
782 Temp hi = bld.vop2(op, bld.def(v1), src01, src11);
783 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
784 }
785
emit_vop3a_instruction(isel_context * ctx,nir_alu_instr * instr,aco_opcode op,Temp dst,bool flush_denorms=false,unsigned num_sources=2,bool swap_srcs=false)786 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
787 bool flush_denorms = false, unsigned num_sources = 2, bool swap_srcs = false)
788 {
789 assert(num_sources == 2 || num_sources == 3);
790 Temp src[3] = { Temp(0, v1), Temp(0, v1), Temp(0, v1) };
791 bool has_sgpr = false;
792 for (unsigned i = 0; i < num_sources; i++) {
793 src[i] = get_alu_src(ctx, instr->src[swap_srcs ? 1 - i : i]);
794 if (has_sgpr)
795 src[i] = as_vgpr(ctx, src[i]);
796 else
797 has_sgpr = src[i].type() == RegType::sgpr;
798 }
799
800 Builder bld(ctx->program, ctx->block);
801 bld.is_precise = instr->exact;
802 if (flush_denorms && ctx->program->chip_class < GFX9) {
803 Temp tmp;
804 if (num_sources == 3)
805 tmp = bld.vop3(op, bld.def(dst.regClass()), src[0], src[1], src[2]);
806 else
807 tmp = bld.vop3(op, bld.def(dst.regClass()), src[0], src[1]);
808 if (dst.size() == 1)
809 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
810 else
811 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(UINT64_C(0x3FF0000000000000)), tmp);
812 } else if (num_sources == 3) {
813 bld.vop3(op, Definition(dst), src[0], src[1], src[2]);
814 } else {
815 bld.vop3(op, Definition(dst), src[0], src[1]);
816 }
817 }
818
emit_vop1_instruction(isel_context * ctx,nir_alu_instr * instr,aco_opcode op,Temp dst)819 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
820 {
821 Builder bld(ctx->program, ctx->block);
822 bld.is_precise = instr->exact;
823 if (dst.type() == RegType::sgpr)
824 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
825 bld.vop1(op, bld.def(RegType::vgpr, dst.size()), get_alu_src(ctx, instr->src[0])));
826 else
827 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
828 }
829
emit_vopc_instruction(isel_context * ctx,nir_alu_instr * instr,aco_opcode op,Temp dst)830 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
831 {
832 Temp src0 = get_alu_src(ctx, instr->src[0]);
833 Temp src1 = get_alu_src(ctx, instr->src[1]);
834 assert(src0.size() == src1.size());
835
836 aco_ptr<Instruction> vopc;
837 if (src1.type() == RegType::sgpr) {
838 if (src0.type() == RegType::vgpr) {
839 /* to swap the operands, we might also have to change the opcode */
840 switch (op) {
841 case aco_opcode::v_cmp_lt_f16:
842 op = aco_opcode::v_cmp_gt_f16;
843 break;
844 case aco_opcode::v_cmp_ge_f16:
845 op = aco_opcode::v_cmp_le_f16;
846 break;
847 case aco_opcode::v_cmp_lt_i16:
848 op = aco_opcode::v_cmp_gt_i16;
849 break;
850 case aco_opcode::v_cmp_ge_i16:
851 op = aco_opcode::v_cmp_le_i16;
852 break;
853 case aco_opcode::v_cmp_lt_u16:
854 op = aco_opcode::v_cmp_gt_u16;
855 break;
856 case aco_opcode::v_cmp_ge_u16:
857 op = aco_opcode::v_cmp_le_u16;
858 break;
859 case aco_opcode::v_cmp_lt_f32:
860 op = aco_opcode::v_cmp_gt_f32;
861 break;
862 case aco_opcode::v_cmp_ge_f32:
863 op = aco_opcode::v_cmp_le_f32;
864 break;
865 case aco_opcode::v_cmp_lt_i32:
866 op = aco_opcode::v_cmp_gt_i32;
867 break;
868 case aco_opcode::v_cmp_ge_i32:
869 op = aco_opcode::v_cmp_le_i32;
870 break;
871 case aco_opcode::v_cmp_lt_u32:
872 op = aco_opcode::v_cmp_gt_u32;
873 break;
874 case aco_opcode::v_cmp_ge_u32:
875 op = aco_opcode::v_cmp_le_u32;
876 break;
877 case aco_opcode::v_cmp_lt_f64:
878 op = aco_opcode::v_cmp_gt_f64;
879 break;
880 case aco_opcode::v_cmp_ge_f64:
881 op = aco_opcode::v_cmp_le_f64;
882 break;
883 case aco_opcode::v_cmp_lt_i64:
884 op = aco_opcode::v_cmp_gt_i64;
885 break;
886 case aco_opcode::v_cmp_ge_i64:
887 op = aco_opcode::v_cmp_le_i64;
888 break;
889 case aco_opcode::v_cmp_lt_u64:
890 op = aco_opcode::v_cmp_gt_u64;
891 break;
892 case aco_opcode::v_cmp_ge_u64:
893 op = aco_opcode::v_cmp_le_u64;
894 break;
895 default: /* eq and ne are commutative */
896 break;
897 }
898 Temp t = src0;
899 src0 = src1;
900 src1 = t;
901 } else {
902 src1 = as_vgpr(ctx, src1);
903 }
904 }
905
906 Builder bld(ctx->program, ctx->block);
907 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
908 }
909
emit_sopc_instruction(isel_context * ctx,nir_alu_instr * instr,aco_opcode op,Temp dst)910 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
911 {
912 Temp src0 = get_alu_src(ctx, instr->src[0]);
913 Temp src1 = get_alu_src(ctx, instr->src[1]);
914 Builder bld(ctx->program, ctx->block);
915
916 assert(dst.regClass() == bld.lm);
917 assert(src0.type() == RegType::sgpr);
918 assert(src1.type() == RegType::sgpr);
919 assert(src0.regClass() == src1.regClass());
920
921 /* Emit the SALU comparison instruction */
922 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
923 /* Turn the result into a per-lane bool */
924 bool_to_vector_condition(ctx, cmp, dst);
925 }
926
emit_comparison(isel_context * ctx,nir_alu_instr * instr,Temp dst,aco_opcode v16_op,aco_opcode v32_op,aco_opcode v64_op,aco_opcode s32_op=aco_opcode::num_opcodes,aco_opcode s64_op=aco_opcode::num_opcodes)927 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
928 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
929 {
930 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
931 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
932 bool use_valu = s_op == aco_opcode::num_opcodes ||
933 nir_dest_is_divergent(instr->dest.dest) ||
934 get_ssa_temp(ctx, instr->src[0].src.ssa).type() == RegType::vgpr ||
935 get_ssa_temp(ctx, instr->src[1].src.ssa).type() == RegType::vgpr;
936 aco_opcode op = use_valu ? v_op : s_op;
937 assert(op != aco_opcode::num_opcodes);
938 assert(dst.regClass() == ctx->program->lane_mask);
939
940 if (use_valu)
941 emit_vopc_instruction(ctx, instr, op, dst);
942 else
943 emit_sopc_instruction(ctx, instr, op, dst);
944 }
945
emit_boolean_logic(isel_context * ctx,nir_alu_instr * instr,Builder::WaveSpecificOpcode op,Temp dst)946 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
947 {
948 Builder bld(ctx->program, ctx->block);
949 Temp src0 = get_alu_src(ctx, instr->src[0]);
950 Temp src1 = get_alu_src(ctx, instr->src[1]);
951
952 assert(dst.regClass() == bld.lm);
953 assert(src0.regClass() == bld.lm);
954 assert(src1.regClass() == bld.lm);
955
956 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
957 }
958
emit_bcsel(isel_context * ctx,nir_alu_instr * instr,Temp dst)959 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
960 {
961 Builder bld(ctx->program, ctx->block);
962 Temp cond = get_alu_src(ctx, instr->src[0]);
963 Temp then = get_alu_src(ctx, instr->src[1]);
964 Temp els = get_alu_src(ctx, instr->src[2]);
965
966 assert(cond.regClass() == bld.lm);
967
968 if (dst.type() == RegType::vgpr) {
969 aco_ptr<Instruction> bcsel;
970 if (dst.size() == 1) {
971 then = as_vgpr(ctx, then);
972 els = as_vgpr(ctx, els);
973
974 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
975 } else if (dst.size() == 2) {
976 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
977 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
978 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
979 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
980
981 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
982 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
983
984 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
985 } else {
986 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
987 }
988 return;
989 }
990
991 if (instr->dest.dest.ssa.bit_size == 1) {
992 assert(dst.regClass() == bld.lm);
993 assert(then.regClass() == bld.lm);
994 assert(els.regClass() == bld.lm);
995 }
996
997 if (!nir_src_is_divergent(instr->src[0].src)) { /* uniform condition and values in sgpr */
998 if (dst.regClass() == s1 || dst.regClass() == s2) {
999 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
1000 assert(dst.size() == then.size());
1001 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
1002 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
1003 } else {
1004 isel_err(&instr->instr, "Unimplemented uniform bcsel bit size");
1005 }
1006 return;
1007 }
1008
1009 /* divergent boolean bcsel
1010 * this implements bcsel on bools: dst = s0 ? s1 : s2
1011 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
1012 assert(instr->dest.dest.ssa.bit_size == 1);
1013
1014 if (cond.id() != then.id())
1015 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
1016
1017 if (cond.id() == els.id())
1018 bld.copy(Definition(dst), then);
1019 else
1020 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
1021 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
1022 }
1023
emit_scaled_op(isel_context * ctx,Builder & bld,Definition dst,Temp val,aco_opcode op,uint32_t undo)1024 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
1025 aco_opcode op, uint32_t undo)
1026 {
1027 /* multiply by 16777216 to handle denormals */
1028 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
1029 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
1030 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
1031 scaled = bld.vop1(op, bld.def(v1), scaled);
1032 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
1033
1034 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
1035
1036 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
1037 }
1038
emit_rcp(isel_context * ctx,Builder & bld,Definition dst,Temp val)1039 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1040 {
1041 if (ctx->block->fp_mode.denorm32 == 0) {
1042 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
1043 return;
1044 }
1045
1046 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
1047 }
1048
emit_rsq(isel_context * ctx,Builder & bld,Definition dst,Temp val)1049 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1050 {
1051 if (ctx->block->fp_mode.denorm32 == 0) {
1052 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
1053 return;
1054 }
1055
1056 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
1057 }
1058
emit_sqrt(isel_context * ctx,Builder & bld,Definition dst,Temp val)1059 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1060 {
1061 if (ctx->block->fp_mode.denorm32 == 0) {
1062 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
1063 return;
1064 }
1065
1066 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
1067 }
1068
emit_log2(isel_context * ctx,Builder & bld,Definition dst,Temp val)1069 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1070 {
1071 if (ctx->block->fp_mode.denorm32 == 0) {
1072 bld.vop1(aco_opcode::v_log_f32, dst, val);
1073 return;
1074 }
1075
1076 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
1077 }
1078
emit_trunc_f64(isel_context * ctx,Builder & bld,Definition dst,Temp val)1079 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1080 {
1081 if (ctx->options->chip_class >= GFX7)
1082 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
1083
1084 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
1085 /* TODO: create more efficient code! */
1086 if (val.type() == RegType::sgpr)
1087 val = as_vgpr(ctx, val);
1088
1089 /* Split the input value. */
1090 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
1091 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
1092
1093 /* Extract the exponent and compute the unbiased value. */
1094 Temp exponent = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), val_hi, Operand(20u), Operand(11u));
1095 exponent = bld.vsub32(bld.def(v1), exponent, Operand(1023u));
1096
1097 /* Extract the fractional part. */
1098 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
1099 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
1100
1101 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
1102 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
1103
1104 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
1105 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
1106 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
1107 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
1108 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
1109
1110 /* Get the sign bit. */
1111 Temp sign = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x80000000u), val_hi);
1112
1113 /* Decide the operation to apply depending on the unbiased exponent. */
1114 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
1115 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
1116 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
1117 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
1118 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
1119 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
1120
1121 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
1122 }
1123
emit_floor_f64(isel_context * ctx,Builder & bld,Definition dst,Temp val)1124 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
1125 {
1126 if (ctx->options->chip_class >= GFX7)
1127 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
1128
1129 /* GFX6 doesn't support V_FLOOR_F64, lower it (note that it's actually
1130 * lowered at NIR level for precision reasons). */
1131 Temp src0 = as_vgpr(ctx, val);
1132
1133 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
1134 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
1135
1136 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
1137 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
1138 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
1139
1140 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
1141 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
1142 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
1143 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
1144
1145 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
1146 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
1147
1148 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
1149
1150 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
1151 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
1152
1153 return add->definitions[0].getTemp();
1154 }
1155
visit_alu_instr(isel_context * ctx,nir_alu_instr * instr)1156 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
1157 {
1158 if (!instr->dest.dest.is_ssa) {
1159 isel_err(&instr->instr, "nir alu dst not in ssa");
1160 abort();
1161 }
1162 Builder bld(ctx->program, ctx->block);
1163 bld.is_precise = instr->exact;
1164 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
1165 switch(instr->op) {
1166 case nir_op_vec2:
1167 case nir_op_vec3:
1168 case nir_op_vec4: {
1169 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
1170 unsigned num = instr->dest.dest.ssa.num_components;
1171 for (unsigned i = 0; i < num; ++i)
1172 elems[i] = get_alu_src(ctx, instr->src[i]);
1173
1174 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
1175 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
1176 RegClass elem_rc = RegClass::get(RegType::vgpr, instr->dest.dest.ssa.bit_size / 8u);
1177 for (unsigned i = 0; i < num; ++i) {
1178 if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword())
1179 vec->operands[i] = Operand(emit_extract_vector(ctx, elems[i], 0, elem_rc));
1180 else
1181 vec->operands[i] = Operand{elems[i]};
1182 }
1183 vec->definitions[0] = Definition(dst);
1184 ctx->block->instructions.emplace_back(std::move(vec));
1185 ctx->allocated_vec.emplace(dst.id(), elems);
1186 } else {
1187 // TODO: that is a bit suboptimal..
1188 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
1189 for (unsigned i = 0; i < num - 1; ++i)
1190 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
1191 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
1192 for (unsigned i = 0; i < num; ++i) {
1193 unsigned bit = i * instr->dest.dest.ssa.bit_size;
1194 if (bit % 32 == 0) {
1195 elems[bit / 32] = elems[i];
1196 } else {
1197 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
1198 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
1199 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
1200 }
1201 }
1202 if (dst.size() == 1)
1203 bld.copy(Definition(dst), elems[0]);
1204 else
1205 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
1206 }
1207 break;
1208 }
1209 case nir_op_mov: {
1210 Temp src = get_alu_src(ctx, instr->src[0]);
1211 if (src.type() == RegType::vgpr && dst.type() == RegType::sgpr) {
1212 /* use size() instead of bytes() for 8/16-bit */
1213 assert(src.size() == dst.size() && "wrong src or dst register class for nir_op_mov");
1214 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1215 } else {
1216 assert(src.bytes() == dst.bytes() && "wrong src or dst register class for nir_op_mov");
1217 bld.copy(Definition(dst), src);
1218 }
1219 break;
1220 }
1221 case nir_op_inot: {
1222 Temp src = get_alu_src(ctx, instr->src[0]);
1223 if (instr->dest.dest.ssa.bit_size == 1) {
1224 assert(src.regClass() == bld.lm);
1225 assert(dst.regClass() == bld.lm);
1226 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1227 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1228 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1229 } else if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) {
1230 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1231 } else if (dst.regClass() == v2) {
1232 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
1233 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
1234 lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), lo);
1235 hi = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), hi);
1236 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
1237 } else if (dst.type() == RegType::sgpr) {
1238 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1239 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1240 } else {
1241 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1242 }
1243 break;
1244 }
1245 case nir_op_ineg: {
1246 Temp src = get_alu_src(ctx, instr->src[0]);
1247 if (dst.regClass() == v1) {
1248 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1249 } else if (dst.regClass() == s1) {
1250 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1251 } else if (dst.size() == 2) {
1252 Temp src0 = bld.tmp(dst.type(), 1);
1253 Temp src1 = bld.tmp(dst.type(), 1);
1254 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1255
1256 if (dst.regClass() == s2) {
1257 Temp carry = bld.tmp(s1);
1258 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1259 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1260 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1261 } else {
1262 Temp lower = bld.tmp(v1);
1263 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1264 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1265 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1266 }
1267 } else {
1268 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1269 }
1270 break;
1271 }
1272 case nir_op_iabs: {
1273 Temp src = get_alu_src(ctx, instr->src[0]);
1274 if (dst.regClass() == s1) {
1275 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), src);
1276 } else if (dst.regClass() == v1) {
1277 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1278 } else {
1279 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1280 }
1281 break;
1282 }
1283 case nir_op_isign: {
1284 Temp src = get_alu_src(ctx, instr->src[0]);
1285 if (dst.regClass() == s1) {
1286 Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1));
1287 bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u));
1288 } else if (dst.regClass() == s2) {
1289 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1290 Temp neqz;
1291 if (ctx->program->chip_class >= GFX8)
1292 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1293 else
1294 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1295 /* SCC gets zero-extended to 64 bit */
1296 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1297 } else if (dst.regClass() == v1) {
1298 bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u));
1299 } else if (dst.regClass() == v2) {
1300 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1301 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1302 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1303 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1304 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1305 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1306 } else {
1307 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1308 }
1309 break;
1310 }
1311 case nir_op_imax: {
1312 if (dst.regClass() == v2b && ctx->program->chip_class >= GFX10) {
1313 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max_i16_e64, dst);
1314 } else if (dst.regClass() == v2b) {
1315 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i16, dst, true);
1316 } else if (dst.regClass() == v1) {
1317 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1318 } else if (dst.regClass() == s1) {
1319 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1320 } else {
1321 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1322 }
1323 break;
1324 }
1325 case nir_op_umax: {
1326 if (dst.regClass() == v2b && ctx->program->chip_class >= GFX10) {
1327 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max_u16_e64, dst);
1328 } else if (dst.regClass() == v2b) {
1329 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u16, dst, true);
1330 } else if (dst.regClass() == v1) {
1331 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1332 } else if (dst.regClass() == s1) {
1333 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1334 } else {
1335 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1336 }
1337 break;
1338 }
1339 case nir_op_imin: {
1340 if (dst.regClass() == v2b && ctx->program->chip_class >= GFX10) {
1341 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min_i16_e64, dst);
1342 } else if (dst.regClass() == v2b) {
1343 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i16, dst, true);
1344 } else if (dst.regClass() == v1) {
1345 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1346 } else if (dst.regClass() == s1) {
1347 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1348 } else {
1349 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1350 }
1351 break;
1352 }
1353 case nir_op_umin: {
1354 if (dst.regClass() == v2b && ctx->program->chip_class >= GFX10) {
1355 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min_u16_e64, dst);
1356 } else if (dst.regClass() == v2b) {
1357 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u16, dst, true);
1358 } else if (dst.regClass() == v1) {
1359 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1360 } else if (dst.regClass() == s1) {
1361 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1362 } else {
1363 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1364 }
1365 break;
1366 }
1367 case nir_op_ior: {
1368 if (instr->dest.dest.ssa.bit_size == 1) {
1369 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1370 } else if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) {
1371 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1372 } else if (dst.regClass() == v2) {
1373 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_or_b32, dst);
1374 } else if (dst.regClass() == s1) {
1375 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1376 } else if (dst.regClass() == s2) {
1377 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1378 } else {
1379 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1380 }
1381 break;
1382 }
1383 case nir_op_iand: {
1384 if (instr->dest.dest.ssa.bit_size == 1) {
1385 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1386 } else if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) {
1387 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1388 } else if (dst.regClass() == v2) {
1389 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_and_b32, dst);
1390 } else if (dst.regClass() == s1) {
1391 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1392 } else if (dst.regClass() == s2) {
1393 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1394 } else {
1395 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1396 }
1397 break;
1398 }
1399 case nir_op_ixor: {
1400 if (instr->dest.dest.ssa.bit_size == 1) {
1401 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1402 } else if (dst.regClass() == v1 || dst.regClass() == v2b || dst.regClass() == v1b) {
1403 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1404 } else if (dst.regClass() == v2) {
1405 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_xor_b32, dst);
1406 } else if (dst.regClass() == s1) {
1407 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1408 } else if (dst.regClass() == s2) {
1409 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1410 } else {
1411 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1412 }
1413 break;
1414 }
1415 case nir_op_ushr: {
1416 if (dst.regClass() == v2b && ctx->program->chip_class >= GFX10) {
1417 emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshrrev_b16_e64, dst, false, 2, true);
1418 } else if (dst.regClass() == v2b) {
1419 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b16, dst, false, true);
1420 } else if (dst.regClass() == v1) {
1421 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1422 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1423 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1424 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1425 } else if (dst.regClass() == v2) {
1426 emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshr_b64, dst);
1427 } else if (dst.regClass() == s2) {
1428 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1429 } else if (dst.regClass() == s1) {
1430 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1431 } else {
1432 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1433 }
1434 break;
1435 }
1436 case nir_op_ishl: {
1437 if (dst.regClass() == v2b && ctx->program->chip_class >= GFX10) {
1438 emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshlrev_b16_e64, dst, false, 2, true);
1439 } else if (dst.regClass() == v2b) {
1440 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b16, dst, false, true);
1441 } else if (dst.regClass() == v1) {
1442 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1443 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1444 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1445 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1446 } else if (dst.regClass() == v2) {
1447 emit_vop3a_instruction(ctx, instr, aco_opcode::v_lshl_b64, dst);
1448 } else if (dst.regClass() == s1) {
1449 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1450 } else if (dst.regClass() == s2) {
1451 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1452 } else {
1453 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1454 }
1455 break;
1456 }
1457 case nir_op_ishr: {
1458 if (dst.regClass() == v2b && ctx->program->chip_class >= GFX10) {
1459 emit_vop3a_instruction(ctx, instr, aco_opcode::v_ashrrev_i16_e64, dst, false, 2, true);
1460 } else if (dst.regClass() == v2b) {
1461 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i16, dst, false, true);
1462 } else if (dst.regClass() == v1) {
1463 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1464 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1465 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1466 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1467 } else if (dst.regClass() == v2) {
1468 emit_vop3a_instruction(ctx, instr, aco_opcode::v_ashr_i64, dst);
1469 } else if (dst.regClass() == s1) {
1470 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1471 } else if (dst.regClass() == s2) {
1472 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1473 } else {
1474 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1475 }
1476 break;
1477 }
1478 case nir_op_find_lsb: {
1479 Temp src = get_alu_src(ctx, instr->src[0]);
1480 if (src.regClass() == s1) {
1481 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1482 } else if (src.regClass() == v1) {
1483 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1484 } else if (src.regClass() == s2) {
1485 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1486 } else {
1487 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1488 }
1489 break;
1490 }
1491 case nir_op_ufind_msb:
1492 case nir_op_ifind_msb: {
1493 Temp src = get_alu_src(ctx, instr->src[0]);
1494 if (src.regClass() == s1 || src.regClass() == s2) {
1495 aco_opcode op = src.regClass() == s2 ?
1496 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1497 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1498 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1499
1500 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1501 Operand(src.size() * 32u - 1u), msb_rev);
1502 Temp msb = sub.def(0).getTemp();
1503 Temp carry = sub.def(1).getTemp();
1504
1505 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1506 } else if (src.regClass() == v1) {
1507 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1508 Temp msb_rev = bld.tmp(v1);
1509 emit_vop1_instruction(ctx, instr, op, msb_rev);
1510 Temp msb = bld.tmp(v1);
1511 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1512 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1513 } else {
1514 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1515 }
1516 break;
1517 }
1518 case nir_op_bitfield_reverse: {
1519 if (dst.regClass() == s1) {
1520 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1521 } else if (dst.regClass() == v1) {
1522 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1523 } else {
1524 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1525 }
1526 break;
1527 }
1528 case nir_op_iadd: {
1529 if (dst.regClass() == s1) {
1530 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1531 break;
1532 } else if (dst.bytes() <= 2 && ctx->program->chip_class >= GFX10) {
1533 emit_vop3a_instruction(ctx, instr, aco_opcode::v_add_u16_e64, dst);
1534 break;
1535 } else if (dst.bytes() <= 2 && ctx->program->chip_class >= GFX8) {
1536 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_u16, dst, true);
1537 break;
1538 }
1539
1540 Temp src0 = get_alu_src(ctx, instr->src[0]);
1541 Temp src1 = get_alu_src(ctx, instr->src[1]);
1542 if (dst.type() == RegType::vgpr && dst.bytes() <= 4) {
1543 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1544 break;
1545 }
1546
1547 assert(src0.size() == 2 && src1.size() == 2);
1548 Temp src00 = bld.tmp(src0.type(), 1);
1549 Temp src01 = bld.tmp(dst.type(), 1);
1550 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1551 Temp src10 = bld.tmp(src1.type(), 1);
1552 Temp src11 = bld.tmp(dst.type(), 1);
1553 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1554
1555 if (dst.regClass() == s2) {
1556 Temp carry = bld.tmp(s1);
1557 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1558 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1559 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1560 } else if (dst.regClass() == v2) {
1561 Temp dst0 = bld.tmp(v1);
1562 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1563 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1564 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1565 } else {
1566 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1567 }
1568 break;
1569 }
1570 case nir_op_uadd_sat: {
1571 Temp src0 = get_alu_src(ctx, instr->src[0]);
1572 Temp src1 = get_alu_src(ctx, instr->src[1]);
1573 if (dst.regClass() == s1) {
1574 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1575 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1576 src0, src1);
1577 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1578 } else if (dst.regClass() == v2b) {
1579 Instruction *instr;
1580 if (ctx->program->chip_class >= GFX10) {
1581 instr = bld.vop3(aco_opcode::v_add_u16_e64, Definition(dst), src0, src1).instr;
1582 } else {
1583 if (src1.type() == RegType::sgpr)
1584 std::swap(src0, src1);
1585 instr = bld.vop2_e64(aco_opcode::v_add_u16, Definition(dst), src0, as_vgpr(ctx, src1)).instr;
1586 }
1587 static_cast<VOP3A_instruction*>(instr)->clamp = 1;
1588 } else if (dst.regClass() == v1) {
1589 if (ctx->options->chip_class >= GFX9) {
1590 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1591 add->operands[0] = Operand(src0);
1592 add->operands[1] = Operand(src1);
1593 add->definitions[0] = Definition(dst);
1594 add->clamp = 1;
1595 ctx->block->instructions.emplace_back(std::move(add));
1596 } else {
1597 if (src1.regClass() != v1)
1598 std::swap(src0, src1);
1599 assert(src1.regClass() == v1);
1600 Temp tmp = bld.tmp(v1);
1601 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1602 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1603 }
1604 } else {
1605 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1606 }
1607 break;
1608 }
1609 case nir_op_uadd_carry: {
1610 Temp src0 = get_alu_src(ctx, instr->src[0]);
1611 Temp src1 = get_alu_src(ctx, instr->src[1]);
1612 if (dst.regClass() == s1) {
1613 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1614 break;
1615 }
1616 if (dst.regClass() == v1) {
1617 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1618 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1619 break;
1620 }
1621
1622 Temp src00 = bld.tmp(src0.type(), 1);
1623 Temp src01 = bld.tmp(dst.type(), 1);
1624 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1625 Temp src10 = bld.tmp(src1.type(), 1);
1626 Temp src11 = bld.tmp(dst.type(), 1);
1627 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1628 if (dst.regClass() == s2) {
1629 Temp carry = bld.tmp(s1);
1630 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1631 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1632 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1633 } else if (dst.regClass() == v2) {
1634 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1635 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1636 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1637 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1638 } else {
1639 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1640 }
1641 break;
1642 }
1643 case nir_op_isub: {
1644 if (dst.regClass() == s1) {
1645 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1646 break;
1647 }
1648
1649 Temp src0 = get_alu_src(ctx, instr->src[0]);
1650 Temp src1 = get_alu_src(ctx, instr->src[1]);
1651 if (dst.regClass() == v1) {
1652 bld.vsub32(Definition(dst), src0, src1);
1653 break;
1654 } else if (dst.bytes() <= 2) {
1655 if (ctx->program->chip_class >= GFX10)
1656 bld.vop3(aco_opcode::v_sub_u16_e64, Definition(dst), src0, src1);
1657 else if (src1.type() == RegType::sgpr)
1658 bld.vop2(aco_opcode::v_subrev_u16, Definition(dst), src1, as_vgpr(ctx, src0));
1659 else if (ctx->program->chip_class >= GFX8)
1660 bld.vop2(aco_opcode::v_sub_u16, Definition(dst), src0, as_vgpr(ctx, src1));
1661 else
1662 bld.vsub32(Definition(dst), src0, src1);
1663 break;
1664 }
1665
1666 Temp src00 = bld.tmp(src0.type(), 1);
1667 Temp src01 = bld.tmp(dst.type(), 1);
1668 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1669 Temp src10 = bld.tmp(src1.type(), 1);
1670 Temp src11 = bld.tmp(dst.type(), 1);
1671 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1672 if (dst.regClass() == s2) {
1673 Temp carry = bld.tmp(s1);
1674 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1675 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1676 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1677 } else if (dst.regClass() == v2) {
1678 Temp lower = bld.tmp(v1);
1679 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1680 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1681 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1682 } else {
1683 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1684 }
1685 break;
1686 }
1687 case nir_op_usub_borrow: {
1688 Temp src0 = get_alu_src(ctx, instr->src[0]);
1689 Temp src1 = get_alu_src(ctx, instr->src[1]);
1690 if (dst.regClass() == s1) {
1691 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1692 break;
1693 } else if (dst.regClass() == v1) {
1694 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1695 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1696 break;
1697 }
1698
1699 Temp src00 = bld.tmp(src0.type(), 1);
1700 Temp src01 = bld.tmp(dst.type(), 1);
1701 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1702 Temp src10 = bld.tmp(src1.type(), 1);
1703 Temp src11 = bld.tmp(dst.type(), 1);
1704 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1705 if (dst.regClass() == s2) {
1706 Temp borrow = bld.tmp(s1);
1707 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1708 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1709 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1710 } else if (dst.regClass() == v2) {
1711 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1712 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1713 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1714 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1715 } else {
1716 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1717 }
1718 break;
1719 }
1720 case nir_op_imul: {
1721 if (dst.bytes() <= 2 && ctx->program->chip_class >= GFX10) {
1722 emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_lo_u16_e64, dst);
1723 } else if (dst.bytes() <= 2 && ctx->program->chip_class >= GFX8) {
1724 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_lo_u16, dst, true);
1725 } else if (dst.type() == RegType::vgpr) {
1726 uint32_t src0_ub = get_alu_src_ub(ctx, instr, 0);
1727 uint32_t src1_ub = get_alu_src_ub(ctx, instr, 1);
1728
1729 if (src0_ub <= 0xffffff && src1_ub <= 0xffffff) {
1730 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_u32_u24, dst, true);
1731 } else {
1732 emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_lo_u32, dst);
1733 }
1734 } else if (dst.regClass() == s1) {
1735 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1736 } else {
1737 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1738 }
1739 break;
1740 }
1741 case nir_op_umul_high: {
1742 if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1743 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_hi_u32, dst, false);
1744 } else if (dst.bytes() == 4) {
1745 uint32_t src0_ub = get_alu_src_ub(ctx, instr, 0);
1746 uint32_t src1_ub = get_alu_src_ub(ctx, instr, 1);
1747
1748 Temp tmp = dst.regClass() == s1 ? bld.tmp(v1) : dst;
1749 if (src0_ub <= 0xffffff && src1_ub <= 0xffffff) {
1750 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_hi_u32_u24, tmp, true);
1751 } else {
1752 emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_hi_u32, tmp);
1753 }
1754
1755 if (dst.regClass() == s1)
1756 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1757 } else {
1758 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1759 }
1760 break;
1761 }
1762 case nir_op_imul_high: {
1763 if (dst.regClass() == v1) {
1764 emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_hi_i32, dst);
1765 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1766 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_hi_i32, dst, false);
1767 } else if (dst.regClass() == s1) {
1768 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1769 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1770 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1771 } else {
1772 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1773 }
1774 break;
1775 }
1776 case nir_op_fmul: {
1777 if (dst.regClass() == v2b) {
1778 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, dst, true);
1779 } else if (dst.regClass() == v1) {
1780 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1781 } else if (dst.regClass() == v2) {
1782 emit_vop3a_instruction(ctx, instr, aco_opcode::v_mul_f64, dst);
1783 } else {
1784 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1785 }
1786 break;
1787 }
1788 case nir_op_fadd: {
1789 if (dst.regClass() == v2b) {
1790 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, dst, true);
1791 } else if (dst.regClass() == v1) {
1792 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1793 } else if (dst.regClass() == v2) {
1794 emit_vop3a_instruction(ctx, instr, aco_opcode::v_add_f64, dst);
1795 } else {
1796 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1797 }
1798 break;
1799 }
1800 case nir_op_fsub: {
1801 Temp src0 = get_alu_src(ctx, instr->src[0]);
1802 Temp src1 = get_alu_src(ctx, instr->src[1]);
1803 if (dst.regClass() == v2b) {
1804 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1805 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, dst, false);
1806 else
1807 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, dst, true);
1808 } else if (dst.regClass() == v1) {
1809 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1810 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1811 else
1812 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1813 } else if (dst.regClass() == v2) {
1814 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1815 as_vgpr(ctx, src0), as_vgpr(ctx, src1));
1816 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1817 sub->neg[1] = true;
1818 } else {
1819 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1820 }
1821 break;
1822 }
1823 case nir_op_fmax: {
1824 if (dst.regClass() == v2b) {
1825 // TODO: check fp_mode.must_flush_denorms16_64
1826 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, dst, true);
1827 } else if (dst.regClass() == v1) {
1828 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1829 } else if (dst.regClass() == v2) {
1830 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max_f64, dst, ctx->block->fp_mode.must_flush_denorms16_64);
1831 } else {
1832 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1833 }
1834 break;
1835 }
1836 case nir_op_fmin: {
1837 if (dst.regClass() == v2b) {
1838 // TODO: check fp_mode.must_flush_denorms16_64
1839 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, dst, true);
1840 } else if (dst.regClass() == v1) {
1841 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1842 } else if (dst.regClass() == v2) {
1843 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min_f64, dst, ctx->block->fp_mode.must_flush_denorms16_64);
1844 } else {
1845 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1846 }
1847 break;
1848 }
1849 case nir_op_cube_face_coord: {
1850 Temp in = get_alu_src(ctx, instr->src[0], 3);
1851 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1852 emit_extract_vector(ctx, in, 1, v1),
1853 emit_extract_vector(ctx, in, 2, v1) };
1854 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1855 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1856 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1857 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1858 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1),
1859 Operand(0x3f000000u/*0.5*/),
1860 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, ma));
1861 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1),
1862 Operand(0x3f000000u/*0.5*/),
1863 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, ma));
1864 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1865 break;
1866 }
1867 case nir_op_cube_face_index: {
1868 Temp in = get_alu_src(ctx, instr->src[0], 3);
1869 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1870 emit_extract_vector(ctx, in, 1, v1),
1871 emit_extract_vector(ctx, in, 2, v1) };
1872 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1873 break;
1874 }
1875 case nir_op_bcsel: {
1876 emit_bcsel(ctx, instr, dst);
1877 break;
1878 }
1879 case nir_op_frsq: {
1880 if (dst.regClass() == v2b) {
1881 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f16, dst);
1882 } else if (dst.regClass() == v1) {
1883 Temp src = get_alu_src(ctx, instr->src[0]);
1884 emit_rsq(ctx, bld, Definition(dst), src);
1885 } else if (dst.regClass() == v2) {
1886 /* Lowered at NIR level for precision reasons. */
1887 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1888 } else {
1889 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1890 }
1891 break;
1892 }
1893 case nir_op_fneg: {
1894 Temp src = get_alu_src(ctx, instr->src[0]);
1895 if (dst.regClass() == v2b) {
1896 if (ctx->block->fp_mode.must_flush_denorms16_64)
1897 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1898 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x8000u), as_vgpr(ctx, src));
1899 } else if (dst.regClass() == v1) {
1900 if (ctx->block->fp_mode.must_flush_denorms32)
1901 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1902 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1903 } else if (dst.regClass() == v2) {
1904 if (ctx->block->fp_mode.must_flush_denorms16_64)
1905 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(UINT64_C(0x3FF0000000000000)), as_vgpr(ctx, src));
1906 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1907 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1908 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1909 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1910 } else {
1911 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1912 }
1913 break;
1914 }
1915 case nir_op_fabs: {
1916 Temp src = get_alu_src(ctx, instr->src[0]);
1917 if (dst.regClass() == v2b) {
1918 if (ctx->block->fp_mode.must_flush_denorms16_64)
1919 src = bld.vop2(aco_opcode::v_mul_f16, bld.def(v2b), Operand((uint16_t)0x3C00), as_vgpr(ctx, src));
1920 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFu), as_vgpr(ctx, src));
1921 } else if (dst.regClass() == v1) {
1922 if (ctx->block->fp_mode.must_flush_denorms32)
1923 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1924 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1925 } else if (dst.regClass() == v2) {
1926 if (ctx->block->fp_mode.must_flush_denorms16_64)
1927 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(UINT64_C(0x3FF0000000000000)), as_vgpr(ctx, src));
1928 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1929 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1930 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1931 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1932 } else {
1933 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1934 }
1935 break;
1936 }
1937 case nir_op_fsat: {
1938 Temp src = get_alu_src(ctx, instr->src[0]);
1939 if (dst.regClass() == v2b) {
1940 bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand((uint16_t)0u), Operand((uint16_t)0x3c00), src);
1941 } else if (dst.regClass() == v1) {
1942 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1943 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1944 // TODO: confirm that this holds under any circumstances
1945 } else if (dst.regClass() == v2) {
1946 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1947 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1948 vop3->clamp = true;
1949 } else {
1950 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1951 }
1952 break;
1953 }
1954 case nir_op_flog2: {
1955 if (dst.regClass() == v2b) {
1956 emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f16, dst);
1957 } else if (dst.regClass() == v1) {
1958 Temp src = get_alu_src(ctx, instr->src[0]);
1959 emit_log2(ctx, bld, Definition(dst), src);
1960 } else {
1961 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1962 }
1963 break;
1964 }
1965 case nir_op_frcp: {
1966 if (dst.regClass() == v2b) {
1967 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f16, dst);
1968 } else if (dst.regClass() == v1) {
1969 Temp src = get_alu_src(ctx, instr->src[0]);
1970 emit_rcp(ctx, bld, Definition(dst), src);
1971 } else if (dst.regClass() == v2) {
1972 /* Lowered at NIR level for precision reasons. */
1973 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1974 } else {
1975 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1976 }
1977 break;
1978 }
1979 case nir_op_fexp2: {
1980 if (dst.regClass() == v2b) {
1981 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f16, dst);
1982 } else if (dst.regClass() == v1) {
1983 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1984 } else {
1985 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
1986 }
1987 break;
1988 }
1989 case nir_op_fsqrt: {
1990 if (dst.regClass() == v2b) {
1991 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f16, dst);
1992 } else if (dst.regClass() == v1) {
1993 Temp src = get_alu_src(ctx, instr->src[0]);
1994 emit_sqrt(ctx, bld, Definition(dst), src);
1995 } else if (dst.regClass() == v2) {
1996 /* Lowered at NIR level for precision reasons. */
1997 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1998 } else {
1999 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2000 }
2001 break;
2002 }
2003 case nir_op_ffract: {
2004 if (dst.regClass() == v2b) {
2005 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f16, dst);
2006 } else if (dst.regClass() == v1) {
2007 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
2008 } else if (dst.regClass() == v2) {
2009 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
2010 } else {
2011 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2012 }
2013 break;
2014 }
2015 case nir_op_ffloor: {
2016 if (dst.regClass() == v2b) {
2017 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f16, dst);
2018 } else if (dst.regClass() == v1) {
2019 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
2020 } else if (dst.regClass() == v2) {
2021 Temp src = get_alu_src(ctx, instr->src[0]);
2022 emit_floor_f64(ctx, bld, Definition(dst), src);
2023 } else {
2024 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2025 }
2026 break;
2027 }
2028 case nir_op_fceil: {
2029 if (dst.regClass() == v2b) {
2030 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f16, dst);
2031 } else if (dst.regClass() == v1) {
2032 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
2033 } else if (dst.regClass() == v2) {
2034 if (ctx->options->chip_class >= GFX7) {
2035 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
2036 } else {
2037 /* GFX6 doesn't support V_CEIL_F64, lower it. */
2038 /* trunc = trunc(src0)
2039 * if (src0 > 0.0 && src0 != trunc)
2040 * trunc += 1.0
2041 */
2042 Temp src0 = get_alu_src(ctx, instr->src[0]);
2043 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
2044 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
2045 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
2046 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
2047 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
2048 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
2049 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
2050 }
2051 } else {
2052 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2053 }
2054 break;
2055 }
2056 case nir_op_ftrunc: {
2057 if (dst.regClass() == v2b) {
2058 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f16, dst);
2059 } else if (dst.regClass() == v1) {
2060 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2061 } else if (dst.regClass() == v2) {
2062 Temp src = get_alu_src(ctx, instr->src[0]);
2063 emit_trunc_f64(ctx, bld, Definition(dst), src);
2064 } else {
2065 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2066 }
2067 break;
2068 }
2069 case nir_op_fround_even: {
2070 if (dst.regClass() == v2b) {
2071 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f16, dst);
2072 } else if (dst.regClass() == v1) {
2073 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2074 } else if (dst.regClass() == v2) {
2075 if (ctx->options->chip_class >= GFX7) {
2076 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2077 } else {
2078 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2079 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2080 Temp src0 = get_alu_src(ctx, instr->src[0]);
2081 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2082
2083 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2084 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2085 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2086 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2087 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2088 tmp = sub->definitions[0].getTemp();
2089
2090 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2091 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2092 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2093 Temp cond = vop3->definitions[0].getTemp();
2094
2095 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2096 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2097 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2098 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2099
2100 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2101 }
2102 } else {
2103 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2104 }
2105 break;
2106 }
2107 case nir_op_fsin:
2108 case nir_op_fcos: {
2109 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2110 aco_ptr<Instruction> norm;
2111 if (dst.regClass() == v2b) {
2112 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3118u));
2113 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2114 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2115 bld.vop1(opcode, Definition(dst), tmp);
2116 } else if (dst.regClass() == v1) {
2117 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2118 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2119
2120 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2121 if (ctx->options->chip_class < GFX9)
2122 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2123
2124 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2125 bld.vop1(opcode, Definition(dst), tmp);
2126 } else {
2127 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2128 }
2129 break;
2130 }
2131 case nir_op_ldexp: {
2132 if (dst.regClass() == v2b) {
2133 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, dst, false);
2134 } else if (dst.regClass() == v1) {
2135 emit_vop3a_instruction(ctx, instr, aco_opcode::v_ldexp_f32, dst);
2136 } else if (dst.regClass() == v2) {
2137 emit_vop3a_instruction(ctx, instr, aco_opcode::v_ldexp_f64, dst);
2138 } else {
2139 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2140 }
2141 break;
2142 }
2143 case nir_op_frexp_sig: {
2144 if (dst.regClass() == v2b) {
2145 emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_mant_f16, dst);
2146 } else if (dst.regClass() == v1) {
2147 emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_mant_f32, dst);
2148 } else if (dst.regClass() == v2) {
2149 emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_mant_f64, dst);
2150 } else {
2151 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2152 }
2153 break;
2154 }
2155 case nir_op_frexp_exp: {
2156 if (instr->src[0].src.ssa->bit_size == 16) {
2157 Temp src = get_alu_src(ctx, instr->src[0]);
2158 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2159 tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
2160 convert_int(ctx, bld, tmp, 8, 32, true, dst);
2161 } else if (instr->src[0].src.ssa->bit_size == 32) {
2162 emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_exp_i32_f32, dst);
2163 } else if (instr->src[0].src.ssa->bit_size == 64) {
2164 emit_vop1_instruction(ctx, instr, aco_opcode::v_frexp_exp_i32_f64, dst);
2165 } else {
2166 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2167 }
2168 break;
2169 }
2170 case nir_op_fsign: {
2171 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2172 if (dst.regClass() == v2b) {
2173 assert(ctx->program->chip_class >= GFX9);
2174 /* replace negative zero with positive zero */
2175 src = bld.vop2(aco_opcode::v_add_f16, bld.def(v2b), Operand(0u), src);
2176 src = bld.vop3(aco_opcode::v_med3_i16, bld.def(v2b), Operand((uint16_t)-1), src, Operand((uint16_t)1u));
2177 bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src);
2178 } else if (dst.regClass() == v1) {
2179 src = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0u), src);
2180 src = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand((uint32_t)-1), src, Operand(1u));
2181 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2182 } else if (dst.regClass() == v2) {
2183 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2184 Temp tmp = bld.copy(bld.def(v1), Operand(0x3FF00000u));
2185 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2186
2187 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2188 tmp = bld.copy(bld.def(v1), Operand(0xBFF00000u));
2189 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2190
2191 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2192 } else {
2193 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2194 }
2195 break;
2196 }
2197 case nir_op_f2f16:
2198 case nir_op_f2f16_rtne: {
2199 Temp src = get_alu_src(ctx, instr->src[0]);
2200 if (instr->src[0].src.ssa->bit_size == 64)
2201 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2202 if (instr->op == nir_op_f2f16_rtne && ctx->block->fp_mode.round16_64 != fp_round_ne)
2203 /* We emit s_round_mode/s_setreg_imm32 in lower_to_hw_instr to
2204 * keep value numbering and the scheduler simpler.
2205 */
2206 bld.vop1(aco_opcode::p_cvt_f16_f32_rtne, Definition(dst), src);
2207 else
2208 bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
2209 break;
2210 }
2211 case nir_op_f2f16_rtz: {
2212 Temp src = get_alu_src(ctx, instr->src[0]);
2213 if (instr->src[0].src.ssa->bit_size == 64)
2214 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2215 if (ctx->block->fp_mode.round16_64 == fp_round_tz)
2216 bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
2217 else if (ctx->program->chip_class == GFX8 || ctx->program->chip_class == GFX9)
2218 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32_e64, Definition(dst), src, Operand(0u));
2219 else
2220 bld.vop2(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src, as_vgpr(ctx, src));
2221 break;
2222 }
2223 case nir_op_f2f32: {
2224 if (instr->src[0].src.ssa->bit_size == 16) {
2225 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2226 } else if (instr->src[0].src.ssa->bit_size == 64) {
2227 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2228 } else {
2229 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2230 }
2231 break;
2232 }
2233 case nir_op_f2f64: {
2234 Temp src = get_alu_src(ctx, instr->src[0]);
2235 if (instr->src[0].src.ssa->bit_size == 16)
2236 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2237 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2238 break;
2239 }
2240 case nir_op_i2f16: {
2241 assert(dst.regClass() == v2b);
2242 Temp src = get_alu_src(ctx, instr->src[0]);
2243 if (instr->src[0].src.ssa->bit_size == 8)
2244 src = convert_int(ctx, bld, src, 8, 16, true);
2245 else if (instr->src[0].src.ssa->bit_size == 64)
2246 src = convert_int(ctx, bld, src, 64, 32, false);
2247 bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src);
2248 break;
2249 }
2250 case nir_op_i2f32: {
2251 assert(dst.size() == 1);
2252 Temp src = get_alu_src(ctx, instr->src[0]);
2253 if (instr->src[0].src.ssa->bit_size <= 16)
2254 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2255 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2256 break;
2257 }
2258 case nir_op_i2f64: {
2259 if (instr->src[0].src.ssa->bit_size <= 32) {
2260 Temp src = get_alu_src(ctx, instr->src[0]);
2261 if (instr->src[0].src.ssa->bit_size <= 16)
2262 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2263 bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
2264 } else if (instr->src[0].src.ssa->bit_size == 64) {
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 RegClass rc = RegClass(src.type(), 1);
2267 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2268 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2269 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2270 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2271 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2272 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2273
2274 } else {
2275 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2276 }
2277 break;
2278 }
2279 case nir_op_u2f16: {
2280 assert(dst.regClass() == v2b);
2281 Temp src = get_alu_src(ctx, instr->src[0]);
2282 if (instr->src[0].src.ssa->bit_size == 8)
2283 src = convert_int(ctx, bld, src, 8, 16, false);
2284 else if (instr->src[0].src.ssa->bit_size == 64)
2285 src = convert_int(ctx, bld, src, 64, 32, false);
2286 bld.vop1(aco_opcode::v_cvt_f16_u16, Definition(dst), src);
2287 break;
2288 }
2289 case nir_op_u2f32: {
2290 assert(dst.size() == 1);
2291 Temp src = get_alu_src(ctx, instr->src[0]);
2292 if (instr->src[0].src.ssa->bit_size == 8) {
2293 bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
2294 } else {
2295 if (instr->src[0].src.ssa->bit_size == 16)
2296 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2297 bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
2298 }
2299 break;
2300 }
2301 case nir_op_u2f64: {
2302 if (instr->src[0].src.ssa->bit_size <= 32) {
2303 Temp src = get_alu_src(ctx, instr->src[0]);
2304 if (instr->src[0].src.ssa->bit_size <= 16)
2305 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false);
2306 bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
2307 } else if (instr->src[0].src.ssa->bit_size == 64) {
2308 Temp src = get_alu_src(ctx, instr->src[0]);
2309 RegClass rc = RegClass(src.type(), 1);
2310 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2311 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2312 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2313 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2314 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2315 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2316 } else {
2317 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2318 }
2319 break;
2320 }
2321 case nir_op_f2i8:
2322 case nir_op_f2i16: {
2323 if (instr->src[0].src.ssa->bit_size == 16)
2324 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i16_f16, dst);
2325 else if (instr->src[0].src.ssa->bit_size == 32)
2326 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2327 else
2328 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2329 break;
2330 }
2331 case nir_op_f2u8:
2332 case nir_op_f2u16: {
2333 if (instr->src[0].src.ssa->bit_size == 16)
2334 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u16_f16, dst);
2335 else if (instr->src[0].src.ssa->bit_size == 32)
2336 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2337 else
2338 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2339 break;
2340 }
2341 case nir_op_f2i32: {
2342 Temp src = get_alu_src(ctx, instr->src[0]);
2343 if (instr->src[0].src.ssa->bit_size == 16) {
2344 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2345 if (dst.type() == RegType::vgpr) {
2346 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2347 } else {
2348 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2349 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2350 }
2351 } else if (instr->src[0].src.ssa->bit_size == 32) {
2352 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2353 } else if (instr->src[0].src.ssa->bit_size == 64) {
2354 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2355 } else {
2356 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2357 }
2358 break;
2359 }
2360 case nir_op_f2u32: {
2361 Temp src = get_alu_src(ctx, instr->src[0]);
2362 if (instr->src[0].src.ssa->bit_size == 16) {
2363 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2364 if (dst.type() == RegType::vgpr) {
2365 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2366 } else {
2367 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2368 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2369 }
2370 } else if (instr->src[0].src.ssa->bit_size == 32) {
2371 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2372 } else if (instr->src[0].src.ssa->bit_size == 64) {
2373 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2374 } else {
2375 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2376 }
2377 break;
2378 }
2379 case nir_op_f2i64: {
2380 Temp src = get_alu_src(ctx, instr->src[0]);
2381 if (instr->src[0].src.ssa->bit_size == 16)
2382 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2383
2384 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2385 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2386 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2387 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2388 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2389 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2390 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2391 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2392 Temp new_exponent = bld.tmp(v1);
2393 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2394 if (ctx->program->chip_class >= GFX8)
2395 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2396 else
2397 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2398 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2399 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2400 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2401 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2402 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2403 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2404 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2405 Temp new_lower = bld.tmp(v1);
2406 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2407 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2408 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2409
2410 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2411 if (src.type() == RegType::vgpr)
2412 src = bld.as_uniform(src);
2413 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2414 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2415 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2416 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2417 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2418 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2419 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2420 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2421 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2422 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2423 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2424 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2425 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2426 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2427 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2428 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2429 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2430 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2431 Temp borrow = bld.tmp(s1);
2432 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2433 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2434 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2435
2436 } else if (instr->src[0].src.ssa->bit_size == 64) {
2437 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2438 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2439 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2440 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2441 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2442 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2443 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2444 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2445 if (dst.type() == RegType::sgpr) {
2446 lower = bld.as_uniform(lower);
2447 upper = bld.as_uniform(upper);
2448 }
2449 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2450
2451 } else {
2452 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2453 }
2454 break;
2455 }
2456 case nir_op_f2u64: {
2457 Temp src = get_alu_src(ctx, instr->src[0]);
2458 if (instr->src[0].src.ssa->bit_size == 16)
2459 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2460
2461 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2462 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2463 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2464 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2465 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2466 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2467 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2468 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2469 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2470 Temp new_exponent = bld.tmp(v1);
2471 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2472 if (ctx->program->chip_class >= GFX8)
2473 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2474 else
2475 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2476 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2477 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2478 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2479 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2480 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2481 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2482 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2483
2484 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2485 if (src.type() == RegType::vgpr)
2486 src = bld.as_uniform(src);
2487 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2488 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2489 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2490 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2491 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2492 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2493 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2494 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2495 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2496 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2497 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2498 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2499 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2500 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2501 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2502 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2503 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2504 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2505
2506 } else if (instr->src[0].src.ssa->bit_size == 64) {
2507 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2508 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2509 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2510 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2511 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2512 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2513 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2514 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2515 if (dst.type() == RegType::sgpr) {
2516 lower = bld.as_uniform(lower);
2517 upper = bld.as_uniform(upper);
2518 }
2519 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2520
2521 } else {
2522 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2523 }
2524 break;
2525 }
2526 case nir_op_b2f16: {
2527 Temp src = get_alu_src(ctx, instr->src[0]);
2528 assert(src.regClass() == bld.lm);
2529
2530 if (dst.regClass() == s1) {
2531 src = bool_to_scalar_condition(ctx, src);
2532 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2533 } else if (dst.regClass() == v2b) {
2534 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2535 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), one, src);
2536 } else {
2537 unreachable("Wrong destination register class for nir_op_b2f16.");
2538 }
2539 break;
2540 }
2541 case nir_op_b2f32: {
2542 Temp src = get_alu_src(ctx, instr->src[0]);
2543 assert(src.regClass() == bld.lm);
2544
2545 if (dst.regClass() == s1) {
2546 src = bool_to_scalar_condition(ctx, src);
2547 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2548 } else if (dst.regClass() == v1) {
2549 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2550 } else {
2551 unreachable("Wrong destination register class for nir_op_b2f32.");
2552 }
2553 break;
2554 }
2555 case nir_op_b2f64: {
2556 Temp src = get_alu_src(ctx, instr->src[0]);
2557 assert(src.regClass() == bld.lm);
2558
2559 if (dst.regClass() == s2) {
2560 src = bool_to_scalar_condition(ctx, src);
2561 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2562 } else if (dst.regClass() == v2) {
2563 Temp one = bld.copy(bld.def(v2), Operand(0x3FF00000u));
2564 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2565 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2566 } else {
2567 unreachable("Wrong destination register class for nir_op_b2f64.");
2568 }
2569 break;
2570 }
2571 case nir_op_i2i8:
2572 case nir_op_i2i16:
2573 case nir_op_i2i32:
2574 case nir_op_i2i64: {
2575 if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) {
2576 /* no need to do the extract in get_alu_src() */
2577 sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ?
2578 sgpr_extract_sext : sgpr_extract_undef;
2579 extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode);
2580 } else {
2581 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2582 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
2583 }
2584 break;
2585 }
2586 case nir_op_u2u8:
2587 case nir_op_u2u16:
2588 case nir_op_u2u32:
2589 case nir_op_u2u64: {
2590 if (dst.type() == RegType::sgpr && instr->src[0].src.ssa->bit_size < 32) {
2591 /* no need to do the extract in get_alu_src() */
2592 sgpr_extract_mode mode = instr->dest.dest.ssa.bit_size > instr->src[0].src.ssa->bit_size ?
2593 sgpr_extract_zext : sgpr_extract_undef;
2594 extract_8_16_bit_sgpr_element(ctx, dst, &instr->src[0], mode);
2595 } else {
2596 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2597 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
2598 }
2599 break;
2600 }
2601 case nir_op_b2b32:
2602 case nir_op_b2i8:
2603 case nir_op_b2i16:
2604 case nir_op_b2i32:
2605 case nir_op_b2i64: {
2606 Temp src = get_alu_src(ctx, instr->src[0]);
2607 assert(src.regClass() == bld.lm);
2608
2609 Temp tmp = dst.bytes() == 8 ? bld.tmp(RegClass::get(dst.type(), 4)) : dst;
2610 if (tmp.regClass() == s1) {
2611 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2612 bool_to_scalar_condition(ctx, src, tmp);
2613 } else if (tmp.type() == RegType::vgpr) {
2614 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(tmp), Operand(0u), Operand(1u), src);
2615 } else {
2616 unreachable("Invalid register class for b2i32");
2617 }
2618
2619 if (tmp != dst)
2620 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
2621 break;
2622 }
2623 case nir_op_b2b1:
2624 case nir_op_i2b1: {
2625 Temp src = get_alu_src(ctx, instr->src[0]);
2626 assert(dst.regClass() == bld.lm);
2627
2628 if (src.type() == RegType::vgpr) {
2629 assert(src.regClass() == v1 || src.regClass() == v2);
2630 assert(dst.regClass() == bld.lm);
2631 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2632 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2633 } else {
2634 assert(src.regClass() == s1 || src.regClass() == s2);
2635 Temp tmp;
2636 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2637 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2638 } else {
2639 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2640 bld.scc(bld.def(s1)), Operand(0u), src);
2641 }
2642 bool_to_vector_condition(ctx, tmp, dst);
2643 }
2644 break;
2645 }
2646 case nir_op_unpack_64_2x32:
2647 case nir_op_unpack_32_2x16:
2648 case nir_op_unpack_64_4x16:
2649 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2650 emit_split_vector(ctx, dst, instr->op == nir_op_unpack_64_4x16 ? 4 : 2);
2651 break;
2652 case nir_op_pack_64_2x32_split: {
2653 Temp src0 = get_alu_src(ctx, instr->src[0]);
2654 Temp src1 = get_alu_src(ctx, instr->src[1]);
2655
2656 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2657 break;
2658 }
2659 case nir_op_unpack_64_2x32_split_x:
2660 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2661 break;
2662 case nir_op_unpack_64_2x32_split_y:
2663 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2664 break;
2665 case nir_op_unpack_32_2x16_split_x:
2666 if (dst.type() == RegType::vgpr) {
2667 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2668 } else {
2669 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2670 }
2671 break;
2672 case nir_op_unpack_32_2x16_split_y:
2673 if (dst.type() == RegType::vgpr) {
2674 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2675 } else {
2676 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2677 }
2678 break;
2679 case nir_op_pack_32_2x16_split: {
2680 Temp src0 = get_alu_src(ctx, instr->src[0]);
2681 Temp src1 = get_alu_src(ctx, instr->src[1]);
2682 if (dst.regClass() == v1) {
2683 src0 = emit_extract_vector(ctx, src0, 0, v2b);
2684 src1 = emit_extract_vector(ctx, src1, 0, v2b);
2685 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2686 } else {
2687 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2688 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2689 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2690 }
2691 break;
2692 }
2693 case nir_op_pack_half_2x16_split: {
2694 if (dst.regClass() == v1) {
2695 nir_const_value* val = nir_src_as_const_value(instr->src[1].src);
2696 if (val && val->u32 == 0 && ctx->program->chip_class <= GFX9) {
2697 /* upper bits zero on GFX6-GFX9 */
2698 bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), get_alu_src(ctx, instr->src[0]));
2699 } else if (!ctx->block->fp_mode.care_about_round16_64 || ctx->block->fp_mode.round16_64 == fp_round_tz) {
2700 if (ctx->program->chip_class == GFX8 || ctx->program->chip_class == GFX9)
2701 emit_vop3a_instruction(ctx, instr, aco_opcode::v_cvt_pkrtz_f16_f32_e64, dst);
2702 else
2703 emit_vop2_instruction(ctx, instr, aco_opcode::v_cvt_pkrtz_f16_f32, dst, false);
2704 } else {
2705 Temp src0 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v2b), get_alu_src(ctx, instr->src[0]));
2706 Temp src1 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v2b), get_alu_src(ctx, instr->src[1]));
2707 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2708 }
2709 } else {
2710 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2711 }
2712 break;
2713 }
2714 case nir_op_unpack_half_2x16_split_x_flush_to_zero:
2715 case nir_op_unpack_half_2x16_split_x: {
2716 Temp src = get_alu_src(ctx, instr->src[0]);
2717 if (src.regClass() == v1)
2718 src = bld.pseudo(aco_opcode::p_split_vector, bld.def(v2b), bld.def(v2b), src);
2719 if (dst.regClass() == v1) {
2720 assert(ctx->block->fp_mode.must_flush_denorms16_64 == (instr->op == nir_op_unpack_half_2x16_split_x_flush_to_zero));
2721 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), src);
2722 } else {
2723 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2724 }
2725 break;
2726 }
2727 case nir_op_unpack_half_2x16_split_y_flush_to_zero:
2728 case nir_op_unpack_half_2x16_split_y: {
2729 Temp src = get_alu_src(ctx, instr->src[0]);
2730 if (src.regClass() == s1)
2731 src = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), src, Operand(16u));
2732 else
2733 src = bld.pseudo(aco_opcode::p_split_vector, bld.def(v2b), bld.def(v2b), src).def(1).getTemp();
2734 if (dst.regClass() == v1) {
2735 assert(ctx->block->fp_mode.must_flush_denorms16_64 == (instr->op == nir_op_unpack_half_2x16_split_y_flush_to_zero));
2736 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), src);
2737 } else {
2738 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2739 }
2740 break;
2741 }
2742 case nir_op_fquantize2f16: {
2743 Temp src = get_alu_src(ctx, instr->src[0]);
2744 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2745 Temp f32, cmp_res;
2746
2747 if (ctx->program->chip_class >= GFX8) {
2748 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2749 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2750 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2751 } else {
2752 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2753 * so compare the result and flush to 0 if it's smaller.
2754 */
2755 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2756 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2757 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2758 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2759 cmp_res = vop3->definitions[0].getTemp();
2760 }
2761
2762 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2763 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2764 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2765 } else {
2766 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2767 }
2768 break;
2769 }
2770 case nir_op_bfm: {
2771 Temp bits = get_alu_src(ctx, instr->src[0]);
2772 Temp offset = get_alu_src(ctx, instr->src[1]);
2773
2774 if (dst.regClass() == s1) {
2775 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2776 } else if (dst.regClass() == v1) {
2777 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2778 } else {
2779 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2780 }
2781 break;
2782 }
2783 case nir_op_bitfield_select: {
2784
2785 /* dst = (insert & bitmask) | (base & ~bitmask) */
2786 if (dst.regClass() == s1) {
2787 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2788 Temp insert = get_alu_src(ctx, instr->src[1]);
2789 Temp base = get_alu_src(ctx, instr->src[2]);
2790 aco_ptr<Instruction> sop2;
2791 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2792 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2793 Operand lhs;
2794 if (const_insert && const_bitmask) {
2795 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2796 } else {
2797 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2798 lhs = Operand(insert);
2799 }
2800
2801 Operand rhs;
2802 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2803 if (const_base && const_bitmask) {
2804 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2805 } else {
2806 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2807 rhs = Operand(base);
2808 }
2809
2810 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2811
2812 } else if (dst.regClass() == v1) {
2813 emit_vop3a_instruction(ctx, instr, aco_opcode::v_bfi_b32, dst, false, 3);
2814 } else {
2815 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2816 }
2817 break;
2818 }
2819 case nir_op_ubfe:
2820 case nir_op_ibfe: {
2821 if (dst.bytes() != 4)
2822 unreachable("Unsupported BFE bit size");
2823
2824 if (dst.type() == RegType::sgpr) {
2825 Temp base = get_alu_src(ctx, instr->src[0]);
2826
2827 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2828 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2829 if (const_offset && const_bits) {
2830 uint32_t extract = (const_bits->u32 << 16) | (const_offset->u32 & 0x1f);
2831 aco_opcode opcode = instr->op == nir_op_ubfe ? aco_opcode::s_bfe_u32 : aco_opcode::s_bfe_i32;
2832 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, Operand(extract));
2833 break;
2834 }
2835
2836 Temp offset = get_alu_src(ctx, instr->src[1]);
2837 Temp bits = get_alu_src(ctx, instr->src[2]);
2838 if (instr->op == nir_op_ubfe) {
2839 Temp mask = bld.sop2(aco_opcode::s_bfm_b32, bld.def(s1), bits, offset);
2840 Temp masked = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), base, mask);
2841 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), masked, offset);
2842 } else {
2843 Operand bits_op = const_bits ? Operand(const_bits->u32 << 16) :
2844 bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2845 Operand offset_op = const_offset ? Operand(const_offset->u32 & 0x1fu) :
2846 bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(0x1fu));
2847
2848 Temp extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), bits_op, offset_op);
2849 bld.sop2(aco_opcode::s_bfe_i32, Definition(dst), bld.def(s1, scc), base, extract);
2850 }
2851
2852 } else {
2853 aco_opcode opcode = instr->op == nir_op_ubfe ? aco_opcode::v_bfe_u32 : aco_opcode::v_bfe_i32;
2854 emit_vop3a_instruction(ctx, instr, opcode, dst, false, 3);
2855 }
2856 break;
2857 }
2858 case nir_op_bit_count: {
2859 Temp src = get_alu_src(ctx, instr->src[0]);
2860 if (src.regClass() == s1) {
2861 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2862 } else if (src.regClass() == v1) {
2863 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2864 } else if (src.regClass() == v2) {
2865 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2866 emit_extract_vector(ctx, src, 1, v1),
2867 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2868 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2869 } else if (src.regClass() == s2) {
2870 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2871 } else {
2872 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
2873 }
2874 break;
2875 }
2876 case nir_op_flt: {
2877 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2878 break;
2879 }
2880 case nir_op_fge: {
2881 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2882 break;
2883 }
2884 case nir_op_feq: {
2885 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2886 break;
2887 }
2888 case nir_op_fneu: {
2889 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2890 break;
2891 }
2892 case nir_op_ilt: {
2893 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2894 break;
2895 }
2896 case nir_op_ige: {
2897 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2898 break;
2899 }
2900 case nir_op_ieq: {
2901 if (instr->src[0].src.ssa->bit_size == 1)
2902 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2903 else
2904 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2905 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2906 break;
2907 }
2908 case nir_op_ine: {
2909 if (instr->src[0].src.ssa->bit_size == 1)
2910 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2911 else
2912 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2913 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2914 break;
2915 }
2916 case nir_op_ult: {
2917 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2918 break;
2919 }
2920 case nir_op_uge: {
2921 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2922 break;
2923 }
2924 case nir_op_fddx:
2925 case nir_op_fddy:
2926 case nir_op_fddx_fine:
2927 case nir_op_fddy_fine:
2928 case nir_op_fddx_coarse:
2929 case nir_op_fddy_coarse: {
2930 Temp src = get_alu_src(ctx, instr->src[0]);
2931 uint16_t dpp_ctrl1, dpp_ctrl2;
2932 if (instr->op == nir_op_fddx_fine) {
2933 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2934 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2935 } else if (instr->op == nir_op_fddy_fine) {
2936 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2937 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2938 } else {
2939 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2940 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2941 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2942 else
2943 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2944 }
2945
2946 Temp tmp;
2947 if (ctx->program->chip_class >= GFX8) {
2948 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2949 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2950 } else {
2951 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2952 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2953 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2954 }
2955 emit_wqm(ctx, tmp, dst, true);
2956 break;
2957 }
2958 default:
2959 isel_err(&instr->instr, "Unknown NIR ALU instr");
2960 }
2961 }
2962
visit_load_const(isel_context * ctx,nir_load_const_instr * instr)2963 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2964 {
2965 Temp dst = get_ssa_temp(ctx, &instr->def);
2966
2967 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2968 // which get truncated the lsb if double and msb if int
2969 // for now, we only use s_mov_b64 with 64bit inline constants
2970 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2971 assert(dst.type() == RegType::sgpr);
2972
2973 Builder bld(ctx->program, ctx->block);
2974
2975 if (instr->def.bit_size == 1) {
2976 assert(dst.regClass() == bld.lm);
2977 int val = instr->value[0].b ? -1 : 0;
2978 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2979 bld.copy(Definition(dst), op);
2980 } else if (instr->def.bit_size == 8) {
2981 bld.copy(Definition(dst), Operand((uint32_t)instr->value[0].u8));
2982 } else if (instr->def.bit_size == 16) {
2983 /* sign-extend to use s_movk_i32 instead of a literal */
2984 bld.copy(Definition(dst), Operand((uint32_t)instr->value[0].i16));
2985 } else if (dst.size() == 1) {
2986 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2987 } else {
2988 assert(dst.size() != 1);
2989 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2990 if (instr->def.bit_size == 64)
2991 for (unsigned i = 0; i < dst.size(); i++)
2992 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2993 else {
2994 for (unsigned i = 0; i < dst.size(); i++)
2995 vec->operands[i] = Operand{instr->value[i].u32};
2996 }
2997 vec->definitions[0] = Definition(dst);
2998 ctx->block->instructions.emplace_back(std::move(vec));
2999 }
3000 }
3001
widen_mask(uint32_t mask,unsigned multiplier)3002 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3003 {
3004 uint32_t new_mask = 0;
3005 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3006 if (mask & (1u << i))
3007 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3008 return new_mask;
3009 }
3010
3011 struct LoadEmitInfo {
3012 Operand offset;
3013 Temp dst;
3014 unsigned num_components;
3015 unsigned component_size;
3016 Temp resource = Temp(0, s1);
3017 unsigned component_stride = 0;
3018 unsigned const_offset = 0;
3019 unsigned align_mul = 0;
3020 unsigned align_offset = 0;
3021
3022 bool glc = false;
3023 bool slc = false;
3024 unsigned swizzle_component_size = 0;
3025 memory_sync_info sync;
3026 Temp soffset = Temp(0, s1);
3027 };
3028
3029 struct EmitLoadParameters {
3030 using Callback = Temp (*)(Builder &bld, const LoadEmitInfo &info,
3031 Temp offset, unsigned bytes_needed,
3032 unsigned align, unsigned const_offset,
3033 Temp dst_hint);
3034
3035 Callback callback;
3036 bool byte_align_loads;
3037 bool supports_8bit_16bit_loads;
3038 unsigned max_const_offset_plus_one;
3039 };
3040
emit_load(isel_context * ctx,Builder & bld,const LoadEmitInfo & info,const EmitLoadParameters & params)3041 void emit_load(isel_context *ctx, Builder &bld, const LoadEmitInfo &info,
3042 const EmitLoadParameters ¶ms)
3043 {
3044 unsigned load_size = info.num_components * info.component_size;
3045 unsigned component_size = info.component_size;
3046
3047 unsigned num_vals = 0;
3048 Temp *const vals = (Temp *)alloca(info.dst.bytes() * sizeof(Temp));
3049
3050 unsigned const_offset = info.const_offset;
3051
3052 const unsigned align_mul = info.align_mul ? info.align_mul : component_size;
3053 unsigned align_offset = (info.align_offset + const_offset) % align_mul;
3054
3055 unsigned bytes_read = 0;
3056 while (bytes_read < load_size) {
3057 unsigned bytes_needed = load_size - bytes_read;
3058
3059 /* add buffer for unaligned loads */
3060 int byte_align = 0;
3061 if (params.byte_align_loads) {
3062 byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
3063 }
3064
3065 if (byte_align) {
3066 if (bytes_needed > 2 ||
3067 (bytes_needed == 2 && (align_mul % 2 || align_offset % 2)) ||
3068 !params.supports_8bit_16bit_loads) {
3069 if (info.component_stride) {
3070 assert(params.supports_8bit_16bit_loads && "unimplemented");
3071 bytes_needed = 2;
3072 byte_align = 0;
3073 } else {
3074 bytes_needed += byte_align == -1 ? 4 - info.align_mul : byte_align;
3075 bytes_needed = align(bytes_needed, 4);
3076 }
3077 } else {
3078 byte_align = 0;
3079 }
3080 }
3081
3082 if (info.swizzle_component_size)
3083 bytes_needed = MIN2(bytes_needed, info.swizzle_component_size);
3084 if (info.component_stride)
3085 bytes_needed = MIN2(bytes_needed, info.component_size);
3086
3087 bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
3088
3089 /* reduce constant offset */
3090 Operand offset = info.offset;
3091 unsigned reduced_const_offset = const_offset;
3092 bool remove_const_offset_completely = need_to_align_offset;
3093 if (const_offset &&
3094 (remove_const_offset_completely ||
3095 const_offset >= params.max_const_offset_plus_one)) {
3096 unsigned to_add = const_offset;
3097 if (remove_const_offset_completely) {
3098 reduced_const_offset = 0;
3099 } else {
3100 to_add = const_offset / params.max_const_offset_plus_one *
3101 params.max_const_offset_plus_one;
3102 reduced_const_offset %= params.max_const_offset_plus_one;
3103 }
3104 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3105 if (offset.isConstant()) {
3106 offset = Operand(offset.constantValue() + to_add);
3107 } else if (offset_tmp.regClass() == s1) {
3108 offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3109 offset_tmp, Operand(to_add));
3110 } else if (offset_tmp.regClass() == v1) {
3111 offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add));
3112 } else {
3113 Temp lo = bld.tmp(offset_tmp.type(), 1);
3114 Temp hi = bld.tmp(offset_tmp.type(), 1);
3115 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3116
3117 if (offset_tmp.regClass() == s2) {
3118 Temp carry = bld.tmp(s1);
3119 lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add));
3120 hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
3121 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
3122 } else {
3123 Temp new_lo = bld.tmp(v1);
3124 Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp();
3125 hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry);
3126 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
3127 }
3128 }
3129 }
3130
3131 /* align offset down if needed */
3132 Operand aligned_offset = offset;
3133 unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
3134 if (need_to_align_offset) {
3135 align = 4;
3136 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3137 if (offset.isConstant()) {
3138 aligned_offset = Operand(offset.constantValue() & 0xfffffffcu);
3139 } else if (offset_tmp.regClass() == s1) {
3140 aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp);
3141 } else if (offset_tmp.regClass() == s2) {
3142 aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp);
3143 } else if (offset_tmp.regClass() == v1) {
3144 aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp);
3145 } else if (offset_tmp.regClass() == v2) {
3146 Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
3147 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3148 lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo);
3149 aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
3150 }
3151 }
3152 Temp aligned_offset_tmp = aligned_offset.isTemp() ?
3153 aligned_offset.getTemp() :
3154 bld.copy(bld.def(s1), aligned_offset);
3155
3156 Temp val = params.callback(bld, info, aligned_offset_tmp, bytes_needed,
3157 align, reduced_const_offset,
3158 byte_align ? Temp() : info.dst);
3159
3160 /* the callback wrote directly to dst */
3161 if (val == info.dst) {
3162 assert(num_vals == 0);
3163 emit_split_vector(ctx, info.dst, info.num_components);
3164 return;
3165 }
3166
3167 /* shift result right if needed */
3168 if (params.byte_align_loads && info.component_size < 4) {
3169 Operand align((uint32_t)byte_align);
3170 if (byte_align == -1) {
3171 if (offset.isConstant())
3172 align = Operand(offset.constantValue() % 4u);
3173 else if (offset.size() == 2)
3174 align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1)));
3175 else
3176 align = offset;
3177 }
3178
3179 assert(val.bytes() >= load_size && "unimplemented");
3180 if (val.type() == RegType::sgpr)
3181 byte_align_scalar(ctx, val, align, info.dst);
3182 else
3183 byte_align_vector(ctx, val, align, info.dst, component_size);
3184 return;
3185 }
3186
3187 /* add result to list and advance */
3188 if (info.component_stride) {
3189 assert(val.bytes() == info.component_size && "unimplemented");
3190 const_offset += info.component_stride;
3191 align_offset = (align_offset + info.component_stride) % align_mul;
3192 } else {
3193 const_offset += val.bytes();
3194 align_offset = (align_offset + val.bytes()) % align_mul;
3195 }
3196 bytes_read += val.bytes();
3197 vals[num_vals++] = val;
3198 }
3199
3200 /* create array of components */
3201 unsigned components_split = 0;
3202 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3203 bool has_vgprs = false;
3204 for (unsigned i = 0; i < num_vals;) {
3205 Temp *const tmp = (Temp *)alloca(num_vals * sizeof(Temp));
3206 unsigned num_tmps = 0;
3207 unsigned tmp_size = 0;
3208 RegType reg_type = RegType::sgpr;
3209 while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
3210 if (vals[i].type() == RegType::vgpr)
3211 reg_type = RegType::vgpr;
3212 tmp_size += vals[i].bytes();
3213 tmp[num_tmps++] = vals[i++];
3214 }
3215 if (num_tmps > 1) {
3216 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3217 aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
3218 for (unsigned i = 0; i < num_tmps; i++)
3219 vec->operands[i] = Operand(tmp[i]);
3220 tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
3221 vec->definitions[0] = Definition(tmp[0]);
3222 bld.insert(std::move(vec));
3223 }
3224
3225 if (tmp[0].bytes() % component_size) {
3226 /* trim tmp[0] */
3227 assert(i == num_vals);
3228 RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
3229 tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u));
3230 }
3231
3232 RegClass elem_rc = RegClass::get(reg_type, component_size);
3233
3234 unsigned start = components_split;
3235
3236 if (tmp_size == elem_rc.bytes()) {
3237 allocated_vec[components_split++] = tmp[0];
3238 } else {
3239 assert(tmp_size % elem_rc.bytes() == 0);
3240 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
3241 aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
3242 for (unsigned i = 0; i < split->definitions.size(); i++) {
3243 Temp component = bld.tmp(elem_rc);
3244 allocated_vec[components_split++] = component;
3245 split->definitions[i] = Definition(component);
3246 }
3247 split->operands[0] = Operand(tmp[0]);
3248 bld.insert(std::move(split));
3249 }
3250
3251 /* try to p_as_uniform early so we can create more optimizable code and
3252 * also update allocated_vec */
3253 for (unsigned j = start; j < components_split; j++) {
3254 if (allocated_vec[j].bytes() % 4 == 0 && info.dst.type() == RegType::sgpr)
3255 allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
3256 has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
3257 }
3258 }
3259
3260 /* concatenate components and p_as_uniform() result if needed */
3261 if (info.dst.type() == RegType::vgpr || !has_vgprs)
3262 ctx->allocated_vec.emplace(info.dst.id(), allocated_vec);
3263
3264 int padding_bytes = MAX2((int)info.dst.bytes() - int(allocated_vec[0].bytes() * info.num_components), 0);
3265
3266 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3267 aco_opcode::p_create_vector, Format::PSEUDO, info.num_components + !!padding_bytes, 1)};
3268 for (unsigned i = 0; i < info.num_components; i++)
3269 vec->operands[i] = Operand(allocated_vec[i]);
3270 if (padding_bytes)
3271 vec->operands[info.num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
3272 if (info.dst.type() == RegType::sgpr && has_vgprs) {
3273 Temp tmp = bld.tmp(RegType::vgpr, info.dst.size());
3274 vec->definitions[0] = Definition(tmp);
3275 bld.insert(std::move(vec));
3276 bld.pseudo(aco_opcode::p_as_uniform, Definition(info.dst), tmp);
3277 } else {
3278 vec->definitions[0] = Definition(info.dst);
3279 bld.insert(std::move(vec));
3280 }
3281 }
3282
load_lds_size_m0(Builder & bld)3283 Operand load_lds_size_m0(Builder& bld)
3284 {
3285 /* TODO: m0 does not need to be initialized on GFX9+ */
3286 return bld.m0((Temp)bld.copy(bld.def(s1, m0), Operand(0xffffffffu)));
3287 }
3288
lds_load_callback(Builder & bld,const LoadEmitInfo & info,Temp offset,unsigned bytes_needed,unsigned align,unsigned const_offset,Temp dst_hint)3289 Temp lds_load_callback(Builder& bld, const LoadEmitInfo &info,
3290 Temp offset, unsigned bytes_needed,
3291 unsigned align, unsigned const_offset,
3292 Temp dst_hint)
3293 {
3294 offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset;
3295
3296 Operand m = load_lds_size_m0(bld);
3297
3298 bool large_ds_read = bld.program->chip_class >= GFX7;
3299 bool usable_read2 = bld.program->chip_class >= GFX7;
3300
3301 bool read2 = false;
3302 unsigned size = 0;
3303 aco_opcode op;
3304 //TODO: use ds_read_u8_d16_hi/ds_read_u16_d16_hi if beneficial
3305 if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) {
3306 size = 16;
3307 op = aco_opcode::ds_read_b128;
3308 } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) {
3309 size = 16;
3310 read2 = true;
3311 op = aco_opcode::ds_read2_b64;
3312 } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) {
3313 size = 12;
3314 op = aco_opcode::ds_read_b96;
3315 } else if (bytes_needed >= 8 && align % 8 == 0) {
3316 size = 8;
3317 op = aco_opcode::ds_read_b64;
3318 } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0) {
3319 size = 8;
3320 read2 = true;
3321 op = aco_opcode::ds_read2_b32;
3322 } else if (bytes_needed >= 4 && align % 4 == 0) {
3323 size = 4;
3324 op = aco_opcode::ds_read_b32;
3325 } else if (bytes_needed >= 2 && align % 2 == 0) {
3326 size = 2;
3327 op = aco_opcode::ds_read_u16;
3328 } else {
3329 size = 1;
3330 op = aco_opcode::ds_read_u8;
3331 }
3332
3333 unsigned max_offset_plus_one = read2 ? 254 * (size / 2u) + 1 : 65536;
3334 if (const_offset >= max_offset_plus_one) {
3335 offset = bld.vadd32(bld.def(v1), offset, Operand(const_offset / max_offset_plus_one));
3336 const_offset %= max_offset_plus_one;
3337 }
3338
3339 if (read2)
3340 const_offset /= (size / 2u);
3341
3342 RegClass rc = RegClass(RegType::vgpr, DIV_ROUND_UP(size, 4));
3343 Temp val = rc == info.dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc);
3344 Instruction *instr;
3345 if (read2)
3346 instr = bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1);
3347 else
3348 instr = bld.ds(op, Definition(val), offset, m, const_offset);
3349 static_cast<DS_instruction *>(instr)->sync = info.sync;
3350
3351 if (size < 4)
3352 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, size)), val, Operand(0u));
3353
3354 return val;
3355 }
3356
3357 const EmitLoadParameters lds_load_params { lds_load_callback, false, true, UINT32_MAX };
3358
smem_load_callback(Builder & bld,const LoadEmitInfo & info,Temp offset,unsigned bytes_needed,unsigned align,unsigned const_offset,Temp dst_hint)3359 Temp smem_load_callback(Builder& bld, const LoadEmitInfo &info,
3360 Temp offset, unsigned bytes_needed,
3361 unsigned align, unsigned const_offset,
3362 Temp dst_hint)
3363 {
3364 unsigned size = 0;
3365 aco_opcode op;
3366 if (bytes_needed <= 4) {
3367 size = 1;
3368 op = info.resource.id() ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword;
3369 } else if (bytes_needed <= 8) {
3370 size = 2;
3371 op = info.resource.id() ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2;
3372 } else if (bytes_needed <= 16) {
3373 size = 4;
3374 op = info.resource.id() ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4;
3375 } else if (bytes_needed <= 32) {
3376 size = 8;
3377 op = info.resource.id() ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8;
3378 } else {
3379 size = 16;
3380 op = info.resource.id() ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16;
3381 }
3382 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3383 if (info.resource.id()) {
3384 load->operands[0] = Operand(info.resource);
3385 load->operands[1] = Operand(offset);
3386 } else {
3387 load->operands[0] = Operand(offset);
3388 load->operands[1] = Operand(0u);
3389 }
3390 RegClass rc(RegType::sgpr, size);
3391 Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc);
3392 load->definitions[0] = Definition(val);
3393 load->glc = info.glc;
3394 load->dlc = info.glc && bld.program->chip_class >= GFX10;
3395 load->sync = info.sync;
3396 bld.insert(std::move(load));
3397 return val;
3398 }
3399
3400 const EmitLoadParameters smem_load_params { smem_load_callback, true, false, 1024 };
3401
mubuf_load_callback(Builder & bld,const LoadEmitInfo & info,Temp offset,unsigned bytes_needed,unsigned align_,unsigned const_offset,Temp dst_hint)3402 Temp mubuf_load_callback(Builder& bld, const LoadEmitInfo &info,
3403 Temp offset, unsigned bytes_needed,
3404 unsigned align_, unsigned const_offset,
3405 Temp dst_hint)
3406 {
3407 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3408 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3409
3410 if (info.soffset.id()) {
3411 if (soffset.isTemp())
3412 vaddr = bld.copy(bld.def(v1), soffset);
3413 soffset = Operand(info.soffset);
3414 }
3415
3416 unsigned bytes_size = 0;
3417 aco_opcode op;
3418 if (bytes_needed == 1 || align_ % 2) {
3419 bytes_size = 1;
3420 op = aco_opcode::buffer_load_ubyte;
3421 } else if (bytes_needed == 2 || align_ % 4) {
3422 bytes_size = 2;
3423 op = aco_opcode::buffer_load_ushort;
3424 } else if (bytes_needed <= 4) {
3425 bytes_size = 4;
3426 op = aco_opcode::buffer_load_dword;
3427 } else if (bytes_needed <= 8) {
3428 bytes_size = 8;
3429 op = aco_opcode::buffer_load_dwordx2;
3430 } else if (bytes_needed <= 12 && bld.program->chip_class > GFX6) {
3431 bytes_size = 12;
3432 op = aco_opcode::buffer_load_dwordx3;
3433 } else {
3434 bytes_size = 16;
3435 op = aco_opcode::buffer_load_dwordx4;
3436 }
3437 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3438 mubuf->operands[0] = Operand(info.resource);
3439 mubuf->operands[1] = vaddr;
3440 mubuf->operands[2] = soffset;
3441 mubuf->offen = (offset.type() == RegType::vgpr);
3442 mubuf->glc = info.glc;
3443 mubuf->dlc = info.glc && bld.program->chip_class >= GFX10;
3444 mubuf->slc = info.slc;
3445 mubuf->sync = info.sync;
3446 mubuf->offset = const_offset;
3447 mubuf->swizzled = info.swizzle_component_size != 0;
3448 RegClass rc = RegClass::get(RegType::vgpr, bytes_size);
3449 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3450 mubuf->definitions[0] = Definition(val);
3451 bld.insert(std::move(mubuf));
3452
3453 return val;
3454 }
3455
3456 const EmitLoadParameters mubuf_load_params { mubuf_load_callback, true, true, 4096 };
3457 const EmitLoadParameters scratch_load_params { mubuf_load_callback, false, true, 4096 };
3458
get_gfx6_global_rsrc(Builder & bld,Temp addr)3459 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
3460 {
3461 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3462 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3463
3464 if (addr.type() == RegType::vgpr)
3465 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
3466 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
3467 }
3468
global_load_callback(Builder & bld,const LoadEmitInfo & info,Temp offset,unsigned bytes_needed,unsigned align_,unsigned const_offset,Temp dst_hint)3469 Temp global_load_callback(Builder& bld, const LoadEmitInfo &info,
3470 Temp offset, unsigned bytes_needed,
3471 unsigned align_, unsigned const_offset,
3472 Temp dst_hint)
3473 {
3474 unsigned bytes_size = 0;
3475 bool mubuf = bld.program->chip_class == GFX6;
3476 bool global = bld.program->chip_class >= GFX9;
3477 aco_opcode op;
3478 if (bytes_needed == 1) {
3479 bytes_size = 1;
3480 op = mubuf ? aco_opcode::buffer_load_ubyte : global ? aco_opcode::global_load_ubyte : aco_opcode::flat_load_ubyte;
3481 } else if (bytes_needed == 2) {
3482 bytes_size = 2;
3483 op = mubuf ? aco_opcode::buffer_load_ushort : global ? aco_opcode::global_load_ushort : aco_opcode::flat_load_ushort;
3484 } else if (bytes_needed <= 4) {
3485 bytes_size = 4;
3486 op = mubuf ? aco_opcode::buffer_load_dword : global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
3487 } else if (bytes_needed <= 8) {
3488 bytes_size = 8;
3489 op = mubuf ? aco_opcode::buffer_load_dwordx2 : global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
3490 } else if (bytes_needed <= 12 && !mubuf) {
3491 bytes_size = 12;
3492 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
3493 } else {
3494 bytes_size = 16;
3495 op = mubuf ? aco_opcode::buffer_load_dwordx4 : global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
3496 }
3497 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3498 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3499 if (mubuf) {
3500 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3501 mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, offset));
3502 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3503 mubuf->operands[2] = Operand(0u);
3504 mubuf->glc = info.glc;
3505 mubuf->dlc = false;
3506 mubuf->offset = 0;
3507 mubuf->addr64 = offset.type() == RegType::vgpr;
3508 mubuf->disable_wqm = false;
3509 mubuf->sync = info.sync;
3510 mubuf->definitions[0] = Definition(val);
3511 bld.insert(std::move(mubuf));
3512 } else {
3513 offset = offset.regClass() == s2 ? bld.copy(bld.def(v2), offset) : offset;
3514
3515 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
3516 flat->operands[0] = Operand(offset);
3517 flat->operands[1] = Operand(s1);
3518 flat->glc = info.glc;
3519 flat->dlc = info.glc && bld.program->chip_class >= GFX10;
3520 flat->sync = info.sync;
3521 flat->offset = 0u;
3522 flat->definitions[0] = Definition(val);
3523 bld.insert(std::move(flat));
3524 }
3525
3526 return val;
3527 }
3528
3529 const EmitLoadParameters global_load_params { global_load_callback, true, true, 1 };
3530
load_lds(isel_context * ctx,unsigned elem_size_bytes,Temp dst,Temp address,unsigned base_offset,unsigned align)3531 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3532 Temp address, unsigned base_offset, unsigned align)
3533 {
3534 assert(util_is_power_of_two_nonzero(align));
3535
3536 Builder bld(ctx->program, ctx->block);
3537
3538 unsigned num_components = dst.bytes() / elem_size_bytes;
3539 LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes};
3540 info.align_mul = align;
3541 info.align_offset = 0;
3542 info.sync = memory_sync_info(storage_shared);
3543 info.const_offset = base_offset;
3544 emit_load(ctx, bld, info, lds_load_params);
3545
3546 return dst;
3547 }
3548
split_store_data(isel_context * ctx,RegType dst_type,unsigned count,Temp * dst,unsigned * bytes,Temp src)3549 void split_store_data(isel_context *ctx, RegType dst_type, unsigned count, Temp *dst, unsigned *bytes, Temp src)
3550 {
3551 if (!count)
3552 return;
3553
3554 Builder bld(ctx->program, ctx->block);
3555
3556 /* count == 1 fast path */
3557 if (count == 1) {
3558 if (dst_type == RegType::sgpr)
3559 dst[0] = bld.as_uniform(src);
3560 else
3561 dst[0] = as_vgpr(ctx, src);
3562 return;
3563 }
3564
3565 /* elem_size_bytes is the greatest common divisor which is a power of 2 */
3566 unsigned elem_size_bytes = 1u << (ffs(std::accumulate(bytes, bytes + count, 8, std::bit_or<>{})) - 1);
3567
3568 ASSERTED bool is_subdword = elem_size_bytes < 4;
3569 assert(!is_subdword || dst_type == RegType::vgpr);
3570
3571 for (unsigned i = 0; i < count; i++)
3572 dst[i] = bld.tmp(RegClass::get(dst_type, bytes[i]));
3573
3574 std::vector<Temp> temps;
3575 /* use allocated_vec if possible */
3576 auto it = ctx->allocated_vec.find(src.id());
3577 if (it != ctx->allocated_vec.end()) {
3578 if (!it->second[0].id())
3579 goto split;
3580 unsigned elem_size = it->second[0].bytes();
3581 assert(src.bytes() % elem_size == 0);
3582
3583 for (unsigned i = 0; i < src.bytes() / elem_size; i++) {
3584 if (!it->second[i].id())
3585 goto split;
3586 }
3587 if (elem_size_bytes % elem_size)
3588 goto split;
3589
3590 temps.insert(temps.end(), it->second.begin(),
3591 it->second.begin() + src.bytes() / elem_size);
3592 elem_size_bytes = elem_size;
3593 }
3594
3595 split:
3596 /* split src if necessary */
3597 if (temps.empty()) {
3598 if (is_subdword && src.type() == RegType::sgpr)
3599 src = as_vgpr(ctx, src);
3600 if (dst_type == RegType::sgpr)
3601 src = bld.as_uniform(src);
3602
3603 unsigned num_elems = src.bytes() / elem_size_bytes;
3604 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elems)};
3605 split->operands[0] = Operand(src);
3606 for (unsigned i = 0; i < num_elems; i++) {
3607 temps.emplace_back(bld.tmp(RegClass::get(dst_type, elem_size_bytes)));
3608 split->definitions[i] = Definition(temps.back());
3609 }
3610 bld.insert(std::move(split));
3611 }
3612
3613 unsigned idx = 0;
3614 for (unsigned i = 0; i < count; i++) {
3615 unsigned op_count = dst[i].bytes() / elem_size_bytes;
3616 if (op_count == 1) {
3617 if (dst_type == RegType::sgpr)
3618 dst[i] = bld.as_uniform(temps[idx++]);
3619 else
3620 dst[i] = as_vgpr(ctx, temps[idx++]);
3621 continue;
3622 }
3623
3624 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, op_count, 1)};
3625 for (unsigned j = 0; j < op_count; j++) {
3626 Temp tmp = temps[idx++];
3627 if (dst_type == RegType::sgpr)
3628 tmp = bld.as_uniform(tmp);
3629 vec->operands[j] = Operand(tmp);
3630 }
3631 vec->definitions[0] = Definition(dst[i]);
3632 bld.insert(std::move(vec));
3633 }
3634 return;
3635 }
3636
scan_write_mask(uint32_t mask,uint32_t todo_mask,int * start,int * count)3637 bool scan_write_mask(uint32_t mask, uint32_t todo_mask,
3638 int *start, int *count)
3639 {
3640 unsigned start_elem = ffs(todo_mask) - 1;
3641 bool skip = !(mask & (1 << start_elem));
3642 if (skip)
3643 mask = ~mask & todo_mask;
3644
3645 mask &= todo_mask;
3646
3647 u_bit_scan_consecutive_range(&mask, start, count);
3648
3649 return !skip;
3650 }
3651
advance_write_mask(uint32_t * todo_mask,int start,int count)3652 void advance_write_mask(uint32_t *todo_mask, int start, int count)
3653 {
3654 *todo_mask &= ~u_bit_consecutive(0, count) << start;
3655 }
3656
store_lds(isel_context * ctx,unsigned elem_size_bytes,Temp data,uint32_t wrmask,Temp address,unsigned base_offset,unsigned align)3657 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3658 Temp address, unsigned base_offset, unsigned align)
3659 {
3660 assert(util_is_power_of_two_nonzero(align));
3661 assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8);
3662
3663 Builder bld(ctx->program, ctx->block);
3664 bool large_ds_write = ctx->options->chip_class >= GFX7;
3665 bool usable_write2 = ctx->options->chip_class >= GFX7;
3666
3667 unsigned write_count = 0;
3668 Temp write_datas[32];
3669 unsigned offsets[32];
3670 unsigned bytes[32];
3671 aco_opcode opcodes[32];
3672
3673 wrmask = widen_mask(wrmask, elem_size_bytes);
3674
3675 uint32_t todo = u_bit_consecutive(0, data.bytes());
3676 while (todo) {
3677 int offset, byte;
3678 if (!scan_write_mask(wrmask, todo, &offset, &byte)) {
3679 offsets[write_count] = offset;
3680 bytes[write_count] = byte;
3681 opcodes[write_count] = aco_opcode::num_opcodes;
3682 write_count++;
3683 advance_write_mask(&todo, offset, byte);
3684 continue;
3685 }
3686
3687 bool aligned2 = offset % 2 == 0 && align % 2 == 0;
3688 bool aligned4 = offset % 4 == 0 && align % 4 == 0;
3689 bool aligned8 = offset % 8 == 0 && align % 8 == 0;
3690 bool aligned16 = offset % 16 == 0 && align % 16 == 0;
3691
3692 //TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial
3693 aco_opcode op = aco_opcode::num_opcodes;
3694 if (byte >= 16 && aligned16 && large_ds_write) {
3695 op = aco_opcode::ds_write_b128;
3696 byte = 16;
3697 } else if (byte >= 12 && aligned16 && large_ds_write) {
3698 op = aco_opcode::ds_write_b96;
3699 byte = 12;
3700 } else if (byte >= 8 && aligned8) {
3701 op = aco_opcode::ds_write_b64;
3702 byte = 8;
3703 } else if (byte >= 4 && aligned4) {
3704 op = aco_opcode::ds_write_b32;
3705 byte = 4;
3706 } else if (byte >= 2 && aligned2) {
3707 op = aco_opcode::ds_write_b16;
3708 byte = 2;
3709 } else if (byte >= 1) {
3710 op = aco_opcode::ds_write_b8;
3711 byte = 1;
3712 } else {
3713 assert(false);
3714 }
3715
3716 offsets[write_count] = offset;
3717 bytes[write_count] = byte;
3718 opcodes[write_count] = op;
3719 write_count++;
3720 advance_write_mask(&todo, offset, byte);
3721 }
3722
3723 Operand m = load_lds_size_m0(bld);
3724
3725 split_store_data(ctx, RegType::vgpr, write_count, write_datas, bytes, data);
3726
3727 for (unsigned i = 0; i < write_count; i++) {
3728 aco_opcode op = opcodes[i];
3729 if (op == aco_opcode::num_opcodes)
3730 continue;
3731
3732 Temp data = write_datas[i];
3733
3734 unsigned second = write_count;
3735 if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) {
3736 for (second = i + 1; second < write_count; second++) {
3737 if (opcodes[second] == op && (offsets[second] - offsets[i]) % data.bytes() == 0) {
3738 op = data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3739 opcodes[second] = aco_opcode::num_opcodes;
3740 break;
3741 }
3742 }
3743 }
3744
3745 bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64;
3746 unsigned write2_off = (offsets[second] - offsets[i]) / data.bytes();
3747
3748 unsigned inline_offset = base_offset + offsets[i];
3749 unsigned max_offset = write2 ? (255 - write2_off) * data.bytes() : 65535;
3750 Temp address_offset = address;
3751 if (inline_offset > max_offset) {
3752 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3753 inline_offset = offsets[i];
3754 }
3755 assert(inline_offset <= max_offset); /* offsets[i] shouldn't be large enough for this to happen */
3756
3757 Instruction *instr;
3758 if (write2) {
3759 Temp second_data = write_datas[second];
3760 inline_offset /= data.bytes();
3761 instr = bld.ds(op, address_offset, data, second_data, m, inline_offset, inline_offset + write2_off);
3762 } else {
3763 instr = bld.ds(op, address_offset, data, m, inline_offset);
3764 }
3765 static_cast<DS_instruction *>(instr)->sync =
3766 memory_sync_info(storage_shared);
3767 }
3768 }
3769
calculate_lds_alignment(isel_context * ctx,unsigned const_offset)3770 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3771 {
3772 unsigned align = 16;
3773 if (const_offset)
3774 align = std::min(align, 1u << (ffs(const_offset) - 1));
3775
3776 return align;
3777 }
3778
3779
get_buffer_store_op(bool smem,unsigned bytes)3780 aco_opcode get_buffer_store_op(bool smem, unsigned bytes)
3781 {
3782 switch (bytes) {
3783 case 1:
3784 assert(!smem);
3785 return aco_opcode::buffer_store_byte;
3786 case 2:
3787 assert(!smem);
3788 return aco_opcode::buffer_store_short;
3789 case 4:
3790 return smem ? aco_opcode::s_buffer_store_dword : aco_opcode::buffer_store_dword;
3791 case 8:
3792 return smem ? aco_opcode::s_buffer_store_dwordx2 : aco_opcode::buffer_store_dwordx2;
3793 case 12:
3794 assert(!smem);
3795 return aco_opcode::buffer_store_dwordx3;
3796 case 16:
3797 return smem ? aco_opcode::s_buffer_store_dwordx4 : aco_opcode::buffer_store_dwordx4;
3798 }
3799 unreachable("Unexpected store size");
3800 return aco_opcode::num_opcodes;
3801 }
3802
split_buffer_store(isel_context * ctx,nir_intrinsic_instr * instr,bool smem,RegType dst_type,Temp data,unsigned writemask,int swizzle_element_size,unsigned * write_count,Temp * write_datas,unsigned * offsets)3803 void split_buffer_store(isel_context *ctx, nir_intrinsic_instr *instr, bool smem, RegType dst_type,
3804 Temp data, unsigned writemask, int swizzle_element_size,
3805 unsigned *write_count, Temp *write_datas, unsigned *offsets)
3806 {
3807 unsigned write_count_with_skips = 0;
3808 bool skips[16];
3809 unsigned bytes[16];
3810
3811 /* determine how to split the data */
3812 unsigned todo = u_bit_consecutive(0, data.bytes());
3813 while (todo) {
3814 int offset, byte;
3815 skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &byte);
3816 offsets[write_count_with_skips] = offset;
3817 if (skips[write_count_with_skips]) {
3818 bytes[write_count_with_skips] = byte;
3819 advance_write_mask(&todo, offset, byte);
3820 write_count_with_skips++;
3821 continue;
3822 }
3823
3824 /* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be
3825 * larger than swizzle_element_size */
3826 byte = MIN2(byte, swizzle_element_size);
3827 if (byte % 4)
3828 byte = byte > 4 ? byte & ~0x3 : MIN2(byte, 2);
3829
3830 /* SMEM and GFX6 VMEM can't emit 12-byte stores */
3831 if ((ctx->program->chip_class == GFX6 || smem) && byte == 12)
3832 byte = 8;
3833
3834 /* dword or larger stores have to be dword-aligned */
3835 unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4;
3836 unsigned align_offset = (instr ? nir_intrinsic_align_offset(instr) : 0) + offset;
3837 bool dword_aligned = align_offset % 4 == 0 && align_mul % 4 == 0;
3838 if (!dword_aligned)
3839 byte = MIN2(byte, (align_offset % 2 == 0 && align_mul % 2 == 0) ? 2 : 1);
3840
3841 bytes[write_count_with_skips] = byte;
3842 advance_write_mask(&todo, offset, byte);
3843 write_count_with_skips++;
3844 }
3845
3846 /* actually split data */
3847 split_store_data(ctx, dst_type, write_count_with_skips, write_datas, bytes, data);
3848
3849 /* remove skips */
3850 for (unsigned i = 0; i < write_count_with_skips; i++) {
3851 if (skips[i])
3852 continue;
3853 write_datas[*write_count] = write_datas[i];
3854 offsets[*write_count] = offsets[i];
3855 (*write_count)++;
3856 }
3857 }
3858
create_vec_from_array(isel_context * ctx,Temp arr[],unsigned cnt,RegType reg_type,unsigned elem_size_bytes,unsigned split_cnt=0u,Temp dst=Temp ())3859 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3860 unsigned split_cnt = 0u, Temp dst = Temp())
3861 {
3862 Builder bld(ctx->program, ctx->block);
3863 unsigned dword_size = elem_size_bytes / 4;
3864
3865 if (!dst.id())
3866 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3867
3868 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3869 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3870 instr->definitions[0] = Definition(dst);
3871
3872 for (unsigned i = 0; i < cnt; ++i) {
3873 if (arr[i].id()) {
3874 assert(arr[i].size() == dword_size);
3875 allocated_vec[i] = arr[i];
3876 instr->operands[i] = Operand(arr[i]);
3877 } else {
3878 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3879 allocated_vec[i] = zero;
3880 instr->operands[i] = Operand(zero);
3881 }
3882 }
3883
3884 bld.insert(std::move(instr));
3885
3886 if (split_cnt)
3887 emit_split_vector(ctx, dst, split_cnt);
3888 else
3889 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3890
3891 return dst;
3892 }
3893
resolve_excess_vmem_const_offset(Builder & bld,Temp & voffset,unsigned const_offset)3894 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3895 {
3896 if (const_offset >= 4096) {
3897 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3898 const_offset %= 4096u;
3899
3900 if (!voffset.id())
3901 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3902 else if (unlikely(voffset.regClass() == s1))
3903 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3904 else if (likely(voffset.regClass() == v1))
3905 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3906 else
3907 unreachable("Unsupported register class of voffset");
3908 }
3909
3910 return const_offset;
3911 }
3912
emit_single_mubuf_store(isel_context * ctx,Temp descriptor,Temp voffset,Temp soffset,Temp vdata,unsigned const_offset=0u,memory_sync_info sync=memory_sync_info (),bool slc=false,bool swizzled=false)3913 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3914 unsigned const_offset = 0u, memory_sync_info sync=memory_sync_info(),
3915 bool slc = false, bool swizzled = false)
3916 {
3917 assert(vdata.id());
3918 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3919 assert(vdata.size() >= 1 && vdata.size() <= 4);
3920
3921 Builder bld(ctx->program, ctx->block);
3922 aco_opcode op = get_buffer_store_op(false, vdata.bytes());
3923 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3924
3925 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3926 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3927 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3928 /* offen */ !voffset_op.isUndefined(), /* swizzled */ swizzled,
3929 /* idxen*/ false, /* addr64 */ false, /* disable_wqm */ false, /* glc */ true,
3930 /* dlc*/ false, /* slc */ slc);
3931
3932 static_cast<MUBUF_instruction *>(r.instr)->sync = sync;
3933 }
3934
store_vmem_mubuf(isel_context * ctx,Temp src,Temp descriptor,Temp voffset,Temp soffset,unsigned base_const_offset,unsigned elem_size_bytes,unsigned write_mask,bool allow_combining=true,memory_sync_info sync=memory_sync_info (),bool slc=false)3935 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3936 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3937 bool allow_combining = true, memory_sync_info sync=memory_sync_info(), bool slc = false)
3938 {
3939 Builder bld(ctx->program, ctx->block);
3940 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
3941 assert(write_mask);
3942 write_mask = widen_mask(write_mask, elem_size_bytes);
3943
3944 unsigned write_count = 0;
3945 Temp write_datas[32];
3946 unsigned offsets[32];
3947 split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask,
3948 allow_combining ? 16 : 4, &write_count, write_datas, offsets);
3949
3950 for (unsigned i = 0; i < write_count; i++) {
3951 unsigned const_offset = offsets[i] + base_const_offset;
3952 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, write_datas[i], const_offset, sync, slc, !allow_combining);
3953 }
3954 }
3955
load_vmem_mubuf(isel_context * ctx,Temp dst,Temp descriptor,Temp voffset,Temp soffset,unsigned base_const_offset,unsigned elem_size_bytes,unsigned num_components,unsigned stride=0u,bool allow_combining=true,bool allow_reorder=true,bool slc=false)3956 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3957 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3958 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true,
3959 bool slc = false)
3960 {
3961 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
3962 assert((num_components * elem_size_bytes) == dst.bytes());
3963 assert(!!stride != allow_combining);
3964
3965 Builder bld(ctx->program, ctx->block);
3966
3967 LoadEmitInfo info = {Operand(voffset), dst, num_components, elem_size_bytes, descriptor};
3968 info.component_stride = allow_combining ? 0 : stride;
3969 info.glc = true;
3970 info.slc = slc;
3971 info.swizzle_component_size = allow_combining ? 0 : 4;
3972 info.align_mul = MIN2(elem_size_bytes, 4);
3973 info.align_offset = 0;
3974 info.soffset = soffset;
3975 info.const_offset = base_const_offset;
3976 emit_load(ctx, bld, info, mubuf_load_params);
3977 }
3978
wave_id_in_threadgroup(isel_context * ctx)3979 Temp wave_id_in_threadgroup(isel_context *ctx)
3980 {
3981 Builder bld(ctx->program, ctx->block);
3982 return bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
3983 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
3984 }
3985
thread_id_in_threadgroup(isel_context * ctx)3986 Temp thread_id_in_threadgroup(isel_context *ctx)
3987 {
3988 /* tid_in_tg = wave_id * wave_size + tid_in_wave */
3989
3990 Builder bld(ctx->program, ctx->block);
3991 Temp tid_in_wave = emit_mbcnt(ctx, bld.tmp(v1));
3992
3993 if (ctx->program->workgroup_size <= ctx->program->wave_size)
3994 return tid_in_wave;
3995
3996 Temp wave_id_in_tg = wave_id_in_threadgroup(ctx);
3997 Temp num_pre_threads = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), wave_id_in_tg,
3998 Operand(ctx->program->wave_size == 64 ? 6u : 5u));
3999 return bld.vadd32(bld.def(v1), Operand(num_pre_threads), Operand(tid_in_wave));
4000 }
4001
wave_count_in_threadgroup(isel_context * ctx)4002 Temp wave_count_in_threadgroup(isel_context *ctx)
4003 {
4004 Builder bld(ctx->program, ctx->block);
4005 return bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
4006 get_arg(ctx, ctx->args->merged_wave_info), Operand(28u | (4u << 16)));
4007 }
4008
ngg_gs_vertex_lds_addr(isel_context * ctx,Temp vertex_idx)4009 Temp ngg_gs_vertex_lds_addr(isel_context *ctx, Temp vertex_idx)
4010 {
4011 Builder bld(ctx->program, ctx->block);
4012 unsigned write_stride_2exp = ffs(ctx->shader->info.gs.vertices_out) - 1;
4013
4014 /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
4015 if (write_stride_2exp) {
4016 Temp row = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(5u), vertex_idx);
4017 Temp swizzle = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand((1u << write_stride_2exp) - 1), row);
4018 vertex_idx = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), vertex_idx, swizzle);
4019 }
4020
4021 Temp vertex_idx_bytes = bld.v_mul24_imm(bld.def(v1), vertex_idx, ctx->ngg_gs_emit_vtx_bytes);
4022 return bld.vadd32(bld.def(v1), vertex_idx_bytes, Operand(ctx->ngg_gs_emit_addr));
4023 }
4024
ngg_gs_emit_vertex_lds_addr(isel_context * ctx,Temp emit_vertex_idx)4025 Temp ngg_gs_emit_vertex_lds_addr(isel_context *ctx, Temp emit_vertex_idx)
4026 {
4027 /* Should be used by GS threads only (not by the NGG GS epilogue).
4028 * Returns the LDS address of the given vertex index as emitted by the current GS thread.
4029 */
4030
4031 Builder bld(ctx->program, ctx->block);
4032
4033 Temp thread_id_in_tg = thread_id_in_threadgroup(ctx);
4034 Temp thread_vertices_addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, ctx->shader->info.gs.vertices_out);
4035 Temp vertex_idx = bld.vadd32(bld.def(v1), thread_vertices_addr, emit_vertex_idx);
4036
4037 return ngg_gs_vertex_lds_addr(ctx, vertex_idx);
4038 }
4039
offset_add_from_nir(isel_context * ctx,const std::pair<Temp,unsigned> & base_offset,nir_src * off_src,unsigned stride=1u)4040 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
4041 {
4042 Builder bld(ctx->program, ctx->block);
4043 Temp offset = base_offset.first;
4044 unsigned const_offset = base_offset.second;
4045
4046 if (!nir_src_is_const(*off_src)) {
4047 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
4048 Temp with_stride;
4049
4050 /* Calculate indirect offset with stride */
4051 if (likely(indirect_offset_arg.regClass() == v1))
4052 with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride);
4053 else if (indirect_offset_arg.regClass() == s1)
4054 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
4055 else
4056 unreachable("Unsupported register class of indirect offset");
4057
4058 /* Add to the supplied base offset */
4059 if (offset.id() == 0)
4060 offset = with_stride;
4061 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
4062 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
4063 else if (offset.size() == 1 && with_stride.size() == 1)
4064 offset = bld.vadd32(bld.def(v1), with_stride, offset);
4065 else
4066 unreachable("Unsupported register class of indirect offset");
4067 } else {
4068 unsigned const_offset_arg = nir_src_as_uint(*off_src);
4069 const_offset += const_offset_arg * stride;
4070 }
4071
4072 return std::make_pair(offset, const_offset);
4073 }
4074
offset_add(isel_context * ctx,const std::pair<Temp,unsigned> & off1,const std::pair<Temp,unsigned> & off2)4075 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
4076 {
4077 Builder bld(ctx->program, ctx->block);
4078 Temp offset;
4079
4080 if (off1.first.id() && off2.first.id()) {
4081 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
4082 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
4083 else if (off1.first.size() == 1 && off2.first.size() == 1)
4084 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
4085 else
4086 unreachable("Unsupported register class of indirect offset");
4087 } else {
4088 offset = off1.first.id() ? off1.first : off2.first;
4089 }
4090
4091 return std::make_pair(offset, off1.second + off2.second);
4092 }
4093
offset_mul(isel_context * ctx,const std::pair<Temp,unsigned> & offs,unsigned multiplier)4094 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
4095 {
4096 Builder bld(ctx->program, ctx->block);
4097 unsigned const_offset = offs.second * multiplier;
4098
4099 if (!offs.first.id())
4100 return std::make_pair(offs.first, const_offset);
4101
4102 Temp offset = unlikely(offs.first.regClass() == s1)
4103 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
4104 : bld.v_mul24_imm(bld.def(v1), offs.first, multiplier);
4105
4106 return std::make_pair(offset, const_offset);
4107 }
4108
get_intrinsic_io_basic_offset(isel_context * ctx,nir_intrinsic_instr * instr,unsigned base_stride,unsigned component_stride)4109 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
4110 {
4111 Builder bld(ctx->program, ctx->block);
4112
4113 /* base is the driver_location, which is in slots */
4114 unsigned const_offset = nir_intrinsic_base(instr) * 4u * base_stride;
4115 /* component is in bytes */
4116 const_offset += nir_intrinsic_component(instr) * component_stride;
4117
4118 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
4119 nir_src *off_src = nir_get_io_offset_src(instr);
4120 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
4121 }
4122
get_intrinsic_io_basic_offset(isel_context * ctx,nir_intrinsic_instr * instr,unsigned stride=1u)4123 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
4124 {
4125 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
4126 }
4127
get_tess_rel_patch_id(isel_context * ctx)4128 Temp get_tess_rel_patch_id(isel_context *ctx)
4129 {
4130 Builder bld(ctx->program, ctx->block);
4131
4132 switch (ctx->shader->info.stage) {
4133 case MESA_SHADER_TESS_CTRL:
4134 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
4135 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
4136 case MESA_SHADER_TESS_EVAL:
4137 return get_arg(ctx, ctx->args->tes_rel_patch_id);
4138 default:
4139 unreachable("Unsupported stage in get_tess_rel_patch_id");
4140 }
4141 }
4142
get_tcs_per_vertex_input_lds_offset(isel_context * ctx,nir_intrinsic_instr * instr)4143 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4144 {
4145 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4146 Builder bld(ctx->program, ctx->block);
4147
4148 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
4149 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
4150
4151 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
4152
4153 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4154 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
4155
4156 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4157 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
4158 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
4159
4160 return offset_mul(ctx, offs, 4u);
4161 }
4162
get_tcs_output_lds_offset(isel_context * ctx,nir_intrinsic_instr * instr=nullptr,bool per_vertex=false)4163 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
4164 {
4165 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4166 Builder bld(ctx->program, ctx->block);
4167
4168 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
4169 uint32_t output_vertex_size = ctx->tcs_num_outputs * 16;
4170 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4171 uint32_t output_patch_stride = pervertex_output_patch_size + ctx->tcs_num_patch_outputs * 16;
4172
4173 std::pair<Temp, unsigned> offs = instr
4174 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
4175 : std::make_pair(Temp(), 0u);
4176
4177 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4178 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
4179
4180 if (per_vertex) {
4181 assert(instr);
4182
4183 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4184 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
4185
4186 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
4187 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
4188 } else {
4189 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
4190 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
4191 }
4192
4193 return offs;
4194 }
4195
get_tcs_per_vertex_output_vmem_offset(isel_context * ctx,nir_intrinsic_instr * instr)4196 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4197 {
4198 Builder bld(ctx->program, ctx->block);
4199
4200 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
4201 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
4202
4203 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
4204
4205 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4206 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
4207 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
4208
4209 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4210 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
4211
4212 return offs;
4213 }
4214
get_tcs_per_patch_output_vmem_offset(isel_context * ctx,nir_intrinsic_instr * instr=nullptr,unsigned const_base_offset=0u)4215 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
4216 {
4217 Builder bld(ctx->program, ctx->block);
4218
4219 unsigned output_vertex_size = ctx->tcs_num_outputs * 16;
4220 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4221 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
4222 unsigned attr_stride = ctx->tcs_num_patches;
4223
4224 std::pair<Temp, unsigned> offs = instr
4225 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
4226 : std::make_pair(Temp(), 0u);
4227
4228 if (const_base_offset)
4229 offs.second += const_base_offset * attr_stride;
4230
4231 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4232 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u);
4233 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
4234
4235 return offs;
4236 }
4237
tcs_compare_intrin_with_mask(isel_context * ctx,nir_intrinsic_instr * instr,bool per_vertex,uint64_t mask,bool * indirect)4238 bool tcs_compare_intrin_with_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
4239 {
4240 assert(per_vertex || ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4241
4242 if (mask == 0)
4243 return false;
4244
4245 nir_src *off_src = nir_get_io_offset_src(instr);
4246
4247 if (!nir_src_is_const(*off_src)) {
4248 *indirect = true;
4249 return false;
4250 }
4251
4252 *indirect = false;
4253 uint64_t slot = nir_intrinsic_io_semantics(instr).location;
4254 if (!per_vertex)
4255 slot -= VARYING_SLOT_PATCH0;
4256
4257 return (((uint64_t) 1) << slot) & mask;
4258 }
4259
store_output_to_temps(isel_context * ctx,nir_intrinsic_instr * instr)4260 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
4261 {
4262 unsigned write_mask = nir_intrinsic_write_mask(instr);
4263 unsigned component = nir_intrinsic_component(instr);
4264 unsigned idx = nir_intrinsic_base(instr) * 4u + component;
4265 nir_src offset = *nir_get_io_offset_src(instr);
4266
4267 if (!nir_src_is_const(offset) || nir_src_as_uint(offset))
4268 return false;
4269
4270 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4271
4272 if (instr->src[0].ssa->bit_size == 64)
4273 write_mask = widen_mask(write_mask, 2);
4274
4275 RegClass rc = instr->src[0].ssa->bit_size == 16 ? v2b : v1;
4276
4277 for (unsigned i = 0; i < 8; ++i) {
4278 if (write_mask & (1 << i)) {
4279 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
4280 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, rc);
4281 }
4282 idx++;
4283 }
4284
4285 return true;
4286 }
4287
load_input_from_temps(isel_context * ctx,nir_intrinsic_instr * instr,Temp dst)4288 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
4289 {
4290 /* Only TCS per-vertex inputs are supported by this function.
4291 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
4292 */
4293 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
4294 return false;
4295
4296 nir_src *off_src = nir_get_io_offset_src(instr);
4297 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4298 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
4299 bool can_use_temps = nir_src_is_const(*off_src) &&
4300 vertex_index_instr->type == nir_instr_type_intrinsic &&
4301 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
4302
4303 if (!can_use_temps)
4304 return false;
4305
4306 unsigned idx = nir_intrinsic_base(instr) * 4u + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
4307 Temp *src = &ctx->inputs.temps[idx];
4308 create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
4309
4310 return true;
4311 }
4312
visit_store_ls_or_es_output(isel_context * ctx,nir_intrinsic_instr * instr)4313 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
4314 {
4315 Builder bld(ctx->program, ctx->block);
4316
4317 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
4318 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
4319 bool indirect_write;
4320 bool temp_only_input = tcs_compare_intrin_with_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
4321 if (temp_only_input && !indirect_write)
4322 return;
4323 }
4324
4325 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
4326 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4327 unsigned write_mask = nir_intrinsic_write_mask(instr);
4328 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
4329
4330 if (ctx->stage.hw == HWStage::ES) {
4331 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
4332 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
4333 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
4334 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, memory_sync_info(), true);
4335 } else {
4336 Temp lds_base;
4337
4338 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs ||
4339 ctx->stage == vertex_geometry_ngg || ctx->stage == tess_eval_geometry_ngg) {
4340 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
4341 unsigned itemsize = ctx->stage.has(SWStage::VS)
4342 ? ctx->program->info->vs.es_info.esgs_itemsize
4343 : ctx->program->info->tes.es_info.esgs_itemsize;
4344 Temp vertex_idx = thread_id_in_threadgroup(ctx);
4345 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
4346 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
4347 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
4348 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
4349 */
4350 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
4351 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, ctx->tcs_num_inputs * 16u);
4352 } else {
4353 unreachable("Invalid LS or ES stage");
4354 }
4355
4356 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
4357 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4358 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
4359 }
4360 }
4361
tcs_output_is_read_by_tes(isel_context * ctx,nir_intrinsic_instr * instr,bool per_vertex)4362 bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4363 {
4364 uint64_t mask = per_vertex
4365 ? ctx->program->info->tcs.tes_inputs_read
4366 : ctx->program->info->tcs.tes_patch_inputs_read;
4367
4368 bool indirect_write = false;
4369 bool output_read_by_tes = tcs_compare_intrin_with_mask(ctx, instr, per_vertex, mask, &indirect_write);
4370 return indirect_write || output_read_by_tes;
4371 }
4372
tcs_output_is_read_by_tcs(isel_context * ctx,nir_intrinsic_instr * instr,bool per_vertex)4373 bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4374 {
4375 uint64_t mask = per_vertex
4376 ? ctx->shader->info.outputs_read
4377 : ctx->shader->info.patch_outputs_read;
4378
4379 bool indirect_write = false;
4380 bool output_read = tcs_compare_intrin_with_mask(ctx, instr, per_vertex, mask, &indirect_write);
4381 return indirect_write || output_read;
4382 }
4383
visit_store_tcs_output(isel_context * ctx,nir_intrinsic_instr * instr,bool per_vertex)4384 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4385 {
4386 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4387 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4388
4389 Builder bld(ctx->program, ctx->block);
4390
4391 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
4392 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4393 unsigned write_mask = nir_intrinsic_write_mask(instr);
4394 nir_io_semantics semantics = nir_intrinsic_io_semantics(instr);
4395
4396 bool is_tess_factor = semantics.location == VARYING_SLOT_TESS_LEVEL_INNER ||
4397 semantics.location == VARYING_SLOT_TESS_LEVEL_OUTER;
4398 bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex);
4399 bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex);
4400
4401 if (write_to_vmem) {
4402 std::pair<Temp, unsigned> vmem_offs = per_vertex
4403 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
4404 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
4405
4406 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4407 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4408 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, memory_sync_info(storage_vmem_output));
4409 }
4410
4411 if (write_to_lds) {
4412 /* Remember driver location of tess factors, so we can read them later, in write_tcs_tess_factors */
4413 if (semantics.location == VARYING_SLOT_TESS_LEVEL_INNER)
4414 ctx->tcs_tess_lvl_in_loc = nir_intrinsic_base(instr) * 16u;
4415 else if (semantics.location == VARYING_SLOT_TESS_LEVEL_OUTER)
4416 ctx->tcs_tess_lvl_out_loc = nir_intrinsic_base(instr) * 16u;
4417
4418 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4419 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4420 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
4421 }
4422 }
4423
visit_load_tcs_output(isel_context * ctx,nir_intrinsic_instr * instr,bool per_vertex)4424 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4425 {
4426 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4427 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4428
4429 Builder bld(ctx->program, ctx->block);
4430
4431 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4432 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4433 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4434 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4435
4436 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
4437 }
4438
visit_store_output(isel_context * ctx,nir_intrinsic_instr * instr)4439 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
4440 {
4441 if (ctx->stage == vertex_vs ||
4442 ctx->stage == tess_eval_vs ||
4443 ctx->stage == fragment_fs ||
4444 ctx->stage == vertex_ngg ||
4445 ctx->stage == tess_eval_ngg ||
4446 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
4447 bool stored_to_temps = store_output_to_temps(ctx, instr);
4448 if (!stored_to_temps) {
4449 isel_err(instr->src[1].ssa->parent_instr, "Unimplemented output offset instruction");
4450 abort();
4451 }
4452 } else if ((ctx->stage.hw == HWStage::LS || ctx->stage.hw == HWStage::ES) ||
4453 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4454 (ctx->stage.has(SWStage::GS) && ctx->shader->info.stage != MESA_SHADER_GEOMETRY)) {
4455 visit_store_ls_or_es_output(ctx, instr);
4456 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
4457 visit_store_tcs_output(ctx, instr, false);
4458 } else {
4459 unreachable("Shader stage not implemented");
4460 }
4461 }
4462
visit_load_output(isel_context * ctx,nir_intrinsic_instr * instr)4463 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
4464 {
4465 visit_load_tcs_output(ctx, instr, false);
4466 }
4467
emit_interp_instr(isel_context * ctx,unsigned idx,unsigned component,Temp src,Temp dst,Temp prim_mask)4468 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
4469 {
4470 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4471 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4472
4473 Builder bld(ctx->program, ctx->block);
4474
4475 if (dst.regClass() == v2b) {
4476 if (ctx->program->has_16bank_lds) {
4477 assert(ctx->options->chip_class <= GFX8);
4478 Builder::Result interp_p1 =
4479 bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1),
4480 Operand(2u) /* P0 */, bld.m0(prim_mask), idx, component);
4481 interp_p1 = bld.vintrp(aco_opcode::v_interp_p1lv_f16, bld.def(v2b),
4482 coord1, bld.m0(prim_mask), interp_p1, idx, component);
4483 bld.vintrp(aco_opcode::v_interp_p2_legacy_f16, Definition(dst), coord2,
4484 bld.m0(prim_mask), interp_p1, idx, component);
4485 } else {
4486 aco_opcode interp_p2_op = aco_opcode::v_interp_p2_f16;
4487
4488 if (ctx->options->chip_class == GFX8)
4489 interp_p2_op = aco_opcode::v_interp_p2_legacy_f16;
4490
4491 Builder::Result interp_p1 =
4492 bld.vintrp(aco_opcode::v_interp_p1ll_f16, bld.def(v1),
4493 coord1, bld.m0(prim_mask), idx, component);
4494 bld.vintrp(interp_p2_op, Definition(dst), coord2, bld.m0(prim_mask),
4495 interp_p1, idx, component);
4496 }
4497 } else {
4498 Builder::Result interp_p1 =
4499 bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1,
4500 bld.m0(prim_mask), idx, component);
4501
4502 if (ctx->program->has_16bank_lds)
4503 interp_p1.instr->operands[0].setLateKill(true);
4504
4505 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2,
4506 bld.m0(prim_mask), interp_p1, idx, component);
4507 }
4508 }
4509
emit_load_frag_coord(isel_context * ctx,Temp dst,unsigned num_components)4510 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4511 {
4512 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4513 for (unsigned i = 0; i < num_components; i++)
4514 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4515 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4516 assert(num_components == 4);
4517 Builder bld(ctx->program, ctx->block);
4518 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4519 }
4520
4521 for (Operand& op : vec->operands)
4522 op = op.isUndefined() ? Operand(0u) : op;
4523
4524 vec->definitions[0] = Definition(dst);
4525 ctx->block->instructions.emplace_back(std::move(vec));
4526 emit_split_vector(ctx, dst, num_components);
4527 return;
4528 }
4529
visit_load_interpolated_input(isel_context * ctx,nir_intrinsic_instr * instr)4530 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4531 {
4532 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4533 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4534 unsigned idx = nir_intrinsic_base(instr);
4535 unsigned component = nir_intrinsic_component(instr);
4536 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4537
4538 assert(nir_src_is_const(instr->src[1]) && !nir_src_as_uint(instr->src[1]));
4539
4540 if (instr->dest.ssa.num_components == 1) {
4541 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4542 } else {
4543 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4544 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4545 {
4546 Temp tmp = ctx->program->allocateTmp(v1);
4547 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4548 vec->operands[i] = Operand(tmp);
4549 }
4550 vec->definitions[0] = Definition(dst);
4551 ctx->block->instructions.emplace_back(std::move(vec));
4552 }
4553 }
4554
check_vertex_fetch_size(isel_context * ctx,const ac_data_format_info * vtx_info,unsigned offset,unsigned stride,unsigned channels)4555 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4556 unsigned offset, unsigned stride, unsigned channels)
4557 {
4558 if (vtx_info->chan_byte_size != 4 && channels == 3)
4559 return false;
4560
4561 /* Always split typed vertex buffer loads on GFX6 and GFX10+ to avoid any
4562 * alignment issues that triggers memory violations and eventually a GPU
4563 * hang. This can happen if the stride (static or dynamic) is unaligned and
4564 * also if the VBO offset is aligned to a scalar (eg. stride is 8 and VBO
4565 * offset is 2 for R16G16B16A16_SNORM).
4566 */
4567 return (ctx->options->chip_class >= GFX7 && ctx->options->chip_class <= GFX9) ||
4568 (channels == 1);
4569 }
4570
get_fetch_data_format(isel_context * ctx,const ac_data_format_info * vtx_info,unsigned offset,unsigned stride,unsigned * channels)4571 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4572 unsigned offset, unsigned stride, unsigned *channels)
4573 {
4574 if (!vtx_info->chan_byte_size) {
4575 *channels = vtx_info->num_channels;
4576 return vtx_info->chan_format;
4577 }
4578
4579 unsigned num_channels = *channels;
4580 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4581 unsigned new_channels = num_channels + 1;
4582 /* first, assume more loads is worse and try using a larger data format */
4583 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4584 new_channels++;
4585 /* don't make the attribute potentially out-of-bounds */
4586 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4587 new_channels = 5;
4588 }
4589
4590 if (new_channels == 5) {
4591 /* then try decreasing load size (at the cost of more loads) */
4592 new_channels = *channels;
4593 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4594 new_channels--;
4595 }
4596
4597 if (new_channels < *channels)
4598 *channels = new_channels;
4599 num_channels = new_channels;
4600 }
4601
4602 switch (vtx_info->chan_format) {
4603 case V_008F0C_BUF_DATA_FORMAT_8:
4604 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4605 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4606 case V_008F0C_BUF_DATA_FORMAT_16:
4607 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4608 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4609 case V_008F0C_BUF_DATA_FORMAT_32:
4610 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4611 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4612 }
4613 unreachable("shouldn't reach here");
4614 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4615 }
4616
4617 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4618 * so we may need to fix it up. */
adjust_vertex_fetch_alpha(isel_context * ctx,unsigned adjustment,Temp alpha)4619 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4620 {
4621 Builder bld(ctx->program, ctx->block);
4622
4623 if (adjustment == AC_FETCH_FORMAT_SSCALED)
4624 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4625
4626 /* For the integer-like cases, do a natural sign extension.
4627 *
4628 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4629 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4630 * exponent.
4631 */
4632 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == AC_FETCH_FORMAT_SNORM ? 7u : 30u), alpha);
4633 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4634
4635 /* Convert back to the right type. */
4636 if (adjustment == AC_FETCH_FORMAT_SNORM) {
4637 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4638 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4639 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4640 } else if (adjustment == AC_FETCH_FORMAT_SSCALED) {
4641 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4642 }
4643
4644 return alpha;
4645 }
4646
visit_load_input(isel_context * ctx,nir_intrinsic_instr * instr)4647 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4648 {
4649 Builder bld(ctx->program, ctx->block);
4650 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4651 nir_src offset = *nir_get_io_offset_src(instr);
4652
4653 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4654
4655 if (!nir_src_is_const(offset) || nir_src_as_uint(offset))
4656 isel_err(offset.ssa->parent_instr, "Unimplemented non-zero nir_intrinsic_load_input offset");
4657
4658 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4659
4660 unsigned location = nir_intrinsic_base(instr) - VERT_ATTRIB_GENERIC0;
4661 unsigned component = nir_intrinsic_component(instr);
4662 unsigned bitsize = instr->dest.ssa.bit_size;
4663 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4664 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4665 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4666 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4667 enum ac_fetch_format alpha_adjust = ctx->options->key.vs.alpha_adjust[location];
4668
4669 unsigned dfmt = attrib_format & 0xf;
4670 unsigned nfmt = (attrib_format >> 4) & 0x7;
4671 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4672
4673 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4674 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4675 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4676 if (post_shuffle)
4677 num_channels = MAX2(num_channels, 3);
4678
4679 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4680 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4681
4682 Temp index;
4683 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4684 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4685 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4686 if (divisor) {
4687 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4688 if (divisor != 1) {
4689 Temp divided = bld.tmp(v1);
4690 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4691 index = bld.vadd32(bld.def(v1), start_instance, divided);
4692 } else {
4693 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4694 }
4695 } else {
4696 index = bld.copy(bld.def(v1), start_instance);
4697 }
4698 } else {
4699 index = bld.vadd32(bld.def(v1),
4700 get_arg(ctx, ctx->args->ac.base_vertex),
4701 get_arg(ctx, ctx->args->ac.vertex_id));
4702 }
4703
4704 Temp *const channels = (Temp *)alloca(num_channels * sizeof(Temp));
4705 unsigned channel_start = 0;
4706 bool direct_fetch = false;
4707
4708 /* skip unused channels at the start */
4709 if (vtx_info->chan_byte_size && !post_shuffle) {
4710 channel_start = ffs(mask) - 1;
4711 for (unsigned i = 0; i < MIN2(channel_start, num_channels); i++)
4712 channels[i] = Temp(0, s1);
4713 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4714 num_channels = 3 - (ffs(mask) - 1);
4715 }
4716
4717 /* load channels */
4718 while (channel_start < num_channels) {
4719 unsigned fetch_component = num_channels - channel_start;
4720 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4721 bool expanded = false;
4722
4723 /* use MUBUF when possible to avoid possible alignment issues */
4724 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4725 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4726 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4727 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4728 vtx_info->chan_byte_size == 4;
4729 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4730 if (!use_mubuf) {
4731 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_component);
4732 } else {
4733 if (fetch_component == 3 && ctx->options->chip_class == GFX6) {
4734 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4735 fetch_component = 4;
4736 expanded = true;
4737 }
4738 }
4739
4740 unsigned fetch_bytes = fetch_component * bitsize / 8;
4741
4742 Temp fetch_index = index;
4743 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4744 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4745 fetch_offset = fetch_offset % attrib_stride;
4746 }
4747
4748 Operand soffset(0u);
4749 if (fetch_offset >= 4096) {
4750 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4751 fetch_offset %= 4096;
4752 }
4753
4754 aco_opcode opcode;
4755 switch (fetch_bytes) {
4756 case 2:
4757 assert(!use_mubuf && bitsize == 16);
4758 opcode = aco_opcode::tbuffer_load_format_d16_x;
4759 break;
4760 case 4:
4761 if (bitsize == 16) {
4762 assert(!use_mubuf);
4763 opcode = aco_opcode::tbuffer_load_format_d16_xy;
4764 } else {
4765 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4766 }
4767 break;
4768 case 6:
4769 assert(!use_mubuf && bitsize == 16);
4770 opcode = aco_opcode::tbuffer_load_format_d16_xyz;
4771 break;
4772 case 8:
4773 if (bitsize == 16) {
4774 assert(!use_mubuf);
4775 opcode = aco_opcode::tbuffer_load_format_d16_xyzw;
4776 } else {
4777 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4778 }
4779 break;
4780 case 12:
4781 assert(ctx->options->chip_class >= GFX7 ||
4782 (!use_mubuf && ctx->options->chip_class == GFX6));
4783 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4784 break;
4785 case 16:
4786 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4787 break;
4788 default:
4789 unreachable("Unimplemented load_input vector size");
4790 }
4791
4792 Temp fetch_dst;
4793 if (channel_start == 0 && fetch_bytes == dst.bytes() && !post_shuffle &&
4794 !expanded && (alpha_adjust == AC_FETCH_FORMAT_NONE ||
4795 num_channels <= 3)) {
4796 direct_fetch = true;
4797 fetch_dst = dst;
4798 } else {
4799 fetch_dst = bld.tmp(RegClass::get(RegType::vgpr, fetch_bytes));
4800 }
4801
4802 if (use_mubuf) {
4803 bld.mubuf(opcode,
4804 Definition(fetch_dst), list, fetch_index, soffset,
4805 fetch_offset, false, false, true).instr;
4806 } else {
4807 bld.mtbuf(opcode,
4808 Definition(fetch_dst), list, fetch_index, soffset,
4809 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4810 }
4811
4812 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4813
4814 if (fetch_component == 1) {
4815 channels[channel_start] = fetch_dst;
4816 } else {
4817 for (unsigned i = 0; i < MIN2(fetch_component, num_channels - channel_start); i++)
4818 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i,
4819 bitsize == 16 ? v2b : v1);
4820 }
4821
4822 channel_start += fetch_component;
4823 }
4824
4825 if (!direct_fetch) {
4826 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4827 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4828
4829 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4830 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4831 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4832 unsigned num_components = instr->dest.ssa.num_components;
4833
4834 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
4835 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4836 unsigned num_temp = 0;
4837 for (unsigned i = 0; i < num_components; i++) {
4838 unsigned idx = i + component;
4839 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4840 Temp channel = channels[swizzle[idx]];
4841 if (idx == 3 && alpha_adjust != AC_FETCH_FORMAT_NONE)
4842 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4843 vec->operands[i] = Operand(channel);
4844
4845 num_temp++;
4846 elems[i] = channel;
4847 } else if (is_float && idx == 3) {
4848 vec->operands[i] = Operand(0x3f800000u);
4849 } else if (!is_float && idx == 3) {
4850 vec->operands[i] = Operand(1u);
4851 } else {
4852 vec->operands[i] = Operand(0u);
4853 }
4854 }
4855 vec->definitions[0] = Definition(dst);
4856 ctx->block->instructions.emplace_back(std::move(vec));
4857 emit_split_vector(ctx, dst, num_components);
4858
4859 if (num_temp == num_components)
4860 ctx->allocated_vec.emplace(dst.id(), elems);
4861 }
4862 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4863 if (!nir_src_is_const(offset) || nir_src_as_uint(offset))
4864 isel_err(offset.ssa->parent_instr, "Unimplemented non-zero nir_intrinsic_load_input offset");
4865
4866 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4867
4868 unsigned idx = nir_intrinsic_base(instr);
4869 unsigned component = nir_intrinsic_component(instr);
4870 unsigned vertex_id = 2; /* P0 */
4871
4872 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4873 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4874 switch (src0->u32) {
4875 case 0:
4876 vertex_id = 2; /* P0 */
4877 break;
4878 case 1:
4879 vertex_id = 0; /* P10 */
4880 break;
4881 case 2:
4882 vertex_id = 1; /* P20 */
4883 break;
4884 default:
4885 unreachable("invalid vertex index");
4886 }
4887 }
4888
4889 if (dst.size() == 1) {
4890 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4891 } else {
4892 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4893 for (unsigned i = 0; i < dst.size(); i++)
4894 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4895 vec->definitions[0] = Definition(dst);
4896 bld.insert(std::move(vec));
4897 }
4898
4899 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4900 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4901 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4902 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4903 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4904
4905 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4906 } else {
4907 unreachable("Shader stage not implemented");
4908 }
4909 }
4910
get_gs_per_vertex_input_offset(isel_context * ctx,nir_intrinsic_instr * instr,unsigned base_stride=1u)4911 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4912 {
4913 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4914
4915 bool merged_esgs = ctx->stage != geometry_gs;
4916 Builder bld(ctx->program, ctx->block);
4917 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4918 Temp vertex_offset;
4919
4920 if (!nir_src_is_const(*vertex_src)) {
4921 /* better code could be created, but this case probably doesn't happen
4922 * much in practice */
4923 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4924 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4925 Temp elem;
4926
4927 if (merged_esgs) {
4928 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4929 if (i % 2u)
4930 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4931 } else {
4932 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4933 }
4934
4935 if (vertex_offset.id()) {
4936 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4937 Operand(i), indirect_vertex);
4938 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4939 } else {
4940 vertex_offset = elem;
4941 }
4942 }
4943
4944 if (merged_esgs)
4945 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4946 } else {
4947 unsigned vertex = nir_src_as_uint(*vertex_src);
4948 if (merged_esgs)
4949 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4950 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4951 Operand((vertex % 2u) * 16u), Operand(16u));
4952 else
4953 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4954 }
4955
4956 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4957 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4958 return offset_mul(ctx, offs, 4u);
4959 }
4960
visit_load_gs_per_vertex_input(isel_context * ctx,nir_intrinsic_instr * instr)4961 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4962 {
4963 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4964
4965 Builder bld(ctx->program, ctx->block);
4966 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4967 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4968
4969 if (ctx->stage == geometry_gs) {
4970 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4971 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4972 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4973 } else {
4974 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4975 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4976 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4977 }
4978 }
4979
visit_load_tcs_per_vertex_input(isel_context * ctx,nir_intrinsic_instr * instr)4980 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4981 {
4982 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4983
4984 Builder bld(ctx->program, ctx->block);
4985 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4986
4987 if (load_input_from_temps(ctx, instr, dst))
4988 return;
4989
4990 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4991 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4992 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4993
4994 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4995 }
4996
visit_load_tes_per_vertex_input(isel_context * ctx,nir_intrinsic_instr * instr)4997 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4998 {
4999 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
5000
5001 Builder bld(ctx->program, ctx->block);
5002
5003 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
5004 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
5005 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5006
5007 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5008 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
5009
5010 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
5011 }
5012
visit_load_per_vertex_input(isel_context * ctx,nir_intrinsic_instr * instr)5013 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5014 {
5015 switch (ctx->shader->info.stage) {
5016 case MESA_SHADER_GEOMETRY:
5017 visit_load_gs_per_vertex_input(ctx, instr);
5018 break;
5019 case MESA_SHADER_TESS_CTRL:
5020 visit_load_tcs_per_vertex_input(ctx, instr);
5021 break;
5022 case MESA_SHADER_TESS_EVAL:
5023 visit_load_tes_per_vertex_input(ctx, instr);
5024 break;
5025 default:
5026 unreachable("Unimplemented shader stage");
5027 }
5028 }
5029
visit_load_per_vertex_output(isel_context * ctx,nir_intrinsic_instr * instr)5030 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5031 {
5032 visit_load_tcs_output(ctx, instr, true);
5033 }
5034
visit_store_per_vertex_output(isel_context * ctx,nir_intrinsic_instr * instr)5035 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5036 {
5037 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
5038 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
5039
5040 visit_store_tcs_output(ctx, instr, true);
5041 }
5042
visit_load_tess_coord(isel_context * ctx,nir_intrinsic_instr * instr)5043 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
5044 {
5045 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
5046
5047 Builder bld(ctx->program, ctx->block);
5048 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5049
5050 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
5051 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
5052 Operand tes_w(0u);
5053
5054 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
5055 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
5056 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
5057 tes_w = Operand(tmp);
5058 }
5059
5060 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
5061 emit_split_vector(ctx, tess_coord, 3);
5062 }
5063
load_desc_ptr(isel_context * ctx,unsigned desc_set)5064 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
5065 {
5066 if (ctx->program->info->need_indirect_descriptor_sets) {
5067 Builder bld(ctx->program, ctx->block);
5068 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
5069 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
5070 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
5071 }
5072
5073 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
5074 }
5075
5076
visit_load_resource(isel_context * ctx,nir_intrinsic_instr * instr)5077 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
5078 {
5079 Builder bld(ctx->program, ctx->block);
5080 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
5081 if (!nir_dest_is_divergent(instr->dest))
5082 index = bld.as_uniform(index);
5083 unsigned desc_set = nir_intrinsic_desc_set(instr);
5084 unsigned binding = nir_intrinsic_binding(instr);
5085
5086 Temp desc_ptr;
5087 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
5088 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
5089 unsigned offset = layout->binding[binding].offset;
5090 unsigned stride;
5091 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
5092 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
5093 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
5094 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
5095 offset = pipeline_layout->push_constant_size + 16 * idx;
5096 stride = 16;
5097 } else {
5098 desc_ptr = load_desc_ptr(ctx, desc_set);
5099 stride = layout->binding[binding].size;
5100 }
5101
5102 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
5103 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
5104 if (stride != 1) {
5105 if (nir_const_index) {
5106 const_index = const_index * stride;
5107 } else if (index.type() == RegType::vgpr) {
5108 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
5109 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
5110 } else {
5111 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
5112 }
5113 }
5114 if (offset) {
5115 if (nir_const_index) {
5116 const_index = const_index + offset;
5117 } else if (index.type() == RegType::vgpr) {
5118 index = bld.vadd32(bld.def(v1), Operand(offset), index);
5119 } else {
5120 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
5121 }
5122 }
5123
5124 if (nir_const_index && const_index == 0) {
5125 index = desc_ptr;
5126 } else if (index.type() == RegType::vgpr) {
5127 index = bld.vadd32(bld.def(v1),
5128 nir_const_index ? Operand(const_index) : Operand(index),
5129 Operand(desc_ptr));
5130 } else {
5131 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5132 nir_const_index ? Operand(const_index) : Operand(index),
5133 Operand(desc_ptr));
5134 }
5135
5136 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5137 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5138 elems[0] = index;
5139 ctx->allocated_vec.emplace(dst.id(), elems);
5140 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), index,
5141 Operand((unsigned)ctx->options->address32_hi));
5142 }
5143
load_buffer(isel_context * ctx,unsigned num_components,unsigned component_size,Temp dst,Temp rsrc,Temp offset,unsigned align_mul,unsigned align_offset,bool glc=false,bool allow_smem=true,memory_sync_info sync=memory_sync_info ())5144 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
5145 Temp dst, Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset,
5146 bool glc=false, bool allow_smem=true, memory_sync_info sync=memory_sync_info())
5147 {
5148 Builder bld(ctx->program, ctx->block);
5149
5150 bool use_smem = dst.type() != RegType::vgpr && (!glc || ctx->options->chip_class >= GFX8) && allow_smem;
5151 if (use_smem)
5152 offset = bld.as_uniform(offset);
5153
5154 LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc};
5155 info.glc = glc;
5156 info.sync = sync;
5157 info.align_mul = align_mul;
5158 info.align_offset = align_offset;
5159 if (use_smem)
5160 emit_load(ctx, bld, info, smem_load_params);
5161 else
5162 emit_load(ctx, bld, info, mubuf_load_params);
5163 }
5164
visit_load_ubo(isel_context * ctx,nir_intrinsic_instr * instr)5165 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
5166 {
5167 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5168 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
5169
5170 Builder bld(ctx->program, ctx->block);
5171
5172 nir_alu_instr* mov_instr = nir_instr_as_alu(instr->src[0].ssa->parent_instr);
5173 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(mov_instr->src[0].src.ssa->parent_instr);
5174 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
5175 unsigned binding = nir_intrinsic_binding(idx_instr);
5176 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
5177
5178 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
5179 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5180 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5181 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5182 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5183 if (ctx->options->chip_class >= GFX10) {
5184 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5185 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5186 S_008F0C_RESOURCE_LEVEL(1);
5187 } else {
5188 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5189 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5190 }
5191 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
5192 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
5193 Operand(0xFFFFFFFFu),
5194 Operand(desc_type));
5195 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5196 rsrc, upper_dwords);
5197 } else {
5198 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
5199 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5200 }
5201 unsigned size = instr->dest.ssa.bit_size / 8;
5202 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
5203 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr));
5204 }
5205
visit_load_push_constant(isel_context * ctx,nir_intrinsic_instr * instr)5206 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5207 {
5208 Builder bld(ctx->program, ctx->block);
5209 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5210 unsigned offset = nir_intrinsic_base(instr);
5211 unsigned count = instr->dest.ssa.num_components;
5212 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
5213
5214 if (index_cv && instr->dest.ssa.bit_size == 32) {
5215 unsigned start = (offset + index_cv->u32) / 4u;
5216 start -= ctx->args->ac.base_inline_push_consts;
5217 if (start + count <= ctx->args->ac.num_inline_push_consts) {
5218 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5219 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5220 for (unsigned i = 0; i < count; ++i) {
5221 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
5222 vec->operands[i] = Operand{elems[i]};
5223 }
5224 vec->definitions[0] = Definition(dst);
5225 ctx->block->instructions.emplace_back(std::move(vec));
5226 ctx->allocated_vec.emplace(dst.id(), elems);
5227 return;
5228 }
5229 }
5230
5231 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
5232 if (offset != 0) // TODO check if index != 0 as well
5233 index = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
5234 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
5235 Temp vec = dst;
5236 bool trim = false;
5237 bool aligned = true;
5238
5239 if (instr->dest.ssa.bit_size == 8) {
5240 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5241 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
5242 if (!aligned)
5243 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
5244 } else if (instr->dest.ssa.bit_size == 16) {
5245 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5246 if (!aligned)
5247 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
5248 }
5249
5250 aco_opcode op;
5251
5252 switch (vec.size()) {
5253 case 1:
5254 op = aco_opcode::s_load_dword;
5255 break;
5256 case 2:
5257 op = aco_opcode::s_load_dwordx2;
5258 break;
5259 case 3:
5260 vec = bld.tmp(s4);
5261 trim = true;
5262 case 4:
5263 op = aco_opcode::s_load_dwordx4;
5264 break;
5265 case 6:
5266 vec = bld.tmp(s8);
5267 trim = true;
5268 case 8:
5269 op = aco_opcode::s_load_dwordx8;
5270 break;
5271 default:
5272 unreachable("unimplemented or forbidden load_push_constant.");
5273 }
5274
5275 static_cast<SMEM_instruction*>(bld.smem(op, Definition(vec), ptr, index).instr)->prevent_overflow = true;
5276
5277 if (!aligned) {
5278 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5279 byte_align_scalar(ctx, vec, byte_offset, dst);
5280 return;
5281 }
5282
5283 if (trim) {
5284 emit_split_vector(ctx, vec, 4);
5285 RegClass rc = dst.size() == 3 ? s1 : s2;
5286 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5287 emit_extract_vector(ctx, vec, 0, rc),
5288 emit_extract_vector(ctx, vec, 1, rc),
5289 emit_extract_vector(ctx, vec, 2, rc));
5290
5291 }
5292 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5293 }
5294
visit_load_constant(isel_context * ctx,nir_intrinsic_instr * instr)5295 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5296 {
5297 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5298
5299 Builder bld(ctx->program, ctx->block);
5300
5301 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5302 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5303 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5304 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5305 if (ctx->options->chip_class >= GFX10) {
5306 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5307 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5308 S_008F0C_RESOURCE_LEVEL(1);
5309 } else {
5310 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5311 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5312 }
5313
5314 unsigned base = nir_intrinsic_base(instr);
5315 unsigned range = nir_intrinsic_range(instr);
5316
5317 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5318 if (base && offset.type() == RegType::sgpr)
5319 offset = bld.nuw().sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5320 else if (base && offset.type() == RegType::vgpr)
5321 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5322
5323 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5324 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5325 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5326 Operand(desc_type));
5327 unsigned size = instr->dest.ssa.bit_size / 8;
5328 // TODO: get alignment information for subdword constants
5329 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0);
5330 }
5331
visit_discard_if(isel_context * ctx,nir_intrinsic_instr * instr)5332 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5333 {
5334 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5335 ctx->cf_info.exec_potentially_empty_discard = true;
5336
5337 ctx->program->needs_exact = true;
5338
5339 // TODO: optimize uniform conditions
5340 Builder bld(ctx->program, ctx->block);
5341 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5342 assert(src.regClass() == bld.lm);
5343 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5344 bld.pseudo(aco_opcode::p_discard_if, src);
5345 ctx->block->kind |= block_kind_uses_discard_if;
5346 return;
5347 }
5348
visit_discard(isel_context * ctx,nir_intrinsic_instr * instr)5349 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5350 {
5351 Builder bld(ctx->program, ctx->block);
5352
5353 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5354 ctx->cf_info.exec_potentially_empty_discard = true;
5355
5356 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5357 ctx->cf_info.parent_loop.has_divergent_continue;
5358
5359 if (ctx->block->loop_nest_depth && (nir_instr_is_last(&instr->instr) && !divergent)) {
5360 /* we handle discards the same way as jump instructions */
5361 append_logical_end(ctx->block);
5362
5363 /* in loops, discard behaves like break */
5364 Block *linear_target = ctx->cf_info.parent_loop.exit;
5365 ctx->block->kind |= block_kind_discard;
5366
5367 /* uniform discard - loop ends here */
5368 assert(nir_instr_is_last(&instr->instr));
5369 ctx->block->kind |= block_kind_uniform;
5370 ctx->cf_info.has_branch = true;
5371 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
5372 add_linear_edge(ctx->block->index, linear_target);
5373 return;
5374 }
5375
5376 /* it can currently happen that NIR doesn't remove the unreachable code */
5377 if (!nir_instr_is_last(&instr->instr)) {
5378 ctx->program->needs_exact = true;
5379 /* save exec somewhere temporarily so that it doesn't get
5380 * overwritten before the discard from outer exec masks */
5381 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5382 bld.pseudo(aco_opcode::p_discard_if, cond);
5383 ctx->block->kind |= block_kind_uses_discard_if;
5384 return;
5385 }
5386
5387 /* This condition is incorrect for uniformly branched discards in a loop
5388 * predicated by a divergent condition, but the above code catches that case
5389 * and the discard would end up turning into a discard_if.
5390 * For example:
5391 * if (divergent) {
5392 * while (...) {
5393 * if (uniform) {
5394 * discard;
5395 * }
5396 * }
5397 * }
5398 */
5399 if (!ctx->cf_info.parent_if.is_divergent) {
5400 /* program just ends here */
5401 ctx->block->kind |= block_kind_uniform;
5402 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5403 0 /* enabled mask */, 9 /* dest */,
5404 false /* compressed */, true/* done */, true /* valid mask */);
5405 bld.sopp(aco_opcode::s_endpgm);
5406 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5407 } else {
5408 ctx->block->kind |= block_kind_discard;
5409 /* branch and linear edge is added by visit_if() */
5410 }
5411 }
5412
5413 enum aco_descriptor_type {
5414 ACO_DESC_IMAGE,
5415 ACO_DESC_FMASK,
5416 ACO_DESC_SAMPLER,
5417 ACO_DESC_BUFFER,
5418 ACO_DESC_PLANE_0,
5419 ACO_DESC_PLANE_1,
5420 ACO_DESC_PLANE_2,
5421 };
5422
5423 static bool
should_declare_array(isel_context * ctx,enum glsl_sampler_dim sampler_dim,bool is_array)5424 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5425 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5426 return false;
5427 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5428 return dim == ac_image_cube ||
5429 dim == ac_image_1darray ||
5430 dim == ac_image_2darray ||
5431 dim == ac_image_2darraymsaa;
5432 }
5433
get_sampler_desc(isel_context * ctx,nir_deref_instr * deref_instr,enum aco_descriptor_type desc_type,const nir_tex_instr * tex_instr,bool image,bool write)5434 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5435 enum aco_descriptor_type desc_type,
5436 const nir_tex_instr *tex_instr, bool image, bool write)
5437 {
5438 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5439 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5440 if (it != ctx->tex_desc.end())
5441 return it->second;
5442 */
5443 Temp index = Temp();
5444 bool index_set = false;
5445 unsigned constant_index = 0;
5446 unsigned descriptor_set;
5447 unsigned base_index;
5448 Builder bld(ctx->program, ctx->block);
5449
5450 if (!deref_instr) {
5451 assert(tex_instr && !image);
5452 descriptor_set = 0;
5453 base_index = tex_instr->sampler_index;
5454 } else {
5455 while(deref_instr->deref_type != nir_deref_type_var) {
5456 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5457 if (!array_size)
5458 array_size = 1;
5459
5460 assert(deref_instr->deref_type == nir_deref_type_array);
5461 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5462 if (const_value) {
5463 constant_index += array_size * const_value->u32;
5464 } else {
5465 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5466 if (indirect.type() == RegType::vgpr)
5467 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5468
5469 if (array_size != 1)
5470 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5471
5472 if (!index_set) {
5473 index = indirect;
5474 index_set = true;
5475 } else {
5476 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5477 }
5478 }
5479
5480 deref_instr = nir_src_as_deref(deref_instr->parent);
5481 }
5482 descriptor_set = deref_instr->var->data.descriptor_set;
5483 base_index = deref_instr->var->data.binding;
5484 }
5485
5486 Temp list = load_desc_ptr(ctx, descriptor_set);
5487 list = convert_pointer_to_64_bit(ctx, list);
5488
5489 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5490 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5491 unsigned offset = binding->offset;
5492 unsigned stride = binding->size;
5493 aco_opcode opcode;
5494 RegClass type;
5495
5496 assert(base_index < layout->binding_count);
5497
5498 switch (desc_type) {
5499 case ACO_DESC_IMAGE:
5500 type = s8;
5501 opcode = aco_opcode::s_load_dwordx8;
5502 break;
5503 case ACO_DESC_FMASK:
5504 type = s8;
5505 opcode = aco_opcode::s_load_dwordx8;
5506 offset += 32;
5507 break;
5508 case ACO_DESC_SAMPLER:
5509 type = s4;
5510 opcode = aco_opcode::s_load_dwordx4;
5511 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5512 offset += radv_combined_image_descriptor_sampler_offset(binding);
5513 break;
5514 case ACO_DESC_BUFFER:
5515 type = s4;
5516 opcode = aco_opcode::s_load_dwordx4;
5517 break;
5518 case ACO_DESC_PLANE_0:
5519 case ACO_DESC_PLANE_1:
5520 type = s8;
5521 opcode = aco_opcode::s_load_dwordx8;
5522 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5523 break;
5524 case ACO_DESC_PLANE_2:
5525 type = s4;
5526 opcode = aco_opcode::s_load_dwordx4;
5527 offset += 64;
5528 break;
5529 default:
5530 unreachable("invalid desc_type\n");
5531 }
5532
5533 offset += constant_index * stride;
5534
5535 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5536 (!index_set || binding->immutable_samplers_equal)) {
5537 if (binding->immutable_samplers_equal)
5538 constant_index = 0;
5539
5540 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5541 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5542 Operand(samplers[constant_index * 4 + 0]),
5543 Operand(samplers[constant_index * 4 + 1]),
5544 Operand(samplers[constant_index * 4 + 2]),
5545 Operand(samplers[constant_index * 4 + 3]));
5546 }
5547
5548 Operand off;
5549 if (!index_set) {
5550 off = bld.copy(bld.def(s1), Operand(offset));
5551 } else {
5552 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5553 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5554 }
5555
5556 Temp res = bld.smem(opcode, bld.def(type), list, off);
5557
5558 if (desc_type == ACO_DESC_PLANE_2) {
5559 Temp components[8];
5560 for (unsigned i = 0; i < 8; i++)
5561 components[i] = bld.tmp(s1);
5562 bld.pseudo(aco_opcode::p_split_vector,
5563 Definition(components[0]),
5564 Definition(components[1]),
5565 Definition(components[2]),
5566 Definition(components[3]),
5567 res);
5568
5569 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5570 bld.pseudo(aco_opcode::p_split_vector,
5571 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5572 Definition(components[4]),
5573 Definition(components[5]),
5574 Definition(components[6]),
5575 Definition(components[7]),
5576 desc2);
5577
5578 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5579 components[0], components[1], components[2], components[3],
5580 components[4], components[5], components[6], components[7]);
5581 }
5582
5583 return res;
5584 }
5585
image_type_to_components_count(enum glsl_sampler_dim dim,bool array)5586 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5587 {
5588 switch (dim) {
5589 case GLSL_SAMPLER_DIM_BUF:
5590 return 1;
5591 case GLSL_SAMPLER_DIM_1D:
5592 return array ? 2 : 1;
5593 case GLSL_SAMPLER_DIM_2D:
5594 return array ? 3 : 2;
5595 case GLSL_SAMPLER_DIM_MS:
5596 return array ? 4 : 3;
5597 case GLSL_SAMPLER_DIM_3D:
5598 case GLSL_SAMPLER_DIM_CUBE:
5599 return 3;
5600 case GLSL_SAMPLER_DIM_RECT:
5601 case GLSL_SAMPLER_DIM_SUBPASS:
5602 return 2;
5603 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5604 return 3;
5605 default:
5606 break;
5607 }
5608 return 0;
5609 }
5610
5611
5612 /* Adjust the sample index according to FMASK.
5613 *
5614 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5615 * which is the identity mapping. Each nibble says which physical sample
5616 * should be fetched to get that sample.
5617 *
5618 * For example, 0x11111100 means there are only 2 samples stored and
5619 * the second sample covers 3/4 of the pixel. When reading samples 0
5620 * and 1, return physical sample 0 (determined by the first two 0s
5621 * in FMASK), otherwise return physical sample 1.
5622 *
5623 * The sample index should be adjusted as follows:
5624 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5625 */
adjust_sample_index_using_fmask(isel_context * ctx,bool da,std::vector<Temp> & coords,Operand sample_index,Temp fmask_desc_ptr)5626 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5627 {
5628 Builder bld(ctx->program, ctx->block);
5629 Temp fmask = bld.tmp(v1);
5630 unsigned dim = ctx->options->chip_class >= GFX10
5631 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5632 : 0;
5633
5634 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5635 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5636 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5637 load->operands[0] = Operand(fmask_desc_ptr);
5638 load->operands[1] = Operand(s4); /* no sampler */
5639 load->operands[2] = Operand(coord);
5640 load->definitions[0] = Definition(fmask);
5641 load->glc = false;
5642 load->dlc = false;
5643 load->dmask = 0x1;
5644 load->unrm = true;
5645 load->da = da;
5646 load->dim = dim;
5647 ctx->block->instructions.emplace_back(std::move(load));
5648
5649 Operand sample_index4;
5650 if (sample_index.isConstant()) {
5651 if (sample_index.constantValue() < 16) {
5652 sample_index4 = Operand(sample_index.constantValue() << 2);
5653 } else {
5654 sample_index4 = Operand(0u);
5655 }
5656 } else if (sample_index.regClass() == s1) {
5657 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5658 } else {
5659 assert(sample_index.regClass() == v1);
5660 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5661 }
5662
5663 Temp final_sample;
5664 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5665 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5666 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5667 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5668 else
5669 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5670
5671 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5672 * resource descriptor is 0 (invalid),
5673 */
5674 Temp compare = bld.tmp(bld.lm);
5675 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5676 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5677
5678 Temp sample_index_v = bld.copy(bld.def(v1), sample_index);
5679
5680 /* Replace the MSAA sample index. */
5681 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5682 }
5683
get_image_coords(isel_context * ctx,const nir_intrinsic_instr * instr,const struct glsl_type * type)5684 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5685 {
5686
5687 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5688 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5689 bool is_array = glsl_sampler_type_is_array(type);
5690 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5691 assert(!add_frag_pos && "Input attachments should be lowered.");
5692 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5693 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5694 int count = image_type_to_components_count(dim, is_array);
5695 std::vector<Temp> coords(count);
5696 Builder bld(ctx->program, ctx->block);
5697
5698 if (is_ms) {
5699 count--;
5700 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5701 /* get sample index */
5702 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5703 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5704 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5705 std::vector<Temp> fmask_load_address;
5706 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5707 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5708
5709 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5710 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5711 } else {
5712 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5713 }
5714 }
5715
5716 if (gfx9_1d) {
5717 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5718 coords.resize(coords.size() + 1);
5719 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5720 if (is_array)
5721 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5722 } else {
5723 for (int i = 0; i < count; i++)
5724 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5725 }
5726
5727 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5728 instr->intrinsic == nir_intrinsic_image_deref_store) {
5729 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5730 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5731
5732 if (!level_zero)
5733 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5734 }
5735
5736 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5737 for (unsigned i = 0; i < coords.size(); i++)
5738 vec->operands[i] = Operand(coords[i]);
5739 Temp res = ctx->program->allocateTmp(RegClass(RegType::vgpr, coords.size()));
5740 vec->definitions[0] = Definition(res);
5741 ctx->block->instructions.emplace_back(std::move(vec));
5742 return res;
5743 }
5744
5745
get_memory_sync_info(nir_intrinsic_instr * instr,storage_class storage,unsigned semantics)5746 memory_sync_info get_memory_sync_info(nir_intrinsic_instr *instr, storage_class storage, unsigned semantics)
5747 {
5748 /* atomicrmw might not have NIR_INTRINSIC_ACCESS and there's nothing interesting there anyway */
5749 if (semantics & semantic_atomicrmw)
5750 return memory_sync_info(storage, semantics);
5751
5752 unsigned access = nir_intrinsic_access(instr);
5753
5754 if (access & ACCESS_VOLATILE)
5755 semantics |= semantic_volatile;
5756 if (access & ACCESS_CAN_REORDER)
5757 semantics |= semantic_can_reorder | semantic_private;
5758
5759 return memory_sync_info(storage, semantics);
5760 }
5761
visit_image_load(isel_context * ctx,nir_intrinsic_instr * instr)5762 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5763 {
5764 Builder bld(ctx->program, ctx->block);
5765 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5766 const struct glsl_type *type = glsl_without_array(var->type);
5767 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5768 bool is_array = glsl_sampler_type_is_array(type);
5769 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5770
5771 memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
5772 unsigned access = var->data.access | nir_intrinsic_access(instr);
5773
5774 unsigned expand_mask = nir_ssa_def_components_read(&instr->dest.ssa);
5775 if (dim == GLSL_SAMPLER_DIM_BUF)
5776 expand_mask = (1u << util_last_bit(expand_mask)) - 1;
5777 unsigned dmask = expand_mask;
5778 if (instr->dest.ssa.bit_size == 64) {
5779 expand_mask &= 0x9;
5780 /* only R64_UINT and R64_SINT supported. x is in xy of the result, w in zw */
5781 dmask = ((expand_mask & 0x1) ? 0x3 : 0) | ((expand_mask & 0x8) ? 0xc : 0);
5782 }
5783 unsigned num_components = util_bitcount(dmask);
5784
5785 Temp tmp;
5786 if (num_components == dst.size() && dst.type() == RegType::vgpr)
5787 tmp = dst;
5788 else
5789 tmp = ctx->program->allocateTmp(RegClass(RegType::vgpr, num_components));
5790
5791 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr),
5792 dim == GLSL_SAMPLER_DIM_BUF ? ACO_DESC_BUFFER : ACO_DESC_IMAGE,
5793 nullptr, true, true);
5794
5795 if (dim == GLSL_SAMPLER_DIM_BUF) {
5796 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5797
5798 aco_opcode opcode;
5799 switch (num_components) {
5800 case 1:
5801 opcode = aco_opcode::buffer_load_format_x;
5802 break;
5803 case 2:
5804 opcode = aco_opcode::buffer_load_format_xy;
5805 break;
5806 case 3:
5807 opcode = aco_opcode::buffer_load_format_xyz;
5808 break;
5809 case 4:
5810 opcode = aco_opcode::buffer_load_format_xyzw;
5811 break;
5812 default:
5813 unreachable(">4 channel buffer image load");
5814 }
5815 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5816 load->operands[0] = Operand(resource);
5817 load->operands[1] = Operand(vindex);
5818 load->operands[2] = Operand((uint32_t) 0);
5819 load->definitions[0] = Definition(tmp);
5820 load->idxen = true;
5821 load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5822 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5823 load->sync = sync;
5824 ctx->block->instructions.emplace_back(std::move(load));
5825 } else {
5826 Temp coords = get_image_coords(ctx, instr, type);
5827
5828 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5829 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5830
5831 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5832 load->operands[0] = Operand(resource);
5833 load->operands[1] = Operand(s4); /* no sampler */
5834 load->operands[2] = Operand(coords);
5835 load->definitions[0] = Definition(tmp);
5836 load->glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5837 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5838 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5839 load->dmask = dmask;
5840 load->unrm = true;
5841 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5842 load->sync = sync;
5843 ctx->block->instructions.emplace_back(std::move(load));
5844 }
5845
5846 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, expand_mask);
5847 }
5848
visit_image_store(isel_context * ctx,nir_intrinsic_instr * instr)5849 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5850 {
5851 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5852 const struct glsl_type *type = glsl_without_array(var->type);
5853 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5854 bool is_array = glsl_sampler_type_is_array(type);
5855 Temp data = get_ssa_temp(ctx, instr->src[3].ssa);
5856
5857 /* only R64_UINT and R64_SINT supported */
5858 if (instr->src[3].ssa->bit_size == 64 && data.bytes() > 8)
5859 data = emit_extract_vector(ctx, data, 0, RegClass(data.type(), 2));
5860 data = as_vgpr(ctx, data);
5861
5862 memory_sync_info sync = get_memory_sync_info(instr, storage_image, 0);
5863 unsigned access = var->data.access | nir_intrinsic_access(instr);
5864 bool glc = ctx->options->chip_class == GFX6 || access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5865
5866 if (dim == GLSL_SAMPLER_DIM_BUF) {
5867 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5868 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5869 aco_opcode opcode;
5870 switch (data.size()) {
5871 case 1:
5872 opcode = aco_opcode::buffer_store_format_x;
5873 break;
5874 case 2:
5875 opcode = aco_opcode::buffer_store_format_xy;
5876 break;
5877 case 3:
5878 opcode = aco_opcode::buffer_store_format_xyz;
5879 break;
5880 case 4:
5881 opcode = aco_opcode::buffer_store_format_xyzw;
5882 break;
5883 default:
5884 unreachable(">4 channel buffer image store");
5885 }
5886 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5887 store->operands[0] = Operand(rsrc);
5888 store->operands[1] = Operand(vindex);
5889 store->operands[2] = Operand((uint32_t) 0);
5890 store->operands[3] = Operand(data);
5891 store->idxen = true;
5892 store->glc = glc;
5893 store->dlc = false;
5894 store->disable_wqm = true;
5895 store->sync = sync;
5896 ctx->program->needs_exact = true;
5897 ctx->block->instructions.emplace_back(std::move(store));
5898 return;
5899 }
5900
5901 assert(data.type() == RegType::vgpr);
5902 Temp coords = get_image_coords(ctx, instr, type);
5903 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5904
5905 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5906 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5907
5908 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5909 store->operands[0] = Operand(resource);
5910 store->operands[1] = Operand(data);
5911 store->operands[2] = Operand(coords);
5912 store->glc = glc;
5913 store->dlc = false;
5914 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5915 store->dmask = (1 << data.size()) - 1;
5916 store->unrm = true;
5917 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5918 store->disable_wqm = true;
5919 store->sync = sync;
5920 ctx->program->needs_exact = true;
5921 ctx->block->instructions.emplace_back(std::move(store));
5922 return;
5923 }
5924
visit_image_atomic(isel_context * ctx,nir_intrinsic_instr * instr)5925 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5926 {
5927 /* return the previous value if dest is ever used */
5928 bool return_previous = false;
5929 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5930 return_previous = true;
5931 break;
5932 }
5933 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5934 return_previous = true;
5935 break;
5936 }
5937
5938 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5939 const struct glsl_type *type = glsl_without_array(var->type);
5940 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5941 bool is_array = glsl_sampler_type_is_array(type);
5942 Builder bld(ctx->program, ctx->block);
5943
5944 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5945 bool is_64bit = data.bytes() == 8;
5946 assert((data.bytes() == 4 || data.bytes() == 8) && "only 32/64-bit image atomics implemented.");
5947
5948 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5949 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(is_64bit ? v4 : v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5950
5951 aco_opcode buf_op, buf_op64, image_op;
5952 switch (instr->intrinsic) {
5953 case nir_intrinsic_image_deref_atomic_add:
5954 buf_op = aco_opcode::buffer_atomic_add;
5955 buf_op64 = aco_opcode::buffer_atomic_add_x2;
5956 image_op = aco_opcode::image_atomic_add;
5957 break;
5958 case nir_intrinsic_image_deref_atomic_umin:
5959 buf_op = aco_opcode::buffer_atomic_umin;
5960 buf_op64 = aco_opcode::buffer_atomic_umin_x2;
5961 image_op = aco_opcode::image_atomic_umin;
5962 break;
5963 case nir_intrinsic_image_deref_atomic_imin:
5964 buf_op = aco_opcode::buffer_atomic_smin;
5965 buf_op64 = aco_opcode::buffer_atomic_smin_x2;
5966 image_op = aco_opcode::image_atomic_smin;
5967 break;
5968 case nir_intrinsic_image_deref_atomic_umax:
5969 buf_op = aco_opcode::buffer_atomic_umax;
5970 buf_op64 = aco_opcode::buffer_atomic_umax_x2;
5971 image_op = aco_opcode::image_atomic_umax;
5972 break;
5973 case nir_intrinsic_image_deref_atomic_imax:
5974 buf_op = aco_opcode::buffer_atomic_smax;
5975 buf_op64 = aco_opcode::buffer_atomic_smax_x2;
5976 image_op = aco_opcode::image_atomic_smax;
5977 break;
5978 case nir_intrinsic_image_deref_atomic_and:
5979 buf_op = aco_opcode::buffer_atomic_and;
5980 buf_op64 = aco_opcode::buffer_atomic_and_x2;
5981 image_op = aco_opcode::image_atomic_and;
5982 break;
5983 case nir_intrinsic_image_deref_atomic_or:
5984 buf_op = aco_opcode::buffer_atomic_or;
5985 buf_op64 = aco_opcode::buffer_atomic_or_x2;
5986 image_op = aco_opcode::image_atomic_or;
5987 break;
5988 case nir_intrinsic_image_deref_atomic_xor:
5989 buf_op = aco_opcode::buffer_atomic_xor;
5990 buf_op64 = aco_opcode::buffer_atomic_xor_x2;
5991 image_op = aco_opcode::image_atomic_xor;
5992 break;
5993 case nir_intrinsic_image_deref_atomic_exchange:
5994 buf_op = aco_opcode::buffer_atomic_swap;
5995 buf_op64 = aco_opcode::buffer_atomic_swap_x2;
5996 image_op = aco_opcode::image_atomic_swap;
5997 break;
5998 case nir_intrinsic_image_deref_atomic_comp_swap:
5999 buf_op = aco_opcode::buffer_atomic_cmpswap;
6000 buf_op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6001 image_op = aco_opcode::image_atomic_cmpswap;
6002 break;
6003 default:
6004 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
6005 }
6006
6007 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6008 memory_sync_info sync = get_memory_sync_info(instr, storage_image, semantic_atomicrmw);
6009
6010 if (dim == GLSL_SAMPLER_DIM_BUF) {
6011 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
6012 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
6013 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
6014 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(
6015 is_64bit ? buf_op64 : buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6016 mubuf->operands[0] = Operand(resource);
6017 mubuf->operands[1] = Operand(vindex);
6018 mubuf->operands[2] = Operand((uint32_t)0);
6019 mubuf->operands[3] = Operand(data);
6020 if (return_previous)
6021 mubuf->definitions[0] = Definition(dst);
6022 mubuf->offset = 0;
6023 mubuf->idxen = true;
6024 mubuf->glc = return_previous;
6025 mubuf->dlc = false; /* Not needed for atomics */
6026 mubuf->disable_wqm = true;
6027 mubuf->sync = sync;
6028 ctx->program->needs_exact = true;
6029 ctx->block->instructions.emplace_back(std::move(mubuf));
6030 return;
6031 }
6032
6033 Temp coords = get_image_coords(ctx, instr, type);
6034 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
6035 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
6036 mimg->operands[0] = Operand(resource);
6037 mimg->operands[1] = Operand(data);
6038 mimg->operands[2] = Operand(coords);
6039 if (return_previous)
6040 mimg->definitions[0] = Definition(dst);
6041 mimg->glc = return_previous;
6042 mimg->dlc = false; /* Not needed for atomics */
6043 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6044 mimg->dmask = (1 << data.size()) - 1;
6045 mimg->unrm = true;
6046 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
6047 mimg->disable_wqm = true;
6048 mimg->sync = sync;
6049 ctx->program->needs_exact = true;
6050 ctx->block->instructions.emplace_back(std::move(mimg));
6051 return;
6052 }
6053
get_buffer_size(isel_context * ctx,Temp desc,Temp dst,bool in_elements)6054 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
6055 {
6056 if (in_elements && ctx->options->chip_class == GFX8) {
6057 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
6058 Builder bld(ctx->program, ctx->block);
6059
6060 Temp size = emit_extract_vector(ctx, desc, 2, s1);
6061
6062 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
6063 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), bld.as_uniform(size_div3), Operand(1u));
6064
6065 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
6066 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
6067
6068 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
6069 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
6070
6071 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
6072 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
6073 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
6074 if (dst.type() == RegType::vgpr)
6075 bld.copy(Definition(dst), shr_dst);
6076
6077 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
6078 } else {
6079 emit_extract_vector(ctx, desc, 2, dst);
6080 }
6081 }
6082
visit_image_size(isel_context * ctx,nir_intrinsic_instr * instr)6083 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
6084 {
6085 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
6086 const struct glsl_type *type = glsl_without_array(var->type);
6087 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
6088 bool is_array = glsl_sampler_type_is_array(type);
6089 Builder bld(ctx->program, ctx->block);
6090
6091 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
6092 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
6093 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
6094 }
6095
6096 /* LOD */
6097 assert(nir_src_as_uint(instr->src[1]) == 0);
6098 Temp lod = bld.copy(bld.def(v1), Operand(0u));
6099
6100 /* Resource */
6101 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
6102
6103 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6104
6105 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
6106 mimg->operands[0] = Operand(resource);
6107 mimg->operands[1] = Operand(s4); /* no sampler */
6108 mimg->operands[2] = Operand(lod);
6109 uint8_t& dmask = mimg->dmask;
6110 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6111 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
6112 mimg->da = glsl_sampler_type_is_array(type);
6113 Definition& def = mimg->definitions[0];
6114 ctx->block->instructions.emplace_back(std::move(mimg));
6115
6116 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
6117 glsl_sampler_type_is_array(type)) {
6118
6119 assert(instr->dest.ssa.num_components == 3);
6120 Temp tmp = ctx->program->allocateTmp(v3);
6121 def = Definition(tmp);
6122 emit_split_vector(ctx, tmp, 3);
6123
6124 /* divide 3rd value by 6 by multiplying with magic number */
6125 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6126 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
6127
6128 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6129 emit_extract_vector(ctx, tmp, 0, v1),
6130 emit_extract_vector(ctx, tmp, 1, v1),
6131 by_6);
6132
6133 } else if (ctx->options->chip_class == GFX9 &&
6134 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
6135 glsl_sampler_type_is_array(type)) {
6136 assert(instr->dest.ssa.num_components == 2);
6137 def = Definition(dst);
6138 dmask = 0x5;
6139 } else {
6140 def = Definition(dst);
6141 }
6142
6143 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
6144 }
6145
visit_load_ssbo(isel_context * ctx,nir_intrinsic_instr * instr)6146 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6147 {
6148 Builder bld(ctx->program, ctx->block);
6149 unsigned num_components = instr->num_components;
6150
6151 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6152 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6153 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6154
6155 unsigned access = nir_intrinsic_access(instr);
6156 bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
6157 unsigned size = instr->dest.ssa.bit_size / 8;
6158
6159 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[0].ssa, access);
6160 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6161 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6162 */
6163 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_store : has_vmem_store));
6164 allow_smem |= ((access & ACCESS_RESTRICT) && (access & ACCESS_NON_WRITEABLE)) || (access & ACCESS_CAN_REORDER);
6165
6166 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
6167 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, allow_smem,
6168 get_memory_sync_info(instr, storage_buffer, 0));
6169 }
6170
visit_store_ssbo(isel_context * ctx,nir_intrinsic_instr * instr)6171 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6172 {
6173 Builder bld(ctx->program, ctx->block);
6174 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6175 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6176 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6177 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
6178
6179 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6180 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6181
6182 memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
6183 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6184 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[1].ssa, nir_intrinsic_access(instr));
6185 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6186 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6187 */
6188 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_loadstore : has_vmem_loadstore));
6189
6190 bool smem = !nir_src_is_divergent(instr->src[2]) &&
6191 ctx->options->chip_class >= GFX8 &&
6192 ctx->options->chip_class < GFX10_3 &&
6193 (elem_size_bytes >= 4 || can_subdword_ssbo_store_use_smem(instr)) &&
6194 allow_smem;
6195 if (smem)
6196 offset = bld.as_uniform(offset);
6197 bool smem_nonfs = smem && ctx->stage != fragment_fs;
6198
6199 unsigned write_count = 0;
6200 Temp write_datas[32];
6201 unsigned offsets[32];
6202 split_buffer_store(ctx, instr, smem, smem_nonfs ? RegType::sgpr : (smem ? data.type() : RegType::vgpr),
6203 data, writemask, 16, &write_count, write_datas, offsets);
6204
6205 for (unsigned i = 0; i < write_count; i++) {
6206 aco_opcode op = get_buffer_store_op(smem, write_datas[i].bytes());
6207 if (smem && ctx->stage == fragment_fs)
6208 op = aco_opcode::p_fs_buffer_store_smem;
6209
6210 if (smem) {
6211 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(op, Format::SMEM, 3, 0)};
6212 store->operands[0] = Operand(rsrc);
6213 if (offsets[i]) {
6214 Temp off = bld.nuw().sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
6215 offset, Operand(offsets[i]));
6216 store->operands[1] = Operand(off);
6217 } else {
6218 store->operands[1] = Operand(offset);
6219 }
6220 if (op != aco_opcode::p_fs_buffer_store_smem)
6221 store->operands[1].setFixed(m0);
6222 store->operands[2] = Operand(write_datas[i]);
6223 store->glc = glc;
6224 store->dlc = false;
6225 store->disable_wqm = true;
6226 store->sync = sync;
6227 ctx->block->instructions.emplace_back(std::move(store));
6228 ctx->program->wb_smem_l1_on_end = true;
6229 if (op == aco_opcode::p_fs_buffer_store_smem) {
6230 ctx->block->kind |= block_kind_needs_lowering;
6231 ctx->program->needs_exact = true;
6232 }
6233 } else {
6234 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6235 store->operands[0] = Operand(rsrc);
6236 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6237 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6238 store->operands[3] = Operand(write_datas[i]);
6239 store->offset = offsets[i];
6240 store->offen = (offset.type() == RegType::vgpr);
6241 store->glc = glc;
6242 store->dlc = false;
6243 store->disable_wqm = true;
6244 store->sync = sync;
6245 ctx->program->needs_exact = true;
6246 ctx->block->instructions.emplace_back(std::move(store));
6247 }
6248 }
6249 }
6250
visit_atomic_ssbo(isel_context * ctx,nir_intrinsic_instr * instr)6251 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6252 {
6253 /* return the previous value if dest is ever used */
6254 bool return_previous = false;
6255 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6256 return_previous = true;
6257 break;
6258 }
6259 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6260 return_previous = true;
6261 break;
6262 }
6263
6264 Builder bld(ctx->program, ctx->block);
6265 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6266
6267 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6268 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6269 get_ssa_temp(ctx, instr->src[3].ssa), data);
6270
6271 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6272 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6273 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6274
6275 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6276
6277 aco_opcode op32, op64;
6278 switch (instr->intrinsic) {
6279 case nir_intrinsic_ssbo_atomic_add:
6280 op32 = aco_opcode::buffer_atomic_add;
6281 op64 = aco_opcode::buffer_atomic_add_x2;
6282 break;
6283 case nir_intrinsic_ssbo_atomic_imin:
6284 op32 = aco_opcode::buffer_atomic_smin;
6285 op64 = aco_opcode::buffer_atomic_smin_x2;
6286 break;
6287 case nir_intrinsic_ssbo_atomic_umin:
6288 op32 = aco_opcode::buffer_atomic_umin;
6289 op64 = aco_opcode::buffer_atomic_umin_x2;
6290 break;
6291 case nir_intrinsic_ssbo_atomic_imax:
6292 op32 = aco_opcode::buffer_atomic_smax;
6293 op64 = aco_opcode::buffer_atomic_smax_x2;
6294 break;
6295 case nir_intrinsic_ssbo_atomic_umax:
6296 op32 = aco_opcode::buffer_atomic_umax;
6297 op64 = aco_opcode::buffer_atomic_umax_x2;
6298 break;
6299 case nir_intrinsic_ssbo_atomic_and:
6300 op32 = aco_opcode::buffer_atomic_and;
6301 op64 = aco_opcode::buffer_atomic_and_x2;
6302 break;
6303 case nir_intrinsic_ssbo_atomic_or:
6304 op32 = aco_opcode::buffer_atomic_or;
6305 op64 = aco_opcode::buffer_atomic_or_x2;
6306 break;
6307 case nir_intrinsic_ssbo_atomic_xor:
6308 op32 = aco_opcode::buffer_atomic_xor;
6309 op64 = aco_opcode::buffer_atomic_xor_x2;
6310 break;
6311 case nir_intrinsic_ssbo_atomic_exchange:
6312 op32 = aco_opcode::buffer_atomic_swap;
6313 op64 = aco_opcode::buffer_atomic_swap_x2;
6314 break;
6315 case nir_intrinsic_ssbo_atomic_comp_swap:
6316 op32 = aco_opcode::buffer_atomic_cmpswap;
6317 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6318 break;
6319 default:
6320 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6321 }
6322 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6323 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6324 mubuf->operands[0] = Operand(rsrc);
6325 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6326 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6327 mubuf->operands[3] = Operand(data);
6328 if (return_previous)
6329 mubuf->definitions[0] = Definition(dst);
6330 mubuf->offset = 0;
6331 mubuf->offen = (offset.type() == RegType::vgpr);
6332 mubuf->glc = return_previous;
6333 mubuf->dlc = false; /* Not needed for atomics */
6334 mubuf->disable_wqm = true;
6335 mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6336 ctx->program->needs_exact = true;
6337 ctx->block->instructions.emplace_back(std::move(mubuf));
6338 }
6339
visit_get_ssbo_size(isel_context * ctx,nir_intrinsic_instr * instr)6340 void visit_get_ssbo_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6341
6342 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
6343 rsrc = emit_extract_vector(ctx, rsrc, 0, RegClass(rsrc.type(), 1));
6344 Temp index = convert_pointer_to_64_bit(ctx, rsrc);
6345
6346 Builder bld(ctx->program, ctx->block);
6347 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6348 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6349 }
6350
visit_load_global(isel_context * ctx,nir_intrinsic_instr * instr)6351 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6352 {
6353 Builder bld(ctx->program, ctx->block);
6354 unsigned num_components = instr->num_components;
6355 unsigned component_size = instr->dest.ssa.bit_size / 8;
6356
6357 LoadEmitInfo info = {Operand(get_ssa_temp(ctx, instr->src[0].ssa)),
6358 get_ssa_temp(ctx, &instr->dest.ssa),
6359 num_components, component_size};
6360 info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6361 info.align_mul = nir_intrinsic_align_mul(instr);
6362 info.align_offset = nir_intrinsic_align_offset(instr);
6363 info.sync = get_memory_sync_info(instr, storage_buffer, 0);
6364 /* VMEM stores don't update the SMEM cache and it's difficult to prove that
6365 * it's safe to use SMEM */
6366 bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE;
6367 if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->chip_class < GFX8) || !can_use_smem) {
6368 emit_load(ctx, bld, info, global_load_params);
6369 } else {
6370 info.offset = Operand(bld.as_uniform(info.offset));
6371 emit_load(ctx, bld, info, smem_load_params);
6372 }
6373 }
6374
visit_store_global(isel_context * ctx,nir_intrinsic_instr * instr)6375 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6376 {
6377 Builder bld(ctx->program, ctx->block);
6378 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6379 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6380
6381 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6382 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6383 memory_sync_info sync = get_memory_sync_info(instr, storage_buffer, 0);
6384 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6385
6386 if (ctx->options->chip_class >= GFX7)
6387 addr = as_vgpr(ctx, addr);
6388
6389 unsigned write_count = 0;
6390 Temp write_datas[32];
6391 unsigned offsets[32];
6392 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6393 16, &write_count, write_datas, offsets);
6394
6395 for (unsigned i = 0; i < write_count; i++) {
6396 if (ctx->options->chip_class >= GFX7) {
6397 unsigned offset = offsets[i];
6398 Temp store_addr = addr;
6399 if (offset > 0 && ctx->options->chip_class < GFX9) {
6400 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6401 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6402 Temp carry = bld.tmp(bld.lm);
6403 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6404
6405 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6406 Operand(offset), addr0);
6407 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6408 Operand(0u), addr1,
6409 carry).def(1).setHint(vcc);
6410
6411 store_addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6412
6413 offset = 0;
6414 }
6415
6416 bool global = ctx->options->chip_class >= GFX9;
6417 aco_opcode op;
6418 switch (write_datas[i].bytes()) {
6419 case 1:
6420 op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte;
6421 break;
6422 case 2:
6423 op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short;
6424 break;
6425 case 4:
6426 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6427 break;
6428 case 8:
6429 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6430 break;
6431 case 12:
6432 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6433 break;
6434 case 16:
6435 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6436 break;
6437 default:
6438 unreachable("store_global not implemented for this size.");
6439 }
6440
6441 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6442 flat->operands[0] = Operand(store_addr);
6443 flat->operands[1] = Operand(s1);
6444 flat->operands[2] = Operand(write_datas[i]);
6445 flat->glc = glc;
6446 flat->dlc = false;
6447 flat->offset = offset;
6448 flat->disable_wqm = true;
6449 flat->sync = sync;
6450 ctx->program->needs_exact = true;
6451 ctx->block->instructions.emplace_back(std::move(flat));
6452 } else {
6453 assert(ctx->options->chip_class == GFX6);
6454
6455 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6456
6457 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6458
6459 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6460 mubuf->operands[0] = Operand(rsrc);
6461 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6462 mubuf->operands[2] = Operand(0u);
6463 mubuf->operands[3] = Operand(write_datas[i]);
6464 mubuf->glc = glc;
6465 mubuf->dlc = false;
6466 mubuf->offset = offsets[i];
6467 mubuf->addr64 = addr.type() == RegType::vgpr;
6468 mubuf->disable_wqm = true;
6469 mubuf->sync = sync;
6470 ctx->program->needs_exact = true;
6471 ctx->block->instructions.emplace_back(std::move(mubuf));
6472 }
6473 }
6474 }
6475
visit_global_atomic(isel_context * ctx,nir_intrinsic_instr * instr)6476 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6477 {
6478 /* return the previous value if dest is ever used */
6479 bool return_previous = false;
6480 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6481 return_previous = true;
6482 break;
6483 }
6484 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6485 return_previous = true;
6486 break;
6487 }
6488
6489 Builder bld(ctx->program, ctx->block);
6490 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6491 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6492
6493 if (ctx->options->chip_class >= GFX7)
6494 addr = as_vgpr(ctx, addr);
6495
6496 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6497 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6498 get_ssa_temp(ctx, instr->src[2].ssa), data);
6499
6500 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6501
6502 aco_opcode op32, op64;
6503
6504 if (ctx->options->chip_class >= GFX7) {
6505 bool global = ctx->options->chip_class >= GFX9;
6506 switch (instr->intrinsic) {
6507 case nir_intrinsic_global_atomic_add:
6508 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6509 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6510 break;
6511 case nir_intrinsic_global_atomic_imin:
6512 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6513 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6514 break;
6515 case nir_intrinsic_global_atomic_umin:
6516 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6517 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6518 break;
6519 case nir_intrinsic_global_atomic_imax:
6520 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6521 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6522 break;
6523 case nir_intrinsic_global_atomic_umax:
6524 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6525 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6526 break;
6527 case nir_intrinsic_global_atomic_and:
6528 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6529 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6530 break;
6531 case nir_intrinsic_global_atomic_or:
6532 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6533 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6534 break;
6535 case nir_intrinsic_global_atomic_xor:
6536 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6537 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6538 break;
6539 case nir_intrinsic_global_atomic_exchange:
6540 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6541 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6542 break;
6543 case nir_intrinsic_global_atomic_comp_swap:
6544 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6545 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6546 break;
6547 default:
6548 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6549 }
6550
6551 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6552 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6553 flat->operands[0] = Operand(addr);
6554 flat->operands[1] = Operand(s1);
6555 flat->operands[2] = Operand(data);
6556 if (return_previous)
6557 flat->definitions[0] = Definition(dst);
6558 flat->glc = return_previous;
6559 flat->dlc = false; /* Not needed for atomics */
6560 flat->offset = 0;
6561 flat->disable_wqm = true;
6562 flat->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6563 ctx->program->needs_exact = true;
6564 ctx->block->instructions.emplace_back(std::move(flat));
6565 } else {
6566 assert(ctx->options->chip_class == GFX6);
6567
6568 switch (instr->intrinsic) {
6569 case nir_intrinsic_global_atomic_add:
6570 op32 = aco_opcode::buffer_atomic_add;
6571 op64 = aco_opcode::buffer_atomic_add_x2;
6572 break;
6573 case nir_intrinsic_global_atomic_imin:
6574 op32 = aco_opcode::buffer_atomic_smin;
6575 op64 = aco_opcode::buffer_atomic_smin_x2;
6576 break;
6577 case nir_intrinsic_global_atomic_umin:
6578 op32 = aco_opcode::buffer_atomic_umin;
6579 op64 = aco_opcode::buffer_atomic_umin_x2;
6580 break;
6581 case nir_intrinsic_global_atomic_imax:
6582 op32 = aco_opcode::buffer_atomic_smax;
6583 op64 = aco_opcode::buffer_atomic_smax_x2;
6584 break;
6585 case nir_intrinsic_global_atomic_umax:
6586 op32 = aco_opcode::buffer_atomic_umax;
6587 op64 = aco_opcode::buffer_atomic_umax_x2;
6588 break;
6589 case nir_intrinsic_global_atomic_and:
6590 op32 = aco_opcode::buffer_atomic_and;
6591 op64 = aco_opcode::buffer_atomic_and_x2;
6592 break;
6593 case nir_intrinsic_global_atomic_or:
6594 op32 = aco_opcode::buffer_atomic_or;
6595 op64 = aco_opcode::buffer_atomic_or_x2;
6596 break;
6597 case nir_intrinsic_global_atomic_xor:
6598 op32 = aco_opcode::buffer_atomic_xor;
6599 op64 = aco_opcode::buffer_atomic_xor_x2;
6600 break;
6601 case nir_intrinsic_global_atomic_exchange:
6602 op32 = aco_opcode::buffer_atomic_swap;
6603 op64 = aco_opcode::buffer_atomic_swap_x2;
6604 break;
6605 case nir_intrinsic_global_atomic_comp_swap:
6606 op32 = aco_opcode::buffer_atomic_cmpswap;
6607 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6608 break;
6609 default:
6610 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6611 }
6612
6613 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6614
6615 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6616
6617 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6618 mubuf->operands[0] = Operand(rsrc);
6619 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6620 mubuf->operands[2] = Operand(0u);
6621 mubuf->operands[3] = Operand(data);
6622 if (return_previous)
6623 mubuf->definitions[0] = Definition(dst);
6624 mubuf->glc = return_previous;
6625 mubuf->dlc = false;
6626 mubuf->offset = 0;
6627 mubuf->addr64 = addr.type() == RegType::vgpr;
6628 mubuf->disable_wqm = true;
6629 mubuf->sync = get_memory_sync_info(instr, storage_buffer, semantic_atomicrmw);
6630 ctx->program->needs_exact = true;
6631 ctx->block->instructions.emplace_back(std::move(mubuf));
6632 }
6633 }
6634
translate_nir_scope(nir_scope scope)6635 sync_scope translate_nir_scope(nir_scope scope)
6636 {
6637 switch (scope) {
6638 case NIR_SCOPE_NONE:
6639 case NIR_SCOPE_INVOCATION:
6640 return scope_invocation;
6641 case NIR_SCOPE_SUBGROUP:
6642 return scope_subgroup;
6643 case NIR_SCOPE_WORKGROUP:
6644 return scope_workgroup;
6645 case NIR_SCOPE_QUEUE_FAMILY:
6646 return scope_queuefamily;
6647 case NIR_SCOPE_DEVICE:
6648 return scope_device;
6649 case NIR_SCOPE_SHADER_CALL:
6650 unreachable("unsupported scope");
6651 }
6652 unreachable("invalid scope");
6653 }
6654
emit_scoped_barrier(isel_context * ctx,nir_intrinsic_instr * instr)6655 void emit_scoped_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6656 Builder bld(ctx->program, ctx->block);
6657
6658 unsigned semantics = 0;
6659 unsigned storage = 0;
6660 sync_scope mem_scope = translate_nir_scope(nir_intrinsic_memory_scope(instr));
6661 sync_scope exec_scope = translate_nir_scope(nir_intrinsic_execution_scope(instr));
6662
6663 unsigned nir_storage = nir_intrinsic_memory_modes(instr);
6664 if (nir_storage & (nir_var_mem_ssbo | nir_var_mem_global))
6665 storage |= storage_buffer | storage_image; //TODO: split this when NIR gets nir_var_mem_image
6666 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE && (nir_storage & nir_var_mem_shared))
6667 storage |= storage_shared;
6668 if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL && (nir_storage & nir_var_shader_out))
6669 storage |= storage_shared;
6670
6671 unsigned nir_semantics = nir_intrinsic_memory_semantics(instr);
6672 if (nir_semantics & NIR_MEMORY_ACQUIRE)
6673 semantics |= semantic_acquire | semantic_release;
6674 if (nir_semantics & NIR_MEMORY_RELEASE)
6675 semantics |= semantic_acquire | semantic_release;
6676
6677 assert(!(nir_semantics & (NIR_MEMORY_MAKE_AVAILABLE | NIR_MEMORY_MAKE_VISIBLE)));
6678
6679 /* Workgroup barriers can hang merged shaders that can potentially have 0 threads in either half. */
6680 assert(exec_scope != scope_workgroup ||
6681 ctx->shader->info.stage == MESA_SHADER_COMPUTE ||
6682 ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
6683
6684 bld.barrier(aco_opcode::p_barrier,
6685 memory_sync_info((storage_class)storage, (memory_semantics)semantics, mem_scope),
6686 exec_scope);
6687 }
6688
visit_load_shared(isel_context * ctx,nir_intrinsic_instr * instr)6689 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6690 {
6691 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6692 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6693 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6694 Builder bld(ctx->program, ctx->block);
6695
6696 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6697 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6698 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6699 }
6700
visit_store_shared(isel_context * ctx,nir_intrinsic_instr * instr)6701 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6702 {
6703 unsigned writemask = nir_intrinsic_write_mask(instr);
6704 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6705 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6706 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6707
6708 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6709 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6710 }
6711
visit_shared_atomic(isel_context * ctx,nir_intrinsic_instr * instr)6712 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6713 {
6714 unsigned offset = nir_intrinsic_base(instr);
6715 Builder bld(ctx->program, ctx->block);
6716 Operand m = load_lds_size_m0(bld);
6717 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6718 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6719
6720 unsigned num_operands = 3;
6721 aco_opcode op32, op64, op32_rtn, op64_rtn;
6722 switch(instr->intrinsic) {
6723 case nir_intrinsic_shared_atomic_add:
6724 op32 = aco_opcode::ds_add_u32;
6725 op64 = aco_opcode::ds_add_u64;
6726 op32_rtn = aco_opcode::ds_add_rtn_u32;
6727 op64_rtn = aco_opcode::ds_add_rtn_u64;
6728 break;
6729 case nir_intrinsic_shared_atomic_imin:
6730 op32 = aco_opcode::ds_min_i32;
6731 op64 = aco_opcode::ds_min_i64;
6732 op32_rtn = aco_opcode::ds_min_rtn_i32;
6733 op64_rtn = aco_opcode::ds_min_rtn_i64;
6734 break;
6735 case nir_intrinsic_shared_atomic_umin:
6736 op32 = aco_opcode::ds_min_u32;
6737 op64 = aco_opcode::ds_min_u64;
6738 op32_rtn = aco_opcode::ds_min_rtn_u32;
6739 op64_rtn = aco_opcode::ds_min_rtn_u64;
6740 break;
6741 case nir_intrinsic_shared_atomic_imax:
6742 op32 = aco_opcode::ds_max_i32;
6743 op64 = aco_opcode::ds_max_i64;
6744 op32_rtn = aco_opcode::ds_max_rtn_i32;
6745 op64_rtn = aco_opcode::ds_max_rtn_i64;
6746 break;
6747 case nir_intrinsic_shared_atomic_umax:
6748 op32 = aco_opcode::ds_max_u32;
6749 op64 = aco_opcode::ds_max_u64;
6750 op32_rtn = aco_opcode::ds_max_rtn_u32;
6751 op64_rtn = aco_opcode::ds_max_rtn_u64;
6752 break;
6753 case nir_intrinsic_shared_atomic_and:
6754 op32 = aco_opcode::ds_and_b32;
6755 op64 = aco_opcode::ds_and_b64;
6756 op32_rtn = aco_opcode::ds_and_rtn_b32;
6757 op64_rtn = aco_opcode::ds_and_rtn_b64;
6758 break;
6759 case nir_intrinsic_shared_atomic_or:
6760 op32 = aco_opcode::ds_or_b32;
6761 op64 = aco_opcode::ds_or_b64;
6762 op32_rtn = aco_opcode::ds_or_rtn_b32;
6763 op64_rtn = aco_opcode::ds_or_rtn_b64;
6764 break;
6765 case nir_intrinsic_shared_atomic_xor:
6766 op32 = aco_opcode::ds_xor_b32;
6767 op64 = aco_opcode::ds_xor_b64;
6768 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6769 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6770 break;
6771 case nir_intrinsic_shared_atomic_exchange:
6772 op32 = aco_opcode::ds_write_b32;
6773 op64 = aco_opcode::ds_write_b64;
6774 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6775 op64_rtn = aco_opcode::ds_wrxchg_rtn_b64;
6776 break;
6777 case nir_intrinsic_shared_atomic_comp_swap:
6778 op32 = aco_opcode::ds_cmpst_b32;
6779 op64 = aco_opcode::ds_cmpst_b64;
6780 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6781 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6782 num_operands = 4;
6783 break;
6784 case nir_intrinsic_shared_atomic_fadd:
6785 op32 = aco_opcode::ds_add_f32;
6786 op32_rtn = aco_opcode::ds_add_rtn_f32;
6787 op64 = aco_opcode::num_opcodes;
6788 op64_rtn = aco_opcode::num_opcodes;
6789 break;
6790 default:
6791 unreachable("Unhandled shared atomic intrinsic");
6792 }
6793
6794 /* return the previous value if dest is ever used */
6795 bool return_previous = false;
6796 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6797 return_previous = true;
6798 break;
6799 }
6800 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6801 return_previous = true;
6802 break;
6803 }
6804
6805 aco_opcode op;
6806 if (data.size() == 1) {
6807 assert(instr->dest.ssa.bit_size == 32);
6808 op = return_previous ? op32_rtn : op32;
6809 } else {
6810 assert(instr->dest.ssa.bit_size == 64);
6811 op = return_previous ? op64_rtn : op64;
6812 }
6813
6814 if (offset > 65535) {
6815 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6816 offset = 0;
6817 }
6818
6819 aco_ptr<DS_instruction> ds;
6820 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6821 ds->operands[0] = Operand(address);
6822 ds->operands[1] = Operand(data);
6823 if (num_operands == 4)
6824 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6825 ds->operands[num_operands - 1] = m;
6826 ds->offset0 = offset;
6827 if (return_previous)
6828 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6829 ds->sync = memory_sync_info(storage_shared, semantic_atomicrmw);
6830 ctx->block->instructions.emplace_back(std::move(ds));
6831 }
6832
get_scratch_resource(isel_context * ctx)6833 Temp get_scratch_resource(isel_context *ctx)
6834 {
6835 Builder bld(ctx->program, ctx->block);
6836 Temp scratch_addr = ctx->program->private_segment_buffer;
6837 if (ctx->stage != compute_cs)
6838 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6839
6840 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6841 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);
6842
6843 if (ctx->program->chip_class >= GFX10) {
6844 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6845 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6846 S_008F0C_RESOURCE_LEVEL(1);
6847 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6848 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6849 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6850 }
6851
6852 /* older generations need element size = 4 bytes. element size removed in GFX9 */
6853 if (ctx->program->chip_class <= GFX8)
6854 rsrc_conf |= S_008F0C_ELEMENT_SIZE(1);
6855
6856 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6857 }
6858
visit_load_scratch(isel_context * ctx,nir_intrinsic_instr * instr)6859 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6860 Builder bld(ctx->program, ctx->block);
6861 Temp rsrc = get_scratch_resource(ctx);
6862 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6863 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6864
6865 LoadEmitInfo info = {Operand(offset), dst, instr->dest.ssa.num_components,
6866 instr->dest.ssa.bit_size / 8u, rsrc};
6867 info.align_mul = nir_intrinsic_align_mul(instr);
6868 info.align_offset = nir_intrinsic_align_offset(instr);
6869 info.swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 0;
6870 info.sync = memory_sync_info(storage_scratch, semantic_private);
6871 info.soffset = ctx->program->scratch_offset;
6872 emit_load(ctx, bld, info, scratch_load_params);
6873 }
6874
visit_store_scratch(isel_context * ctx,nir_intrinsic_instr * instr)6875 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6876 Builder bld(ctx->program, ctx->block);
6877 Temp rsrc = get_scratch_resource(ctx);
6878 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6879 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6880
6881 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6882 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6883
6884 unsigned write_count = 0;
6885 Temp write_datas[32];
6886 unsigned offsets[32];
6887 unsigned swizzle_component_size = ctx->program->chip_class <= GFX8 ? 4 : 16;
6888 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6889 swizzle_component_size, &write_count, write_datas, offsets);
6890
6891 for (unsigned i = 0; i < write_count; i++) {
6892 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6893 Instruction *instr = bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_datas[i], offsets[i], true, true);
6894 static_cast<MUBUF_instruction *>(instr)->sync = memory_sync_info(storage_scratch, semantic_private);
6895 }
6896 }
6897
visit_load_sample_mask_in(isel_context * ctx,nir_intrinsic_instr * instr)6898 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6899 uint8_t log2_ps_iter_samples;
6900 if (ctx->program->info->ps.force_persample) {
6901 log2_ps_iter_samples =
6902 util_logbase2(ctx->options->key.fs.num_samples);
6903 } else {
6904 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6905 }
6906
6907 Builder bld(ctx->program, ctx->block);
6908
6909 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6910
6911 if (log2_ps_iter_samples) {
6912 /* gl_SampleMaskIn[0] = (SampleCoverage & (1 << gl_SampleID)). */
6913 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6914 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6915 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id,
6916 bld.copy(bld.def(v1), Operand(1u)));
6917 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6918 } else {
6919 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.sample_coverage));
6920 }
6921 }
6922
gs_outprim_vertices(unsigned outprim)6923 unsigned gs_outprim_vertices(unsigned outprim)
6924 {
6925 switch (outprim) {
6926 case 0: /* GL_POINTS */
6927 return 1;
6928 case 3: /* GL_LINE_STRIP */
6929 return 2;
6930 case 5: /* GL_TRIANGLE_STRIP */
6931 return 3;
6932 default:
6933 unreachable("Unsupported GS output primitive type.");
6934 }
6935 }
6936
ngg_visit_emit_vertex_with_counter(isel_context * ctx,nir_intrinsic_instr * instr)6937 void ngg_visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr)
6938 {
6939 Builder bld(ctx->program, ctx->block);
6940 Temp emit_vertex_idx = get_ssa_temp(ctx, instr->src[0].ssa);
6941 Temp emit_vertex_addr = ngg_gs_emit_vertex_lds_addr(ctx, emit_vertex_idx);
6942 unsigned stream = nir_intrinsic_stream_id(instr);
6943 unsigned out_idx = 0;
6944
6945 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6946 if (ctx->program->info->gs.output_streams[i] != stream) {
6947 continue;
6948 } else if (!ctx->outputs.mask[i] && ctx->program->info->gs.output_usage_mask[i]) {
6949 /* The GS can write this output, but it's empty for the current vertex. */
6950 out_idx++;
6951 continue;
6952 }
6953
6954 uint32_t wrmask = ctx->program->info->gs.output_usage_mask[i] &
6955 ctx->outputs.mask[i];
6956
6957 /* Clear output for the next vertex. */
6958 ctx->outputs.mask[i] = 0;
6959
6960 if (!wrmask)
6961 continue;
6962
6963 for (unsigned j = 0; j < 4; j++) {
6964 if (wrmask & (1 << j)) {
6965 Temp elem = ctx->outputs.temps[i * 4u + j];
6966 store_lds(ctx, elem.bytes(), elem, 0x1u, emit_vertex_addr, out_idx * 4u, 4u);
6967 }
6968
6969 out_idx++;
6970 }
6971 }
6972
6973 /* Calculate per-vertex primitive flags based on current and total vertex count per primitive:
6974 * bit 0: whether this vertex finishes a primitive
6975 * bit 1: whether the primitive is odd (if we are emitting triangle strips, otherwise always 0)
6976 * bit 2: always 1 (so that we can use it for determining vertex liveness)
6977 */
6978 unsigned total_vtx_per_prim = gs_outprim_vertices(ctx->shader->info.gs.output_primitive);
6979 bool calc_odd = stream == 0 && total_vtx_per_prim == 3;
6980 Temp prim_flag;
6981
6982 if (nir_src_is_const(instr->src[1])) {
6983 uint8_t current_vtx_per_prim = nir_src_as_uint(instr->src[1]);
6984 uint8_t completes_prim = (current_vtx_per_prim >= (total_vtx_per_prim - 1)) ? 1 : 0;
6985 uint8_t odd = calc_odd & current_vtx_per_prim;
6986 uint8_t flag = completes_prim | (odd << 1) | (1 << 2);
6987 prim_flag = bld.copy(bld.def(v1b), Operand(flag));
6988 } else if (!instr->src[1].ssa->divergent) {
6989 Temp current_vtx_per_prim = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
6990 Temp completes_prim = bld.sopc(aco_opcode::s_cmp_le_u32, bld.def(s1, scc), Operand(total_vtx_per_prim - 1), current_vtx_per_prim);
6991 prim_flag = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0b101u), Operand(0b100u), bld.scc(completes_prim));
6992 if (calc_odd) {
6993 Temp odd = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), current_vtx_per_prim, Operand(0u));
6994 prim_flag = bld.sop2(aco_opcode::s_lshl1_add_u32, bld.def(s1), bld.def(s1, scc), odd, prim_flag);
6995 }
6996 } else {
6997 Temp current_vtx_per_prim = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6998 Temp completes_prim = bld.vopc(aco_opcode::v_cmp_le_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(total_vtx_per_prim - 1), current_vtx_per_prim);
6999 prim_flag = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0b100u), Operand(0b101u), Operand(completes_prim));
7000 if (calc_odd) {
7001 Temp odd = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), current_vtx_per_prim);
7002 prim_flag = bld.vop3(aco_opcode::v_lshl_or_b32, bld.def(v1), odd, Operand(1u), prim_flag);
7003 }
7004 }
7005
7006 /* Store the per-vertex primitive flags at the end of the vertex data */
7007 prim_flag = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), as_vgpr(ctx, prim_flag), Operand(0u));
7008 unsigned primflag_offset = ctx->ngg_gs_primflags_offset + stream;
7009 store_lds(ctx, 1, prim_flag, 1u, emit_vertex_addr, primflag_offset, 1);
7010 }
7011
7012 void ngg_gs_clear_primflags(isel_context *ctx, Temp vtx_cnt, unsigned stream);
7013 void ngg_gs_write_shader_query(isel_context *ctx, nir_intrinsic_instr *instr);
7014
ngg_visit_set_vertex_and_primitive_count(isel_context * ctx,nir_intrinsic_instr * instr)7015 void ngg_visit_set_vertex_and_primitive_count(isel_context *ctx, nir_intrinsic_instr *instr)
7016 {
7017 unsigned stream = nir_intrinsic_stream_id(instr);
7018 if (!ctx->args->shader_info->gs.num_stream_output_components[stream])
7019 return;
7020
7021 ctx->ngg_gs_known_vtxcnt[stream] = true;
7022
7023 /* Clear the primitive flags of non-emitted GS vertices. */
7024 if (!nir_src_is_const(instr->src[0]) || nir_src_as_uint(instr->src[0]) < ctx->shader->info.gs.vertices_out) {
7025 Temp vtx_cnt = get_ssa_temp(ctx, instr->src[0].ssa);
7026 ngg_gs_clear_primflags(ctx, vtx_cnt, stream);
7027 }
7028
7029 ngg_gs_write_shader_query(ctx, instr);
7030 }
7031
visit_emit_vertex_with_counter(isel_context * ctx,nir_intrinsic_instr * instr)7032 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr)
7033 {
7034 Builder bld(ctx->program, ctx->block);
7035
7036 unsigned stream = nir_intrinsic_stream_id(instr);
7037 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7038 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
7039 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
7040
7041 /* get GSVS ring */
7042 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
7043
7044 unsigned num_components =
7045 ctx->program->info->gs.num_stream_output_components[stream];
7046 assert(num_components);
7047
7048 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
7049 unsigned stream_offset = 0;
7050 for (unsigned i = 0; i < stream; i++) {
7051 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
7052 stream_offset += prev_stride * ctx->program->wave_size;
7053 }
7054
7055 /* Limit on the stride field for <= GFX7. */
7056 assert(stride < (1 << 14));
7057
7058 Temp gsvs_dwords[4];
7059 for (unsigned i = 0; i < 4; i++)
7060 gsvs_dwords[i] = bld.tmp(s1);
7061 bld.pseudo(aco_opcode::p_split_vector,
7062 Definition(gsvs_dwords[0]),
7063 Definition(gsvs_dwords[1]),
7064 Definition(gsvs_dwords[2]),
7065 Definition(gsvs_dwords[3]),
7066 gsvs_ring);
7067
7068 if (stream_offset) {
7069 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
7070
7071 Temp carry = bld.tmp(s1);
7072 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
7073 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
7074 }
7075
7076 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
7077 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
7078
7079 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7080 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
7081
7082 unsigned offset = 0;
7083 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
7084 if (ctx->program->info->gs.output_streams[i] != stream)
7085 continue;
7086
7087 for (unsigned j = 0; j < 4; j++) {
7088 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
7089 continue;
7090
7091 if (ctx->outputs.mask[i] & (1 << j)) {
7092 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
7093 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
7094 if (const_offset >= 4096u) {
7095 if (vaddr_offset.isUndefined())
7096 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
7097 else
7098 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
7099 const_offset %= 4096u;
7100 }
7101
7102 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
7103 mtbuf->operands[0] = Operand(gsvs_ring);
7104 mtbuf->operands[1] = vaddr_offset;
7105 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
7106 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
7107 mtbuf->offen = !vaddr_offset.isUndefined();
7108 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
7109 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
7110 mtbuf->offset = const_offset;
7111 mtbuf->glc = true;
7112 mtbuf->slc = true;
7113 mtbuf->sync = memory_sync_info(storage_vmem_output, semantic_can_reorder);
7114 bld.insert(std::move(mtbuf));
7115 }
7116
7117 offset += ctx->shader->info.gs.vertices_out;
7118 }
7119
7120 /* outputs for the next vertex are undefined and keeping them around can
7121 * create invalid IR with control flow */
7122 ctx->outputs.mask[i] = 0;
7123 }
7124
7125 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
7126 }
7127
emit_boolean_reduce(isel_context * ctx,nir_op op,unsigned cluster_size,Temp src)7128 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
7129 {
7130 Builder bld(ctx->program, ctx->block);
7131
7132 if (cluster_size == 1) {
7133 return src;
7134 } if (op == nir_op_iand && cluster_size == 4) {
7135 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
7136 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7137 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
7138 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
7139 } else if (op == nir_op_ior && cluster_size == 4) {
7140 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
7141 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
7142 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
7143 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
7144 //subgroupAnd(val) -> (exec & ~val) == 0
7145 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7146 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7147 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
7148 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
7149 //subgroupOr(val) -> (val & exec) != 0
7150 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
7151 return bool_to_vector_condition(ctx, tmp);
7152 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
7153 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
7154 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7155 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
7156 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
7157 return bool_to_vector_condition(ctx, tmp);
7158 } else {
7159 //subgroupClustered{And,Or,Xor}(val, n) ->
7160 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
7161 //cluster_offset = ~(n - 1) & lane_id
7162 //cluster_mask = ((1 << n) - 1)
7163 //subgroupClusteredAnd():
7164 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
7165 //subgroupClusteredOr():
7166 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
7167 //subgroupClusteredXor():
7168 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
7169 Temp lane_id = emit_mbcnt(ctx, bld.tmp(v1));
7170 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
7171
7172 Temp tmp;
7173 if (op == nir_op_iand)
7174 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7175 else
7176 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7177
7178 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
7179
7180 if (ctx->program->chip_class <= GFX7)
7181 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
7182 else if (ctx->program->wave_size == 64)
7183 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
7184 else
7185 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
7186 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7187 if (cluster_mask != 0xffffffff)
7188 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
7189
7190 Definition cmp_def = Definition();
7191 if (op == nir_op_iand) {
7192 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
7193 } else if (op == nir_op_ior) {
7194 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7195 } else if (op == nir_op_ixor) {
7196 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
7197 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
7198 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7199 }
7200 cmp_def.setHint(vcc);
7201 return cmp_def.getTemp();
7202 }
7203 }
7204
emit_boolean_exclusive_scan(isel_context * ctx,nir_op op,Temp src)7205 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
7206 {
7207 Builder bld(ctx->program, ctx->block);
7208 assert(src.regClass() == bld.lm);
7209
7210 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
7211 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
7212 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
7213 Temp tmp;
7214 if (op == nir_op_iand)
7215 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7216 else
7217 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7218
7219 Temp mbcnt = emit_mbcnt(ctx, bld.tmp(v1), Operand(tmp));
7220
7221 Definition cmp_def = Definition();
7222 if (op == nir_op_iand)
7223 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7224 else if (op == nir_op_ior)
7225 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7226 else if (op == nir_op_ixor)
7227 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7228 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7229 cmp_def.setHint(vcc);
7230 return cmp_def.getTemp();
7231 }
7232
emit_boolean_inclusive_scan(isel_context * ctx,nir_op op,Temp src)7233 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7234 {
7235 Builder bld(ctx->program, ctx->block);
7236
7237 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7238 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7239 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7240 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7241 if (op == nir_op_iand)
7242 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7243 else if (op == nir_op_ior)
7244 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7245 else if (op == nir_op_ixor)
7246 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7247
7248 assert(false);
7249 return Temp();
7250 }
7251
get_reduce_op(nir_op op,unsigned bit_size)7252 ReduceOp get_reduce_op(nir_op op, unsigned bit_size)
7253 {
7254 switch (op) {
7255 #define CASEI(name) case nir_op_##name: return (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : (bit_size == 8) ? name##8 : name##64;
7256 #define CASEF(name) case nir_op_##name: return (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : name##64;
7257 CASEI(iadd)
7258 CASEI(imul)
7259 CASEI(imin)
7260 CASEI(umin)
7261 CASEI(imax)
7262 CASEI(umax)
7263 CASEI(iand)
7264 CASEI(ior)
7265 CASEI(ixor)
7266 CASEF(fadd)
7267 CASEF(fmul)
7268 CASEF(fmin)
7269 CASEF(fmax)
7270 default:
7271 unreachable("unknown reduction op");
7272 #undef CASEI
7273 #undef CASEF
7274 }
7275 }
7276
emit_uniform_subgroup(isel_context * ctx,nir_intrinsic_instr * instr,Temp src)7277 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7278 {
7279 Builder bld(ctx->program, ctx->block);
7280 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7281 assert(dst.regClass().type() != RegType::vgpr);
7282 if (src.regClass().type() == RegType::vgpr)
7283 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7284 else
7285 bld.copy(dst, src);
7286 }
7287
emit_addition_uniform_reduce(isel_context * ctx,nir_op op,Definition dst,nir_src src,Temp count)7288 void emit_addition_uniform_reduce(isel_context *ctx, nir_op op, Definition dst, nir_src src, Temp count)
7289 {
7290 Builder bld(ctx->program, ctx->block);
7291 Temp src_tmp = get_ssa_temp(ctx, src.ssa);
7292
7293 if (op == nir_op_fadd) {
7294 src_tmp = as_vgpr(ctx, src_tmp);
7295 Temp tmp = dst.regClass() == s1 ? bld.tmp(src_tmp.regClass()) : dst.getTemp();
7296
7297 if (src.ssa->bit_size == 16) {
7298 count = bld.vop1(aco_opcode::v_cvt_f16_u16, bld.def(v2b), count);
7299 bld.vop2(aco_opcode::v_mul_f16, Definition(tmp), count, src_tmp);
7300 } else {
7301 assert(src.ssa->bit_size == 32);
7302 count = bld.vop1(aco_opcode::v_cvt_f32_u32, bld.def(v1), count);
7303 bld.vop2(aco_opcode::v_mul_f32, Definition(tmp), count, src_tmp);
7304 }
7305
7306 if (tmp != dst.getTemp())
7307 bld.pseudo(aco_opcode::p_as_uniform, dst, tmp);
7308
7309 return;
7310 }
7311
7312 if (dst.regClass() == s1)
7313 src_tmp = bld.as_uniform(src_tmp);
7314
7315 if (op == nir_op_ixor && count.type() == RegType::sgpr)
7316 count = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc),
7317 count, Operand(1u));
7318 else if (op == nir_op_ixor)
7319 count = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), count);
7320
7321 assert(dst.getTemp().type() == count.type());
7322
7323 if (nir_src_is_const(src)) {
7324 if (nir_src_as_uint(src) == 1 && dst.bytes() <= 2)
7325 bld.pseudo(aco_opcode::p_extract_vector, dst, count, Operand(0u));
7326 else if (nir_src_as_uint(src) == 1)
7327 bld.copy(dst, count);
7328 else if (nir_src_as_uint(src) == 0 && dst.bytes() <= 2)
7329 bld.vop1(aco_opcode::v_mov_b32, dst, Operand(0u)); /* RA will use SDWA if possible */
7330 else if (nir_src_as_uint(src) == 0)
7331 bld.copy(dst, Operand(0u));
7332 else if (count.type() == RegType::vgpr)
7333 bld.v_mul_imm(dst, count, nir_src_as_uint(src));
7334 else
7335 bld.sop2(aco_opcode::s_mul_i32, dst, src_tmp, count);
7336 } else if (dst.bytes() <= 2 && ctx->program->chip_class >= GFX10) {
7337 bld.vop3(aco_opcode::v_mul_lo_u16_e64, dst, src_tmp, count);
7338 } else if (dst.bytes() <= 2 && ctx->program->chip_class >= GFX8) {
7339 bld.vop2(aco_opcode::v_mul_lo_u16, dst, src_tmp, count);
7340 } else if (dst.getTemp().type() == RegType::vgpr) {
7341 bld.vop3(aco_opcode::v_mul_lo_u32, dst, src_tmp, count);
7342 } else {
7343 bld.sop2(aco_opcode::s_mul_i32, dst, src_tmp, count);
7344 }
7345 }
7346
emit_uniform_reduce(isel_context * ctx,nir_intrinsic_instr * instr)7347 bool emit_uniform_reduce(isel_context *ctx, nir_intrinsic_instr *instr)
7348 {
7349 nir_op op = (nir_op)nir_intrinsic_reduction_op(instr);
7350 if (op == nir_op_imul || op == nir_op_fmul)
7351 return false;
7352
7353 if (op == nir_op_iadd || op == nir_op_ixor || op == nir_op_fadd) {
7354 Builder bld(ctx->program, ctx->block);
7355 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7356 unsigned bit_size = instr->src[0].ssa->bit_size;
7357 if (bit_size > 32)
7358 return false;
7359
7360 Temp thread_count = bld.sop1(
7361 Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), Operand(exec, bld.lm));
7362
7363 emit_addition_uniform_reduce(ctx, op, dst, instr->src[0], thread_count);
7364 } else {
7365 emit_uniform_subgroup(ctx, instr, get_ssa_temp(ctx, instr->src[0].ssa));
7366 }
7367
7368 return true;
7369 }
7370
emit_uniform_scan(isel_context * ctx,nir_intrinsic_instr * instr)7371 bool emit_uniform_scan(isel_context *ctx, nir_intrinsic_instr *instr)
7372 {
7373 Builder bld(ctx->program, ctx->block);
7374 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7375 nir_op op = (nir_op)nir_intrinsic_reduction_op(instr);
7376 bool inc = instr->intrinsic == nir_intrinsic_inclusive_scan;
7377
7378 if (op == nir_op_imul || op == nir_op_fmul)
7379 return false;
7380
7381 if (op == nir_op_iadd || op == nir_op_ixor || op == nir_op_fadd) {
7382 if (instr->src[0].ssa->bit_size > 32)
7383 return false;
7384
7385 Temp packed_tid;
7386 if (inc)
7387 packed_tid = emit_mbcnt(ctx, bld.tmp(v1), Operand(exec, bld.lm), Operand(1u));
7388 else
7389 packed_tid = emit_mbcnt(ctx, bld.tmp(v1), Operand(exec, bld.lm));
7390
7391 emit_addition_uniform_reduce(ctx, op, dst, instr->src[0], packed_tid);
7392 return true;
7393 }
7394
7395 assert(op == nir_op_imin || op == nir_op_umin ||
7396 op == nir_op_imax || op == nir_op_umax ||
7397 op == nir_op_iand || op == nir_op_ior ||
7398 op == nir_op_fmin || op == nir_op_fmax);
7399
7400 if (inc) {
7401 emit_uniform_subgroup(ctx, instr, get_ssa_temp(ctx, instr->src[0].ssa));
7402 return true;
7403 }
7404
7405 /* Copy the source and write the reduction operation identity to the first
7406 * lane. */
7407 Temp lane = bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm));
7408 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7409 ReduceOp reduce_op = get_reduce_op(op, instr->src[0].ssa->bit_size);
7410 if (dst.bytes() == 8) {
7411 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7412 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7413 uint32_t identity_lo = get_reduction_identity(reduce_op, 0);
7414 uint32_t identity_hi = get_reduction_identity(reduce_op, 1);
7415
7416 lo = bld.writelane(bld.def(v1), bld.copy(bld.hint_m0(s1), Operand(identity_lo)), lane, lo);
7417 hi = bld.writelane(bld.def(v1), bld.copy(bld.hint_m0(s1), Operand(identity_hi)), lane, hi);
7418 bld.pseudo(aco_opcode::p_create_vector, dst, lo, hi);
7419 } else {
7420 uint32_t identity = get_reduction_identity(reduce_op, 0);
7421 bld.writelane(dst, bld.copy(bld.hint_m0(s1), Operand(identity)), lane, as_vgpr(ctx, src));
7422 }
7423
7424 return true;
7425 }
7426
emit_reduction_instr(isel_context * ctx,aco_opcode aco_op,ReduceOp op,unsigned cluster_size,Definition dst,Temp src)7427 Temp emit_reduction_instr(isel_context *ctx, aco_opcode aco_op, ReduceOp op,
7428 unsigned cluster_size, Definition dst, Temp src)
7429 {
7430 assert(src.bytes() <= 8);
7431 assert(src.type() == RegType::vgpr);
7432
7433 Builder bld(ctx->program, ctx->block);
7434
7435 unsigned num_defs = 0;
7436 Definition defs[5];
7437 defs[num_defs++] = dst;
7438 defs[num_defs++] = bld.def(bld.lm); /* used internally to save/restore exec */
7439
7440 /* scalar identity temporary */
7441 bool need_sitmp = (ctx->program->chip_class <= GFX7 || ctx->program->chip_class >= GFX10) && aco_op != aco_opcode::p_reduce;
7442 if (aco_op == aco_opcode::p_exclusive_scan) {
7443 need_sitmp |=
7444 (op == imin8 || op == imin16 || op == imin32 || op == imin64 ||
7445 op == imax8 || op == imax16 || op == imax32 || op == imax64 ||
7446 op == fmin16 || op == fmin32 || op == fmin64 ||
7447 op == fmax16 || op == fmax32 || op == fmax64 ||
7448 op == fmul16 || op == fmul64);
7449 }
7450 if (need_sitmp)
7451 defs[num_defs++] = bld.def(RegType::sgpr, dst.size());
7452
7453 /* scc clobber */
7454 defs[num_defs++] = bld.def(s1, scc);
7455
7456 /* vcc clobber */
7457 bool clobber_vcc = false;
7458 if ((op == iadd32 || op == imul64) && ctx->program->chip_class < GFX9)
7459 clobber_vcc = true;
7460 if (op == iadd64 || op == umin64 || op == umax64 || op == imin64 || op == imax64)
7461 clobber_vcc = true;
7462
7463 if (clobber_vcc)
7464 defs[num_defs++] = bld.def(bld.lm, vcc);
7465
7466 Pseudo_reduction_instruction *reduce = create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, num_defs);
7467 reduce->operands[0] = Operand(src);
7468 /* setup_reduce_temp will update these undef operands if needed */
7469 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7470 reduce->operands[2] = Operand(v1.as_linear());
7471 std::copy(defs, defs + num_defs, reduce->definitions.begin());
7472
7473 reduce->reduce_op = op;
7474 reduce->cluster_size = cluster_size;
7475 bld.insert(std::move(reduce));
7476
7477 return dst.getTemp();
7478 }
7479
emit_interp_center(isel_context * ctx,Temp dst,Temp pos1,Temp pos2)7480 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7481 {
7482 Builder bld(ctx->program, ctx->block);
7483 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7484 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7485 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7486
7487 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7488 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7489 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7490 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7491
7492 /* Build DD X/Y */
7493 if (ctx->program->chip_class >= GFX8) {
7494 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7495 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7496 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7497 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7498 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7499 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7500 } else {
7501 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7502 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7503 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7504 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7505 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7506 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7507 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7508 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7509 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7510 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7511 }
7512
7513 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7514 aco_opcode mad = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32;
7515 Temp tmp1 = bld.vop3(mad, bld.def(v1), ddx_1, pos1, p1);
7516 Temp tmp2 = bld.vop3(mad, bld.def(v1), ddx_2, pos1, p2);
7517 tmp1 = bld.vop3(mad, bld.def(v1), ddy_1, pos2, tmp1);
7518 tmp2 = bld.vop3(mad, bld.def(v1), ddy_2, pos2, tmp2);
7519 Temp wqm1 = bld.tmp(v1);
7520 emit_wqm(ctx, tmp1, wqm1, true);
7521 Temp wqm2 = bld.tmp(v1);
7522 emit_wqm(ctx, tmp2, wqm2, true);
7523 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7524 return;
7525 }
7526
visit_intrinsic(isel_context * ctx,nir_intrinsic_instr * instr)7527 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7528 {
7529 Builder bld(ctx->program, ctx->block);
7530 switch(instr->intrinsic) {
7531 case nir_intrinsic_load_barycentric_sample:
7532 case nir_intrinsic_load_barycentric_pixel:
7533 case nir_intrinsic_load_barycentric_centroid: {
7534 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7535 Temp bary = Temp(0, s2);
7536 switch (mode) {
7537 case INTERP_MODE_SMOOTH:
7538 case INTERP_MODE_NONE:
7539 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7540 bary = get_arg(ctx, ctx->args->ac.persp_center);
7541 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7542 bary = ctx->persp_centroid;
7543 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7544 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7545 break;
7546 case INTERP_MODE_NOPERSPECTIVE:
7547 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7548 bary = get_arg(ctx, ctx->args->ac.linear_center);
7549 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7550 bary = ctx->linear_centroid;
7551 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7552 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7553 break;
7554 default:
7555 break;
7556 }
7557 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7558 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7559 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7560 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7561 Operand(p1), Operand(p2));
7562 emit_split_vector(ctx, dst, 2);
7563 break;
7564 }
7565 case nir_intrinsic_load_barycentric_model: {
7566 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7567
7568 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7569 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7570 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7571 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7572 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7573 Operand(p1), Operand(p2), Operand(p3));
7574 emit_split_vector(ctx, dst, 3);
7575 break;
7576 }
7577 case nir_intrinsic_load_barycentric_at_sample: {
7578 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7579 switch (ctx->options->key.fs.num_samples) {
7580 case 2: sample_pos_offset += 1 << 3; break;
7581 case 4: sample_pos_offset += 3 << 3; break;
7582 case 8: sample_pos_offset += 7 << 3; break;
7583 default: break;
7584 }
7585 Temp sample_pos;
7586 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7587 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7588 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7589 //TODO: bounds checking?
7590 if (addr.type() == RegType::sgpr) {
7591 Operand offset;
7592 if (const_addr) {
7593 sample_pos_offset += const_addr->u32 << 3;
7594 offset = Operand(sample_pos_offset);
7595 } else if (ctx->options->chip_class >= GFX9) {
7596 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7597 } else {
7598 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7599 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(sample_pos_offset));
7600 }
7601
7602 Operand off = bld.copy(bld.def(s1), Operand(offset));
7603 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7604
7605 } else if (ctx->options->chip_class >= GFX9) {
7606 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7607 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7608 } else if (ctx->options->chip_class >= GFX7) {
7609 /* addr += private_segment_buffer + sample_pos_offset */
7610 Temp tmp0 = bld.tmp(s1);
7611 Temp tmp1 = bld.tmp(s1);
7612 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7613 Definition scc_tmp = bld.def(s1, scc);
7614 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7615 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7616 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7617 Temp pck0 = bld.tmp(v1);
7618 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7619 tmp1 = as_vgpr(ctx, tmp1);
7620 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7621 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7622
7623 /* sample_pos = flat_load_dwordx2 addr */
7624 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7625 } else {
7626 assert(ctx->options->chip_class == GFX6);
7627
7628 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7629 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7630 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7631
7632 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7633 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7634
7635 sample_pos = bld.tmp(v2);
7636
7637 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7638 load->definitions[0] = Definition(sample_pos);
7639 load->operands[0] = Operand(rsrc);
7640 load->operands[1] = Operand(addr);
7641 load->operands[2] = Operand(0u);
7642 load->offset = sample_pos_offset;
7643 load->offen = 0;
7644 load->addr64 = true;
7645 load->glc = false;
7646 load->dlc = false;
7647 load->disable_wqm = false;
7648 ctx->block->instructions.emplace_back(std::move(load));
7649 }
7650
7651 /* sample_pos -= 0.5 */
7652 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7653 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7654 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7655 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7656 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7657
7658 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7659 break;
7660 }
7661 case nir_intrinsic_load_barycentric_at_offset: {
7662 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7663 RegClass rc = RegClass(offset.type(), 1);
7664 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7665 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7666 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7667 break;
7668 }
7669 case nir_intrinsic_load_front_face: {
7670 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7671 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7672 break;
7673 }
7674 case nir_intrinsic_load_view_index: {
7675 if (ctx->stage.has(SWStage::VS) ||
7676 ctx->stage.has(SWStage::GS) ||
7677 ctx->stage.has(SWStage::TCS) ||
7678 ctx->stage.has(SWStage::TES)) {
7679 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7680 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7681 break;
7682 }
7683
7684 /* fallthrough */
7685 }
7686 case nir_intrinsic_load_layer_id: {
7687 unsigned idx = nir_intrinsic_base(instr);
7688 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7689 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7690 break;
7691 }
7692 case nir_intrinsic_load_frag_coord: {
7693 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7694 break;
7695 }
7696 case nir_intrinsic_load_sample_pos: {
7697 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7698 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7699 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7700 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7701 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7702 break;
7703 }
7704 case nir_intrinsic_load_tess_coord:
7705 visit_load_tess_coord(ctx, instr);
7706 break;
7707 case nir_intrinsic_load_interpolated_input:
7708 visit_load_interpolated_input(ctx, instr);
7709 break;
7710 case nir_intrinsic_store_output:
7711 visit_store_output(ctx, instr);
7712 break;
7713 case nir_intrinsic_load_input:
7714 case nir_intrinsic_load_input_vertex:
7715 visit_load_input(ctx, instr);
7716 break;
7717 case nir_intrinsic_load_output:
7718 visit_load_output(ctx, instr);
7719 break;
7720 case nir_intrinsic_load_per_vertex_input:
7721 visit_load_per_vertex_input(ctx, instr);
7722 break;
7723 case nir_intrinsic_load_per_vertex_output:
7724 visit_load_per_vertex_output(ctx, instr);
7725 break;
7726 case nir_intrinsic_store_per_vertex_output:
7727 visit_store_per_vertex_output(ctx, instr);
7728 break;
7729 case nir_intrinsic_load_ubo:
7730 visit_load_ubo(ctx, instr);
7731 break;
7732 case nir_intrinsic_load_push_constant:
7733 visit_load_push_constant(ctx, instr);
7734 break;
7735 case nir_intrinsic_load_constant:
7736 visit_load_constant(ctx, instr);
7737 break;
7738 case nir_intrinsic_vulkan_resource_index:
7739 visit_load_resource(ctx, instr);
7740 break;
7741 case nir_intrinsic_terminate:
7742 case nir_intrinsic_discard:
7743 visit_discard(ctx, instr);
7744 break;
7745 case nir_intrinsic_terminate_if:
7746 case nir_intrinsic_discard_if:
7747 visit_discard_if(ctx, instr);
7748 break;
7749 case nir_intrinsic_load_shared:
7750 visit_load_shared(ctx, instr);
7751 break;
7752 case nir_intrinsic_store_shared:
7753 visit_store_shared(ctx, instr);
7754 break;
7755 case nir_intrinsic_shared_atomic_add:
7756 case nir_intrinsic_shared_atomic_imin:
7757 case nir_intrinsic_shared_atomic_umin:
7758 case nir_intrinsic_shared_atomic_imax:
7759 case nir_intrinsic_shared_atomic_umax:
7760 case nir_intrinsic_shared_atomic_and:
7761 case nir_intrinsic_shared_atomic_or:
7762 case nir_intrinsic_shared_atomic_xor:
7763 case nir_intrinsic_shared_atomic_exchange:
7764 case nir_intrinsic_shared_atomic_comp_swap:
7765 case nir_intrinsic_shared_atomic_fadd:
7766 visit_shared_atomic(ctx, instr);
7767 break;
7768 case nir_intrinsic_image_deref_load:
7769 visit_image_load(ctx, instr);
7770 break;
7771 case nir_intrinsic_image_deref_store:
7772 visit_image_store(ctx, instr);
7773 break;
7774 case nir_intrinsic_image_deref_atomic_add:
7775 case nir_intrinsic_image_deref_atomic_umin:
7776 case nir_intrinsic_image_deref_atomic_imin:
7777 case nir_intrinsic_image_deref_atomic_umax:
7778 case nir_intrinsic_image_deref_atomic_imax:
7779 case nir_intrinsic_image_deref_atomic_and:
7780 case nir_intrinsic_image_deref_atomic_or:
7781 case nir_intrinsic_image_deref_atomic_xor:
7782 case nir_intrinsic_image_deref_atomic_exchange:
7783 case nir_intrinsic_image_deref_atomic_comp_swap:
7784 visit_image_atomic(ctx, instr);
7785 break;
7786 case nir_intrinsic_image_deref_size:
7787 visit_image_size(ctx, instr);
7788 break;
7789 case nir_intrinsic_load_ssbo:
7790 visit_load_ssbo(ctx, instr);
7791 break;
7792 case nir_intrinsic_store_ssbo:
7793 visit_store_ssbo(ctx, instr);
7794 break;
7795 case nir_intrinsic_load_global:
7796 visit_load_global(ctx, instr);
7797 break;
7798 case nir_intrinsic_store_global:
7799 visit_store_global(ctx, instr);
7800 break;
7801 case nir_intrinsic_global_atomic_add:
7802 case nir_intrinsic_global_atomic_imin:
7803 case nir_intrinsic_global_atomic_umin:
7804 case nir_intrinsic_global_atomic_imax:
7805 case nir_intrinsic_global_atomic_umax:
7806 case nir_intrinsic_global_atomic_and:
7807 case nir_intrinsic_global_atomic_or:
7808 case nir_intrinsic_global_atomic_xor:
7809 case nir_intrinsic_global_atomic_exchange:
7810 case nir_intrinsic_global_atomic_comp_swap:
7811 visit_global_atomic(ctx, instr);
7812 break;
7813 case nir_intrinsic_ssbo_atomic_add:
7814 case nir_intrinsic_ssbo_atomic_imin:
7815 case nir_intrinsic_ssbo_atomic_umin:
7816 case nir_intrinsic_ssbo_atomic_imax:
7817 case nir_intrinsic_ssbo_atomic_umax:
7818 case nir_intrinsic_ssbo_atomic_and:
7819 case nir_intrinsic_ssbo_atomic_or:
7820 case nir_intrinsic_ssbo_atomic_xor:
7821 case nir_intrinsic_ssbo_atomic_exchange:
7822 case nir_intrinsic_ssbo_atomic_comp_swap:
7823 visit_atomic_ssbo(ctx, instr);
7824 break;
7825 case nir_intrinsic_load_scratch:
7826 visit_load_scratch(ctx, instr);
7827 break;
7828 case nir_intrinsic_store_scratch:
7829 visit_store_scratch(ctx, instr);
7830 break;
7831 case nir_intrinsic_get_ssbo_size:
7832 visit_get_ssbo_size(ctx, instr);
7833 break;
7834 case nir_intrinsic_scoped_barrier:
7835 emit_scoped_barrier(ctx, instr);
7836 break;
7837 case nir_intrinsic_load_num_work_groups: {
7838 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7839 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7840 emit_split_vector(ctx, dst, 3);
7841 break;
7842 }
7843 case nir_intrinsic_load_local_invocation_id: {
7844 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7845 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7846 emit_split_vector(ctx, dst, 3);
7847 break;
7848 }
7849 case nir_intrinsic_load_work_group_id: {
7850 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7851 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7852 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7853 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7854 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7855 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7856 emit_split_vector(ctx, dst, 3);
7857 break;
7858 }
7859 case nir_intrinsic_load_local_invocation_index: {
7860 Temp id = emit_mbcnt(ctx, bld.tmp(v1));
7861
7862 /* The tg_size bits [6:11] contain the subgroup id,
7863 * we need this multiplied by the wave size, and then OR the thread id to it.
7864 */
7865 if (ctx->program->wave_size == 64) {
7866 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7867 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7868 get_arg(ctx, ctx->args->ac.tg_size));
7869 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7870 } else {
7871 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7872 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7873 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7874 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7875 }
7876 break;
7877 }
7878 case nir_intrinsic_load_subgroup_id: {
7879 if (ctx->stage == compute_cs) {
7880 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7881 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7882 } else {
7883 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7884 }
7885 break;
7886 }
7887 case nir_intrinsic_load_subgroup_invocation: {
7888 emit_mbcnt(ctx, get_ssa_temp(ctx, &instr->dest.ssa));
7889 break;
7890 }
7891 case nir_intrinsic_load_num_subgroups: {
7892 if (ctx->stage == compute_cs)
7893 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7894 get_arg(ctx, ctx->args->ac.tg_size));
7895 else
7896 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7897 break;
7898 }
7899 case nir_intrinsic_ballot: {
7900 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7901 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7902 Definition tmp = bld.def(dst.regClass());
7903 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7904 if (instr->src[0].ssa->bit_size == 1) {
7905 assert(src.regClass() == bld.lm);
7906 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7907 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7908 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7909 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7910 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7911 } else {
7912 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7913 }
7914 if (dst.size() != bld.lm.size()) {
7915 /* Wave32 with ballot size set to 64 */
7916 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7917 }
7918 emit_wqm(ctx, tmp.getTemp(), dst);
7919 break;
7920 }
7921 case nir_intrinsic_shuffle:
7922 case nir_intrinsic_read_invocation: {
7923 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7924 if (!nir_src_is_divergent(instr->src[0])) {
7925 emit_uniform_subgroup(ctx, instr, src);
7926 } else {
7927 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7928 if (instr->intrinsic == nir_intrinsic_read_invocation || !nir_src_is_divergent(instr->src[1]))
7929 tid = bld.as_uniform(tid);
7930 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7931 if (src.regClass() == v1b || src.regClass() == v2b) {
7932 Temp tmp = bld.tmp(v1);
7933 tmp = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), tmp);
7934 if (dst.type() == RegType::vgpr)
7935 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(src.regClass() == v1b ? v3b : v2b), tmp);
7936 else
7937 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
7938 } else if (src.regClass() == v1) {
7939 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7940 } else if (src.regClass() == v2) {
7941 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7942 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7943 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7944 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7945 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7946 emit_split_vector(ctx, dst, 2);
7947 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7948 assert(src.regClass() == bld.lm);
7949 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7950 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7951 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7952 assert(src.regClass() == bld.lm);
7953 Temp tmp;
7954 if (ctx->program->chip_class <= GFX7)
7955 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7956 else if (ctx->program->wave_size == 64)
7957 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7958 else
7959 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7960 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7961 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7962 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7963 } else {
7964 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
7965 }
7966 }
7967 break;
7968 }
7969 case nir_intrinsic_load_sample_id: {
7970 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7971 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7972 break;
7973 }
7974 case nir_intrinsic_load_sample_mask_in: {
7975 visit_load_sample_mask_in(ctx, instr);
7976 break;
7977 }
7978 case nir_intrinsic_read_first_invocation: {
7979 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7980 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7981 if (src.regClass() == v1b || src.regClass() == v2b || src.regClass() == v1) {
7982 emit_wqm(ctx,
7983 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7984 dst);
7985 } else if (src.regClass() == v2) {
7986 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7987 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7988 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7989 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7990 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7991 emit_split_vector(ctx, dst, 2);
7992 } else if (instr->dest.ssa.bit_size == 1) {
7993 assert(src.regClass() == bld.lm);
7994 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7995 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7996 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7997 } else {
7998 bld.copy(Definition(dst), src);
7999 }
8000 break;
8001 }
8002 case nir_intrinsic_vote_all: {
8003 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8004 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8005 assert(src.regClass() == bld.lm);
8006 assert(dst.regClass() == bld.lm);
8007
8008 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
8009 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
8010 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
8011 break;
8012 }
8013 case nir_intrinsic_vote_any: {
8014 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8015 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8016 assert(src.regClass() == bld.lm);
8017 assert(dst.regClass() == bld.lm);
8018
8019 Temp tmp = bool_to_scalar_condition(ctx, src);
8020 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
8021 break;
8022 }
8023 case nir_intrinsic_reduce:
8024 case nir_intrinsic_inclusive_scan:
8025 case nir_intrinsic_exclusive_scan: {
8026 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8027 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8028 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
8029 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
8030 nir_intrinsic_cluster_size(instr) : 0;
8031 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
8032
8033 if (!nir_src_is_divergent(instr->src[0]) &&
8034 cluster_size == ctx->program->wave_size && instr->dest.ssa.bit_size != 1) {
8035 /* We use divergence analysis to assign the regclass, so check if it's
8036 * working as expected */
8037 ASSERTED bool expected_divergent = instr->intrinsic == nir_intrinsic_exclusive_scan;
8038 if (instr->intrinsic == nir_intrinsic_inclusive_scan)
8039 expected_divergent = op == nir_op_iadd || op == nir_op_fadd || op == nir_op_ixor;
8040 assert(nir_dest_is_divergent(instr->dest) == expected_divergent);
8041
8042 if (instr->intrinsic == nir_intrinsic_reduce) {
8043 if (emit_uniform_reduce(ctx, instr))
8044 break;
8045 } else if (emit_uniform_scan(ctx, instr)) {
8046 break;
8047 }
8048 }
8049
8050 if (instr->dest.ssa.bit_size == 1) {
8051 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
8052 op = nir_op_iand;
8053 else if (op == nir_op_iadd)
8054 op = nir_op_ixor;
8055 else if (op == nir_op_umax || op == nir_op_imax)
8056 op = nir_op_ior;
8057 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
8058
8059 switch (instr->intrinsic) {
8060 case nir_intrinsic_reduce:
8061 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
8062 break;
8063 case nir_intrinsic_exclusive_scan:
8064 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
8065 break;
8066 case nir_intrinsic_inclusive_scan:
8067 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
8068 break;
8069 default:
8070 assert(false);
8071 }
8072 } else if (cluster_size == 1) {
8073 bld.copy(Definition(dst), src);
8074 } else {
8075 unsigned bit_size = instr->src[0].ssa->bit_size;
8076
8077 src = emit_extract_vector(ctx, src, 0, RegClass::get(RegType::vgpr, bit_size / 8));
8078
8079 ReduceOp reduce_op = get_reduce_op(op, bit_size);
8080
8081 aco_opcode aco_op;
8082 switch (instr->intrinsic) {
8083 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
8084 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
8085 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
8086 default:
8087 unreachable("unknown reduce intrinsic");
8088 }
8089
8090 Temp tmp_dst = emit_reduction_instr(ctx, aco_op, reduce_op, cluster_size, bld.def(dst.regClass()), src);
8091 emit_wqm(ctx, tmp_dst, dst);
8092 }
8093 break;
8094 }
8095 case nir_intrinsic_quad_broadcast: {
8096 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8097 if (!nir_dest_is_divergent(instr->dest)) {
8098 emit_uniform_subgroup(ctx, instr, src);
8099 } else {
8100 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8101 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
8102 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
8103
8104 if (instr->dest.ssa.bit_size == 1) {
8105 assert(src.regClass() == bld.lm);
8106 assert(dst.regClass() == bld.lm);
8107 uint32_t half_mask = 0x11111111u << lane;
8108 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
8109 Temp tmp = bld.tmp(bld.lm);
8110 bld.sop1(Builder::s_wqm, Definition(tmp),
8111 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
8112 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
8113 emit_wqm(ctx, tmp, dst);
8114 } else if (instr->dest.ssa.bit_size == 8) {
8115 Temp tmp = bld.tmp(v1);
8116 if (ctx->program->chip_class >= GFX8)
8117 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
8118 else
8119 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
8120 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
8121 } else if (instr->dest.ssa.bit_size == 16) {
8122 Temp tmp = bld.tmp(v1);
8123 if (ctx->program->chip_class >= GFX8)
8124 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
8125 else
8126 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
8127 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
8128 } else if (instr->dest.ssa.bit_size == 32) {
8129 if (ctx->program->chip_class >= GFX8)
8130 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
8131 else
8132 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
8133 } else if (instr->dest.ssa.bit_size == 64) {
8134 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
8135 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
8136 if (ctx->program->chip_class >= GFX8) {
8137 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
8138 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
8139 } else {
8140 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
8141 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
8142 }
8143 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8144 emit_split_vector(ctx, dst, 2);
8145 } else {
8146 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
8147 }
8148 }
8149 break;
8150 }
8151 case nir_intrinsic_quad_swap_horizontal:
8152 case nir_intrinsic_quad_swap_vertical:
8153 case nir_intrinsic_quad_swap_diagonal:
8154 case nir_intrinsic_quad_swizzle_amd: {
8155 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8156 if (!nir_dest_is_divergent(instr->dest)) {
8157 emit_uniform_subgroup(ctx, instr, src);
8158 break;
8159 }
8160 uint16_t dpp_ctrl = 0;
8161 switch (instr->intrinsic) {
8162 case nir_intrinsic_quad_swap_horizontal:
8163 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
8164 break;
8165 case nir_intrinsic_quad_swap_vertical:
8166 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
8167 break;
8168 case nir_intrinsic_quad_swap_diagonal:
8169 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
8170 break;
8171 case nir_intrinsic_quad_swizzle_amd:
8172 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
8173 break;
8174 default:
8175 break;
8176 }
8177 if (ctx->program->chip_class < GFX8)
8178 dpp_ctrl |= (1 << 15);
8179
8180 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8181 if (instr->dest.ssa.bit_size == 1) {
8182 assert(src.regClass() == bld.lm);
8183 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
8184 if (ctx->program->chip_class >= GFX8)
8185 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
8186 else
8187 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
8188 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
8189 emit_wqm(ctx, tmp, dst);
8190 } else if (instr->dest.ssa.bit_size == 8) {
8191 Temp tmp = bld.tmp(v1);
8192 if (ctx->program->chip_class >= GFX8)
8193 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
8194 else
8195 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
8196 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
8197 } else if (instr->dest.ssa.bit_size == 16) {
8198 Temp tmp = bld.tmp(v1);
8199 if (ctx->program->chip_class >= GFX8)
8200 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
8201 else
8202 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
8203 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
8204 } else if (instr->dest.ssa.bit_size == 32) {
8205 Temp tmp;
8206 if (ctx->program->chip_class >= GFX8)
8207 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
8208 else
8209 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
8210 emit_wqm(ctx, tmp, dst);
8211 } else if (instr->dest.ssa.bit_size == 64) {
8212 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
8213 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
8214 if (ctx->program->chip_class >= GFX8) {
8215 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
8216 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
8217 } else {
8218 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
8219 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
8220 }
8221 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8222 emit_split_vector(ctx, dst, 2);
8223 } else {
8224 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
8225 }
8226 break;
8227 }
8228 case nir_intrinsic_masked_swizzle_amd: {
8229 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8230 if (!nir_dest_is_divergent(instr->dest)) {
8231 emit_uniform_subgroup(ctx, instr, src);
8232 break;
8233 }
8234 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8235 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
8236 if (instr->dest.ssa.bit_size == 1) {
8237 assert(src.regClass() == bld.lm);
8238 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
8239 src = emit_masked_swizzle(ctx, bld, src, mask);
8240 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
8241 emit_wqm(ctx, tmp, dst);
8242 } else if (dst.regClass() == v1b) {
8243 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
8244 emit_extract_vector(ctx, tmp, 0, dst);
8245 } else if (dst.regClass() == v2b) {
8246 Temp tmp = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask));
8247 emit_extract_vector(ctx, tmp, 0, dst);
8248 } else if (dst.regClass() == v1) {
8249 emit_wqm(ctx, emit_masked_swizzle(ctx, bld, src, mask), dst);
8250 } else if (dst.regClass() == v2) {
8251 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
8252 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
8253 lo = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, lo, mask));
8254 hi = emit_wqm(ctx, emit_masked_swizzle(ctx, bld, hi, mask));
8255 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8256 emit_split_vector(ctx, dst, 2);
8257 } else {
8258 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
8259 }
8260 break;
8261 }
8262 case nir_intrinsic_write_invocation_amd: {
8263 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
8264 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
8265 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
8266 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8267 if (dst.regClass() == v1) {
8268 /* src2 is ignored for writelane. RA assigns the same reg for dst */
8269 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
8270 } else if (dst.regClass() == v2) {
8271 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
8272 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
8273 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
8274 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
8275 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
8276 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
8277 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8278 emit_split_vector(ctx, dst, 2);
8279 } else {
8280 isel_err(&instr->instr, "Unimplemented NIR instr bit size");
8281 }
8282 break;
8283 }
8284 case nir_intrinsic_mbcnt_amd: {
8285 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8286 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8287 Temp wqm_tmp = emit_mbcnt(ctx, bld.tmp(v1), Operand(src));
8288 emit_wqm(ctx, wqm_tmp, dst);
8289 break;
8290 }
8291 case nir_intrinsic_load_helper_invocation: {
8292 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8293 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
8294 ctx->block->kind |= block_kind_needs_lowering;
8295 ctx->program->needs_exact = true;
8296 break;
8297 }
8298 case nir_intrinsic_is_helper_invocation: {
8299 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8300 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
8301 ctx->block->kind |= block_kind_needs_lowering;
8302 ctx->program->needs_exact = true;
8303 break;
8304 }
8305 case nir_intrinsic_demote:
8306 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
8307
8308 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
8309 ctx->cf_info.exec_potentially_empty_discard = true;
8310 ctx->block->kind |= block_kind_uses_demote;
8311 ctx->program->needs_exact = true;
8312 break;
8313 case nir_intrinsic_demote_if: {
8314 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8315 assert(src.regClass() == bld.lm);
8316 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
8317 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
8318
8319 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
8320 ctx->cf_info.exec_potentially_empty_discard = true;
8321 ctx->block->kind |= block_kind_uses_demote;
8322 ctx->program->needs_exact = true;
8323 break;
8324 }
8325 case nir_intrinsic_first_invocation: {
8326 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
8327 get_ssa_temp(ctx, &instr->dest.ssa));
8328 break;
8329 }
8330 case nir_intrinsic_last_invocation: {
8331 Temp flbit = bld.sop1(Builder::s_flbit_i32, bld.def(s1), Operand(exec, bld.lm));
8332 Temp last = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc),
8333 Operand(ctx->program->wave_size - 1u), flbit);
8334 emit_wqm(ctx, last, get_ssa_temp(ctx, &instr->dest.ssa));
8335 break;
8336 }
8337 case nir_intrinsic_elect: {
8338 Temp first = bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm));
8339 emit_wqm(ctx, bld.sop2(Builder::s_lshl, bld.def(bld.lm), bld.def(s1, scc), Operand(1u), first),
8340 get_ssa_temp(ctx, &instr->dest.ssa));
8341 break;
8342 }
8343 case nir_intrinsic_shader_clock: {
8344 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8345 if (nir_intrinsic_memory_scope(instr) == NIR_SCOPE_SUBGROUP && ctx->options->chip_class >= GFX10_3) {
8346 /* "((size - 1) << 11) | register" (SHADER_CYCLES is encoded as register 29) */
8347 Temp clock = bld.sopk(aco_opcode::s_getreg_b32, bld.def(s1), ((20 - 1) << 11) | 29);
8348 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), clock, Operand(0u));
8349 } else {
8350 aco_opcode opcode =
8351 nir_intrinsic_memory_scope(instr) == NIR_SCOPE_DEVICE ?
8352 aco_opcode::s_memrealtime : aco_opcode::s_memtime;
8353 bld.smem(opcode, Definition(dst), memory_sync_info(0, semantic_volatile));
8354 }
8355 emit_split_vector(ctx, dst, 2);
8356 break;
8357 }
8358 case nir_intrinsic_load_vertex_id_zero_base: {
8359 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8360 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
8361 break;
8362 }
8363 case nir_intrinsic_load_first_vertex: {
8364 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8365 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
8366 break;
8367 }
8368 case nir_intrinsic_load_base_instance: {
8369 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8370 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
8371 break;
8372 }
8373 case nir_intrinsic_load_instance_id: {
8374 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8375 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
8376 break;
8377 }
8378 case nir_intrinsic_load_draw_id: {
8379 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8380 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
8381 break;
8382 }
8383 case nir_intrinsic_load_invocation_id: {
8384 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8385
8386 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
8387 if (ctx->options->chip_class >= GFX10)
8388 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8389 else
8390 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8391 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
8392 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
8393 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
8394 } else {
8395 unreachable("Unsupported stage for load_invocation_id");
8396 }
8397
8398 break;
8399 }
8400 case nir_intrinsic_load_primitive_id: {
8401 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8402
8403 switch (ctx->shader->info.stage) {
8404 case MESA_SHADER_GEOMETRY:
8405 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
8406 break;
8407 case MESA_SHADER_TESS_CTRL:
8408 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
8409 break;
8410 case MESA_SHADER_TESS_EVAL:
8411 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
8412 break;
8413 default:
8414 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
8415 }
8416
8417 break;
8418 }
8419 case nir_intrinsic_load_patch_vertices_in: {
8420 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
8421 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8422
8423 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8424 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8425 break;
8426 }
8427 case nir_intrinsic_emit_vertex_with_counter: {
8428 if (ctx->stage.hw == HWStage::NGG)
8429 ngg_visit_emit_vertex_with_counter(ctx, instr);
8430 else
8431 visit_emit_vertex_with_counter(ctx, instr);
8432 break;
8433 }
8434 case nir_intrinsic_end_primitive_with_counter: {
8435 if (ctx->stage.hw != HWStage::NGG) {
8436 unsigned stream = nir_intrinsic_stream_id(instr);
8437 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8438 }
8439 break;
8440 }
8441 case nir_intrinsic_set_vertex_and_primitive_count: {
8442 if (ctx->stage.hw == HWStage::NGG)
8443 ngg_visit_set_vertex_and_primitive_count(ctx, instr);
8444 /* unused in the legacy pipeline, the HW keeps track of this for us */
8445 break;
8446 }
8447 default:
8448 isel_err(&instr->instr, "Unimplemented intrinsic instr");
8449 abort();
8450
8451 break;
8452 }
8453 }
8454
8455
tex_fetch_ptrs(isel_context * ctx,nir_tex_instr * instr,Temp * res_ptr,Temp * samp_ptr,Temp * fmask_ptr,enum glsl_base_type * stype)8456 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8457 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8458 enum glsl_base_type *stype)
8459 {
8460 nir_deref_instr *texture_deref_instr = NULL;
8461 nir_deref_instr *sampler_deref_instr = NULL;
8462 int plane = -1;
8463
8464 for (unsigned i = 0; i < instr->num_srcs; i++) {
8465 switch (instr->src[i].src_type) {
8466 case nir_tex_src_texture_deref:
8467 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8468 break;
8469 case nir_tex_src_sampler_deref:
8470 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8471 break;
8472 case nir_tex_src_plane:
8473 plane = nir_src_as_int(instr->src[i].src);
8474 break;
8475 default:
8476 break;
8477 }
8478 }
8479
8480 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8481
8482 if (!sampler_deref_instr)
8483 sampler_deref_instr = texture_deref_instr;
8484
8485 if (plane >= 0) {
8486 assert(instr->op != nir_texop_txf_ms &&
8487 instr->op != nir_texop_samples_identical);
8488 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8489 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8490 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8491 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8492 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8493 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8494 } else {
8495 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8496 }
8497 if (samp_ptr) {
8498 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8499
8500 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8501 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8502 Builder bld(ctx->program, ctx->block);
8503
8504 /* to avoid unnecessary moves, we split and recombine sampler and image */
8505 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8506 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8507 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8508 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8509 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8510 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8511 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8512 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8513
8514 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8515 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8516 img[0], img[1], img[2], img[3],
8517 img[4], img[5], img[6], img[7]);
8518 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8519 samp[0], samp[1], samp[2], samp[3]);
8520 }
8521 }
8522 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8523 instr->op == nir_texop_samples_identical))
8524 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8525 }
8526
build_cube_select(isel_context * ctx,Temp ma,Temp id,Temp deriv,Temp * out_ma,Temp * out_sc,Temp * out_tc)8527 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8528 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8529 {
8530 Builder bld(ctx->program, ctx->block);
8531
8532 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8533 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8534 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8535
8536 Operand neg_one(0xbf800000u);
8537 Operand one(0x3f800000u);
8538 Operand two(0x40000000u);
8539 Operand four(0x40800000u);
8540
8541 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8542 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8543 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8544
8545 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8546 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8547 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8548 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8549
8550 // select sc
8551 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8552 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8553 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8554 one, is_ma_y);
8555 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8556
8557 // select tc
8558 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8559 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8560 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8561
8562 // select ma
8563 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8564 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8565 deriv_z, is_ma_z);
8566 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8567 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8568 }
8569
prepare_cube_coords(isel_context * ctx,std::vector<Temp> & coords,Temp * ddx,Temp * ddy,bool is_deriv,bool is_array)8570 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8571 {
8572 Builder bld(ctx->program, ctx->block);
8573 Temp ma, tc, sc, id;
8574 aco_opcode madak = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_madak_f32;
8575 aco_opcode madmk = ctx->program->chip_class >= GFX10_3 ? aco_opcode::v_fmamk_f32 : aco_opcode::v_madmk_f32;
8576
8577 if (is_array) {
8578 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8579
8580 // see comment in ac_prepare_cube_coords()
8581 if (ctx->options->chip_class <= GFX8)
8582 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8583 }
8584
8585 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8586
8587 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8588 vop3a->operands[0] = Operand(ma);
8589 vop3a->abs[0] = true;
8590 Temp invma = bld.tmp(v1);
8591 vop3a->definitions[0] = Definition(invma);
8592 ctx->block->instructions.emplace_back(std::move(vop3a));
8593
8594 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8595 if (!is_deriv)
8596 sc = bld.vop2(madak, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8597
8598 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8599 if (!is_deriv)
8600 tc = bld.vop2(madak, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8601
8602 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8603
8604 if (is_deriv) {
8605 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8606 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8607
8608 for (unsigned i = 0; i < 2; i++) {
8609 // see comment in ac_prepare_cube_coords()
8610 Temp deriv_ma;
8611 Temp deriv_sc, deriv_tc;
8612 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8613 &deriv_ma, &deriv_sc, &deriv_tc);
8614
8615 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8616
8617 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8618 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8619 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8620 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8621 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8622 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8623 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8624 }
8625
8626 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8627 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8628 }
8629
8630 if (is_array)
8631 id = bld.vop2(madmk, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8632 coords.resize(3);
8633 coords[0] = sc;
8634 coords[1] = tc;
8635 coords[2] = id;
8636 }
8637
get_const_vec(nir_ssa_def * vec,nir_const_value * cv[4])8638 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8639 {
8640 if (vec->parent_instr->type != nir_instr_type_alu)
8641 return;
8642 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8643 if (vec_instr->op != nir_op_vec(vec->num_components))
8644 return;
8645
8646 for (unsigned i = 0; i < vec->num_components; i++) {
8647 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8648 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8649 }
8650 }
8651
visit_tex(isel_context * ctx,nir_tex_instr * instr)8652 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8653 {
8654 Builder bld(ctx->program, ctx->block);
8655 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8656 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false,
8657 has_clamped_lod = false;
8658 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8659 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(),
8660 clamped_lod = Temp();
8661 std::vector<Temp> coords;
8662 std::vector<Temp> derivs;
8663 nir_const_value *sample_index_cv = NULL;
8664 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8665 enum glsl_base_type stype;
8666 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8667
8668 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8669 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8670 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8671 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8672
8673 for (unsigned i = 0; i < instr->num_srcs; i++) {
8674 switch (instr->src[i].src_type) {
8675 case nir_tex_src_coord: {
8676 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8677 for (unsigned i = 0; i < coord.size(); i++)
8678 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8679 break;
8680 }
8681 case nir_tex_src_bias:
8682 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8683 has_bias = true;
8684 break;
8685 case nir_tex_src_lod: {
8686 if (nir_src_is_const(instr->src[i].src) && nir_src_as_uint(instr->src[i].src) == 0) {
8687 level_zero = true;
8688 } else {
8689 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8690 has_lod = true;
8691 }
8692 break;
8693 }
8694 case nir_tex_src_min_lod:
8695 clamped_lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8696 has_clamped_lod = true;
8697 break;
8698 case nir_tex_src_comparator:
8699 if (instr->is_shadow) {
8700 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8701 has_compare = true;
8702 }
8703 break;
8704 case nir_tex_src_offset:
8705 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8706 get_const_vec(instr->src[i].src.ssa, const_offset);
8707 has_offset = true;
8708 break;
8709 case nir_tex_src_ddx:
8710 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8711 has_ddx = true;
8712 break;
8713 case nir_tex_src_ddy:
8714 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8715 has_ddy = true;
8716 break;
8717 case nir_tex_src_ms_index:
8718 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8719 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8720 has_sample_index = true;
8721 break;
8722 case nir_tex_src_texture_offset:
8723 case nir_tex_src_sampler_offset:
8724 default:
8725 break;
8726 }
8727 }
8728
8729 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8730 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8731
8732 if (instr->op == nir_texop_texture_samples) {
8733 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8734
8735 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8736 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8737 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8738
8739 Operand default_sample = Operand(1u);
8740 if (ctx->options->robust_buffer_access) {
8741 /* Extract the second dword of the descriptor, if it's
8742 * all zero, then it's a null descriptor.
8743 */
8744 Temp dword1 = emit_extract_vector(ctx, resource, 1, s1);
8745 Temp is_non_null_descriptor = bld.sopc(aco_opcode::s_cmp_gt_u32, bld.def(s1, scc), dword1, Operand(0u));
8746 default_sample = Operand(is_non_null_descriptor);
8747 }
8748
8749 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8750 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8751 samples, default_sample, bld.scc(is_msaa));
8752 return;
8753 }
8754
8755 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8756 aco_ptr<Instruction> tmp_instr;
8757 Temp acc, pack = Temp();
8758
8759 uint32_t pack_const = 0;
8760 for (unsigned i = 0; i < offset.size(); i++) {
8761 if (!const_offset[i])
8762 continue;
8763 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8764 }
8765
8766 if (offset.type() == RegType::sgpr) {
8767 for (unsigned i = 0; i < offset.size(); i++) {
8768 if (const_offset[i])
8769 continue;
8770
8771 acc = emit_extract_vector(ctx, offset, i, s1);
8772 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8773
8774 if (i) {
8775 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8776 }
8777
8778 if (pack == Temp()) {
8779 pack = acc;
8780 } else {
8781 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8782 }
8783 }
8784
8785 if (pack_const && pack != Temp())
8786 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8787 } else {
8788 for (unsigned i = 0; i < offset.size(); i++) {
8789 if (const_offset[i])
8790 continue;
8791
8792 acc = emit_extract_vector(ctx, offset, i, v1);
8793 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8794
8795 if (i) {
8796 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8797 }
8798
8799 if (pack == Temp()) {
8800 pack = acc;
8801 } else {
8802 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8803 }
8804 }
8805
8806 if (pack_const && pack != Temp())
8807 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8808 }
8809 if (pack_const && pack == Temp())
8810 offset = bld.copy(bld.def(v1), Operand(pack_const));
8811 else if (pack == Temp())
8812 has_offset = false;
8813 else
8814 offset = pack;
8815 }
8816
8817 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8818 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8819
8820 /* pack derivatives */
8821 if (has_ddx || has_ddy) {
8822 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8823 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8824 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8825 derivs = {ddx, zero, ddy, zero};
8826 } else {
8827 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8828 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8829 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8830 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8831 }
8832 has_derivs = true;
8833 }
8834
8835 if (instr->coord_components > 1 &&
8836 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8837 instr->is_array &&
8838 instr->op != nir_texop_txf)
8839 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8840
8841 if (instr->coord_components > 2 &&
8842 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8843 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8844 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8845 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8846 instr->is_array &&
8847 instr->op != nir_texop_txf &&
8848 instr->op != nir_texop_txf_ms &&
8849 instr->op != nir_texop_fragment_fetch &&
8850 instr->op != nir_texop_fragment_mask_fetch)
8851 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8852
8853 if (ctx->options->chip_class == GFX9 &&
8854 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8855 instr->op != nir_texop_lod && instr->coord_components) {
8856 assert(coords.size() > 0 && coords.size() < 3);
8857
8858 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8859 Operand((uint32_t) 0) :
8860 Operand((uint32_t) 0x3f000000)));
8861 }
8862
8863 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8864
8865 if (instr->op == nir_texop_samples_identical)
8866 resource = fmask_ptr;
8867
8868 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8869 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8870 instr->op != nir_texop_txs &&
8871 instr->op != nir_texop_fragment_fetch &&
8872 instr->op != nir_texop_fragment_mask_fetch) {
8873 assert(has_sample_index);
8874 Operand op(sample_index);
8875 if (sample_index_cv)
8876 op = Operand(sample_index_cv->u32);
8877 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8878 }
8879
8880 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8881 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8882 Temp off = emit_extract_vector(ctx, offset, i, v1);
8883 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8884 }
8885 has_offset = false;
8886 }
8887
8888 /* Build tex instruction */
8889 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8890 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8891 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8892 : 0;
8893 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8894 Temp tmp_dst = dst;
8895
8896 /* gather4 selects the component by dmask and always returns vec4 */
8897 if (instr->op == nir_texop_tg4) {
8898 assert(instr->dest.ssa.num_components == 4);
8899 if (instr->is_shadow)
8900 dmask = 1;
8901 else
8902 dmask = 1 << instr->component;
8903 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8904 tmp_dst = bld.tmp(v4);
8905 } else if (instr->op == nir_texop_samples_identical) {
8906 tmp_dst = bld.tmp(v1);
8907 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8908 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8909 }
8910
8911 aco_ptr<MIMG_instruction> tex;
8912 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8913 if (!has_lod)
8914 lod = bld.copy(bld.def(v1), Operand(0u));
8915
8916 bool div_by_6 = instr->op == nir_texop_txs &&
8917 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8918 instr->is_array &&
8919 (dmask & (1 << 2));
8920 if (tmp_dst.id() == dst.id() && div_by_6)
8921 tmp_dst = bld.tmp(tmp_dst.regClass());
8922
8923 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8924 tex->operands[0] = Operand(resource);
8925 tex->operands[1] = Operand(s4); /* no sampler */
8926 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8927 if (ctx->options->chip_class == GFX9 &&
8928 instr->op == nir_texop_txs &&
8929 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8930 instr->is_array) {
8931 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8932 } else if (instr->op == nir_texop_query_levels) {
8933 tex->dmask = 1 << 3;
8934 } else {
8935 tex->dmask = dmask;
8936 }
8937 tex->da = da;
8938 tex->definitions[0] = Definition(tmp_dst);
8939 tex->dim = dim;
8940 ctx->block->instructions.emplace_back(std::move(tex));
8941
8942 if (div_by_6) {
8943 /* divide 3rd value by 6 by multiplying with magic number */
8944 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8945 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8946 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8947 assert(instr->dest.ssa.num_components == 3);
8948 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8949 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8950 emit_extract_vector(ctx, tmp_dst, 0, v1),
8951 emit_extract_vector(ctx, tmp_dst, 1, v1),
8952 by_6);
8953
8954 }
8955
8956 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8957 return;
8958 }
8959
8960 Temp tg4_compare_cube_wa64 = Temp();
8961
8962 if (tg4_integer_workarounds) {
8963 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8964 tex->operands[0] = Operand(resource);
8965 tex->operands[1] = Operand(s4); /* no sampler */
8966 tex->operands[2] = bld.copy(bld.def(v1), Operand(0u));
8967 tex->dim = dim;
8968 tex->dmask = 0x3;
8969 tex->da = da;
8970 Temp size = bld.tmp(v2);
8971 tex->definitions[0] = Definition(size);
8972 ctx->block->instructions.emplace_back(std::move(tex));
8973 emit_split_vector(ctx, size, size.size());
8974
8975 Temp half_texel[2];
8976 for (unsigned i = 0; i < 2; i++) {
8977 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8978 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8979 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8980 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8981 }
8982
8983 Temp new_coords[2] = {
8984 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8985 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8986 };
8987
8988 if (tg4_integer_cube_workaround) {
8989 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8990 Temp *const desc = (Temp *)alloca(resource.size() * sizeof(Temp));
8991 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8992 Format::PSEUDO, 1, resource.size())};
8993 split->operands[0] = Operand(resource);
8994 for (unsigned i = 0; i < resource.size(); i++) {
8995 desc[i] = bld.tmp(s1);
8996 split->definitions[i] = Definition(desc[i]);
8997 }
8998 ctx->block->instructions.emplace_back(std::move(split));
8999
9000 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
9001 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
9002 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
9003
9004 Temp nfmt;
9005 if (stype == GLSL_TYPE_UINT) {
9006 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
9007 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
9008 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
9009 bld.scc(compare_cube_wa));
9010 } else {
9011 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
9012 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
9013 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
9014 bld.scc(compare_cube_wa));
9015 }
9016 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
9017 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
9018
9019 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
9020
9021 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
9022 Operand((uint32_t)C_008F14_NUM_FORMAT));
9023 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
9024
9025 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
9026 Format::PSEUDO, resource.size(), 1)};
9027 for (unsigned i = 0; i < resource.size(); i++)
9028 vec->operands[i] = Operand(desc[i]);
9029 resource = bld.tmp(resource.regClass());
9030 vec->definitions[0] = Definition(resource);
9031 ctx->block->instructions.emplace_back(std::move(vec));
9032
9033 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9034 new_coords[0], coords[0], tg4_compare_cube_wa64);
9035 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9036 new_coords[1], coords[1], tg4_compare_cube_wa64);
9037 }
9038 coords[0] = new_coords[0];
9039 coords[1] = new_coords[1];
9040 }
9041
9042 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
9043 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
9044
9045 assert(coords.size() == 1);
9046 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
9047 aco_opcode op;
9048 switch (last_bit) {
9049 case 1:
9050 op = aco_opcode::buffer_load_format_x; break;
9051 case 2:
9052 op = aco_opcode::buffer_load_format_xy; break;
9053 case 3:
9054 op = aco_opcode::buffer_load_format_xyz; break;
9055 case 4:
9056 op = aco_opcode::buffer_load_format_xyzw; break;
9057 default:
9058 unreachable("Tex instruction loads more than 4 components.");
9059 }
9060
9061 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
9062 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
9063 tmp_dst = dst;
9064 else
9065 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
9066
9067 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
9068 mubuf->operands[0] = Operand(resource);
9069 mubuf->operands[1] = Operand(coords[0]);
9070 mubuf->operands[2] = Operand((uint32_t) 0);
9071 mubuf->definitions[0] = Definition(tmp_dst);
9072 mubuf->idxen = true;
9073 ctx->block->instructions.emplace_back(std::move(mubuf));
9074
9075 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
9076 return;
9077 }
9078
9079 /* gather MIMG address components */
9080 std::vector<Temp> args;
9081 if (has_offset)
9082 args.emplace_back(offset);
9083 if (has_bias)
9084 args.emplace_back(bias);
9085 if (has_compare)
9086 args.emplace_back(compare);
9087 if (has_derivs)
9088 args.insert(args.end(), derivs.begin(), derivs.end());
9089
9090 args.insert(args.end(), coords.begin(), coords.end());
9091 if (has_sample_index)
9092 args.emplace_back(sample_index);
9093 if (has_lod)
9094 args.emplace_back(lod);
9095 if (has_clamped_lod)
9096 args.emplace_back(clamped_lod);
9097
9098 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
9099 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
9100 vec->definitions[0] = Definition(arg);
9101 for (unsigned i = 0; i < args.size(); i++)
9102 vec->operands[i] = Operand(args[i]);
9103 ctx->block->instructions.emplace_back(std::move(vec));
9104
9105
9106 if (instr->op == nir_texop_txf ||
9107 instr->op == nir_texop_txf_ms ||
9108 instr->op == nir_texop_samples_identical ||
9109 instr->op == nir_texop_fragment_fetch ||
9110 instr->op == nir_texop_fragment_mask_fetch) {
9111 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
9112 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
9113 tex->operands[0] = Operand(resource);
9114 tex->operands[1] = Operand(s4); /* no sampler */
9115 tex->operands[2] = Operand(arg);
9116 tex->dim = dim;
9117 tex->dmask = dmask;
9118 tex->unrm = true;
9119 tex->da = da;
9120 tex->definitions[0] = Definition(tmp_dst);
9121 ctx->block->instructions.emplace_back(std::move(tex));
9122
9123 if (instr->op == nir_texop_samples_identical) {
9124 assert(dmask == 1 && dst.regClass() == bld.lm);
9125 assert(dst.id() != tmp_dst.id());
9126
9127 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(dst), Operand(0u), tmp_dst).def(0).setHint(vcc);
9128 } else {
9129 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
9130 }
9131 return;
9132 }
9133
9134 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
9135 aco_opcode opcode = aco_opcode::image_sample;
9136 if (has_offset) { /* image_sample_*_o */
9137 if (has_clamped_lod) {
9138 if (has_compare) {
9139 opcode = aco_opcode::image_sample_c_cl_o;
9140 if (has_derivs)
9141 opcode = aco_opcode::image_sample_c_d_cl_o;
9142 if (has_bias)
9143 opcode = aco_opcode::image_sample_c_b_cl_o;
9144 } else {
9145 opcode = aco_opcode::image_sample_cl_o;
9146 if (has_derivs)
9147 opcode = aco_opcode::image_sample_d_cl_o;
9148 if (has_bias)
9149 opcode = aco_opcode::image_sample_b_cl_o;
9150 }
9151 } else if (has_compare) {
9152 opcode = aco_opcode::image_sample_c_o;
9153 if (has_derivs)
9154 opcode = aco_opcode::image_sample_c_d_o;
9155 if (has_bias)
9156 opcode = aco_opcode::image_sample_c_b_o;
9157 if (level_zero)
9158 opcode = aco_opcode::image_sample_c_lz_o;
9159 if (has_lod)
9160 opcode = aco_opcode::image_sample_c_l_o;
9161 } else {
9162 opcode = aco_opcode::image_sample_o;
9163 if (has_derivs)
9164 opcode = aco_opcode::image_sample_d_o;
9165 if (has_bias)
9166 opcode = aco_opcode::image_sample_b_o;
9167 if (level_zero)
9168 opcode = aco_opcode::image_sample_lz_o;
9169 if (has_lod)
9170 opcode = aco_opcode::image_sample_l_o;
9171 }
9172 } else if (has_clamped_lod) { /* image_sample_*_cl */
9173 if (has_compare) {
9174 opcode = aco_opcode::image_sample_c_cl;
9175 if (has_derivs)
9176 opcode = aco_opcode::image_sample_c_d_cl;
9177 if (has_bias)
9178 opcode = aco_opcode::image_sample_c_b_cl;
9179 } else {
9180 opcode = aco_opcode::image_sample_cl;
9181 if (has_derivs)
9182 opcode = aco_opcode::image_sample_d_cl;
9183 if (has_bias)
9184 opcode = aco_opcode::image_sample_b_cl;
9185 }
9186 } else { /* no offset */
9187 if (has_compare) {
9188 opcode = aco_opcode::image_sample_c;
9189 if (has_derivs)
9190 opcode = aco_opcode::image_sample_c_d;
9191 if (has_bias)
9192 opcode = aco_opcode::image_sample_c_b;
9193 if (level_zero)
9194 opcode = aco_opcode::image_sample_c_lz;
9195 if (has_lod)
9196 opcode = aco_opcode::image_sample_c_l;
9197 } else {
9198 opcode = aco_opcode::image_sample;
9199 if (has_derivs)
9200 opcode = aco_opcode::image_sample_d;
9201 if (has_bias)
9202 opcode = aco_opcode::image_sample_b;
9203 if (level_zero)
9204 opcode = aco_opcode::image_sample_lz;
9205 if (has_lod)
9206 opcode = aco_opcode::image_sample_l;
9207 }
9208 }
9209
9210 if (instr->op == nir_texop_tg4) {
9211 if (has_offset) { /* image_gather4_*_o */
9212 if (has_compare) {
9213 opcode = aco_opcode::image_gather4_c_lz_o;
9214 if (has_lod)
9215 opcode = aco_opcode::image_gather4_c_l_o;
9216 if (has_bias)
9217 opcode = aco_opcode::image_gather4_c_b_o;
9218 } else {
9219 opcode = aco_opcode::image_gather4_lz_o;
9220 if (has_lod)
9221 opcode = aco_opcode::image_gather4_l_o;
9222 if (has_bias)
9223 opcode = aco_opcode::image_gather4_b_o;
9224 }
9225 } else {
9226 if (has_compare) {
9227 opcode = aco_opcode::image_gather4_c_lz;
9228 if (has_lod)
9229 opcode = aco_opcode::image_gather4_c_l;
9230 if (has_bias)
9231 opcode = aco_opcode::image_gather4_c_b;
9232 } else {
9233 opcode = aco_opcode::image_gather4_lz;
9234 if (has_lod)
9235 opcode = aco_opcode::image_gather4_l;
9236 if (has_bias)
9237 opcode = aco_opcode::image_gather4_b;
9238 }
9239 }
9240 } else if (instr->op == nir_texop_lod) {
9241 opcode = aco_opcode::image_get_lod;
9242 }
9243
9244 /* we don't need the bias, sample index, compare value or offset to be
9245 * computed in WQM but if the p_create_vector copies the coordinates, then it
9246 * needs to be in WQM */
9247 if (ctx->stage == fragment_fs &&
9248 !has_derivs && !has_lod && !level_zero &&
9249 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
9250 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
9251 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
9252
9253 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
9254 tex->operands[0] = Operand(resource);
9255 tex->operands[1] = Operand(sampler);
9256 tex->operands[2] = Operand(arg);
9257 tex->dim = dim;
9258 tex->dmask = dmask;
9259 tex->da = da;
9260 tex->definitions[0] = Definition(tmp_dst);
9261 ctx->block->instructions.emplace_back(std::move(tex));
9262
9263 if (tg4_integer_cube_workaround) {
9264 assert(tmp_dst.id() != dst.id());
9265 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
9266
9267 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
9268 Temp val[4];
9269 for (unsigned i = 0; i < dst.size(); i++) {
9270 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
9271 Temp cvt_val;
9272 if (stype == GLSL_TYPE_UINT)
9273 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
9274 else
9275 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
9276 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
9277 }
9278 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
9279 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
9280 val[0], val[1], val[2], val[3]);
9281 }
9282 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
9283 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
9284
9285 }
9286
9287
get_phi_operand(isel_context * ctx,nir_ssa_def * ssa,RegClass rc,bool logical)9288 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa, RegClass rc, bool logical)
9289 {
9290 Temp tmp = get_ssa_temp(ctx, ssa);
9291 if (ssa->parent_instr->type == nir_instr_type_ssa_undef) {
9292 return Operand(rc);
9293 } else if (logical && ssa->bit_size == 1 && ssa->parent_instr->type == nir_instr_type_load_const) {
9294 if (ctx->program->wave_size == 64)
9295 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT64_MAX : 0u);
9296 else
9297 return Operand(nir_instr_as_load_const(ssa->parent_instr)->value[0].b ? UINT32_MAX : 0u);
9298 } else {
9299 return Operand(tmp);
9300 }
9301 }
9302
visit_phi(isel_context * ctx,nir_phi_instr * instr)9303 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
9304 {
9305 aco_ptr<Pseudo_instruction> phi;
9306 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
9307 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
9308
9309 bool logical = !dst.is_linear() || nir_dest_is_divergent(instr->dest);
9310 logical |= ctx->block->kind & block_kind_merge;
9311 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
9312
9313 /* we want a sorted list of sources, since the predecessor list is also sorted */
9314 std::map<unsigned, nir_ssa_def*> phi_src;
9315 nir_foreach_phi_src(src, instr)
9316 phi_src[src->pred->index] = src->src.ssa;
9317
9318 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
9319 unsigned num_operands = 0;
9320 Operand *const operands = (Operand *)alloca((std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1) * sizeof(Operand));
9321 unsigned num_defined = 0;
9322 unsigned cur_pred_idx = 0;
9323 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
9324 if (cur_pred_idx < preds.size()) {
9325 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
9326 unsigned block = ctx->cf_info.nir_to_aco[src.first];
9327 unsigned skipped = 0;
9328 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
9329 skipped++;
9330 if (cur_pred_idx + skipped < preds.size()) {
9331 for (unsigned i = 0; i < skipped; i++)
9332 operands[num_operands++] = Operand(dst.regClass());
9333 cur_pred_idx += skipped;
9334 } else {
9335 continue;
9336 }
9337 }
9338 /* Handle missing predecessors at the end. This shouldn't happen with loop
9339 * headers and we can't ignore these sources for loop header phis. */
9340 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
9341 continue;
9342 cur_pred_idx++;
9343 Operand op = get_phi_operand(ctx, src.second, dst.regClass(), logical);
9344 operands[num_operands++] = op;
9345 num_defined += !op.isUndefined();
9346 }
9347 /* handle block_kind_continue_or_break at loop exit blocks */
9348 while (cur_pred_idx++ < preds.size())
9349 operands[num_operands++] = Operand(dst.regClass());
9350
9351 /* If the loop ends with a break, still add a linear continue edge in case
9352 * that break is divergent or continue_or_break is used. We'll either remove
9353 * this operand later in visit_loop() if it's not necessary or replace the
9354 * undef with something correct. */
9355 if (!logical && ctx->block->kind & block_kind_loop_header) {
9356 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
9357 nir_block *last = nir_loop_last_block(loop);
9358 if (last->successors[0] != instr->instr.block)
9359 operands[num_operands++] = Operand(RegClass());
9360 }
9361
9362 /* we can use a linear phi in some cases if one src is undef */
9363 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
9364 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
9365
9366 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
9367 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
9368 assert(invert->kind & block_kind_invert);
9369
9370 unsigned then_block = invert->linear_preds[0];
9371
9372 Block* insert_block = NULL;
9373 for (unsigned i = 0; i < num_operands; i++) {
9374 Operand op = operands[i];
9375 if (op.isUndefined())
9376 continue;
9377 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
9378 phi->operands[0] = op;
9379 break;
9380 }
9381 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
9382 phi->operands[1] = Operand(dst.regClass());
9383 phi->definitions[0] = Definition(dst);
9384 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
9385 return;
9386 }
9387
9388 /* try to scalarize vector phis */
9389 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
9390 // TODO: scalarize linear phis on divergent ifs
9391 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
9392 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
9393 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
9394 Operand src = operands[i];
9395 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
9396 can_scalarize = false;
9397 }
9398 if (can_scalarize) {
9399 unsigned num_components = instr->dest.ssa.num_components;
9400 assert(dst.size() % num_components == 0);
9401 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
9402
9403 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
9404 for (unsigned k = 0; k < num_components; k++) {
9405 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9406 for (unsigned i = 0; i < num_operands; i++) {
9407 Operand src = operands[i];
9408 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
9409 }
9410 Temp phi_dst = ctx->program->allocateTmp(rc);
9411 phi->definitions[0] = Definition(phi_dst);
9412 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9413 new_vec[k] = phi_dst;
9414 vec->operands[k] = Operand(phi_dst);
9415 }
9416 vec->definitions[0] = Definition(dst);
9417 ctx->block->instructions.emplace_back(std::move(vec));
9418 ctx->allocated_vec.emplace(dst.id(), new_vec);
9419 return;
9420 }
9421 }
9422
9423 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9424 for (unsigned i = 0; i < num_operands; i++)
9425 phi->operands[i] = operands[i];
9426 phi->definitions[0] = Definition(dst);
9427 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9428 }
9429
9430
visit_undef(isel_context * ctx,nir_ssa_undef_instr * instr)9431 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9432 {
9433 Temp dst = get_ssa_temp(ctx, &instr->def);
9434
9435 assert(dst.type() == RegType::sgpr);
9436
9437 if (dst.size() == 1) {
9438 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9439 } else {
9440 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9441 for (unsigned i = 0; i < dst.size(); i++)
9442 vec->operands[i] = Operand(0u);
9443 vec->definitions[0] = Definition(dst);
9444 ctx->block->instructions.emplace_back(std::move(vec));
9445 }
9446 }
9447
begin_loop(isel_context * ctx,loop_context * lc)9448 void begin_loop(isel_context *ctx, loop_context *lc)
9449 {
9450 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9451 append_logical_end(ctx->block);
9452 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9453 Builder bld(ctx->program, ctx->block);
9454 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9455 unsigned loop_preheader_idx = ctx->block->index;
9456
9457 lc->loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9458 lc->loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9459
9460 Block *loop_header = ctx->program->create_and_insert_block();
9461 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9462 loop_header->kind |= block_kind_loop_header;
9463 add_edge(loop_preheader_idx, loop_header);
9464 ctx->block = loop_header;
9465
9466 append_logical_start(ctx->block);
9467
9468 lc->header_idx_old = std::exchange(ctx->cf_info.parent_loop.header_idx, loop_header->index);
9469 lc->exit_old = std::exchange(ctx->cf_info.parent_loop.exit, &lc->loop_exit);
9470 lc->divergent_cont_old = std::exchange(ctx->cf_info.parent_loop.has_divergent_continue, false);
9471 lc->divergent_branch_old = std::exchange(ctx->cf_info.parent_loop.has_divergent_branch, false);
9472 lc->divergent_if_old = std::exchange(ctx->cf_info.parent_if.is_divergent, false);
9473 ctx->cf_info.loop_nest_depth++;
9474 }
9475
end_loop(isel_context * ctx,loop_context * lc)9476 void end_loop(isel_context *ctx, loop_context *lc)
9477 {
9478 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9479 if (!ctx->cf_info.has_branch) {
9480 unsigned loop_header_idx = ctx->cf_info.parent_loop.header_idx;
9481 Builder bld(ctx->program, ctx->block);
9482 append_logical_end(ctx->block);
9483
9484 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9485 /* Discards can result in code running with an empty exec mask.
9486 * This would result in divergent breaks not ever being taken. As a
9487 * workaround, break the loop when the loop mask is empty instead of
9488 * always continuing. */
9489 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9490 unsigned block_idx = ctx->block->index;
9491
9492 /* create helper blocks to avoid critical edges */
9493 Block *break_block = ctx->program->create_and_insert_block();
9494 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9495 break_block->kind = block_kind_uniform;
9496 bld.reset(break_block);
9497 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9498 add_linear_edge(block_idx, break_block);
9499 add_linear_edge(break_block->index, &lc->loop_exit);
9500
9501 Block *continue_block = ctx->program->create_and_insert_block();
9502 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9503 continue_block->kind = block_kind_uniform;
9504 bld.reset(continue_block);
9505 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9506 add_linear_edge(block_idx, continue_block);
9507 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9508
9509 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9510 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9511 ctx->block = &ctx->program->blocks[block_idx];
9512 } else {
9513 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9514 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9515 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9516 else
9517 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9518 }
9519
9520 bld.reset(ctx->block);
9521 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9522 }
9523
9524 ctx->cf_info.has_branch = false;
9525
9526 // TODO: if the loop has not a single exit, we must add one °°
9527 /* emit loop successor block */
9528 ctx->block = ctx->program->insert_block(std::move(lc->loop_exit));
9529 append_logical_start(ctx->block);
9530
9531 #if 0
9532 // TODO: check if it is beneficial to not branch on continues
9533 /* trim linear phis in loop header */
9534 for (auto&& instr : loop_entry->instructions) {
9535 if (instr->opcode == aco_opcode::p_linear_phi) {
9536 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9537 new_phi->definitions[0] = instr->definitions[0];
9538 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9539 new_phi->operands[i] = instr->operands[i];
9540 /* check that the remaining operands are all the same */
9541 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9542 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9543 instr.swap(new_phi);
9544 } else if (instr->opcode == aco_opcode::p_phi) {
9545 continue;
9546 } else {
9547 break;
9548 }
9549 }
9550 #endif
9551
9552 ctx->cf_info.parent_loop.header_idx = lc->header_idx_old;
9553 ctx->cf_info.parent_loop.exit = lc->exit_old;
9554 ctx->cf_info.parent_loop.has_divergent_continue = lc->divergent_cont_old;
9555 ctx->cf_info.parent_loop.has_divergent_branch = lc->divergent_branch_old;
9556 ctx->cf_info.parent_if.is_divergent = lc->divergent_if_old;
9557 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
9558 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
9559 ctx->cf_info.exec_potentially_empty_discard = false;
9560 }
9561
emit_loop_jump(isel_context * ctx,bool is_break)9562 void emit_loop_jump(isel_context *ctx, bool is_break)
9563 {
9564 Builder bld(ctx->program, ctx->block);
9565 Block *logical_target;
9566 append_logical_end(ctx->block);
9567 unsigned idx = ctx->block->index;
9568
9569 if (is_break) {
9570 logical_target = ctx->cf_info.parent_loop.exit;
9571 add_logical_edge(idx, logical_target);
9572 ctx->block->kind |= block_kind_break;
9573
9574 if (!ctx->cf_info.parent_if.is_divergent &&
9575 !ctx->cf_info.parent_loop.has_divergent_continue) {
9576 /* uniform break - directly jump out of the loop */
9577 ctx->block->kind |= block_kind_uniform;
9578 ctx->cf_info.has_branch = true;
9579 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9580 add_linear_edge(idx, logical_target);
9581 return;
9582 }
9583 ctx->cf_info.parent_loop.has_divergent_branch = true;
9584 } else {
9585 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9586 add_logical_edge(idx, logical_target);
9587 ctx->block->kind |= block_kind_continue;
9588
9589 if (!ctx->cf_info.parent_if.is_divergent) {
9590 /* uniform continue - directly jump to the loop header */
9591 ctx->block->kind |= block_kind_uniform;
9592 ctx->cf_info.has_branch = true;
9593 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9594 add_linear_edge(idx, logical_target);
9595 return;
9596 }
9597
9598 /* for potential uniform breaks after this continue,
9599 we must ensure that they are handled correctly */
9600 ctx->cf_info.parent_loop.has_divergent_continue = true;
9601 ctx->cf_info.parent_loop.has_divergent_branch = true;
9602 }
9603
9604 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9605 ctx->cf_info.exec_potentially_empty_break = true;
9606 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9607 }
9608
9609 /* remove critical edges from linear CFG */
9610 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9611 Block* break_block = ctx->program->create_and_insert_block();
9612 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9613 break_block->kind |= block_kind_uniform;
9614 add_linear_edge(idx, break_block);
9615 /* the loop_header pointer might be invalidated by this point */
9616 if (!is_break)
9617 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9618 add_linear_edge(break_block->index, logical_target);
9619 bld.reset(break_block);
9620 bld.branch(aco_opcode::p_branch, bld.hint_vcc(bld.def(s2)));
9621
9622 Block* continue_block = ctx->program->create_and_insert_block();
9623 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9624 add_linear_edge(idx, continue_block);
9625 append_logical_start(continue_block);
9626 ctx->block = continue_block;
9627 }
9628
emit_loop_break(isel_context * ctx)9629 void emit_loop_break(isel_context *ctx)
9630 {
9631 emit_loop_jump(ctx, true);
9632 }
9633
emit_loop_continue(isel_context * ctx)9634 void emit_loop_continue(isel_context *ctx)
9635 {
9636 emit_loop_jump(ctx, false);
9637 }
9638
visit_jump(isel_context * ctx,nir_jump_instr * instr)9639 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9640 {
9641 /* visit_block() would usually do this but divergent jumps updates ctx->block */
9642 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9643
9644 switch (instr->type) {
9645 case nir_jump_break:
9646 emit_loop_break(ctx);
9647 break;
9648 case nir_jump_continue:
9649 emit_loop_continue(ctx);
9650 break;
9651 default:
9652 isel_err(&instr->instr, "Unknown NIR jump instr");
9653 abort();
9654 }
9655 }
9656
visit_block(isel_context * ctx,nir_block * block)9657 void visit_block(isel_context *ctx, nir_block *block)
9658 {
9659 nir_foreach_instr(instr, block) {
9660 switch (instr->type) {
9661 case nir_instr_type_alu:
9662 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9663 break;
9664 case nir_instr_type_load_const:
9665 visit_load_const(ctx, nir_instr_as_load_const(instr));
9666 break;
9667 case nir_instr_type_intrinsic:
9668 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9669 break;
9670 case nir_instr_type_tex:
9671 visit_tex(ctx, nir_instr_as_tex(instr));
9672 break;
9673 case nir_instr_type_phi:
9674 visit_phi(ctx, nir_instr_as_phi(instr));
9675 break;
9676 case nir_instr_type_ssa_undef:
9677 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9678 break;
9679 case nir_instr_type_deref:
9680 break;
9681 case nir_instr_type_jump:
9682 visit_jump(ctx, nir_instr_as_jump(instr));
9683 break;
9684 default:
9685 isel_err(instr, "Unknown NIR instr type");
9686 //abort();
9687 }
9688 }
9689
9690 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9691 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9692 }
9693
9694
9695
create_continue_phis(isel_context * ctx,unsigned first,unsigned last,aco_ptr<Instruction> & header_phi,Operand * vals)9696 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9697 aco_ptr<Instruction>& header_phi, Operand *vals)
9698 {
9699 vals[0] = Operand(header_phi->definitions[0].getTemp());
9700 RegClass rc = vals[0].regClass();
9701
9702 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9703
9704 unsigned next_pred = 1;
9705
9706 for (unsigned idx = first + 1; idx <= last; idx++) {
9707 Block& block = ctx->program->blocks[idx];
9708 if (block.loop_nest_depth != loop_nest_depth) {
9709 vals[idx - first] = vals[idx - 1 - first];
9710 continue;
9711 }
9712
9713 if ((block.kind & block_kind_continue) && block.index != last) {
9714 vals[idx - first] = header_phi->operands[next_pred];
9715 next_pred++;
9716 continue;
9717 }
9718
9719 bool all_same = true;
9720 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9721 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9722
9723 Operand val;
9724 if (all_same) {
9725 val = vals[block.linear_preds[0] - first];
9726 } else {
9727 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9728 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9729 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9730 phi->operands[i] = vals[block.linear_preds[i] - first];
9731 val = Operand(ctx->program->allocateTmp(rc));
9732 phi->definitions[0] = Definition(val.getTemp());
9733 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9734 }
9735 vals[idx - first] = val;
9736 }
9737
9738 return vals[last - first];
9739 }
9740
visit_loop(isel_context * ctx,nir_loop * loop)9741 static void visit_loop(isel_context *ctx, nir_loop *loop)
9742 {
9743 loop_context lc;
9744 begin_loop(ctx, &lc);
9745 bool unreachable = visit_cf_list(ctx, &loop->body);
9746
9747 unsigned loop_header_idx = ctx->cf_info.parent_loop.header_idx;
9748
9749 /* Fixup phis in loop header from unreachable blocks.
9750 * has_branch/has_divergent_branch also indicates if the loop ends with a
9751 * break/continue instruction, but we don't emit those if unreachable=true */
9752 if (unreachable) {
9753 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9754 bool linear = ctx->cf_info.has_branch;
9755 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9756 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9757 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9758 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9759 /* the last operand should be the one that needs to be removed */
9760 instr->operands.pop_back();
9761 } else if (!is_phi(instr)) {
9762 break;
9763 }
9764 }
9765 }
9766
9767 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9768 * and the previous one shouldn't both happen at once because a break in the
9769 * merge block would get CSE'd */
9770 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9771 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9772 Operand *const vals = (Operand *)alloca(num_vals * sizeof(Operand));
9773 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9774 if (instr->opcode == aco_opcode::p_linear_phi) {
9775 if (ctx->cf_info.has_branch)
9776 instr->operands.pop_back();
9777 else
9778 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9779 } else if (!is_phi(instr)) {
9780 break;
9781 }
9782 }
9783 }
9784
9785 end_loop(ctx, &lc);
9786 }
9787
begin_divergent_if_then(isel_context * ctx,if_context * ic,Temp cond)9788 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9789 {
9790 ic->cond = cond;
9791
9792 append_logical_end(ctx->block);
9793 ctx->block->kind |= block_kind_branch;
9794
9795 /* branch to linear then block */
9796 assert(cond.regClass() == ctx->program->lane_mask);
9797 aco_ptr<Pseudo_branch_instruction> branch;
9798 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 1));
9799 branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
9800 branch->definitions[0].setHint(vcc);
9801 branch->operands[0] = Operand(cond);
9802 ctx->block->instructions.push_back(std::move(branch));
9803
9804 ic->BB_if_idx = ctx->block->index;
9805 ic->BB_invert = Block();
9806 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9807 /* Invert blocks are intentionally not marked as top level because they
9808 * are not part of the logical cfg. */
9809 ic->BB_invert.kind |= block_kind_invert;
9810 ic->BB_endif = Block();
9811 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9812 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9813
9814 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9815 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9816 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9817 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9818 ctx->cf_info.parent_if.is_divergent = true;
9819
9820 /* divergent branches use cbranch_execz */
9821 ctx->cf_info.exec_potentially_empty_discard = false;
9822 ctx->cf_info.exec_potentially_empty_break = false;
9823 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9824
9825 /** emit logical then block */
9826 Block* BB_then_logical = ctx->program->create_and_insert_block();
9827 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9828 add_edge(ic->BB_if_idx, BB_then_logical);
9829 ctx->block = BB_then_logical;
9830 append_logical_start(BB_then_logical);
9831 }
9832
begin_divergent_if_else(isel_context * ctx,if_context * ic)9833 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9834 {
9835 Block *BB_then_logical = ctx->block;
9836 append_logical_end(BB_then_logical);
9837 /* branch from logical then block to invert block */
9838 aco_ptr<Pseudo_branch_instruction> branch;
9839 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9840 branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
9841 branch->definitions[0].setHint(vcc);
9842 BB_then_logical->instructions.emplace_back(std::move(branch));
9843 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9844 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9845 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9846 BB_then_logical->kind |= block_kind_uniform;
9847 assert(!ctx->cf_info.has_branch);
9848 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9849 ctx->cf_info.parent_loop.has_divergent_branch = false;
9850
9851 /** emit linear then block */
9852 Block* BB_then_linear = ctx->program->create_and_insert_block();
9853 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9854 BB_then_linear->kind |= block_kind_uniform;
9855 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9856 /* branch from linear then block to invert block */
9857 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9858 branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
9859 branch->definitions[0].setHint(vcc);
9860 BB_then_linear->instructions.emplace_back(std::move(branch));
9861 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9862
9863 /** emit invert merge block */
9864 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9865 ic->invert_idx = ctx->block->index;
9866
9867 /* branch to linear else block (skip else) */
9868 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 1));
9869 branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
9870 branch->definitions[0].setHint(vcc);
9871 branch->operands[0] = Operand(ic->cond);
9872 ctx->block->instructions.push_back(std::move(branch));
9873
9874 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9875 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9876 ic->exec_potentially_empty_break_depth_old =
9877 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9878 /* divergent branches use cbranch_execz */
9879 ctx->cf_info.exec_potentially_empty_discard = false;
9880 ctx->cf_info.exec_potentially_empty_break = false;
9881 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9882
9883 /** emit logical else block */
9884 Block* BB_else_logical = ctx->program->create_and_insert_block();
9885 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9886 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9887 add_linear_edge(ic->invert_idx, BB_else_logical);
9888 ctx->block = BB_else_logical;
9889 append_logical_start(BB_else_logical);
9890 }
9891
end_divergent_if(isel_context * ctx,if_context * ic)9892 static void end_divergent_if(isel_context *ctx, if_context *ic)
9893 {
9894 Block *BB_else_logical = ctx->block;
9895 append_logical_end(BB_else_logical);
9896
9897 /* branch from logical else block to endif block */
9898 aco_ptr<Pseudo_branch_instruction> branch;
9899 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9900 branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
9901 branch->definitions[0].setHint(vcc);
9902 BB_else_logical->instructions.emplace_back(std::move(branch));
9903 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9904 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9905 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9906 BB_else_logical->kind |= block_kind_uniform;
9907
9908 assert(!ctx->cf_info.has_branch);
9909 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9910
9911
9912 /** emit linear else block */
9913 Block* BB_else_linear = ctx->program->create_and_insert_block();
9914 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9915 BB_else_linear->kind |= block_kind_uniform;
9916 add_linear_edge(ic->invert_idx, BB_else_linear);
9917
9918 /* branch from linear else block to endif block */
9919 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9920 branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
9921 branch->definitions[0].setHint(vcc);
9922 BB_else_linear->instructions.emplace_back(std::move(branch));
9923 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9924
9925
9926 /** emit endif merge block */
9927 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9928 append_logical_start(ctx->block);
9929
9930
9931 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9932 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9933 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9934 ctx->cf_info.exec_potentially_empty_break_depth =
9935 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9936 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9937 !ctx->cf_info.parent_if.is_divergent) {
9938 ctx->cf_info.exec_potentially_empty_break = false;
9939 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9940 }
9941 /* uniform control flow never has an empty exec-mask */
9942 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9943 ctx->cf_info.exec_potentially_empty_discard = false;
9944 ctx->cf_info.exec_potentially_empty_break = false;
9945 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9946 }
9947 }
9948
begin_uniform_if_then(isel_context * ctx,if_context * ic,Temp cond)9949 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9950 {
9951 assert(cond.regClass() == s1);
9952
9953 append_logical_end(ctx->block);
9954 ctx->block->kind |= block_kind_uniform;
9955
9956 aco_ptr<Pseudo_branch_instruction> branch;
9957 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9958 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 1));
9959 branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
9960 branch->definitions[0].setHint(vcc);
9961 branch->operands[0] = Operand(cond);
9962 branch->operands[0].setFixed(scc);
9963 ctx->block->instructions.emplace_back(std::move(branch));
9964
9965 ic->BB_if_idx = ctx->block->index;
9966 ic->BB_endif = Block();
9967 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9968 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9969
9970 ctx->cf_info.has_branch = false;
9971 ctx->cf_info.parent_loop.has_divergent_branch = false;
9972
9973 /** emit then block */
9974 Block* BB_then = ctx->program->create_and_insert_block();
9975 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9976 add_edge(ic->BB_if_idx, BB_then);
9977 append_logical_start(BB_then);
9978 ctx->block = BB_then;
9979 }
9980
begin_uniform_if_else(isel_context * ctx,if_context * ic)9981 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9982 {
9983 Block *BB_then = ctx->block;
9984
9985 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9986 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9987
9988 if (!ic->uniform_has_then_branch) {
9989 append_logical_end(BB_then);
9990 /* branch from then block to endif block */
9991 aco_ptr<Pseudo_branch_instruction> branch;
9992 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
9993 branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
9994 branch->definitions[0].setHint(vcc);
9995 BB_then->instructions.emplace_back(std::move(branch));
9996 add_linear_edge(BB_then->index, &ic->BB_endif);
9997 if (!ic->then_branch_divergent)
9998 add_logical_edge(BB_then->index, &ic->BB_endif);
9999 BB_then->kind |= block_kind_uniform;
10000 }
10001
10002 ctx->cf_info.has_branch = false;
10003 ctx->cf_info.parent_loop.has_divergent_branch = false;
10004
10005 /** emit else block */
10006 Block* BB_else = ctx->program->create_and_insert_block();
10007 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
10008 add_edge(ic->BB_if_idx, BB_else);
10009 append_logical_start(BB_else);
10010 ctx->block = BB_else;
10011 }
10012
end_uniform_if(isel_context * ctx,if_context * ic)10013 static void end_uniform_if(isel_context *ctx, if_context *ic)
10014 {
10015 Block *BB_else = ctx->block;
10016
10017 if (!ctx->cf_info.has_branch) {
10018 append_logical_end(BB_else);
10019 /* branch from then block to endif block */
10020 aco_ptr<Pseudo_branch_instruction> branch;
10021 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 1));
10022 branch->definitions[0] = Definition(ctx->program->allocateTmp(s2));
10023 branch->definitions[0].setHint(vcc);
10024 BB_else->instructions.emplace_back(std::move(branch));
10025 add_linear_edge(BB_else->index, &ic->BB_endif);
10026 if (!ctx->cf_info.parent_loop.has_divergent_branch)
10027 add_logical_edge(BB_else->index, &ic->BB_endif);
10028 BB_else->kind |= block_kind_uniform;
10029 }
10030
10031 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
10032 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
10033
10034 /** emit endif merge block */
10035 if (!ctx->cf_info.has_branch) {
10036 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
10037 append_logical_start(ctx->block);
10038 }
10039 }
10040
visit_if(isel_context * ctx,nir_if * if_stmt)10041 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
10042 {
10043 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
10044 Builder bld(ctx->program, ctx->block);
10045 aco_ptr<Pseudo_branch_instruction> branch;
10046 if_context ic;
10047
10048 if (!nir_src_is_divergent(if_stmt->condition)) { /* uniform condition */
10049 /**
10050 * Uniform conditionals are represented in the following way*) :
10051 *
10052 * The linear and logical CFG:
10053 * BB_IF
10054 * / \
10055 * BB_THEN (logical) BB_ELSE (logical)
10056 * \ /
10057 * BB_ENDIF
10058 *
10059 * *) Exceptions may be due to break and continue statements within loops
10060 * If a break/continue happens within uniform control flow, it branches
10061 * to the loop exit/entry block. Otherwise, it branches to the next
10062 * merge block.
10063 **/
10064
10065 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
10066 assert(cond.regClass() == ctx->program->lane_mask);
10067 cond = bool_to_scalar_condition(ctx, cond);
10068
10069 begin_uniform_if_then(ctx, &ic, cond);
10070 visit_cf_list(ctx, &if_stmt->then_list);
10071
10072 begin_uniform_if_else(ctx, &ic);
10073 visit_cf_list(ctx, &if_stmt->else_list);
10074
10075 end_uniform_if(ctx, &ic);
10076 } else { /* non-uniform condition */
10077 /**
10078 * To maintain a logical and linear CFG without critical edges,
10079 * non-uniform conditionals are represented in the following way*) :
10080 *
10081 * The linear CFG:
10082 * BB_IF
10083 * / \
10084 * BB_THEN (logical) BB_THEN (linear)
10085 * \ /
10086 * BB_INVERT (linear)
10087 * / \
10088 * BB_ELSE (logical) BB_ELSE (linear)
10089 * \ /
10090 * BB_ENDIF
10091 *
10092 * The logical CFG:
10093 * BB_IF
10094 * / \
10095 * BB_THEN (logical) BB_ELSE (logical)
10096 * \ /
10097 * BB_ENDIF
10098 *
10099 * *) Exceptions may be due to break and continue statements within loops
10100 **/
10101
10102 begin_divergent_if_then(ctx, &ic, cond);
10103 visit_cf_list(ctx, &if_stmt->then_list);
10104
10105 begin_divergent_if_else(ctx, &ic);
10106 visit_cf_list(ctx, &if_stmt->else_list);
10107
10108 end_divergent_if(ctx, &ic);
10109 }
10110
10111 return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty();
10112 }
10113
visit_cf_list(isel_context * ctx,struct exec_list * list)10114 static bool visit_cf_list(isel_context *ctx,
10115 struct exec_list *list)
10116 {
10117 foreach_list_typed(nir_cf_node, node, node, list) {
10118 switch (node->type) {
10119 case nir_cf_node_block:
10120 visit_block(ctx, nir_cf_node_as_block(node));
10121 break;
10122 case nir_cf_node_if:
10123 if (!visit_if(ctx, nir_cf_node_as_if(node)))
10124 return true;
10125 break;
10126 case nir_cf_node_loop:
10127 visit_loop(ctx, nir_cf_node_as_loop(node));
10128 break;
10129 default:
10130 unreachable("unimplemented cf list type");
10131 }
10132 }
10133 return false;
10134 }
10135
export_vs_varying(isel_context * ctx,int slot,bool is_pos,int * next_pos)10136 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
10137 {
10138 assert(ctx->stage.hw == HWStage::VS || ctx->stage.hw == HWStage::NGG);
10139
10140 int offset = (ctx->stage.has(SWStage::TES) && !ctx->stage.has(SWStage::GS))
10141 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
10142 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
10143 uint64_t mask = ctx->outputs.mask[slot];
10144 if (!is_pos && !mask)
10145 return;
10146 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
10147 return;
10148 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
10149 exp->enabled_mask = mask;
10150 for (unsigned i = 0; i < 4; ++i) {
10151 if (mask & (1 << i))
10152 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
10153 else
10154 exp->operands[i] = Operand(v1);
10155 }
10156 /* GFX10 (Navi1x) skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
10157 * Setting valid_mask=1 prevents it and has no other effect.
10158 */
10159 exp->valid_mask = ctx->options->chip_class == GFX10 && is_pos && *next_pos == 0;
10160 exp->done = false;
10161 exp->compressed = false;
10162 if (is_pos)
10163 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
10164 else
10165 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
10166 ctx->block->instructions.emplace_back(std::move(exp));
10167 }
10168
export_vs_psiz_layer_viewport(isel_context * ctx,int * next_pos)10169 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
10170 {
10171 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
10172 exp->enabled_mask = 0;
10173 for (unsigned i = 0; i < 4; ++i)
10174 exp->operands[i] = Operand(v1);
10175 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
10176 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
10177 exp->enabled_mask |= 0x1;
10178 }
10179 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
10180 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
10181 exp->enabled_mask |= 0x4;
10182 }
10183 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
10184 if (ctx->options->chip_class < GFX9) {
10185 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
10186 exp->enabled_mask |= 0x8;
10187 } else {
10188 Builder bld(ctx->program, ctx->block);
10189
10190 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
10191 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
10192 if (exp->operands[2].isTemp())
10193 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
10194
10195 exp->operands[2] = Operand(out);
10196 exp->enabled_mask |= 0x4;
10197 }
10198 }
10199 exp->valid_mask = ctx->options->chip_class == GFX10 && *next_pos == 0;
10200 exp->done = false;
10201 exp->compressed = false;
10202 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
10203 ctx->block->instructions.emplace_back(std::move(exp));
10204 }
10205
create_export_phis(isel_context * ctx)10206 static void create_export_phis(isel_context *ctx)
10207 {
10208 /* Used when exports are needed, but the output temps are defined in a preceding block.
10209 * This function will set up phis in order to access the outputs in the next block.
10210 */
10211
10212 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
10213 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
10214 ctx->block->instructions.pop_back();
10215
10216 Builder bld(ctx->program, ctx->block);
10217
10218 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
10219 uint64_t mask = ctx->outputs.mask[slot];
10220 for (unsigned i = 0; i < 4; ++i) {
10221 if (!(mask & (1 << i)))
10222 continue;
10223
10224 Temp old = ctx->outputs.temps[slot * 4 + i];
10225 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
10226 ctx->outputs.temps[slot * 4 + i] = phi;
10227 }
10228 }
10229
10230 bld.insert(std::move(logical_start));
10231 }
10232
create_vs_exports(isel_context * ctx)10233 static void create_vs_exports(isel_context *ctx)
10234 {
10235 assert(ctx->stage.hw == HWStage::VS || ctx->stage.hw == HWStage::NGG);
10236
10237 radv_vs_output_info *outinfo = (ctx->stage.has(SWStage::TES) && !ctx->stage.has(SWStage::GS))
10238 ? &ctx->program->info->tes.outinfo
10239 : &ctx->program->info->vs.outinfo;
10240
10241 if (outinfo->export_prim_id && ctx->stage.hw != HWStage::NGG) {
10242 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10243 if (ctx->stage.has(SWStage::TES))
10244 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->ac.tes_patch_id);
10245 else
10246 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
10247 }
10248
10249 if (ctx->options->key.has_multiview_view_index) {
10250 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
10251 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
10252 }
10253
10254 /* Hardware requires position data to always be exported, even if the
10255 * application did not write gl_Position.
10256 */
10257 ctx->outputs.mask[VARYING_SLOT_POS] = 0xf;
10258
10259 /* the order these position exports are created is important */
10260 int next_pos = 0;
10261 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
10262 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
10263 export_vs_psiz_layer_viewport(ctx, &next_pos);
10264 }
10265 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
10266 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
10267 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
10268 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
10269
10270 if (ctx->export_clip_dists) {
10271 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
10272 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
10273 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
10274 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
10275 }
10276
10277 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10278 if (i < VARYING_SLOT_VAR0 &&
10279 i != VARYING_SLOT_LAYER &&
10280 i != VARYING_SLOT_PRIMITIVE_ID &&
10281 i != VARYING_SLOT_VIEWPORT)
10282 continue;
10283
10284 export_vs_varying(ctx, i, false, NULL);
10285 }
10286 }
10287
export_fs_mrt_z(isel_context * ctx)10288 static bool export_fs_mrt_z(isel_context *ctx)
10289 {
10290 Builder bld(ctx->program, ctx->block);
10291 unsigned enabled_channels = 0;
10292 bool compr = false;
10293 Operand values[4];
10294
10295 for (unsigned i = 0; i < 4; ++i) {
10296 values[i] = Operand(v1);
10297 }
10298
10299 /* Both stencil and sample mask only need 16-bits. */
10300 if (!ctx->program->info->ps.writes_z &&
10301 (ctx->program->info->ps.writes_stencil ||
10302 ctx->program->info->ps.writes_sample_mask)) {
10303 compr = true; /* COMPR flag */
10304
10305 if (ctx->program->info->ps.writes_stencil) {
10306 /* Stencil should be in X[23:16]. */
10307 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
10308 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
10309 enabled_channels |= 0x3;
10310 }
10311
10312 if (ctx->program->info->ps.writes_sample_mask) {
10313 /* SampleMask should be in Y[15:0]. */
10314 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
10315 enabled_channels |= 0xc;
10316 }
10317 } else {
10318 if (ctx->program->info->ps.writes_z) {
10319 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
10320 enabled_channels |= 0x1;
10321 }
10322
10323 if (ctx->program->info->ps.writes_stencil) {
10324 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
10325 enabled_channels |= 0x2;
10326 }
10327
10328 if (ctx->program->info->ps.writes_sample_mask) {
10329 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
10330 enabled_channels |= 0x4;
10331 }
10332 }
10333
10334 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
10335 * writemask component.
10336 */
10337 if (ctx->options->chip_class == GFX6 &&
10338 ctx->options->family != CHIP_OLAND &&
10339 ctx->options->family != CHIP_HAINAN) {
10340 enabled_channels |= 0x1;
10341 }
10342
10343 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10344 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
10345
10346 return true;
10347 }
10348
export_fs_mrt_color(isel_context * ctx,int slot)10349 static bool export_fs_mrt_color(isel_context *ctx, int slot)
10350 {
10351 Builder bld(ctx->program, ctx->block);
10352 unsigned write_mask = ctx->outputs.mask[slot];
10353 Operand values[4];
10354
10355 for (unsigned i = 0; i < 4; ++i) {
10356 if (write_mask & (1 << i)) {
10357 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
10358 } else {
10359 values[i] = Operand(v1);
10360 }
10361 }
10362
10363 unsigned target, col_format;
10364 unsigned enabled_channels = 0;
10365 aco_opcode compr_op = (aco_opcode)0;
10366
10367 slot -= FRAG_RESULT_DATA0;
10368 target = V_008DFC_SQ_EXP_MRT + slot;
10369 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
10370
10371 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
10372 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
10373 bool is_16bit = values[0].regClass() == v2b;
10374
10375 /* Replace NaN by zero (only 32-bit) to fix game bugs if requested. */
10376 if (ctx->options->enable_mrt_output_nan_fixup &&
10377 !is_16bit &&
10378 (col_format == V_028714_SPI_SHADER_32_R ||
10379 col_format == V_028714_SPI_SHADER_32_GR ||
10380 col_format == V_028714_SPI_SHADER_32_AR ||
10381 col_format == V_028714_SPI_SHADER_32_ABGR ||
10382 col_format == V_028714_SPI_SHADER_FP16_ABGR)) {
10383 for (int i = 0; i < 4; i++) {
10384 if (!(write_mask & (1 << i)))
10385 continue;
10386
10387 Temp isnan = bld.vopc(aco_opcode::v_cmp_class_f32,
10388 bld.hint_vcc(bld.def(bld.lm)), values[i],
10389 bld.copy(bld.def(v1), Operand(3u)));
10390 values[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), values[i],
10391 bld.copy(bld.def(v1), Operand(0u)), isnan);
10392 }
10393 }
10394
10395 switch (col_format)
10396 {
10397 case V_028714_SPI_SHADER_32_R:
10398 enabled_channels = 1;
10399 break;
10400
10401 case V_028714_SPI_SHADER_32_GR:
10402 enabled_channels = 0x3;
10403 break;
10404
10405 case V_028714_SPI_SHADER_32_AR:
10406 if (ctx->options->chip_class >= GFX10) {
10407 /* Special case: on GFX10, the outputs are different for 32_AR */
10408 enabled_channels = 0x3;
10409 values[1] = values[3];
10410 values[3] = Operand(v1);
10411 } else {
10412 enabled_channels = 0x9;
10413 }
10414 break;
10415
10416 case V_028714_SPI_SHADER_FP16_ABGR:
10417 for (int i = 0; i < 2; i++) {
10418 bool enabled = (write_mask >> (i*2)) & 0x3;
10419 if (enabled) {
10420 enabled_channels |= 1 << i;
10421 if (is_16bit) {
10422 values[i] = bld.pseudo(aco_opcode::p_create_vector, bld.def(v1),
10423 values[i*2].isUndefined() ? Operand(v2b) : values[i*2],
10424 values[i*2+1].isUndefined() ? Operand(v2b): values[i*2+1]);
10425 } else if (ctx->options->chip_class == GFX8 || ctx->options->chip_class == GFX9 ) {
10426 values[i] = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32_e64, bld.def(v1),
10427 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10428 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10429 } else {
10430 values[i] = bld.vop2(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1),
10431 values[i*2].isUndefined() ? values[i*2+1] : values[i*2],
10432 values[i*2+1].isUndefined() ? values[i*2] : values[i*2+1]);
10433 }
10434 } else {
10435 values[i] = Operand(v1);
10436 }
10437 }
10438 break;
10439
10440 case V_028714_SPI_SHADER_UNORM16_ABGR:
10441 if (is_16bit && ctx->options->chip_class >= GFX9) {
10442 compr_op = aco_opcode::v_cvt_pknorm_u16_f16;
10443 } else {
10444 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
10445 }
10446 break;
10447
10448 case V_028714_SPI_SHADER_SNORM16_ABGR:
10449 if (is_16bit && ctx->options->chip_class >= GFX9) {
10450 compr_op = aco_opcode::v_cvt_pknorm_i16_f16;
10451 } else {
10452 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
10453 }
10454 break;
10455
10456 case V_028714_SPI_SHADER_UINT16_ABGR: {
10457 compr_op = aco_opcode::v_cvt_pk_u16_u32;
10458 if (is_int8 || is_int10) {
10459 /* clamp */
10460 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
10461 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10462
10463 for (unsigned i = 0; i < 4; i++) {
10464 if ((write_mask >> i) & 1) {
10465 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
10466 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
10467 values[i]);
10468 }
10469 }
10470 } else if (is_16bit) {
10471 for (unsigned i = 0; i < 4; i++) {
10472 if ((write_mask >> i) & 1) {
10473 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, false);
10474 values[i] = Operand(tmp);
10475 }
10476 }
10477 }
10478 break;
10479 }
10480
10481 case V_028714_SPI_SHADER_SINT16_ABGR:
10482 compr_op = aco_opcode::v_cvt_pk_i16_i32;
10483 if (is_int8 || is_int10) {
10484 /* clamp */
10485 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
10486 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
10487 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10488 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
10489
10490 for (unsigned i = 0; i < 4; i++) {
10491 if ((write_mask >> i) & 1) {
10492 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
10493 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
10494 values[i]);
10495 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
10496 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
10497 values[i]);
10498 }
10499 }
10500 } else if (is_16bit) {
10501 for (unsigned i = 0; i < 4; i++) {
10502 if ((write_mask >> i) & 1) {
10503 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, true);
10504 values[i] = Operand(tmp);
10505 }
10506 }
10507 }
10508 break;
10509
10510 case V_028714_SPI_SHADER_32_ABGR:
10511 enabled_channels = 0xF;
10512 break;
10513
10514 case V_028714_SPI_SHADER_ZERO:
10515 default:
10516 return false;
10517 }
10518
10519 if ((bool) compr_op) {
10520 for (int i = 0; i < 2; i++) {
10521 /* check if at least one of the values to be compressed is enabled */
10522 bool enabled = (write_mask >> (i*2)) & 0x3;
10523 if (enabled) {
10524 enabled_channels |= 1 << (i*2);
10525 values[i] = bld.vop3(compr_op, bld.def(v1),
10526 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10527 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10528 } else {
10529 values[i] = Operand(v1);
10530 }
10531 }
10532 values[2] = Operand(v1);
10533 values[3] = Operand(v1);
10534 } else {
10535 for (int i = 0; i < 4; i++)
10536 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10537 }
10538
10539 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10540 enabled_channels, target, (bool) compr_op);
10541 return true;
10542 }
10543
create_fs_null_export(isel_context * ctx)10544 static void create_fs_null_export(isel_context *ctx)
10545 {
10546 /* FS must always have exports.
10547 * So when there are none, we need to add a null export.
10548 */
10549
10550 Builder bld(ctx->program, ctx->block);
10551 unsigned dest = V_008DFC_SQ_EXP_NULL;
10552 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
10553 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, /* vm */ true);
10554 }
10555
create_fs_exports(isel_context * ctx)10556 static void create_fs_exports(isel_context *ctx)
10557 {
10558 bool exported = false;
10559
10560 /* Export depth, stencil and sample mask. */
10561 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10562 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10563 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10564 exported |= export_fs_mrt_z(ctx);
10565
10566 /* Export all color render targets. */
10567 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10568 if (ctx->outputs.mask[i])
10569 exported |= export_fs_mrt_color(ctx, i);
10570
10571 if (!exported)
10572 create_fs_null_export(ctx);
10573 }
10574
create_workgroup_barrier(Builder & bld)10575 static void create_workgroup_barrier(Builder& bld)
10576 {
10577 bld.barrier(aco_opcode::p_barrier,
10578 memory_sync_info(storage_shared, semantic_acqrel, scope_workgroup),
10579 scope_workgroup);
10580 }
10581
write_tcs_tess_factors(isel_context * ctx)10582 static void write_tcs_tess_factors(isel_context *ctx)
10583 {
10584 unsigned outer_comps;
10585 unsigned inner_comps;
10586
10587 switch (ctx->args->options->key.tcs.primitive_mode) {
10588 case GL_ISOLINES:
10589 outer_comps = 2;
10590 inner_comps = 0;
10591 break;
10592 case GL_TRIANGLES:
10593 outer_comps = 3;
10594 inner_comps = 1;
10595 break;
10596 case GL_QUADS:
10597 outer_comps = 4;
10598 inner_comps = 2;
10599 break;
10600 default:
10601 return;
10602 }
10603
10604 Builder bld(ctx->program, ctx->block);
10605
10606 create_workgroup_barrier(bld);
10607
10608 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10609 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10610
10611 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10612 if_context ic_invocation_id_is_zero;
10613 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10614 bld.reset(ctx->block);
10615
10616 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10617
10618 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10619 unsigned stride = inner_comps + outer_comps;
10620 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10621 Temp tf_inner_vec;
10622 Temp tf_outer_vec;
10623 Temp out[6];
10624 assert(stride <= (sizeof(out) / sizeof(Temp)));
10625
10626 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10627 // LINES reversal
10628 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10629 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10630 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10631 } else {
10632 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10633 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10634
10635 for (unsigned i = 0; i < outer_comps; ++i)
10636 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10637 for (unsigned i = 0; i < inner_comps; ++i)
10638 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10639 }
10640
10641 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10642 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10643 Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u);
10644 unsigned tf_const_offset = 0;
10645
10646 if (ctx->program->chip_class <= GFX8) {
10647 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10648 if_context ic_rel_patch_id_is_zero;
10649 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10650 bld.reset(ctx->block);
10651
10652 /* Store the dynamic HS control word. */
10653 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10654 bld.mubuf(aco_opcode::buffer_store_dword,
10655 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10656 /* immediate OFFSET */ 0, /* OFFEN */ false, /* swizzled */ false, /* idxen*/ false,
10657 /* addr64 */ false, /* disable_wqm */ false, /* glc */ true);
10658 tf_const_offset += 4;
10659
10660 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10661 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10662 bld.reset(ctx->block);
10663 }
10664
10665 assert(stride == 2 || stride == 4 || stride == 6);
10666 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10667 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, memory_sync_info());
10668
10669 /* Store to offchip for TES to read - only if TES reads them */
10670 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10671 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10672 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10673
10674 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10675 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, memory_sync_info(storage_vmem_output));
10676
10677 if (likely(inner_comps)) {
10678 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10679 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, memory_sync_info(storage_vmem_output));
10680 }
10681 }
10682
10683 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10684 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10685 }
10686
emit_stream_output(isel_context * ctx,Temp const * so_buffers,Temp const * so_write_offset,const struct radv_stream_output * output)10687 static void emit_stream_output(isel_context *ctx,
10688 Temp const *so_buffers,
10689 Temp const *so_write_offset,
10690 const struct radv_stream_output *output)
10691 {
10692 unsigned num_comps = util_bitcount(output->component_mask);
10693 unsigned writemask = (1 << num_comps) - 1;
10694 unsigned loc = output->location;
10695 unsigned buf = output->buffer;
10696
10697 assert(num_comps && num_comps <= 4);
10698 if (!num_comps || num_comps > 4)
10699 return;
10700
10701 unsigned start = ffs(output->component_mask) - 1;
10702
10703 Temp out[4];
10704 bool all_undef = true;
10705 assert(ctx->stage.hw == HWStage::VS);
10706 for (unsigned i = 0; i < num_comps; i++) {
10707 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10708 all_undef = all_undef && !out[i].id();
10709 }
10710 if (all_undef)
10711 return;
10712
10713 while (writemask) {
10714 int start, count;
10715 u_bit_scan_consecutive_range(&writemask, &start, &count);
10716 if (count == 3 && ctx->options->chip_class == GFX6) {
10717 /* GFX6 doesn't support storing vec3, split it. */
10718 writemask |= 1u << (start + 2);
10719 count = 2;
10720 }
10721
10722 unsigned offset = output->offset + start * 4;
10723
10724 Temp write_data = ctx->program->allocateTmp(RegClass(RegType::vgpr, count));
10725 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10726 for (int i = 0; i < count; ++i)
10727 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10728 vec->definitions[0] = Definition(write_data);
10729 ctx->block->instructions.emplace_back(std::move(vec));
10730
10731 aco_opcode opcode;
10732 switch (count) {
10733 case 1:
10734 opcode = aco_opcode::buffer_store_dword;
10735 break;
10736 case 2:
10737 opcode = aco_opcode::buffer_store_dwordx2;
10738 break;
10739 case 3:
10740 opcode = aco_opcode::buffer_store_dwordx3;
10741 break;
10742 case 4:
10743 opcode = aco_opcode::buffer_store_dwordx4;
10744 break;
10745 default:
10746 unreachable("Unsupported dword count.");
10747 }
10748
10749 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10750 store->operands[0] = Operand(so_buffers[buf]);
10751 store->operands[1] = Operand(so_write_offset[buf]);
10752 store->operands[2] = Operand((uint32_t) 0);
10753 store->operands[3] = Operand(write_data);
10754 if (offset > 4095) {
10755 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10756 Builder bld(ctx->program, ctx->block);
10757 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10758 } else {
10759 store->offset = offset;
10760 }
10761 store->offen = true;
10762 store->glc = true;
10763 store->dlc = false;
10764 store->slc = true;
10765 ctx->block->instructions.emplace_back(std::move(store));
10766 }
10767 }
10768
emit_streamout(isel_context * ctx,unsigned stream)10769 static void emit_streamout(isel_context *ctx, unsigned stream)
10770 {
10771 Builder bld(ctx->program, ctx->block);
10772
10773 Temp so_buffers[4];
10774 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10775 for (unsigned i = 0; i < 4; i++) {
10776 unsigned stride = ctx->program->info->so.strides[i];
10777 if (!stride)
10778 continue;
10779
10780 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10781 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10782 }
10783
10784 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10785 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10786
10787 Temp tid = emit_mbcnt(ctx, bld.tmp(v1));
10788
10789 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10790
10791 if_context ic;
10792 begin_divergent_if_then(ctx, &ic, can_emit);
10793
10794 bld.reset(ctx->block);
10795
10796 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10797
10798 Temp so_write_offset[4];
10799
10800 for (unsigned i = 0; i < 4; i++) {
10801 unsigned stride = ctx->program->info->so.strides[i];
10802 if (!stride)
10803 continue;
10804
10805 if (stride == 1) {
10806 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10807 get_arg(ctx, ctx->args->streamout_write_idx),
10808 get_arg(ctx, ctx->args->streamout_offset[i]));
10809 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10810
10811 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10812 } else {
10813 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10814 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10815 get_arg(ctx, ctx->args->streamout_offset[i]));
10816 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10817 }
10818 }
10819
10820 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10821 struct radv_stream_output *output =
10822 &ctx->program->info->so.outputs[i];
10823 if (stream != output->stream)
10824 continue;
10825
10826 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10827 }
10828
10829 begin_divergent_if_else(ctx, &ic);
10830 end_divergent_if(ctx, &ic);
10831 }
10832
add_startpgm(struct isel_context * ctx)10833 Pseudo_instruction *add_startpgm(struct isel_context *ctx)
10834 {
10835 unsigned arg_count = ctx->args->ac.arg_count;
10836 if (ctx->stage == fragment_fs) {
10837 /* LLVM optimizes away unused FS inputs and computes spi_ps_input_addr
10838 * itself and then communicates the results back via the ELF binary.
10839 * Mirror what LLVM does by re-mapping the VGPR arguments here.
10840 *
10841 * TODO: If we made the FS input scanning code into a separate pass that
10842 * could run before argument setup, then this wouldn't be necessary
10843 * anymore.
10844 */
10845 struct ac_shader_args *args = &ctx->args->ac;
10846 arg_count = 0;
10847 for (unsigned i = 0, vgpr_arg = 0, vgpr_reg = 0; i < args->arg_count; i++) {
10848 if (args->args[i].file != AC_ARG_VGPR) {
10849 arg_count++;
10850 continue;
10851 }
10852
10853 if (!(ctx->program->config->spi_ps_input_addr & (1 << vgpr_arg))) {
10854 args->args[i].skip = true;
10855 } else {
10856 args->args[i].offset = vgpr_reg;
10857 vgpr_reg += args->args[i].size;
10858 arg_count++;
10859 }
10860 vgpr_arg++;
10861 }
10862 }
10863
10864 aco_ptr<Pseudo_instruction> startpgm{create_instruction<Pseudo_instruction>(aco_opcode::p_startpgm, Format::PSEUDO, 0, arg_count + 1)};
10865 for (unsigned i = 0, arg = 0; i < ctx->args->ac.arg_count; i++) {
10866 if (ctx->args->ac.args[i].skip)
10867 continue;
10868
10869 enum ac_arg_regfile file = ctx->args->ac.args[i].file;
10870 unsigned size = ctx->args->ac.args[i].size;
10871 unsigned reg = ctx->args->ac.args[i].offset;
10872 RegClass type = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size);
10873 Temp dst = ctx->program->allocateTmp(type);
10874 ctx->arg_temps[i] = dst;
10875 startpgm->definitions[arg] = Definition(dst);
10876 startpgm->definitions[arg].setFixed(PhysReg{file == AC_ARG_SGPR ? reg : reg + 256});
10877 arg++;
10878 }
10879 startpgm->definitions[arg_count] = Definition{ctx->program->allocateId(ctx->program->lane_mask), exec, ctx->program->lane_mask};
10880 Pseudo_instruction *instr = startpgm.get();
10881 ctx->block->instructions.push_back(std::move(startpgm));
10882
10883 /* Stash these in the program so that they can be accessed later when
10884 * handling spilling.
10885 */
10886 ctx->program->private_segment_buffer = get_arg(ctx, ctx->args->ring_offsets);
10887 ctx->program->scratch_offset = get_arg(ctx, ctx->args->scratch_offset);
10888
10889 return instr;
10890 }
10891
fix_ls_vgpr_init_bug(isel_context * ctx,Pseudo_instruction * startpgm)10892 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10893 {
10894 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10895 Builder bld(ctx->program, ctx->block);
10896 constexpr unsigned hs_idx = 1u;
10897 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10898 get_arg(ctx, ctx->args->merged_wave_info),
10899 Operand((8u << 16) | (hs_idx * 8u)));
10900 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10901
10902 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10903
10904 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10905 get_arg(ctx, ctx->args->rel_auto_id),
10906 get_arg(ctx, ctx->args->ac.instance_id),
10907 ls_has_nonzero_hs_threads);
10908 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10909 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10910 get_arg(ctx, ctx->args->rel_auto_id),
10911 ls_has_nonzero_hs_threads);
10912 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10913 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10914 get_arg(ctx, ctx->args->ac.vertex_id),
10915 ls_has_nonzero_hs_threads);
10916
10917 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10918 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10919 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10920 }
10921
split_arguments(isel_context * ctx,Pseudo_instruction * startpgm)10922 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10923 {
10924 /* Split all arguments except for the first (ring_offsets) and the last
10925 * (exec) so that the dead channels don't stay live throughout the program.
10926 */
10927 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10928 if (startpgm->definitions[i].regClass().size() > 1) {
10929 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10930 startpgm->definitions[i].regClass().size());
10931 }
10932 }
10933 }
10934
handle_bc_optimize(isel_context * ctx)10935 void handle_bc_optimize(isel_context *ctx)
10936 {
10937 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10938 Builder bld(ctx->program, ctx->block);
10939 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10940 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10941 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10942 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10943 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10944 if (uses_center && uses_centroid) {
10945 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10946 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10947
10948 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10949 Temp new_coord[2];
10950 for (unsigned i = 0; i < 2; i++) {
10951 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10952 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10953 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10954 persp_centroid, persp_center, sel);
10955 }
10956 ctx->persp_centroid = bld.tmp(v2);
10957 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10958 Operand(new_coord[0]), Operand(new_coord[1]));
10959 emit_split_vector(ctx, ctx->persp_centroid, 2);
10960 }
10961
10962 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10963 Temp new_coord[2];
10964 for (unsigned i = 0; i < 2; i++) {
10965 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10966 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10967 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10968 linear_centroid, linear_center, sel);
10969 }
10970 ctx->linear_centroid = bld.tmp(v2);
10971 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10972 Operand(new_coord[0]), Operand(new_coord[1]));
10973 emit_split_vector(ctx, ctx->linear_centroid, 2);
10974 }
10975 }
10976 }
10977
setup_fp_mode(isel_context * ctx,nir_shader * shader)10978 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10979 {
10980 Program *program = ctx->program;
10981
10982 unsigned float_controls = shader->info.float_controls_execution_mode;
10983
10984 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10985 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10986 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10987 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10988 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10989
10990 program->next_fp_mode.must_flush_denorms32 =
10991 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10992 program->next_fp_mode.must_flush_denorms16_64 =
10993 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10994 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10995
10996 program->next_fp_mode.care_about_round32 =
10997 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10998
10999 program->next_fp_mode.care_about_round16_64 =
11000 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
11001 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
11002
11003 /* default to preserving fp16 and fp64 denorms, since it's free for fp64 and
11004 * the precision seems needed for Wolfenstein: Youngblood to render correctly */
11005 if (program->next_fp_mode.must_flush_denorms16_64)
11006 program->next_fp_mode.denorm16_64 = 0;
11007 else
11008 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
11009
11010 /* preserving fp32 denorms is expensive, so only do it if asked */
11011 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
11012 program->next_fp_mode.denorm32 = fp_denorm_keep;
11013 else
11014 program->next_fp_mode.denorm32 = 0;
11015
11016 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
11017 program->next_fp_mode.round32 = fp_round_tz;
11018 else
11019 program->next_fp_mode.round32 = fp_round_ne;
11020
11021 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
11022 program->next_fp_mode.round16_64 = fp_round_tz;
11023 else
11024 program->next_fp_mode.round16_64 = fp_round_ne;
11025
11026 ctx->block->fp_mode = program->next_fp_mode;
11027 }
11028
cleanup_cfg(Program * program)11029 void cleanup_cfg(Program *program)
11030 {
11031 /* create linear_succs/logical_succs */
11032 for (Block& BB : program->blocks) {
11033 for (unsigned idx : BB.linear_preds)
11034 program->blocks[idx].linear_succs.emplace_back(BB.index);
11035 for (unsigned idx : BB.logical_preds)
11036 program->blocks[idx].logical_succs.emplace_back(BB.index);
11037 }
11038 }
11039
lanecount_to_mask(isel_context * ctx,Temp count,bool allow64=true)11040 Temp lanecount_to_mask(isel_context *ctx, Temp count, bool allow64 = true)
11041 {
11042 assert(count.regClass() == s1);
11043
11044 Builder bld(ctx->program, ctx->block);
11045 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
11046 Temp cond;
11047
11048 if (ctx->program->wave_size == 64) {
11049 /* If we know that all 64 threads can't be active at a time, we just use the mask as-is */
11050 if (!allow64)
11051 return mask;
11052
11053 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
11054 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
11055 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
11056 } else {
11057 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
11058 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
11059 }
11060
11061 return cond;
11062 }
11063
merged_wave_info_to_mask(isel_context * ctx,unsigned i)11064 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
11065 {
11066 Builder bld(ctx->program, ctx->block);
11067
11068 /* lanecount_to_mask() only cares about s0.u[6:0] so we don't need either s_bfe nor s_and here */
11069 Temp count = i == 0
11070 ? get_arg(ctx, ctx->args->merged_wave_info)
11071 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
11072 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
11073
11074 return lanecount_to_mask(ctx, count);
11075 }
11076
ngg_max_vertex_count(isel_context * ctx)11077 Temp ngg_max_vertex_count(isel_context *ctx)
11078 {
11079 Builder bld(ctx->program, ctx->block);
11080 return bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
11081 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
11082 }
11083
ngg_max_primitive_count(isel_context * ctx)11084 Temp ngg_max_primitive_count(isel_context *ctx)
11085 {
11086 Builder bld(ctx->program, ctx->block);
11087 return bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
11088 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
11089 }
11090
ngg_emit_sendmsg_gs_alloc_req(isel_context * ctx,Temp vtx_cnt=Temp (),Temp prm_cnt=Temp ())11091 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx, Temp vtx_cnt = Temp(), Temp prm_cnt = Temp())
11092 {
11093 Builder bld(ctx->program, ctx->block);
11094
11095 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
11096 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
11097
11098 /* Get the id of the current wave within the threadgroup (workgroup) */
11099 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
11100 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
11101
11102 /* Execute the following code only on the first wave (wave id 0),
11103 * use the SCC def to tell if the wave id is zero or not.
11104 */
11105 Temp cond = wave_id_in_tg.def(1).getTemp();
11106 if_context ic;
11107 begin_uniform_if_then(ctx, &ic, cond);
11108 begin_uniform_if_else(ctx, &ic);
11109 bld.reset(ctx->block);
11110
11111 /* VS/TES: we infer the vertex and primitive count from arguments
11112 * GS: the caller needs to supply them
11113 */
11114 assert(ctx->stage.has(SWStage::GS)
11115 ? (vtx_cnt.id() && prm_cnt.id())
11116 : (!vtx_cnt.id() && !prm_cnt.id()));
11117
11118 /* Number of vertices output by VS/TES */
11119 if (vtx_cnt.id() == 0)
11120 vtx_cnt = ngg_max_vertex_count(ctx);
11121
11122 /* Number of primitives output by VS/TES */
11123 if (prm_cnt.id() == 0)
11124 prm_cnt = ngg_max_primitive_count(ctx);
11125
11126 Temp prm_cnt_0;
11127
11128 if (ctx->program->chip_class == GFX10 && ctx->stage.has(SWStage::GS) && ctx->ngg_gs_const_prmcnt[0] <= 0) {
11129 /* Navi 1x workaround: make sure to always export at least 1 vertex and triangle */
11130 prm_cnt_0 = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), prm_cnt, Operand(0u));
11131 prm_cnt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(1u), prm_cnt, bld.scc(prm_cnt_0));
11132 vtx_cnt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(1u), vtx_cnt, bld.scc(prm_cnt_0));
11133 }
11134
11135 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
11136 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
11137 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
11138
11139 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
11140 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
11141
11142 if (prm_cnt_0.id()) {
11143 /* Navi 1x workaround: export a zero-area triangle when GS has no output. */
11144 Temp first_lane = bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm));
11145 Temp cond = bld.sop2(Builder::s_lshl, bld.def(bld.lm), bld.def(s1, scc),
11146 Operand(1u, ctx->program->wave_size == 64), first_lane);
11147 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), cond, Operand(0u, ctx->program->wave_size == 64), bld.scc(prm_cnt_0));
11148
11149 if_context ic_prim_0;
11150 begin_divergent_if_then(ctx, &ic_prim_0, cond);
11151 bld.reset(ctx->block);
11152 ctx->block->kind |= block_kind_export_end;
11153
11154 Temp zero = bld.copy(bld.def(v1), Operand(0u));
11155 bld.exp(aco_opcode::exp, zero, Operand(v1), Operand(v1), Operand(v1),
11156 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
11157 false /* compressed */, true /* done */, false /* valid mask */);
11158 bld.exp(aco_opcode::exp, zero, zero, zero, zero,
11159 0xf /* enabled mask */, V_008DFC_SQ_EXP_POS /* dest */,
11160 false /* compressed */, true /* done */, true /* valid mask */);
11161
11162 begin_divergent_if_else(ctx, &ic_prim_0);
11163 end_divergent_if(ctx, &ic_prim_0);
11164 bld.reset(ctx->block);
11165 }
11166
11167 end_uniform_if(ctx, &ic);
11168
11169 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
11170 bld.reset(ctx->block);
11171 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
11172 }
11173
ngg_pack_prim_exp_arg(isel_context * ctx,unsigned num_vertices,const Temp vtxindex[],const Temp is_null)11174 Temp ngg_pack_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[], const Temp is_null)
11175 {
11176 Builder bld(ctx->program, ctx->block);
11177
11178 Temp tmp;
11179 Temp gs_invocation_id;
11180
11181 if (ctx->stage == vertex_ngg)
11182 gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
11183
11184 for (unsigned i = 0; i < num_vertices; ++i) {
11185 assert(vtxindex[i].id());
11186
11187 if (i)
11188 tmp = bld.vop3(aco_opcode::v_lshl_or_b32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
11189 else
11190 tmp = vtxindex[i];
11191
11192 /* The initial edge flag is always false in tess eval shaders. */
11193 if (ctx->stage == vertex_ngg) {
11194 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8u + i), Operand(1u));
11195 tmp = bld.vop3(aco_opcode::v_lshl_or_b32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
11196 }
11197 }
11198
11199 if (is_null.id())
11200 tmp = bld.vop3(aco_opcode::v_lshl_or_b32, bld.def(v1), is_null, Operand(31u), tmp);
11201
11202 return tmp;
11203 }
11204
ngg_emit_prim_export(isel_context * ctx,unsigned num_vertices_per_primitive,const Temp vtxindex[],const Temp is_null=Temp ())11205 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[], const Temp is_null = Temp())
11206 {
11207 Builder bld(ctx->program, ctx->block);
11208 Temp prim_exp_arg;
11209
11210 if (!ctx->stage.has(SWStage::GS) && ctx->args->options->key.vs_common_out.as_ngg_passthrough)
11211 prim_exp_arg = get_arg(ctx, ctx->args->gs_vtx_offset[0]);
11212 else
11213 prim_exp_arg = ngg_pack_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex, is_null);
11214
11215 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
11216 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
11217 false /* compressed */, true/* done */, false /* valid mask */);
11218 }
11219
ngg_nogs_export_primitives(isel_context * ctx)11220 void ngg_nogs_export_primitives(isel_context *ctx)
11221 {
11222 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
11223 * These must always come before VS exports.
11224 *
11225 * It is recommended to do these as early as possible. They can be at the beginning when
11226 * there is no SW GS and the shader doesn't write edge flags.
11227 */
11228
11229 if_context ic;
11230 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
11231 begin_divergent_if_then(ctx, &ic, is_gs_thread);
11232
11233 Builder bld(ctx->program, ctx->block);
11234 constexpr unsigned max_vertices_per_primitive = 3;
11235 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
11236
11237 assert(!ctx->stage.has(SWStage::GS));
11238
11239 if (ctx->stage == vertex_ngg) {
11240 /* TODO: optimize for points & lines */
11241 } else if (ctx->stage == tess_eval_ngg) {
11242 if (ctx->shader->info.tess.point_mode)
11243 num_vertices_per_primitive = 1;
11244 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
11245 num_vertices_per_primitive = 2;
11246 } else {
11247 unreachable("Unsupported NGG non-GS shader stage");
11248 }
11249
11250 Temp vtxindex[max_vertices_per_primitive];
11251 if (!ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
11252 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
11253 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
11254 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
11255 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
11256 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
11257 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
11258 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
11259 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
11260 }
11261
11262 /* Export primitive data to the index buffer. */
11263 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
11264
11265 /* Export primitive ID. */
11266 if (ctx->stage == vertex_ngg && ctx->args->options->key.vs_common_out.export_prim_id) {
11267 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
11268 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
11269 Temp provoking_vtx_index = vtxindex[0];
11270 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
11271
11272 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
11273 }
11274
11275 begin_divergent_if_else(ctx, &ic);
11276 end_divergent_if(ctx, &ic);
11277 }
11278
ngg_nogs_export_vertices(isel_context * ctx)11279 void ngg_nogs_export_vertices(isel_context *ctx)
11280 {
11281 Builder bld(ctx->program, ctx->block);
11282
11283 /* Export VS outputs */
11284 ctx->block->kind |= block_kind_export_end;
11285 create_vs_exports(ctx);
11286
11287 /* Export primitive ID */
11288 if (ctx->args->options->key.vs_common_out.export_prim_id) {
11289 Temp prim_id;
11290
11291 if (ctx->stage == vertex_ngg) {
11292 /* Wait for GS threads to store primitive ID in LDS. */
11293 create_workgroup_barrier(bld);
11294
11295 /* Calculate LDS address where the GS threads stored the primitive ID. */
11296 Temp thread_id_in_tg = thread_id_in_threadgroup(ctx);
11297 Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u);
11298
11299 /* Load primitive ID from LDS. */
11300 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
11301 } else if (ctx->stage == tess_eval_ngg) {
11302 /* TES: Just use the patch ID as the primitive ID. */
11303 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
11304 } else {
11305 unreachable("unsupported NGG non-GS shader stage.");
11306 }
11307
11308 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
11309 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
11310
11311 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
11312 }
11313 }
11314
ngg_nogs_prelude(isel_context * ctx)11315 void ngg_nogs_prelude(isel_context *ctx)
11316 {
11317 ngg_emit_sendmsg_gs_alloc_req(ctx);
11318
11319 if (ctx->ngg_nogs_early_prim_export)
11320 ngg_nogs_export_primitives(ctx);
11321 }
11322
ngg_nogs_late_export_finale(isel_context * ctx)11323 void ngg_nogs_late_export_finale(isel_context *ctx)
11324 {
11325 assert(!ctx->ngg_nogs_early_prim_export);
11326
11327 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
11328 create_export_phis(ctx);
11329 /* Export VS/TES primitives. */
11330 ngg_nogs_export_primitives(ctx);
11331
11332 /* What comes next must be executed on ES threads. */
11333 if_context ic;
11334 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
11335 begin_divergent_if_then(ctx, &ic, is_es_thread);
11336 ngg_nogs_export_vertices(ctx);
11337 begin_divergent_if_else(ctx, &ic);
11338 end_divergent_if(ctx, &ic);
11339 }
11340
ngg_gs_workgroup_reduce_and_scan(isel_context * ctx,Temp src_mask)11341 std::pair<Temp, Temp> ngg_gs_workgroup_reduce_and_scan(isel_context *ctx, Temp src_mask)
11342 {
11343 /* Workgroup scan for NGG GS.
11344 * This performs a reduction along with an exclusive scan addition accross the workgroup.
11345 * Assumes that all lanes are enabled (exec = -1) where this is emitted.
11346 *
11347 * Input: (1) per-lane bool
11348 * -- 1 if the lane has a live/valid vertex, 0 otherwise
11349 * Output: (1) result of a reduction over the entire workgroup,
11350 * -- the total number of vertices emitted by the workgroup
11351 * (2) result of an exclusive scan over the entire workgroup
11352 * -- used for vertex compaction, in order to determine
11353 * which lane should export the current lane's vertex
11354 */
11355
11356 Builder bld(ctx->program, ctx->block);
11357 assert(src_mask.regClass() == bld.lm);
11358
11359 /* Subgroup reduction and exclusive scan on the per-lane boolean. */
11360 Temp sg_reduction = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), src_mask);
11361 Temp sg_excl = emit_mbcnt(ctx, bld.tmp(v1), Operand(src_mask));
11362
11363 if (ctx->program->workgroup_size <= ctx->program->wave_size)
11364 return std::make_pair(sg_reduction, sg_excl);
11365
11366 if_context ic;
11367
11368 /* Determine if the current lane is the first. */
11369 Temp is_first_lane = bld.copy(bld.def(bld.lm), Operand(1u, ctx->program->wave_size == 64));
11370 Temp wave_id_in_tg = wave_id_in_threadgroup(ctx);
11371 begin_divergent_if_then(ctx, &ic, is_first_lane);
11372 bld.reset(ctx->block);
11373
11374 /* The first lane of each wave stores the result of its subgroup reduction to LDS (NGG scratch). */
11375 Temp wave_id_in_tg_lds_addr = bld.vop2_e64(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), wave_id_in_tg);
11376 store_lds(ctx, 4u, as_vgpr(ctx, sg_reduction), 0x1u, wave_id_in_tg_lds_addr, ctx->ngg_gs_scratch_addr, 4u);
11377
11378 begin_divergent_if_else(ctx, &ic);
11379 end_divergent_if(ctx, &ic);
11380 bld.reset(ctx->block);
11381
11382 /* Wait for all waves to write to LDS. */
11383 create_workgroup_barrier(bld);
11384
11385 /* Activate one lane per wave. */
11386 Temp wave_count = wave_count_in_threadgroup(ctx);
11387 Temp wave_count_mask = lanecount_to_mask(ctx, wave_count, false);
11388 begin_divergent_if_then(ctx, &ic, wave_count_mask);
11389 bld.reset(ctx->block);
11390
11391 /* Each lane loads the reduction result from the corresponding wave. */
11392 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.tmp(v1));
11393 Temp loaded_wave_id_lds_addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_wave, 4u);
11394 Temp red_per_w = load_lds(ctx, 4u, bld.tmp(v1), loaded_wave_id_lds_addr, ctx->ngg_gs_scratch_addr, 4u);
11395
11396 /* Inclusive scan on the per-wave reduction results, only care about the first 8 lanes. */
11397 Temp sgincl = bld.vop2_dpp(aco_opcode::v_add_u32, bld.def(v1), red_per_w, red_per_w, dpp_row_sr(1), 0b0001, 0b0111, true);
11398 sgincl = bld.vop2_dpp(aco_opcode::v_add_u32, bld.def(v1), sgincl, sgincl, dpp_row_sr(2), 0x1, 0xf, true);
11399 sgincl = bld.vop2_dpp(aco_opcode::v_add_u32, bld.def(v1), sgincl, sgincl, dpp_row_sr(4), 0x1, 0xf, true);
11400
11401 begin_divergent_if_else(ctx, &ic);
11402 end_divergent_if(ctx, &ic);
11403
11404 /* Create phi which gets us the above reduction results, or undef. */
11405 bld.reset(&ctx->block->instructions, ctx->block->instructions.begin());
11406 sgincl = bld.pseudo(aco_opcode::p_phi, bld.def(sgincl.regClass()), sgincl, Operand(v1));
11407 bld.reset(ctx->block);
11408
11409 /* Make it an exclusive scan by shifting the results right by one lane. */
11410 Temp per_wave_excl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), sgincl, dpp_row_sr(1), 0x1, 0xf, true);
11411
11412 /* WG reduction result: the last lane of the above exclusive scan. */
11413 Temp wg_reduction = bld.readlane(bld.def(s1), per_wave_excl, wave_count);
11414
11415 /* Base of the exclusive WG scan: the above exclusive result corresponding to the current wave. */
11416 Temp wg_excl_base = bld.readlane(bld.def(s1), per_wave_excl, wave_id_in_tg);
11417
11418 /* WG exclusive scan result: base + subgroup exclusive result. */
11419 Temp wg_excl = bld.vadd32(bld.def(v1), Operand(wg_excl_base), Operand(sg_excl));
11420
11421 return std::make_pair(wg_reduction, wg_excl);
11422 }
11423
ngg_gs_clear_primflags(isel_context * ctx,Temp vtx_cnt,unsigned stream)11424 void ngg_gs_clear_primflags(isel_context *ctx, Temp vtx_cnt, unsigned stream)
11425 {
11426 loop_context lc;
11427 if_context ic;
11428 Builder bld(ctx->program, ctx->block);
11429 Temp zero = bld.copy(bld.def(v1b), Operand(uint8_t(0)));
11430 Temp counter_init = bld.copy(bld.def(v1), as_vgpr(ctx, vtx_cnt));
11431
11432 begin_loop(ctx, &lc);
11433
11434 Temp incremented_counter = bld.tmp(counter_init.regClass());
11435 bld.reset(&ctx->block->instructions, ctx->block->instructions.begin());
11436 Temp counter = bld.pseudo(aco_opcode::p_phi, bld.def(counter_init.regClass()), Operand(counter_init), incremented_counter);
11437 bld.reset(ctx->block);
11438 Temp break_cond = bld.vopc(aco_opcode::v_cmp_le_u32, bld.def(bld.lm), Operand(ctx->shader->info.gs.vertices_out), counter);
11439
11440 /* Break when vertices_out <= counter */
11441 begin_divergent_if_then(ctx, &ic, break_cond);
11442 emit_loop_break(ctx);
11443 begin_divergent_if_else(ctx, &ic);
11444 end_divergent_if(ctx, &ic);
11445 bld.reset(ctx->block);
11446
11447 /* Store zero to the primitive flag of the current vertex for the current stream */
11448 Temp emit_vertex_addr = ngg_gs_emit_vertex_lds_addr(ctx, counter);
11449 unsigned primflag_offset = ctx->ngg_gs_primflags_offset + stream;
11450 store_lds(ctx, 1, zero, 0xf, emit_vertex_addr, primflag_offset, 1);
11451
11452 /* Increment counter */
11453 bld.vadd32(Definition(incremented_counter), counter, Operand(1u));
11454
11455 end_loop(ctx, &lc);
11456 }
11457
ngg_gs_write_shader_query(isel_context * ctx,nir_intrinsic_instr * instr)11458 void ngg_gs_write_shader_query(isel_context *ctx, nir_intrinsic_instr *instr)
11459 {
11460 /* Each subgroup uses a single GDS atomic to collect the total number of primitives.
11461 * TODO: Consider using primitive compaction at the end instead.
11462 */
11463
11464 unsigned total_vtx_per_prim = gs_outprim_vertices(ctx->shader->info.gs.output_primitive);
11465 if_context ic_shader_query;
11466 Builder bld(ctx->program, ctx->block);
11467
11468 Temp shader_query = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), get_arg(ctx, ctx->args->ngg_gs_state), Operand(0u));
11469 begin_uniform_if_then(ctx, &ic_shader_query, shader_query);
11470 bld.reset(ctx->block);
11471
11472 Temp gs_vtx_cnt = get_ssa_temp(ctx, instr->src[0].ssa);
11473 Temp gs_prm_cnt = get_ssa_temp(ctx, instr->src[1].ssa);
11474 Temp sg_prm_cnt;
11475
11476 /* Calculate the "real" number of emitted primitives from the emitted GS vertices and primitives.
11477 * GS emits points, line strips or triangle strips.
11478 * Real primitives are points, lines or triangles.
11479 */
11480 if (nir_src_is_const(instr->src[0]) && nir_src_is_const(instr->src[1])) {
11481 unsigned gs_vtx_cnt = nir_src_as_uint(instr->src[0]);
11482 unsigned gs_prm_cnt = nir_src_as_uint(instr->src[1]);
11483 Temp prm_cnt = bld.copy(bld.def(s1), Operand(gs_vtx_cnt - gs_prm_cnt * (total_vtx_per_prim - 1u)));
11484 Temp thread_cnt = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), Operand(exec, bld.lm));
11485 sg_prm_cnt = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), prm_cnt, thread_cnt);
11486 } else {
11487 Temp prm_cnt = gs_vtx_cnt;
11488 if (total_vtx_per_prim > 1)
11489 prm_cnt = bld.vop3(aco_opcode::v_mad_i32_i24, bld.def(v1), gs_prm_cnt, Operand(-1u * (total_vtx_per_prim - 1)), gs_vtx_cnt);
11490 else
11491 prm_cnt = as_vgpr(ctx, prm_cnt);
11492
11493 /* Reduction calculates the primitive count for the entire subgroup. */
11494 sg_prm_cnt = emit_reduction_instr(ctx, aco_opcode::p_reduce, ReduceOp::iadd32,
11495 ctx->program->wave_size, bld.def(s1), prm_cnt);
11496 }
11497
11498 Temp first_lane = bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm));
11499 Temp is_first_lane = bld.sop2(Builder::s_lshl, bld.def(bld.lm), bld.def(s1, scc),
11500 Operand(1u, ctx->program->wave_size == 64), first_lane);
11501
11502 if_context ic_last_lane;
11503 begin_divergent_if_then(ctx, &ic_last_lane, is_first_lane);
11504 bld.reset(ctx->block);
11505
11506 Temp gds_addr = bld.copy(bld.def(v1), Operand(0u));
11507 Operand m = bld.m0((Temp)bld.copy(bld.def(s1, m0), Operand(0x100u)));
11508 bld.ds(aco_opcode::ds_add_u32, gds_addr, as_vgpr(ctx, sg_prm_cnt), m, 0u, 0u, true);
11509
11510 begin_divergent_if_else(ctx, &ic_last_lane);
11511 end_divergent_if(ctx, &ic_last_lane);
11512
11513 begin_uniform_if_else(ctx, &ic_shader_query);
11514 end_uniform_if(ctx, &ic_shader_query);
11515 }
11516
ngg_gs_load_prim_flag_0(isel_context * ctx,Temp tid_in_tg,Temp max_vtxcnt,Temp vertex_lds_addr)11517 Temp ngg_gs_load_prim_flag_0(isel_context *ctx, Temp tid_in_tg, Temp max_vtxcnt, Temp vertex_lds_addr)
11518 {
11519 if_context ic;
11520 Builder bld(ctx->program, ctx->block);
11521
11522 Temp is_vertex_emit_thread = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.def(bld.lm), max_vtxcnt, tid_in_tg);
11523 begin_divergent_if_then(ctx, &ic, is_vertex_emit_thread);
11524 bld.reset(ctx->block);
11525
11526 Operand m = load_lds_size_m0(bld);
11527 Temp prim_flag_0 = bld.ds(aco_opcode::ds_read_u8, bld.def(v1), vertex_lds_addr, m, ctx->ngg_gs_primflags_offset);
11528
11529 begin_divergent_if_else(ctx, &ic);
11530 end_divergent_if(ctx, &ic);
11531
11532 bld.reset(&ctx->block->instructions, ctx->block->instructions.begin());
11533 prim_flag_0 = bld.pseudo(aco_opcode::p_phi, bld.def(prim_flag_0.regClass()), Operand(prim_flag_0), Operand(0u));
11534
11535 return prim_flag_0;
11536 }
11537
ngg_gs_setup_vertex_compaction(isel_context * ctx,Temp vertex_live,Temp tid_in_tg,Temp exporter_tid_in_tg)11538 void ngg_gs_setup_vertex_compaction(isel_context *ctx, Temp vertex_live, Temp tid_in_tg, Temp exporter_tid_in_tg)
11539 {
11540 if_context ic;
11541 Builder bld(ctx->program, ctx->block);
11542 assert(vertex_live.regClass() == bld.lm);
11543
11544 begin_divergent_if_then(ctx, &ic, vertex_live);
11545 bld.reset(ctx->block);
11546
11547 /* Setup the vertex compaction.
11548 * Save the current thread's id for the thread which will export the current vertex.
11549 * We reuse stream 1 of the primitive flag of the other thread's vertex for storing this.
11550 */
11551 Temp export_thread_lds_addr = ngg_gs_vertex_lds_addr(ctx, exporter_tid_in_tg);
11552 tid_in_tg = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tid_in_tg, Operand(0u));
11553 store_lds(ctx, 1u, tid_in_tg, 1u, export_thread_lds_addr, ctx->ngg_gs_primflags_offset + 1u, 1u);
11554
11555 begin_divergent_if_else(ctx, &ic);
11556 end_divergent_if(ctx, &ic);
11557 bld.reset(ctx->block);
11558
11559 /* Wait for all waves to setup the vertex compaction. */
11560 create_workgroup_barrier(bld);
11561 }
11562
ngg_gs_export_primitives(isel_context * ctx,Temp max_prmcnt,Temp tid_in_tg,Temp exporter_tid_in_tg,Temp prim_flag_0)11563 void ngg_gs_export_primitives(isel_context *ctx, Temp max_prmcnt, Temp tid_in_tg, Temp exporter_tid_in_tg,
11564 Temp prim_flag_0)
11565 {
11566 if_context ic;
11567 Builder bld(ctx->program, ctx->block);
11568 unsigned total_vtx_per_prim = gs_outprim_vertices(ctx->shader->info.gs.output_primitive);
11569 assert(total_vtx_per_prim <= 3);
11570
11571 Temp is_prim_export_thread = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.def(bld.lm), max_prmcnt, tid_in_tg);
11572 begin_divergent_if_then(ctx, &ic, is_prim_export_thread);
11573 bld.reset(ctx->block);
11574
11575 Temp is_null_prim = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(-1u), prim_flag_0);
11576 Temp indices[3];
11577
11578 indices[total_vtx_per_prim - 1] = exporter_tid_in_tg;
11579 if (total_vtx_per_prim >= 2)
11580 indices[total_vtx_per_prim - 2] = bld.vsub32(bld.def(v1), exporter_tid_in_tg, Operand(1u));
11581 if (total_vtx_per_prim == 3)
11582 indices[total_vtx_per_prim - 3] = bld.vsub32(bld.def(v1), exporter_tid_in_tg, Operand(2u));
11583
11584 if (total_vtx_per_prim == 3) {
11585 /* API GS outputs triangle strips, but NGG HW needs triangles.
11586 * We already have triangles due to how we set the primitive flags, but we need to
11587 * make sure the vertex order is so that the front/back is correct, and the provoking vertex is kept.
11588 */
11589
11590 /* If the primitive is odd, this will increment indices[1] and decrement indices[2] */
11591 Temp is_odd = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), Operand(prim_flag_0), Operand(1u), Operand(1u));
11592 indices[1] = bld.vadd32(bld.def(v1), indices[1], Operand(is_odd));
11593 indices[2] = bld.vsub32(bld.def(v1), indices[2], Operand(is_odd));
11594 }
11595
11596 ngg_emit_prim_export(ctx, total_vtx_per_prim, indices, is_null_prim);
11597
11598 begin_divergent_if_else(ctx, &ic);
11599 end_divergent_if(ctx, &ic);
11600 }
11601
ngg_gs_export_vertices(isel_context * ctx,Temp wg_vtx_cnt,Temp tid_in_tg,Temp vertex_lds_addr)11602 void ngg_gs_export_vertices(isel_context *ctx, Temp wg_vtx_cnt, Temp tid_in_tg, Temp vertex_lds_addr)
11603 {
11604 if_context ic;
11605 Builder bld(ctx->program, ctx->block);
11606
11607 /* See if the current thread has to export a vertex. */
11608 Temp is_vtx_export_thread = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.def(bld.lm), wg_vtx_cnt, tid_in_tg);
11609 begin_divergent_if_then(ctx, &ic, is_vtx_export_thread);
11610 bld.reset(ctx->block);
11611
11612 /* The index of the vertex that the current thread will export. */
11613 Temp exported_vtx_idx;
11614
11615 if (ctx->ngg_gs_early_alloc) {
11616 /* No vertex compaction necessary, the thread can export its own vertex. */
11617 exported_vtx_idx = tid_in_tg;
11618 } else {
11619 /* Vertex compaction: read stream 1 of the primitive flags to see which vertex the current thread needs to export */
11620 Operand m = load_lds_size_m0(bld);
11621 exported_vtx_idx = bld.ds(aco_opcode::ds_read_u8, bld.def(v1), vertex_lds_addr, m, ctx->ngg_gs_primflags_offset + 1);
11622 }
11623
11624 /* Get the LDS address of the vertex that the current thread must export. */
11625 Temp exported_vtx_addr = ngg_gs_vertex_lds_addr(ctx, exported_vtx_idx);
11626
11627 /* Read the vertex attributes from LDS. */
11628 unsigned out_idx = 0;
11629 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
11630 if (ctx->program->info->gs.output_streams[i] != 0)
11631 continue;
11632
11633 /* Set the output mask to the GS output usage mask. */
11634 unsigned rdmask =
11635 ctx->outputs.mask[i] =
11636 ctx->program->info->gs.output_usage_mask[i];
11637
11638 if (!rdmask)
11639 continue;
11640
11641 for (unsigned j = 0; j < 4; j++) {
11642 if (rdmask & (1 << j))
11643 ctx->outputs.temps[i * 4u + j] =
11644 load_lds(ctx, 4u, bld.tmp(v1), exported_vtx_addr, out_idx * 4u, 4u);
11645
11646 out_idx++;
11647 }
11648 }
11649
11650 /* Export the vertex parameters. */
11651 create_vs_exports(ctx);
11652 ctx->block->kind |= block_kind_export_end;
11653
11654 begin_divergent_if_else(ctx, &ic);
11655 end_divergent_if(ctx, &ic);
11656 }
11657
ngg_gs_prelude(isel_context * ctx)11658 void ngg_gs_prelude(isel_context *ctx)
11659 {
11660 if (!ctx->ngg_gs_early_alloc)
11661 return;
11662
11663 /* We know the GS writes the maximum possible number of vertices, so
11664 * it's likely that most threads need to export a primitive, too.
11665 * Thus, we won't have to worry about primitive compaction here.
11666 */
11667 Temp num_max_vertices = ngg_max_vertex_count(ctx);
11668 ngg_emit_sendmsg_gs_alloc_req(ctx, num_max_vertices, num_max_vertices);
11669 }
11670
ngg_gs_finale(isel_context * ctx)11671 void ngg_gs_finale(isel_context *ctx)
11672 {
11673 /* Sanity check. Make sure the vertex/primitive counts are set and the LDS is correctly initialized. */
11674 assert(ctx->ngg_gs_known_vtxcnt[0]);
11675
11676 if_context ic;
11677 Builder bld(ctx->program, ctx->block);
11678
11679 /* Wait for all waves to reach the epilogue. */
11680 create_workgroup_barrier(bld);
11681
11682 /* Thread ID in the entire threadgroup */
11683 Temp tid_in_tg = thread_id_in_threadgroup(ctx);
11684 /* Number of threads that may need to export a vertex or primitive. */
11685 Temp max_vtxcnt = ngg_max_vertex_count(ctx);
11686 /* LDS address of the vertex corresponding to the current thread. */
11687 Temp vertex_lds_addr = ngg_gs_vertex_lds_addr(ctx, tid_in_tg);
11688 /* Primitive flag from stream 0 of the vertex corresponding to the current thread. */
11689 Temp prim_flag_0 = ngg_gs_load_prim_flag_0(ctx, tid_in_tg, max_vtxcnt, vertex_lds_addr);
11690
11691 bld.reset(ctx->block);
11692
11693 /* NIR already filters out incomplete primitives and vertices,
11694 * so any vertex whose primitive flag is non-zero is considered live/valid.
11695 */
11696 Temp vertex_live = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), Operand(prim_flag_0));
11697
11698 /* Total number of vertices emitted by the workgroup. */
11699 Temp wg_vtx_cnt;
11700 /* ID of the thread which will export the current thread's vertex. */
11701 Temp exporter_tid_in_tg;
11702
11703 if (ctx->ngg_gs_early_alloc) {
11704 /* There is no need for a scan or vertex compaction, we know that
11705 * the GS writes all possible vertices so each thread can export its own vertex.
11706 */
11707 wg_vtx_cnt = max_vtxcnt;
11708 exporter_tid_in_tg = tid_in_tg;
11709 } else {
11710 /* Perform a workgroup reduction and exclusive scan. */
11711 std::pair<Temp, Temp> wg_scan = ngg_gs_workgroup_reduce_and_scan(ctx, vertex_live);
11712 bld.reset(ctx->block);
11713 /* Total number of vertices emitted by the workgroup. */
11714 wg_vtx_cnt = wg_scan.first;
11715 /* ID of the thread which will export the current thread's vertex. */
11716 exporter_tid_in_tg = wg_scan.second;
11717 /* Skip all exports when possible. */
11718 Temp have_exports = bld.sopc(aco_opcode::s_cmp_lg_u32, bld.def(s1, scc), wg_vtx_cnt, Operand(0u));
11719 max_vtxcnt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), max_vtxcnt, Operand(0u), bld.scc(have_exports));
11720
11721 ngg_emit_sendmsg_gs_alloc_req(ctx, wg_vtx_cnt, max_vtxcnt);
11722 ngg_gs_setup_vertex_compaction(ctx, vertex_live, tid_in_tg, exporter_tid_in_tg);
11723 }
11724
11725 ngg_gs_export_primitives(ctx, max_vtxcnt, tid_in_tg, exporter_tid_in_tg, prim_flag_0);
11726 ngg_gs_export_vertices(ctx, wg_vtx_cnt, tid_in_tg, vertex_lds_addr);
11727 }
11728
11729 } /* end namespace */
11730
select_program(Program * program,unsigned shader_count,struct nir_shader * const * shaders,ac_shader_config * config,struct radv_shader_args * args)11731 void select_program(Program *program,
11732 unsigned shader_count,
11733 struct nir_shader *const *shaders,
11734 ac_shader_config* config,
11735 struct radv_shader_args *args)
11736 {
11737 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
11738 if_context ic_merged_wave_info;
11739 bool ngg_no_gs = ctx.stage.hw == HWStage::NGG && !ctx.stage.has(SWStage::GS);
11740 bool ngg_gs = ctx.stage.hw == HWStage::NGG && ctx.stage.has(SWStage::GS);
11741
11742 for (unsigned i = 0; i < shader_count; i++) {
11743 nir_shader *nir = shaders[i];
11744 init_context(&ctx, nir);
11745
11746 setup_fp_mode(&ctx, nir);
11747
11748 if (!i) {
11749 /* needs to be after init_context() for FS */
11750 Pseudo_instruction *startpgm = add_startpgm(&ctx);
11751 append_logical_start(ctx.block);
11752
11753 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
11754 fix_ls_vgpr_init_bug(&ctx, startpgm);
11755
11756 split_arguments(&ctx, startpgm);
11757 }
11758
11759 if (ngg_no_gs)
11760 ngg_nogs_prelude(&ctx);
11761 else if (!i && ngg_gs)
11762 ngg_gs_prelude(&ctx);
11763
11764 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
11765 nir_function_impl *func = nir_shader_get_entrypoint(nir);
11766 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
11767 ((nir->info.stage == MESA_SHADER_VERTEX &&
11768 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
11769 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
11770 ctx.stage == tess_eval_geometry_gs));
11771
11772 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
11773 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
11774
11775 if (i && ngg_gs) {
11776 /* NGG GS waves need to wait for each other after the GS half is done. */
11777 Builder bld(ctx.program, ctx.block);
11778 create_workgroup_barrier(bld);
11779 }
11780
11781 if (check_merged_wave_info) {
11782 Temp cond = merged_wave_info_to_mask(&ctx, i);
11783 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
11784 }
11785
11786 if (i) {
11787 Builder bld(ctx.program, ctx.block);
11788
11789 if (!ngg_gs)
11790 create_workgroup_barrier(bld);
11791
11792 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
11793 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
11794 }
11795 } else if (ctx.stage == geometry_gs)
11796 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
11797
11798 if (ctx.stage == fragment_fs)
11799 handle_bc_optimize(&ctx);
11800
11801 visit_cf_list(&ctx, &func->body);
11802
11803 if (ctx.program->info->so.num_outputs && ctx.stage.hw == HWStage::VS)
11804 emit_streamout(&ctx, 0);
11805
11806 if (ctx.stage.hw == HWStage::VS) {
11807 create_vs_exports(&ctx);
11808 ctx.block->kind |= block_kind_export_end;
11809 } else if (ngg_no_gs && ctx.ngg_nogs_early_prim_export) {
11810 ngg_nogs_export_vertices(&ctx);
11811 } else if (nir->info.stage == MESA_SHADER_GEOMETRY && !ngg_gs) {
11812 Builder bld(ctx.program, ctx.block);
11813 bld.barrier(aco_opcode::p_barrier,
11814 memory_sync_info(storage_vmem_output, semantic_release, scope_device));
11815 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
11816 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
11817 write_tcs_tess_factors(&ctx);
11818 }
11819
11820 if (ctx.stage == fragment_fs) {
11821 create_fs_exports(&ctx);
11822 ctx.block->kind |= block_kind_export_end;
11823 }
11824
11825 if (endif_merged_wave_info) {
11826 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
11827 end_divergent_if(&ctx, &ic_merged_wave_info);
11828 }
11829
11830 if (ngg_no_gs && !ctx.ngg_nogs_early_prim_export)
11831 ngg_nogs_late_export_finale(&ctx);
11832 else if (ngg_gs && nir->info.stage == MESA_SHADER_GEOMETRY)
11833 ngg_gs_finale(&ctx);
11834
11835 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
11836 /* Outputs of the previous stage are inputs to the next stage */
11837 ctx.inputs = ctx.outputs;
11838 ctx.outputs = shader_io_state();
11839 }
11840
11841 cleanup_context(&ctx);
11842 }
11843
11844 program->config->float_mode = program->blocks[0].fp_mode.val;
11845
11846 append_logical_end(ctx.block);
11847 ctx.block->kind |= block_kind_uniform;
11848 Builder bld(ctx.program, ctx.block);
11849 if (ctx.program->wb_smem_l1_on_end)
11850 bld.smem(aco_opcode::s_dcache_wb, memory_sync_info(storage_buffer, semantic_volatile));
11851 bld.sopp(aco_opcode::s_endpgm);
11852
11853 cleanup_cfg(program);
11854 }
11855
select_gs_copy_shader(Program * program,struct nir_shader * gs_shader,ac_shader_config * config,struct radv_shader_args * args)11856 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
11857 ac_shader_config* config,
11858 struct radv_shader_args *args)
11859 {
11860 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
11861
11862 ctx.block->fp_mode = program->next_fp_mode;
11863
11864 add_startpgm(&ctx);
11865 append_logical_start(ctx.block);
11866
11867 Builder bld(ctx.program, ctx.block);
11868
11869 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
11870
11871 Operand stream_id(0u);
11872 if (args->shader_info->so.num_outputs)
11873 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
11874 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
11875
11876 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
11877
11878 std::stack<if_context> if_contexts;
11879
11880 for (unsigned stream = 0; stream < 4; stream++) {
11881 if (stream_id.isConstant() && stream != stream_id.constantValue())
11882 continue;
11883
11884 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
11885 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
11886 continue;
11887
11888 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
11889
11890 if (!stream_id.isConstant()) {
11891 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
11892 if_contexts.emplace();
11893 begin_uniform_if_then(&ctx, &if_contexts.top(), cond);
11894 bld.reset(ctx.block);
11895 }
11896
11897 unsigned offset = 0;
11898 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
11899 if (args->shader_info->gs.output_streams[i] != stream)
11900 continue;
11901
11902 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
11903 unsigned length = util_last_bit(output_usage_mask);
11904 for (unsigned j = 0; j < length; ++j) {
11905 if (!(output_usage_mask & (1 << j)))
11906 continue;
11907
11908 Temp val = bld.tmp(v1);
11909 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
11910 load_vmem_mubuf(&ctx, val, gsvs_ring, vtx_offset, Temp(), const_offset, 4, 1,
11911 0u, true, true, true);
11912
11913 ctx.outputs.mask[i] |= 1 << j;
11914 ctx.outputs.temps[i * 4u + j] = val;
11915
11916 offset++;
11917 }
11918 }
11919
11920 if (args->shader_info->so.num_outputs) {
11921 emit_streamout(&ctx, stream);
11922 bld.reset(ctx.block);
11923 }
11924
11925 if (stream == 0) {
11926 create_vs_exports(&ctx);
11927 ctx.block->kind |= block_kind_export_end;
11928 }
11929
11930 if (!stream_id.isConstant()) {
11931 begin_uniform_if_else(&ctx, &if_contexts.top());
11932 bld.reset(ctx.block);
11933 }
11934 }
11935
11936 while (!if_contexts.empty()) {
11937 end_uniform_if(&ctx, &if_contexts.top());
11938 if_contexts.pop();
11939 }
11940
11941 program->config->float_mode = program->blocks[0].fp_mode.val;
11942
11943 append_logical_end(ctx.block);
11944 ctx.block->kind |= block_kind_uniform;
11945 bld.reset(ctx.block);
11946 bld.sopp(aco_opcode::s_endpgm);
11947
11948 cleanup_cfg(program);
11949 }
11950
select_trap_handler_shader(Program * program,struct nir_shader * shader,ac_shader_config * config,struct radv_shader_args * args)11951 void select_trap_handler_shader(Program *program, struct nir_shader *shader,
11952 ac_shader_config* config,
11953 struct radv_shader_args *args)
11954 {
11955 assert(args->options->chip_class == GFX8);
11956
11957 init_program(program, compute_cs, args->shader_info,
11958 args->options->chip_class, args->options->family, config);
11959
11960 isel_context ctx = {};
11961 ctx.program = program;
11962 ctx.args = args;
11963 ctx.options = args->options;
11964 ctx.stage = program->stage;
11965
11966 ctx.block = ctx.program->create_and_insert_block();
11967 ctx.block->loop_nest_depth = 0;
11968 ctx.block->kind = block_kind_top_level;
11969
11970 program->workgroup_size = 1; /* XXX */
11971
11972 add_startpgm(&ctx);
11973 append_logical_start(ctx.block);
11974
11975 Builder bld(ctx.program, ctx.block);
11976
11977 /* Load the buffer descriptor from TMA. */
11978 bld.smem(aco_opcode::s_load_dwordx4, Definition(PhysReg{ttmp4}, s4),
11979 Operand(PhysReg{tma}, s2), Operand(0u));
11980
11981 /* Store TTMP0-TTMP1. */
11982 bld.smem(aco_opcode::s_buffer_store_dwordx2, Operand(PhysReg{ttmp4}, s4),
11983 Operand(0u), Operand(PhysReg{ttmp0}, s2), memory_sync_info(), true);
11984
11985 uint32_t hw_regs_idx[] = {
11986 2, /* HW_REG_STATUS */
11987 3, /* HW_REG_TRAP_STS */
11988 4, /* HW_REG_HW_ID */
11989 7, /* HW_REG_IB_STS */
11990 };
11991
11992 /* Store some hardware registers. */
11993 for (unsigned i = 0; i < ARRAY_SIZE(hw_regs_idx); i++) {
11994 /* "((size - 1) << 11) | register" */
11995 bld.sopk(aco_opcode::s_getreg_b32, Definition(PhysReg{ttmp8}, s1),
11996 ((20 - 1) << 11) | hw_regs_idx[i]);
11997
11998 bld.smem(aco_opcode::s_buffer_store_dword, Operand(PhysReg{ttmp4}, s4),
11999 Operand(8u + i * 4), Operand(PhysReg{ttmp8}, s1), memory_sync_info(), true);
12000 }
12001
12002 program->config->float_mode = program->blocks[0].fp_mode.val;
12003
12004 append_logical_end(ctx.block);
12005 ctx.block->kind |= block_kind_uniform;
12006 bld.sopp(aco_opcode::s_endpgm);
12007
12008 cleanup_cfg(program);
12009 }
12010 }
12011