• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: LGPL-2.1-only */
2 /*
3  * Copyright (c) 2003-2008 Thomas Graf <tgraf@suug.ch>
4  */
5 
6 /**
7  * @ingroup rtnl
8  * @defgroup neigh Neighbours
9  * @brief
10  *
11  * The neighbour table establishes bindings between protocol addresses and
12  * link layer addresses for hosts sharing the same physical link. This
13  * module allows you to access and manipulate the content of these tables.
14  *
15  * @par Neighbour States
16  * @code
17  * NUD_INCOMPLETE
18  * NUD_REACHABLE
19  * NUD_STALE
20  * NUD_DELAY
21  * NUD_PROBE
22  * NUD_FAILED
23  * NUD_NOARP
24  * NUD_PERMANENT
25  * @endcode
26  *
27  * @par Neighbour Flags
28  * @code
29  * NTF_USE
30  * NTF_PROXY
31  * NTF_ROUTER
32  * NTF_SELF
33  * @endcode
34  *
35  * @par Neighbour Identification
36  * A neighbour is uniquely identified by the attributes listed below, whenever
37  * you refer to an existing neighbour all of the attributes must be set.
38  * Neighbours from caches automatically have all required attributes set.
39  *   - interface index (rtnl_neigh_set_ifindex())
40  *   - destination address (rtnl_neigh_set_dst())
41  *
42  * @par Changeable Attributes
43  * \anchor neigh_changeable
44  *  - state (rtnl_neigh_set_state())
45  *  - link layer address (rtnl_neigh_set_lladdr())
46  *
47  * @par Required Caches for Dumping
48  * In order to dump neighbour attributes you must provide the following
49  * caches via nl_cache_provide()
50  *  - link cache holding all links
51  *
52  * @par TODO
53  *   - Document proxy settings
54  *   - Document states and their influence
55  *
56  * @par 1) Retrieving information about configured neighbours
57  * @code
58  * // The first step is to retrieve a list of all available neighbour within
59  * // the kernel and put them into a cache.
60  * struct nl_cache *cache = rtnl_neigh_alloc_cache(sk);
61  *
62  * // Neighbours can then be looked up by the interface and destination
63  * // address:
64  * struct rtnl_neigh *neigh = rtnl_neigh_get(cache, ifindex, dst_addr);
65  *
66  * // After successful usage, the object must be given back to the cache
67  * rtnl_neigh_put(neigh);
68  * @endcode
69  *
70  * @par 2) Adding new neighbours
71  * @code
72  * // Allocate an empty neighbour handle to be filled out with the attributes
73  * // of the new neighbour.
74  * struct rtnl_neigh *neigh = rtnl_neigh_alloc();
75  *
76  * // Fill out the attributes of the new neighbour
77  * rtnl_neigh_set_ifindex(neigh, ifindex);
78  * rtnl_neigh_set_dst(neigh, dst_addr);
79  * rtnl_neigh_set_state(neigh, rtnl_neigh_str2state("permanent"));
80  *
81  * // Build the netlink message and send it to the kernel, the operation will
82  * // block until the operation has been completed. Alternatively the required
83  * // netlink message can be built using rtnl_neigh_build_add_request()
84  * // to be sent out using nl_send_auto_complete().
85  * rtnl_neigh_add(sk, neigh, NLM_F_CREATE);
86  *
87  * // Free the memory
88  * rtnl_neigh_put(neigh);
89  * @endcode
90  *
91  * @par 3) Deleting an existing neighbour
92  * @code
93  * // Allocate an empty neighbour object to be filled out with the attributes
94  * // matching the neighbour to be deleted. Alternatively a fully equipped
95  * // neighbour object out of a cache can be used instead.
96  * struct rtnl_neigh *neigh = rtnl_neigh_alloc();
97  *
98  * // Neighbours are uniquely identified by their interface index and
99  * // destination address, you may fill out other attributes but they
100  * // will have no influence.
101  * rtnl_neigh_set_ifindex(neigh, ifindex);
102  * rtnl_neigh_set_dst(neigh, dst_addr);
103  *
104  * // Build the netlink message and send it to the kernel, the operation will
105  * // block until the operation has been completed. Alternatively the required
106  * // netlink message can be built using rtnl_neigh_build_delete_request()
107  * // to be sent out using nl_send_auto_complete().
108  * rtnl_neigh_delete(sk, neigh, 0);
109  *
110  * // Free the memory
111  * rtnl_neigh_put(neigh);
112  * @endcode
113  *
114  * @par 4) Changing neighbour attributes
115  * @code
116  * // Allocate an empty neighbour object to be filled out with the attributes
117  * // matching the neighbour to be changed and the new parameters. Alternatively
118  * // a fully equipped modified neighbour object out of a cache can be used.
119  * struct rtnl_neigh *neigh = rtnl_neigh_alloc();
120  *
121  * // Identify the neighbour to be changed by its interface index and
122  * // destination address
123  * rtnl_neigh_set_ifindex(neigh, ifindex);
124  * rtnl_neigh_set_dst(neigh, dst_addr);
125  *
126  * // The link layer address may be modified, if so it is wise to change
127  * // its state to "permanent" in order to avoid having it overwritten.
128  * rtnl_neigh_set_lladdr(neigh, lladdr);
129  *
130  * // Secondly the state can be modified allowing normal neighbours to be
131  * // converted into permanent entries or to manually confirm a neighbour.
132  * rtnl_neigh_set_state(neigh, state);
133  *
134  * // Build the netlink message and send it to the kernel, the operation will
135  * // block until the operation has been completed. Alternatively the required
136  * // netlink message can be built using rtnl_neigh_build_change_request()
137  * // to be sent out using nl_send_auto_complete().
138  * rtnl_neigh_add(sk, neigh, NLM_F_REPLACE);
139  *
140  * // Free the memory
141  * rtnl_neigh_put(neigh);
142  * @endcode
143  * @{
144  */
145 
146 #include <netlink-private/netlink.h>
147 #include <netlink/netlink.h>
148 #include <netlink/utils.h>
149 #include <netlink/hashtable.h>
150 #include <netlink/route/rtnl.h>
151 #include <netlink/route/neighbour.h>
152 #include <netlink/route/link.h>
153 #include <netlink/hashtable.h>
154 
155 /** @cond SKIP */
156 #define NEIGH_ATTR_FLAGS        0x01
157 #define NEIGH_ATTR_STATE        0x02
158 #define NEIGH_ATTR_LLADDR       0x04
159 #define NEIGH_ATTR_DST          0x08
160 #define NEIGH_ATTR_CACHEINFO    0x10
161 #define NEIGH_ATTR_IFINDEX      0x20
162 #define NEIGH_ATTR_FAMILY       0x40
163 #define NEIGH_ATTR_TYPE         0x80
164 #define NEIGH_ATTR_PROBES       0x100
165 #define NEIGH_ATTR_MASTER       0x200
166 #define NEIGH_ATTR_VLAN         0x400
167 
168 static struct nl_cache_ops rtnl_neigh_ops;
169 static struct nl_object_ops neigh_obj_ops;
170 /** @endcond */
171 
neigh_free_data(struct nl_object * c)172 static void neigh_free_data(struct nl_object *c)
173 {
174 	struct rtnl_neigh *neigh = nl_object_priv(c);
175 
176 	if (!neigh)
177 		return;
178 
179 	nl_addr_put(neigh->n_lladdr);
180 	nl_addr_put(neigh->n_dst);
181 }
182 
neigh_clone(struct nl_object * _dst,struct nl_object * _src)183 static int neigh_clone(struct nl_object *_dst, struct nl_object *_src)
184 {
185 	struct rtnl_neigh *dst = nl_object_priv(_dst);
186 	struct rtnl_neigh *src = nl_object_priv(_src);
187 
188 	dst->n_lladdr = NULL;
189 	dst->n_dst = NULL;
190 
191 	if (src->n_lladdr)
192 		if (!(dst->n_lladdr = nl_addr_clone(src->n_lladdr)))
193 			return -NLE_NOMEM;
194 
195 	if (src->n_dst)
196 		if (!(dst->n_dst = nl_addr_clone(src->n_dst)))
197 			return -NLE_NOMEM;
198 
199 	return 0;
200 }
201 
neigh_keygen(struct nl_object * obj,uint32_t * hashkey,uint32_t table_sz)202 static void neigh_keygen(struct nl_object *obj, uint32_t *hashkey,
203 			 uint32_t table_sz)
204 {
205 	struct rtnl_neigh *neigh = (struct rtnl_neigh *) obj;
206 	unsigned int nkey_sz;
207 	struct nl_addr *addr = NULL;
208 	struct neigh_hash_key {
209 		uint32_t	n_family;
210 		uint32_t	n_ifindex;
211 		uint16_t	n_vlan;
212 		char		n_addr[0];
213 	} __attribute__((packed)) *nkey;
214 #ifdef NL_DEBUG
215 	char buf[INET6_ADDRSTRLEN+5];
216 #endif
217 
218 	if (neigh->n_family == AF_BRIDGE) {
219 		if (neigh->n_lladdr)
220 			addr = neigh->n_lladdr;
221 	} else if (neigh->n_dst) {
222 		addr = neigh->n_dst;
223 	}
224 
225 	nkey_sz = sizeof(*nkey);
226 	if (addr)
227 		nkey_sz += nl_addr_get_len(addr);
228 
229 	nkey = calloc(1, nkey_sz);
230 	if (!nkey) {
231 		*hashkey = 0;
232 		return;
233 	}
234 	nkey->n_family = neigh->n_family;
235 	if (neigh->n_family == AF_BRIDGE) {
236 		nkey->n_vlan = neigh->n_vlan;
237 		if (neigh->n_flags & NTF_SELF)
238 			nkey->n_ifindex = neigh->n_ifindex;
239 		else
240 			nkey->n_ifindex = neigh->n_master;
241 	} else
242 		nkey->n_ifindex = neigh->n_ifindex;
243 
244 	if (addr)
245 		memcpy(nkey->n_addr,
246 			nl_addr_get_binary_addr(addr),
247 			nl_addr_get_len(addr));
248 
249 	*hashkey = nl_hash(nkey, nkey_sz, 0) % table_sz;
250 
251 	NL_DBG(5, "neigh %p key (fam %d dev %d addr %s) keysz %d hash 0x%x\n",
252 		neigh, nkey->n_family, nkey->n_ifindex,
253 		nl_addr2str(addr, buf, sizeof(buf)),
254 		nkey_sz, *hashkey);
255 
256 	free(nkey);
257 
258 	return;
259 }
260 
neigh_compare(struct nl_object * _a,struct nl_object * _b,uint64_t attrs,int flags)261 static uint64_t neigh_compare(struct nl_object *_a, struct nl_object *_b,
262 			      uint64_t attrs, int flags)
263 {
264 	struct rtnl_neigh *a = (struct rtnl_neigh *) _a;
265 	struct rtnl_neigh *b = (struct rtnl_neigh *) _b;
266 	uint64_t diff = 0;
267 
268 #define NEIGH_DIFF(ATTR, EXPR) ATTR_DIFF(attrs, NEIGH_ATTR_##ATTR, a, b, EXPR)
269 
270 	diff |= NEIGH_DIFF(IFINDEX,	a->n_ifindex != b->n_ifindex);
271 	diff |= NEIGH_DIFF(FAMILY,	a->n_family != b->n_family);
272 	diff |= NEIGH_DIFF(TYPE,	a->n_type != b->n_type);
273 	diff |= NEIGH_DIFF(LLADDR,	nl_addr_cmp(a->n_lladdr, b->n_lladdr));
274 	diff |= NEIGH_DIFF(DST,		nl_addr_cmp(a->n_dst, b->n_dst));
275 	diff |= NEIGH_DIFF(MASTER,	a->n_master != b->n_master);
276 	diff |= NEIGH_DIFF(VLAN,	a->n_vlan != b->n_vlan);
277 
278 	if (flags & LOOSE_COMPARISON) {
279 		diff |= NEIGH_DIFF(STATE,
280 				  (a->n_state ^ b->n_state) & b->n_state_mask);
281 		diff |= NEIGH_DIFF(FLAGS,
282 				  (a->n_flags ^ b->n_flags) & b->n_flag_mask);
283 	} else {
284 		diff |= NEIGH_DIFF(STATE, a->n_state != b->n_state);
285 		diff |= NEIGH_DIFF(FLAGS, a->n_flags != b->n_flags);
286 	}
287 
288 #undef NEIGH_DIFF
289 
290 	return diff;
291 }
292 
293 static const struct trans_tbl neigh_attrs[] = {
294 	__ADD(NEIGH_ATTR_FLAGS, flags),
295 	__ADD(NEIGH_ATTR_STATE, state),
296 	__ADD(NEIGH_ATTR_LLADDR, lladdr),
297 	__ADD(NEIGH_ATTR_DST, dst),
298 	__ADD(NEIGH_ATTR_CACHEINFO, cacheinfo),
299 	__ADD(NEIGH_ATTR_IFINDEX, ifindex),
300 	__ADD(NEIGH_ATTR_FAMILY, family),
301 	__ADD(NEIGH_ATTR_TYPE, type),
302 	__ADD(NEIGH_ATTR_PROBES, probes),
303 	__ADD(NEIGH_ATTR_MASTER, master),
304 	__ADD(NEIGH_ATTR_VLAN, vlan),
305 };
306 
neigh_attrs2str(int attrs,char * buf,size_t len)307 static char *neigh_attrs2str(int attrs, char *buf, size_t len)
308 {
309 	return __flags2str(attrs, buf, len, neigh_attrs,
310 			   ARRAY_SIZE(neigh_attrs));
311 }
312 
neigh_id_attrs_get(struct nl_object * obj)313 static uint32_t neigh_id_attrs_get(struct nl_object *obj)
314 {
315 	struct rtnl_neigh *neigh = (struct rtnl_neigh *)obj;
316 
317 	if (neigh->n_family == AF_BRIDGE) {
318 		if (neigh->n_flags & NTF_SELF)
319 			return (NEIGH_ATTR_LLADDR | NEIGH_ATTR_FAMILY | NEIGH_ATTR_IFINDEX |
320 				       ((neigh->ce_mask & NEIGH_ATTR_DST) ? NEIGH_ATTR_DST: 0) |
321 				       ((neigh->ce_mask & NEIGH_ATTR_VLAN) ? NEIGH_ATTR_VLAN : 0));
322 		else
323 			return (NEIGH_ATTR_LLADDR | NEIGH_ATTR_FAMILY | NEIGH_ATTR_MASTER | NEIGH_ATTR_VLAN);
324 	} else
325 		return neigh_obj_ops.oo_id_attrs;
326 }
327 
328 static struct nla_policy neigh_policy[NDA_MAX+1] = {
329 	[NDA_CACHEINFO]	= { .minlen = sizeof(struct nda_cacheinfo) },
330 	[NDA_PROBES]	= { .type = NLA_U32 },
331 };
332 
neigh_msg_parser(struct nl_cache_ops * ops,struct sockaddr_nl * who,struct nlmsghdr * n,struct nl_parser_param * pp)333 static int neigh_msg_parser(struct nl_cache_ops *ops, struct sockaddr_nl *who,
334 			    struct nlmsghdr *n, struct nl_parser_param *pp)
335 {
336 	struct rtnl_neigh *neigh;
337 	int err;
338 
339 	if ((err = rtnl_neigh_parse(n, &neigh)) < 0)
340 		return err;
341 
342 	err = pp->pp_cb((struct nl_object *) neigh, pp);
343 
344 	rtnl_neigh_put(neigh);
345 	return err;
346 }
347 
348 
rtnl_neigh_parse(struct nlmsghdr * n,struct rtnl_neigh ** result)349 int rtnl_neigh_parse(struct nlmsghdr *n, struct rtnl_neigh **result)
350 {
351 	struct rtnl_neigh *neigh;
352 	struct nlattr *tb[NDA_MAX + 1];
353 	struct ndmsg *nm;
354 	int err;
355 
356 	neigh = rtnl_neigh_alloc();
357 	if (!neigh) {
358 		err = -NLE_NOMEM;
359 		goto errout;
360 	}
361 
362 	neigh->ce_msgtype = n->nlmsg_type;
363 	nm = nlmsg_data(n);
364 
365 	err = nlmsg_parse(n, sizeof(*nm), tb, NDA_MAX, neigh_policy);
366 	if (err < 0)
367 		goto errout;
368 
369 	neigh->n_family  = nm->ndm_family;
370 	neigh->n_ifindex = nm->ndm_ifindex;
371 	neigh->n_state   = nm->ndm_state;
372 	neigh->n_flags   = nm->ndm_flags;
373 	neigh->n_type    = nm->ndm_type;
374 
375 	neigh->ce_mask |= (NEIGH_ATTR_FAMILY | NEIGH_ATTR_IFINDEX |
376 			   NEIGH_ATTR_STATE | NEIGH_ATTR_FLAGS |
377 			   NEIGH_ATTR_TYPE);
378 
379 	if (tb[NDA_LLADDR]) {
380 		neigh->n_lladdr = nl_addr_alloc_attr(tb[NDA_LLADDR], AF_UNSPEC);
381 		if (!neigh->n_lladdr) {
382 			err = -NLE_NOMEM;
383 			goto errout;
384 		}
385 		nl_addr_set_family(neigh->n_lladdr,
386 				   nl_addr_guess_family(neigh->n_lladdr));
387 		neigh->ce_mask |= NEIGH_ATTR_LLADDR;
388 	}
389 
390 	if (tb[NDA_DST]) {
391 		neigh->n_dst = nl_addr_alloc_attr(tb[NDA_DST], AF_UNSPEC);
392 		if (!neigh->n_dst) {
393 			err = -NLE_NOMEM;
394 			goto errout;
395 		}
396 		nl_addr_set_family(neigh->n_dst,
397 				   nl_addr_guess_family(neigh->n_dst));
398 		neigh->ce_mask |= NEIGH_ATTR_DST;
399 	}
400 
401 	if (tb[NDA_CACHEINFO]) {
402 		struct nda_cacheinfo *ci = nla_data(tb[NDA_CACHEINFO]);
403 
404 		neigh->n_cacheinfo.nci_confirmed = ci->ndm_confirmed;
405 		neigh->n_cacheinfo.nci_used = ci->ndm_used;
406 		neigh->n_cacheinfo.nci_updated = ci->ndm_updated;
407 		neigh->n_cacheinfo.nci_refcnt = ci->ndm_refcnt;
408 
409 		neigh->ce_mask |= NEIGH_ATTR_CACHEINFO;
410 	}
411 
412 	if (tb[NDA_PROBES]) {
413 		neigh->n_probes = nla_get_u32(tb[NDA_PROBES]);
414 		neigh->ce_mask |= NEIGH_ATTR_PROBES;
415 	}
416 
417 	if (tb[NDA_VLAN]) {
418 		neigh->n_vlan = nla_get_u16(tb[NDA_VLAN]);
419 		neigh->ce_mask |= NEIGH_ATTR_VLAN;
420 	}
421 
422 	/*
423 	 * Get the bridge index for AF_BRIDGE family entries
424 	 */
425 	if (neigh->n_family == AF_BRIDGE) {
426 		if (tb[NDA_MASTER]) {
427 			neigh->n_master = nla_get_u32(tb[NDA_MASTER]);
428 			neigh->ce_mask |= NEIGH_ATTR_MASTER;
429 		} else {
430 			struct nl_cache *lcache = nl_cache_mngt_require_safe("route/link");
431 			if (lcache ) {
432 				struct rtnl_link *link = rtnl_link_get(lcache,
433 								       neigh->n_ifindex);
434 				if (link) {
435 					neigh->n_master = link->l_master;
436 					rtnl_link_put(link);
437 					neigh->ce_mask |= NEIGH_ATTR_MASTER;
438 				}
439 				nl_cache_put(lcache);
440 			}
441 		}
442 	}
443 
444 	*result = neigh;
445 	return 0;
446 
447 errout:
448 	rtnl_neigh_put(neigh);
449 	return err;
450 }
451 
neigh_request_update(struct nl_cache * c,struct nl_sock * h)452 static int neigh_request_update(struct nl_cache *c, struct nl_sock *h)
453 {
454 	int family = c->c_iarg1;
455 
456 	if (family == AF_UNSPEC) {
457 		return nl_rtgen_request(h, RTM_GETNEIGH, family, NLM_F_DUMP);
458 	} else if (family == AF_BRIDGE) {
459 		struct ifinfomsg hdr = {.ifi_family = family};
460 		struct nl_msg *msg;
461 		int err;
462 
463 		msg = nlmsg_alloc_simple(RTM_GETNEIGH, NLM_F_REQUEST | NLM_F_DUMP);
464 		if (!msg)
465 			return -NLE_NOMEM;
466 
467 		err = -NLE_MSGSIZE;
468 		if (nlmsg_append(msg, &hdr, sizeof(hdr), NLMSG_ALIGNTO) < 0)
469 			goto nla_put_failure;
470 
471 		err = nl_send_auto(h, msg);
472 		if (err > 0)
473 			err = 0;
474 
475 	nla_put_failure:
476 		nlmsg_free(msg);
477 		return err;
478 	}
479 
480 	return -NLE_INVAL;
481 }
482 
483 
neigh_dump_line(struct nl_object * a,struct nl_dump_params * p)484 static void neigh_dump_line(struct nl_object *a, struct nl_dump_params *p)
485 {
486 	char dst[INET6_ADDRSTRLEN+5], lladdr[INET6_ADDRSTRLEN+5];
487 	struct rtnl_neigh *n = (struct rtnl_neigh *) a;
488 	struct nl_cache *link_cache;
489 	char state[128], flags[64];
490 	char buf[128];
491 
492 	link_cache = nl_cache_mngt_require_safe("route/link");
493 
494 	if (n->n_family != AF_UNSPEC)
495 		nl_dump_line(p, "%s ", nl_af2str(n->n_family, buf, sizeof(buf)));
496 
497 	if (n->ce_mask & NEIGH_ATTR_DST)
498 		nl_dump_line(p, "%s ", nl_addr2str(n->n_dst, dst, sizeof(dst)));
499 
500 	if (link_cache)
501 		nl_dump(p, "dev %s ",
502 			rtnl_link_i2name(link_cache, n->n_ifindex,
503 					 state, sizeof(state)));
504 	else
505 		nl_dump(p, "dev %d ", n->n_ifindex);
506 
507 	if (n->ce_mask & NEIGH_ATTR_LLADDR)
508 		nl_dump(p, "lladdr %s ",
509 			nl_addr2str(n->n_lladdr, lladdr, sizeof(lladdr)));
510 
511 	if (n->ce_mask & NEIGH_ATTR_VLAN)
512 		nl_dump(p, "vlan %d ", n->n_vlan);
513 
514 	if (n->ce_mask & NEIGH_ATTR_MASTER) {
515 		if (link_cache)
516 			nl_dump(p, "%s ", rtnl_link_i2name(link_cache, n->n_master,
517 							   state, sizeof(state)));
518 		else
519 			nl_dump(p, "%d ", n->n_master);
520 	}
521 
522 	rtnl_neigh_state2str(n->n_state, state, sizeof(state));
523 	rtnl_neigh_flags2str(n->n_flags, flags, sizeof(flags));
524 
525 	if (state[0])
526 		nl_dump(p, "<%s", state);
527 	if (flags[0])
528 		nl_dump(p, "%s%s", state[0] ? "," : "<", flags);
529 	if (state[0] || flags[0])
530 		nl_dump(p, ">");
531 	nl_dump(p, "\n");
532 
533 	if (link_cache)
534 		nl_cache_put(link_cache);
535 }
536 
neigh_dump_details(struct nl_object * a,struct nl_dump_params * p)537 static void neigh_dump_details(struct nl_object *a, struct nl_dump_params *p)
538 {
539 	char rtn_type[32];
540 	struct rtnl_neigh *n = (struct rtnl_neigh *) a;
541 	int hz = nl_get_user_hz();
542 
543 	neigh_dump_line(a, p);
544 
545 	nl_dump_line(p, "    refcnt %u type %s confirmed %u used "
546 				"%u updated %u\n",
547 		n->n_cacheinfo.nci_refcnt,
548 		nl_rtntype2str(n->n_type, rtn_type, sizeof(rtn_type)),
549 		n->n_cacheinfo.nci_confirmed/hz,
550 		n->n_cacheinfo.nci_used/hz, n->n_cacheinfo.nci_updated/hz);
551 }
552 
neigh_dump_stats(struct nl_object * a,struct nl_dump_params * p)553 static void neigh_dump_stats(struct nl_object *a, struct nl_dump_params *p)
554 {
555 	neigh_dump_details(a, p);
556 }
557 
558 /**
559  * @name Neighbour Object Allocation/Freeage
560  * @{
561  */
562 
rtnl_neigh_alloc(void)563 struct rtnl_neigh *rtnl_neigh_alloc(void)
564 {
565 	return (struct rtnl_neigh *) nl_object_alloc(&neigh_obj_ops);
566 }
567 
rtnl_neigh_put(struct rtnl_neigh * neigh)568 void rtnl_neigh_put(struct rtnl_neigh *neigh)
569 {
570 	nl_object_put((struct nl_object *) neigh);
571 }
572 
573 /** @} */
574 
575 /**
576  * @name Neighbour Cache Managament
577  * @{
578  */
579 
580 /**
581  * Build a neighbour cache including all neighbours currently configured in the kernel.
582  * @arg sock		Netlink socket.
583  * @arg result		Pointer to store resulting cache.
584  *
585  * Allocates a new neighbour cache, initializes it properly and updates it
586  * to include all neighbours currently configured in the kernel.
587  *
588  * @return 0 on success or a negative error code.
589  */
rtnl_neigh_alloc_cache(struct nl_sock * sock,struct nl_cache ** result)590 int rtnl_neigh_alloc_cache(struct nl_sock *sock, struct nl_cache **result)
591 {
592 	return nl_cache_alloc_and_fill(&rtnl_neigh_ops, sock, result);
593 }
594 
595 /**
596  * Build a neighbour cache including all neighbours currently configured in the kernel.
597  * @arg sock		Netlink socket.
598  * @arg result		Pointer to store resulting cache.
599  * @arg flags		Flags to apply to cache before filling
600  *
601  * Allocates a new neighbour cache, initializes it properly and updates it
602  * to include all neighbours currently configured in the kernel.
603  *
604  * @return 0 on success or a negative error code.
605  */
rtnl_neigh_alloc_cache_flags(struct nl_sock * sock,struct nl_cache ** result,unsigned int flags)606 int rtnl_neigh_alloc_cache_flags(struct nl_sock *sock, struct nl_cache **result,
607 				 unsigned int flags)
608 {
609 	struct nl_cache * cache;
610 	int err;
611 
612 	cache = nl_cache_alloc(&rtnl_neigh_ops);
613 	if (!cache)
614 		return -NLE_NOMEM;
615 
616 	nl_cache_set_flags(cache, flags);
617 
618 	if (sock && (err = nl_cache_refill(sock, cache)) < 0) {
619 		nl_cache_free(cache);
620 		return err;
621 	}
622 
623 	*result = cache;
624 	return 0;
625 }
626 
627 /**
628  * Look up a neighbour by interface index and destination address
629  * @arg cache		neighbour cache
630  * @arg ifindex		interface index the neighbour is on
631  * @arg dst		destination address of the neighbour
632  *
633  * @return neighbour handle or NULL if no match was found.
634  */
rtnl_neigh_get(struct nl_cache * cache,int ifindex,struct nl_addr * dst)635 struct rtnl_neigh * rtnl_neigh_get(struct nl_cache *cache, int ifindex,
636 				   struct nl_addr *dst)
637 {
638 	struct rtnl_neigh *neigh;
639 
640 	nl_list_for_each_entry(neigh, &cache->c_items, ce_list) {
641 		if (neigh->n_ifindex == ifindex &&
642 		    neigh->n_family == dst->a_family &&
643 		    !nl_addr_cmp(neigh->n_dst, dst)) {
644 			nl_object_get((struct nl_object *) neigh);
645 			return neigh;
646 		}
647 	}
648 
649 	return NULL;
650 }
651 
652 /**
653  * Look up a neighbour by interface index, link layer address and vlan id
654  * @arg cache		neighbour cache
655  * @arg ifindex 	interface index the neighbour is on
656  * @arg lladdr		link layer address of the neighbour
657  * @arg vlan		vlan id of the neighbour
658  *
659  * @return neighbour handle or NULL if no match was found.
660  */
rtnl_neigh_get_by_vlan(struct nl_cache * cache,int ifindex,struct nl_addr * lladdr,int vlan)661 struct rtnl_neigh * rtnl_neigh_get_by_vlan(struct nl_cache *cache, int ifindex,
662 					   struct nl_addr *lladdr, int vlan)
663 {
664 	struct rtnl_neigh *neigh;
665 
666 	nl_list_for_each_entry(neigh, &cache->c_items, ce_list) {
667 		if (neigh->n_ifindex == ifindex &&
668 		    neigh->n_vlan == vlan &&
669 		    neigh->n_lladdr && !nl_addr_cmp(neigh->n_lladdr, lladdr)) {
670 			nl_object_get((struct nl_object *) neigh);
671 			return neigh;
672 		}
673 	}
674 
675 	return NULL;
676 }
677 
678 /** @} */
679 
680 /**
681  * @name Neighbour Addition
682  * @{
683  */
684 
build_neigh_msg(struct rtnl_neigh * tmpl,int cmd,int flags,struct nl_msg ** result)685 static int build_neigh_msg(struct rtnl_neigh *tmpl, int cmd, int flags,
686 			   struct nl_msg **result)
687 {
688 	struct nl_msg *msg;
689 	struct ndmsg nhdr = {
690 		.ndm_ifindex = tmpl->n_ifindex,
691 		.ndm_state = NUD_PERMANENT,
692 	};
693 
694 	if (tmpl->n_family != AF_BRIDGE) {
695 		if (!(tmpl->ce_mask & NEIGH_ATTR_DST))
696 			return -NLE_MISSING_ATTR;
697 		nhdr.ndm_family = nl_addr_get_family(tmpl->n_dst);
698 	}
699 	else
700 		nhdr.ndm_family = AF_BRIDGE;
701 
702 	if (tmpl->ce_mask & NEIGH_ATTR_FLAGS)
703 		nhdr.ndm_flags = tmpl->n_flags;
704 
705 	if (tmpl->ce_mask & NEIGH_ATTR_STATE)
706 		nhdr.ndm_state = tmpl->n_state;
707 
708 	msg = nlmsg_alloc_simple(cmd, flags);
709 	if (!msg)
710 		return -NLE_NOMEM;
711 
712 	if (nlmsg_append(msg, &nhdr, sizeof(nhdr), NLMSG_ALIGNTO) < 0)
713 		goto nla_put_failure;
714 
715 	if (tmpl->ce_mask & NEIGH_ATTR_DST)
716 		NLA_PUT_ADDR(msg, NDA_DST, tmpl->n_dst);
717 
718 	if (tmpl->ce_mask & NEIGH_ATTR_LLADDR)
719 		NLA_PUT_ADDR(msg, NDA_LLADDR, tmpl->n_lladdr);
720 
721 	if (tmpl->ce_mask & NEIGH_ATTR_VLAN)
722 		NLA_PUT_U16(msg, NDA_VLAN, tmpl->n_vlan);
723 
724 	*result = msg;
725 	return 0;
726 
727 nla_put_failure:
728 	nlmsg_free(msg);
729 	return -NLE_MSGSIZE;
730 }
731 
732 /**
733  * Build netlink request message to add a new neighbour
734  * @arg tmpl		template with data of new neighbour
735  * @arg flags		additional netlink message flags
736  * @arg result		Pointer to store resulting message.
737  *
738  * Builds a new netlink message requesting a addition of a new
739  * neighbour. The netlink message header isn't fully equipped with
740  * all relevant fields and must thus be sent out via nl_send_auto_complete()
741  * or supplemented as needed. \a tmpl must contain the attributes of the new
742  * neighbour set via \c rtnl_neigh_set_* functions.
743  *
744  * The following attributes must be set in the template:
745  *  - Interface index (rtnl_neigh_set_ifindex())
746  *  - State (rtnl_neigh_set_state())
747  *  - Destination address (rtnl_neigh_set_dst())
748  *  - Link layer address (rtnl_neigh_set_lladdr())
749  *
750  * @return 0 on success or a negative error code.
751  */
rtnl_neigh_build_add_request(struct rtnl_neigh * tmpl,int flags,struct nl_msg ** result)752 int rtnl_neigh_build_add_request(struct rtnl_neigh *tmpl, int flags,
753 				 struct nl_msg **result)
754 {
755 	return build_neigh_msg(tmpl, RTM_NEWNEIGH, flags, result);
756 }
757 
758 /**
759  * Add a new neighbour
760  * @arg sk		Netlink socket.
761  * @arg tmpl		template with requested changes
762  * @arg flags		additional netlink message flags
763  *
764  * Builds a netlink message by calling rtnl_neigh_build_add_request(),
765  * sends the request to the kernel and waits for the next ACK to be
766  * received and thus blocks until the request has been fullfilled.
767  *
768  * The following attributes must be set in the template:
769  *  - Interface index (rtnl_neigh_set_ifindex())
770  *  - State (rtnl_neigh_set_state())
771  *  - Destination address (rtnl_neigh_set_dst())
772  *  - Link layer address (rtnl_neigh_set_lladdr())
773  *
774  * @return 0 on sucess or a negative error if an error occured.
775  */
rtnl_neigh_add(struct nl_sock * sk,struct rtnl_neigh * tmpl,int flags)776 int rtnl_neigh_add(struct nl_sock *sk, struct rtnl_neigh *tmpl, int flags)
777 {
778 	int err;
779 	struct nl_msg *msg;
780 
781 	if ((err = rtnl_neigh_build_add_request(tmpl, flags, &msg)) < 0)
782 		return err;
783 
784 	err = nl_send_auto_complete(sk, msg);
785 	nlmsg_free(msg);
786 	if (err < 0)
787 		return err;
788 
789 	return wait_for_ack(sk);
790 }
791 
792 /** @} */
793 
794 /**
795  * @name Neighbour Deletion
796  * @{
797  */
798 
799 /**
800  * Build a netlink request message to delete a neighbour
801  * @arg neigh		neighbour to delete
802  * @arg flags		additional netlink message flags
803  * @arg result		Pointer to store resulting message.
804  *
805  * Builds a new netlink message requesting a deletion of a neighbour.
806  * The netlink message header isn't fully equipped with all relevant
807  * fields and must thus be sent out via nl_send_auto_complete()
808  * or supplemented as needed. \a neigh must point to an existing
809  * neighbour.
810  *
811  * @return 0 on success or a negative error code.
812  */
rtnl_neigh_build_delete_request(struct rtnl_neigh * neigh,int flags,struct nl_msg ** result)813 int rtnl_neigh_build_delete_request(struct rtnl_neigh *neigh, int flags,
814 				    struct nl_msg **result)
815 {
816 	return build_neigh_msg(neigh, RTM_DELNEIGH, flags, result);
817 }
818 
819 /**
820  * Delete a neighbour
821  * @arg sk		Netlink socket.
822  * @arg neigh		neighbour to delete
823  * @arg flags		additional netlink message flags
824  *
825  * Builds a netlink message by calling rtnl_neigh_build_delete_request(),
826  * sends the request to the kernel and waits for the next ACK to be
827  * received and thus blocks until the request has been fullfilled.
828  *
829  * @return 0 on sucess or a negative error if an error occured.
830  */
rtnl_neigh_delete(struct nl_sock * sk,struct rtnl_neigh * neigh,int flags)831 int rtnl_neigh_delete(struct nl_sock *sk, struct rtnl_neigh *neigh,
832 		      int flags)
833 {
834 	struct nl_msg *msg;
835 	int err;
836 
837 	if ((err = rtnl_neigh_build_delete_request(neigh, flags, &msg)) < 0)
838 		return err;
839 
840 	err = nl_send_auto_complete(sk, msg);
841 	nlmsg_free(msg);
842 	if (err < 0)
843 		return err;
844 
845 	return wait_for_ack(sk);
846 }
847 
848 /** @} */
849 
850 /**
851  * @name Neighbour States Translations
852  * @{
853  */
854 
855 static const struct trans_tbl neigh_states[] = {
856 	__ADD(NUD_INCOMPLETE, incomplete),
857 	__ADD(NUD_REACHABLE, reachable),
858 	__ADD(NUD_STALE, stale),
859 	__ADD(NUD_DELAY, delay),
860 	__ADD(NUD_PROBE, probe),
861 	__ADD(NUD_FAILED, failed),
862 	__ADD(NUD_NOARP, noarp),
863 	__ADD(NUD_PERMANENT, permanent),
864 
865 	/* Accept this value for backward compatibility. Originally
866 	 * there was a typo in the string value. This was fixed later,
867 	 * but we still want to successfully parse "norarp". */
868 	__ADD(NUD_NOARP, norarp),
869 };
870 
rtnl_neigh_state2str(int state,char * buf,size_t len)871 char * rtnl_neigh_state2str(int state, char *buf, size_t len)
872 {
873 	return __flags2str(state, buf, len, neigh_states,
874 	    ARRAY_SIZE(neigh_states) - 1);
875 }
876 
rtnl_neigh_str2state(const char * name)877 int rtnl_neigh_str2state(const char *name)
878 {
879 	return __str2type(name, neigh_states, ARRAY_SIZE(neigh_states));
880 }
881 
882 /** @} */
883 
884 /**
885  * @name Neighbour Flags Translations
886  * @{
887  */
888 
889 static const struct trans_tbl neigh_flags[] = {
890 	__ADD(NTF_USE, use),
891 	__ADD(NTF_PROXY, proxy),
892 	__ADD(NTF_ROUTER, router),
893 	__ADD(NTF_SELF, self),
894 	__ADD(NTF_MASTER, master),
895 	__ADD(NTF_EXT_LEARNED, ext_learned),
896 	__ADD(NTF_OFFLOADED, offloaded),
897 };
898 
rtnl_neigh_flags2str(int flags,char * buf,size_t len)899 char * rtnl_neigh_flags2str(int flags, char *buf, size_t len)
900 {
901 	return __flags2str(flags, buf, len, neigh_flags,
902 	    ARRAY_SIZE(neigh_flags));
903 }
904 
rtnl_neigh_str2flag(const char * name)905 int rtnl_neigh_str2flag(const char *name)
906 {
907 	return __str2type(name, neigh_flags, ARRAY_SIZE(neigh_flags));
908 }
909 
910 /** @} */
911 
912 /**
913  * @name Attributes
914  * @{
915  */
916 
rtnl_neigh_set_state(struct rtnl_neigh * neigh,int state)917 void rtnl_neigh_set_state(struct rtnl_neigh *neigh, int state)
918 {
919 	neigh->n_state_mask |= state;
920 	neigh->n_state |= state;
921 	neigh->ce_mask |= NEIGH_ATTR_STATE;
922 }
923 
rtnl_neigh_get_state(struct rtnl_neigh * neigh)924 int rtnl_neigh_get_state(struct rtnl_neigh *neigh)
925 {
926 	if (neigh->ce_mask & NEIGH_ATTR_STATE)
927 		return neigh->n_state;
928 	else
929 		return -1;
930 }
931 
rtnl_neigh_unset_state(struct rtnl_neigh * neigh,int state)932 void rtnl_neigh_unset_state(struct rtnl_neigh *neigh, int state)
933 {
934 	neigh->n_state_mask |= state;
935 	neigh->n_state &= ~state;
936 	neigh->ce_mask |= NEIGH_ATTR_STATE;
937 }
938 
rtnl_neigh_set_flags(struct rtnl_neigh * neigh,unsigned int flags)939 void rtnl_neigh_set_flags(struct rtnl_neigh *neigh, unsigned int flags)
940 {
941 	neigh->n_flag_mask |= flags;
942 	neigh->n_flags |= flags;
943 	neigh->ce_mask |= NEIGH_ATTR_FLAGS;
944 }
945 
rtnl_neigh_get_flags(struct rtnl_neigh * neigh)946 unsigned int rtnl_neigh_get_flags(struct rtnl_neigh *neigh)
947 {
948 	return neigh->n_flags;
949 }
950 
rtnl_neigh_unset_flags(struct rtnl_neigh * neigh,unsigned int flags)951 void rtnl_neigh_unset_flags(struct rtnl_neigh *neigh, unsigned int flags)
952 {
953 	neigh->n_flag_mask |= flags;
954 	neigh->n_flags &= ~flags;
955 	neigh->ce_mask |= NEIGH_ATTR_FLAGS;
956 }
957 
rtnl_neigh_set_ifindex(struct rtnl_neigh * neigh,int ifindex)958 void rtnl_neigh_set_ifindex(struct rtnl_neigh *neigh, int ifindex)
959 {
960 	neigh->n_ifindex = ifindex;
961 	neigh->ce_mask |= NEIGH_ATTR_IFINDEX;
962 }
963 
rtnl_neigh_get_ifindex(struct rtnl_neigh * neigh)964 int rtnl_neigh_get_ifindex(struct rtnl_neigh *neigh)
965 {
966 	return neigh->n_ifindex;
967 }
968 
__assign_addr(struct rtnl_neigh * neigh,struct nl_addr ** pos,struct nl_addr * new,int flag,int nocheck)969 static inline int __assign_addr(struct rtnl_neigh *neigh, struct nl_addr **pos,
970 			        struct nl_addr *new, int flag, int nocheck)
971 {
972 	if (!nocheck) {
973 		if (neigh->ce_mask & NEIGH_ATTR_FAMILY) {
974 			if (new->a_family != neigh->n_family)
975 				return -NLE_AF_MISMATCH;
976 		} else {
977 			neigh->n_family = new->a_family;
978 			neigh->ce_mask |= NEIGH_ATTR_FAMILY;
979 		}
980 	}
981 
982 	if (*pos)
983 		nl_addr_put(*pos);
984 
985 	nl_addr_get(new);
986 	*pos = new;
987 
988 	neigh->ce_mask |= flag;
989 
990 	return 0;
991 }
992 
rtnl_neigh_set_lladdr(struct rtnl_neigh * neigh,struct nl_addr * addr)993 void rtnl_neigh_set_lladdr(struct rtnl_neigh *neigh, struct nl_addr *addr)
994 {
995 	__assign_addr(neigh, &neigh->n_lladdr, addr, NEIGH_ATTR_LLADDR, 1);
996 }
997 
rtnl_neigh_get_lladdr(struct rtnl_neigh * neigh)998 struct nl_addr *rtnl_neigh_get_lladdr(struct rtnl_neigh *neigh)
999 {
1000 	if (neigh->ce_mask & NEIGH_ATTR_LLADDR)
1001 		return neigh->n_lladdr;
1002 	else
1003 		return NULL;
1004 }
1005 
rtnl_neigh_set_dst(struct rtnl_neigh * neigh,struct nl_addr * addr)1006 int rtnl_neigh_set_dst(struct rtnl_neigh *neigh, struct nl_addr *addr)
1007 {
1008 	return __assign_addr(neigh, &neigh->n_dst, addr,
1009 			     NEIGH_ATTR_DST, 0);
1010 }
1011 
rtnl_neigh_get_dst(struct rtnl_neigh * neigh)1012 struct nl_addr *rtnl_neigh_get_dst(struct rtnl_neigh *neigh)
1013 {
1014 	if (neigh->ce_mask & NEIGH_ATTR_DST)
1015 		return neigh->n_dst;
1016 	else
1017 		return NULL;
1018 }
1019 
rtnl_neigh_set_family(struct rtnl_neigh * neigh,int family)1020 void rtnl_neigh_set_family(struct rtnl_neigh *neigh, int family)
1021 {
1022 	neigh->n_family = family;
1023 	neigh->ce_mask |= NEIGH_ATTR_FAMILY;
1024 }
1025 
rtnl_neigh_get_family(struct rtnl_neigh * neigh)1026 int rtnl_neigh_get_family(struct rtnl_neigh *neigh)
1027 {
1028 	return neigh->n_family;
1029 }
1030 
rtnl_neigh_set_type(struct rtnl_neigh * neigh,int type)1031 void rtnl_neigh_set_type(struct rtnl_neigh *neigh, int type)
1032 {
1033 	neigh->n_type = type;
1034 	neigh->ce_mask = NEIGH_ATTR_TYPE;
1035 }
1036 
rtnl_neigh_get_type(struct rtnl_neigh * neigh)1037 int rtnl_neigh_get_type(struct rtnl_neigh *neigh)
1038 {
1039 	if (neigh->ce_mask & NEIGH_ATTR_TYPE)
1040 		return neigh->n_type;
1041 	else
1042 		return -1;
1043 }
1044 
rtnl_neigh_set_vlan(struct rtnl_neigh * neigh,int vlan)1045 void rtnl_neigh_set_vlan(struct rtnl_neigh *neigh, int vlan)
1046 {
1047 	neigh->n_vlan = vlan;
1048 	neigh->ce_mask |= NEIGH_ATTR_VLAN;
1049 }
1050 
rtnl_neigh_get_vlan(struct rtnl_neigh * neigh)1051 int rtnl_neigh_get_vlan(struct rtnl_neigh *neigh)
1052 {
1053 	if (neigh->ce_mask & NEIGH_ATTR_VLAN)
1054 		return neigh->n_vlan;
1055 	else
1056 		return -1;
1057 }
1058 
rtnl_neigh_set_master(struct rtnl_neigh * neigh,int ifindex)1059 void rtnl_neigh_set_master(struct rtnl_neigh *neigh, int ifindex)
1060 {
1061 	neigh->n_master = ifindex;
1062 	neigh->ce_mask |= NEIGH_ATTR_MASTER;
1063 }
1064 
rtnl_neigh_get_master(struct rtnl_neigh * neigh)1065 int rtnl_neigh_get_master(struct rtnl_neigh *neigh) {
1066 	return neigh->n_master;
1067 }
1068 
1069 /** @} */
1070 
1071 static struct nl_object_ops neigh_obj_ops = {
1072 	.oo_name		= "route/neigh",
1073 	.oo_size		= sizeof(struct rtnl_neigh),
1074 	.oo_free_data		= neigh_free_data,
1075 	.oo_clone		= neigh_clone,
1076 	.oo_dump = {
1077 	    [NL_DUMP_LINE]	= neigh_dump_line,
1078 	    [NL_DUMP_DETAILS]	= neigh_dump_details,
1079 	    [NL_DUMP_STATS]	= neigh_dump_stats,
1080 	},
1081 	.oo_compare		= neigh_compare,
1082 	.oo_keygen		= neigh_keygen,
1083 	.oo_attrs2str		= neigh_attrs2str,
1084 	.oo_id_attrs		= (NEIGH_ATTR_IFINDEX | NEIGH_ATTR_DST | NEIGH_ATTR_FAMILY),
1085 	.oo_id_attrs_get	= neigh_id_attrs_get
1086 };
1087 
1088 static struct nl_af_group neigh_groups[] = {
1089 	{ AF_UNSPEC, RTNLGRP_NEIGH },
1090 	{ AF_BRIDGE, RTNLGRP_NEIGH },
1091 	{ END_OF_GROUP_LIST },
1092 };
1093 
1094 static struct nl_cache_ops rtnl_neigh_ops = {
1095 	.co_name		= "route/neigh",
1096 	.co_hdrsize		= sizeof(struct ndmsg),
1097 	.co_msgtypes		= {
1098 					{ RTM_NEWNEIGH, NL_ACT_NEW, "new" },
1099 					{ RTM_DELNEIGH, NL_ACT_DEL, "del" },
1100 					{ RTM_GETNEIGH, NL_ACT_GET, "get" },
1101 					END_OF_MSGTYPES_LIST,
1102 				  },
1103 	.co_protocol		= NETLINK_ROUTE,
1104 	.co_groups		= neigh_groups,
1105 	.co_request_update	= neigh_request_update,
1106 	.co_msg_parser		= neigh_msg_parser,
1107 	.co_obj_ops		= &neigh_obj_ops,
1108 };
1109 
neigh_init(void)1110 static void __init neigh_init(void)
1111 {
1112 	nl_cache_mngt_register(&rtnl_neigh_ops);
1113 }
1114 
neigh_exit(void)1115 static void __exit neigh_exit(void)
1116 {
1117 	nl_cache_mngt_unregister(&rtnl_neigh_ops);
1118 }
1119 
1120 /** @} */
1121