1 /*
2 * Copyright © 2018 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir.h"
25 #include "nir_builder.h"
26 #include "nir_deref.h"
27 #include "util/hash_table.h"
28
29 static bool
is_trivial_deref_cast(nir_deref_instr * cast)30 is_trivial_deref_cast(nir_deref_instr *cast)
31 {
32 nir_deref_instr *parent = nir_src_as_deref(cast->parent);
33 if (!parent)
34 return false;
35
36 return cast->modes == parent->modes &&
37 cast->type == parent->type &&
38 cast->dest.ssa.num_components == parent->dest.ssa.num_components &&
39 cast->dest.ssa.bit_size == parent->dest.ssa.bit_size;
40 }
41
42 void
nir_deref_path_init(nir_deref_path * path,nir_deref_instr * deref,void * mem_ctx)43 nir_deref_path_init(nir_deref_path *path,
44 nir_deref_instr *deref, void *mem_ctx)
45 {
46 assert(deref != NULL);
47
48 /* The length of the short path is at most ARRAY_SIZE - 1 because we need
49 * room for the NULL terminator.
50 */
51 static const int max_short_path_len = ARRAY_SIZE(path->_short_path) - 1;
52
53 int count = 0;
54
55 nir_deref_instr **tail = &path->_short_path[max_short_path_len];
56 nir_deref_instr **head = tail;
57
58 *tail = NULL;
59 for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
60 if (d->deref_type == nir_deref_type_cast && is_trivial_deref_cast(d))
61 continue;
62 count++;
63 if (count <= max_short_path_len)
64 *(--head) = d;
65 }
66
67 if (count <= max_short_path_len) {
68 /* If we're under max_short_path_len, just use the short path. */
69 path->path = head;
70 goto done;
71 }
72
73 #ifndef NDEBUG
74 /* Just in case someone uses short_path by accident */
75 for (unsigned i = 0; i < ARRAY_SIZE(path->_short_path); i++)
76 path->_short_path[i] = (void *)(uintptr_t)0xdeadbeef;
77 #endif
78
79 path->path = ralloc_array(mem_ctx, nir_deref_instr *, count + 1);
80 head = tail = path->path + count;
81 *tail = NULL;
82 for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
83 if (d->deref_type == nir_deref_type_cast && is_trivial_deref_cast(d))
84 continue;
85 *(--head) = d;
86 }
87
88 done:
89 assert(head == path->path);
90 assert(tail == head + count);
91 assert(*tail == NULL);
92 }
93
94 void
nir_deref_path_finish(nir_deref_path * path)95 nir_deref_path_finish(nir_deref_path *path)
96 {
97 if (path->path < &path->_short_path[0] ||
98 path->path > &path->_short_path[ARRAY_SIZE(path->_short_path) - 1])
99 ralloc_free(path->path);
100 }
101
102 /**
103 * Recursively removes unused deref instructions
104 */
105 bool
nir_deref_instr_remove_if_unused(nir_deref_instr * instr)106 nir_deref_instr_remove_if_unused(nir_deref_instr *instr)
107 {
108 bool progress = false;
109
110 for (nir_deref_instr *d = instr; d; d = nir_deref_instr_parent(d)) {
111 /* If anyone is using this deref, leave it alone */
112 assert(d->dest.is_ssa);
113 if (!list_is_empty(&d->dest.ssa.uses))
114 break;
115
116 nir_instr_remove(&d->instr);
117 progress = true;
118 }
119
120 return progress;
121 }
122
123 bool
nir_deref_instr_has_indirect(nir_deref_instr * instr)124 nir_deref_instr_has_indirect(nir_deref_instr *instr)
125 {
126 while (instr->deref_type != nir_deref_type_var) {
127 /* Consider casts to be indirects */
128 if (instr->deref_type == nir_deref_type_cast)
129 return true;
130
131 if ((instr->deref_type == nir_deref_type_array ||
132 instr->deref_type == nir_deref_type_ptr_as_array) &&
133 !nir_src_is_const(instr->arr.index))
134 return true;
135
136 instr = nir_deref_instr_parent(instr);
137 }
138
139 return false;
140 }
141
142 bool
nir_deref_instr_is_known_out_of_bounds(nir_deref_instr * instr)143 nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr)
144 {
145 for (; instr; instr = nir_deref_instr_parent(instr)) {
146 if (instr->deref_type == nir_deref_type_array &&
147 nir_src_is_const(instr->arr.index) &&
148 nir_src_as_uint(instr->arr.index) >=
149 glsl_get_length(nir_deref_instr_parent(instr)->type))
150 return true;
151 }
152
153 return false;
154 }
155
156 bool
nir_deref_instr_has_complex_use(nir_deref_instr * deref)157 nir_deref_instr_has_complex_use(nir_deref_instr *deref)
158 {
159 nir_foreach_use(use_src, &deref->dest.ssa) {
160 nir_instr *use_instr = use_src->parent_instr;
161
162 switch (use_instr->type) {
163 case nir_instr_type_deref: {
164 nir_deref_instr *use_deref = nir_instr_as_deref(use_instr);
165
166 /* A var deref has no sources */
167 assert(use_deref->deref_type != nir_deref_type_var);
168
169 /* If a deref shows up in an array index or something like that, it's
170 * a complex use.
171 */
172 if (use_src != &use_deref->parent)
173 return true;
174
175 /* Anything that isn't a basic struct or array deref is considered to
176 * be a "complex" use. In particular, we don't allow ptr_as_array
177 * because we assume that opt_deref will turn any non-complex
178 * ptr_as_array derefs into regular array derefs eventually so passes
179 * which only want to handle simple derefs will pick them up in a
180 * later pass.
181 */
182 if (use_deref->deref_type != nir_deref_type_struct &&
183 use_deref->deref_type != nir_deref_type_array_wildcard &&
184 use_deref->deref_type != nir_deref_type_array)
185 return true;
186
187 if (nir_deref_instr_has_complex_use(use_deref))
188 return true;
189
190 continue;
191 }
192
193 case nir_instr_type_intrinsic: {
194 nir_intrinsic_instr *use_intrin = nir_instr_as_intrinsic(use_instr);
195 switch (use_intrin->intrinsic) {
196 case nir_intrinsic_load_deref:
197 assert(use_src == &use_intrin->src[0]);
198 continue;
199
200 case nir_intrinsic_copy_deref:
201 assert(use_src == &use_intrin->src[0] ||
202 use_src == &use_intrin->src[1]);
203 continue;
204
205 case nir_intrinsic_store_deref:
206 /* A use in src[1] of a store means we're taking that pointer and
207 * writing it to a variable. Because we have no idea who will
208 * read that variable and what they will do with the pointer, it's
209 * considered a "complex" use. A use in src[0], on the other
210 * hand, is a simple use because we're just going to dereference
211 * it and write a value there.
212 */
213 if (use_src == &use_intrin->src[0])
214 continue;
215 return true;
216
217 default:
218 return true;
219 }
220 unreachable("Switch default failed");
221 }
222
223 default:
224 return true;
225 }
226 }
227
228 nir_foreach_if_use(use, &deref->dest.ssa)
229 return true;
230
231 return false;
232 }
233
234 static unsigned
type_scalar_size_bytes(const struct glsl_type * type)235 type_scalar_size_bytes(const struct glsl_type *type)
236 {
237 assert(glsl_type_is_vector_or_scalar(type) ||
238 glsl_type_is_matrix(type));
239 return glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8;
240 }
241
242 unsigned
nir_deref_instr_array_stride(nir_deref_instr * deref)243 nir_deref_instr_array_stride(nir_deref_instr *deref)
244 {
245 switch (deref->deref_type) {
246 case nir_deref_type_array:
247 case nir_deref_type_array_wildcard: {
248 const struct glsl_type *arr_type = nir_deref_instr_parent(deref)->type;
249 unsigned stride = glsl_get_explicit_stride(arr_type);
250
251 if ((glsl_type_is_matrix(arr_type) &&
252 glsl_matrix_type_is_row_major(arr_type)) ||
253 (glsl_type_is_vector(arr_type) && stride == 0))
254 stride = type_scalar_size_bytes(arr_type);
255
256 return stride;
257 }
258 case nir_deref_type_ptr_as_array:
259 return nir_deref_instr_array_stride(nir_deref_instr_parent(deref));
260 case nir_deref_type_cast:
261 return deref->cast.ptr_stride;
262 default:
263 return 0;
264 }
265 }
266
267 static unsigned
type_get_array_stride(const struct glsl_type * elem_type,glsl_type_size_align_func size_align)268 type_get_array_stride(const struct glsl_type *elem_type,
269 glsl_type_size_align_func size_align)
270 {
271 unsigned elem_size, elem_align;
272 size_align(elem_type, &elem_size, &elem_align);
273 return ALIGN_POT(elem_size, elem_align);
274 }
275
276 static unsigned
struct_type_get_field_offset(const struct glsl_type * struct_type,glsl_type_size_align_func size_align,unsigned field_idx)277 struct_type_get_field_offset(const struct glsl_type *struct_type,
278 glsl_type_size_align_func size_align,
279 unsigned field_idx)
280 {
281 assert(glsl_type_is_struct_or_ifc(struct_type));
282 unsigned offset = 0;
283 for (unsigned i = 0; i <= field_idx; i++) {
284 unsigned elem_size, elem_align;
285 size_align(glsl_get_struct_field(struct_type, i), &elem_size, &elem_align);
286 offset = ALIGN_POT(offset, elem_align);
287 if (i < field_idx)
288 offset += elem_size;
289 }
290 return offset;
291 }
292
293 unsigned
nir_deref_instr_get_const_offset(nir_deref_instr * deref,glsl_type_size_align_func size_align)294 nir_deref_instr_get_const_offset(nir_deref_instr *deref,
295 glsl_type_size_align_func size_align)
296 {
297 nir_deref_path path;
298 nir_deref_path_init(&path, deref, NULL);
299
300 unsigned offset = 0;
301 for (nir_deref_instr **p = &path.path[1]; *p; p++) {
302 switch ((*p)->deref_type) {
303 case nir_deref_type_array:
304 offset += nir_src_as_uint((*p)->arr.index) *
305 type_get_array_stride((*p)->type, size_align);
306 break;
307 case nir_deref_type_struct: {
308 /* p starts at path[1], so this is safe */
309 nir_deref_instr *parent = *(p - 1);
310 offset += struct_type_get_field_offset(parent->type, size_align,
311 (*p)->strct.index);
312 break;
313 }
314 case nir_deref_type_cast:
315 /* A cast doesn't contribute to the offset */
316 break;
317 default:
318 unreachable("Unsupported deref type");
319 }
320 }
321
322 nir_deref_path_finish(&path);
323
324 return offset;
325 }
326
327 nir_ssa_def *
nir_build_deref_offset(nir_builder * b,nir_deref_instr * deref,glsl_type_size_align_func size_align)328 nir_build_deref_offset(nir_builder *b, nir_deref_instr *deref,
329 glsl_type_size_align_func size_align)
330 {
331 nir_deref_path path;
332 nir_deref_path_init(&path, deref, NULL);
333
334 nir_ssa_def *offset = nir_imm_intN_t(b, 0, deref->dest.ssa.bit_size);
335 for (nir_deref_instr **p = &path.path[1]; *p; p++) {
336 switch ((*p)->deref_type) {
337 case nir_deref_type_array: {
338 nir_ssa_def *index = nir_ssa_for_src(b, (*p)->arr.index, 1);
339 int stride = type_get_array_stride((*p)->type, size_align);
340 offset = nir_iadd(b, offset, nir_amul_imm(b, index, stride));
341 break;
342 }
343 case nir_deref_type_struct: {
344 /* p starts at path[1], so this is safe */
345 nir_deref_instr *parent = *(p - 1);
346 unsigned field_offset =
347 struct_type_get_field_offset(parent->type, size_align,
348 (*p)->strct.index);
349 offset = nir_iadd_imm(b, offset, field_offset);
350 break;
351 }
352 case nir_deref_type_cast:
353 /* A cast doesn't contribute to the offset */
354 break;
355 default:
356 unreachable("Unsupported deref type");
357 }
358 }
359
360 nir_deref_path_finish(&path);
361
362 return offset;
363 }
364
365 bool
nir_remove_dead_derefs_impl(nir_function_impl * impl)366 nir_remove_dead_derefs_impl(nir_function_impl *impl)
367 {
368 bool progress = false;
369
370 nir_foreach_block(block, impl) {
371 nir_foreach_instr_safe(instr, block) {
372 if (instr->type == nir_instr_type_deref &&
373 nir_deref_instr_remove_if_unused(nir_instr_as_deref(instr)))
374 progress = true;
375 }
376 }
377
378 if (progress)
379 nir_metadata_preserve(impl, nir_metadata_block_index |
380 nir_metadata_dominance);
381
382 return progress;
383 }
384
385 bool
nir_remove_dead_derefs(nir_shader * shader)386 nir_remove_dead_derefs(nir_shader *shader)
387 {
388 bool progress = false;
389 nir_foreach_function(function, shader) {
390 if (function->impl && nir_remove_dead_derefs_impl(function->impl))
391 progress = true;
392 }
393
394 return progress;
395 }
396
397 void
nir_fixup_deref_modes(nir_shader * shader)398 nir_fixup_deref_modes(nir_shader *shader)
399 {
400 nir_foreach_function(function, shader) {
401 if (!function->impl)
402 continue;
403
404 nir_foreach_block(block, function->impl) {
405 nir_foreach_instr(instr, block) {
406 if (instr->type != nir_instr_type_deref)
407 continue;
408
409 nir_deref_instr *deref = nir_instr_as_deref(instr);
410 if (deref->deref_type == nir_deref_type_cast)
411 continue;
412
413 nir_variable_mode parent_modes;
414 if (deref->deref_type == nir_deref_type_var) {
415 parent_modes = deref->var->data.mode;
416 } else {
417 assert(deref->parent.is_ssa);
418 nir_deref_instr *parent =
419 nir_instr_as_deref(deref->parent.ssa->parent_instr);
420 parent_modes = parent->modes;
421 }
422
423 deref->modes = parent_modes;
424 }
425 }
426 }
427 }
428
429 static bool
modes_may_alias(nir_variable_mode a,nir_variable_mode b)430 modes_may_alias(nir_variable_mode a, nir_variable_mode b)
431 {
432 /* Generic pointers can alias with SSBOs */
433 if ((a & (nir_var_mem_ssbo | nir_var_mem_global)) &&
434 (b & (nir_var_mem_ssbo | nir_var_mem_global)))
435 return true;
436
437 /* Pointers can only alias if they share a mode. */
438 return a & b;
439 }
440
441 static bool
deref_path_contains_coherent_decoration(nir_deref_path * path)442 deref_path_contains_coherent_decoration(nir_deref_path *path)
443 {
444 assert(path->path[0]->deref_type == nir_deref_type_var);
445
446 if (path->path[0]->var->data.access & ACCESS_COHERENT)
447 return true;
448
449 for (nir_deref_instr **p = &path->path[1]; *p; p++) {
450 if ((*p)->deref_type != nir_deref_type_struct)
451 continue;
452
453 const struct glsl_type *struct_type = (*(p - 1))->type;
454 const struct glsl_struct_field *field =
455 glsl_get_struct_field_data(struct_type, (*p)->strct.index);
456 if (field->memory_coherent)
457 return true;
458 }
459
460 return false;
461 }
462
463 nir_deref_compare_result
nir_compare_deref_paths(nir_deref_path * a_path,nir_deref_path * b_path)464 nir_compare_deref_paths(nir_deref_path *a_path,
465 nir_deref_path *b_path)
466 {
467 if (!modes_may_alias(b_path->path[0]->modes, a_path->path[0]->modes))
468 return nir_derefs_do_not_alias;
469
470 if (a_path->path[0]->deref_type != b_path->path[0]->deref_type)
471 return nir_derefs_may_alias_bit;
472
473 if (a_path->path[0]->deref_type == nir_deref_type_var) {
474 if (a_path->path[0]->var != b_path->path[0]->var) {
475 /* Shader and function temporaries aren't backed by memory so two
476 * distinct variables never alias.
477 */
478 static const nir_variable_mode temp_var_modes =
479 nir_var_shader_temp | nir_var_function_temp;
480 if (!(a_path->path[0]->modes & ~temp_var_modes) ||
481 !(b_path->path[0]->modes & ~temp_var_modes))
482 return nir_derefs_do_not_alias;
483
484 /* If they are both declared coherent or have coherent somewhere in
485 * their path (due to a member of an interface being declared
486 * coherent), we have to assume we that we could have any kind of
487 * aliasing. Otherwise, they could still alias but the client didn't
488 * tell us and that's their fault.
489 */
490 if (deref_path_contains_coherent_decoration(a_path) &&
491 deref_path_contains_coherent_decoration(b_path))
492 return nir_derefs_may_alias_bit;
493
494 /* If we can chase the deref all the way back to the variable and
495 * they're not the same variable and at least one is not declared
496 * coherent, we know they can't possibly alias.
497 */
498 return nir_derefs_do_not_alias;
499 }
500 } else {
501 assert(a_path->path[0]->deref_type == nir_deref_type_cast);
502 /* If they're not exactly the same cast, it's hard to compare them so we
503 * just assume they alias. Comparing casts is tricky as there are lots
504 * of things such as mode, type, etc. to make sure work out; for now, we
505 * just assume nit_opt_deref will combine them and compare the deref
506 * instructions.
507 *
508 * TODO: At some point in the future, we could be clever and understand
509 * that a float[] and int[] have the same layout and aliasing structure
510 * but double[] and vec3[] do not and we could potentially be a bit
511 * smarter here.
512 */
513 if (a_path->path[0] != b_path->path[0])
514 return nir_derefs_may_alias_bit;
515 }
516
517 /* Start off assuming they fully compare. We ignore equality for now. In
518 * the end, we'll determine that by containment.
519 */
520 nir_deref_compare_result result = nir_derefs_may_alias_bit |
521 nir_derefs_a_contains_b_bit |
522 nir_derefs_b_contains_a_bit;
523
524 nir_deref_instr **a_p = &a_path->path[1];
525 nir_deref_instr **b_p = &b_path->path[1];
526 while (*a_p != NULL && *a_p == *b_p) {
527 a_p++;
528 b_p++;
529 }
530
531 /* We're at either the tail or the divergence point between the two deref
532 * paths. Look to see if either contains cast or a ptr_as_array deref. If
533 * it does we don't know how to safely make any inferences. Hopefully,
534 * nir_opt_deref will clean most of these up and we can start inferring
535 * things again.
536 *
537 * In theory, we could do a bit better. For instance, we could detect the
538 * case where we have exactly one ptr_as_array deref in the chain after the
539 * divergence point and it's matched in both chains and the two chains have
540 * different constant indices.
541 */
542 for (nir_deref_instr **t_p = a_p; *t_p; t_p++) {
543 if ((*t_p)->deref_type == nir_deref_type_cast ||
544 (*t_p)->deref_type == nir_deref_type_ptr_as_array)
545 return nir_derefs_may_alias_bit;
546 }
547 for (nir_deref_instr **t_p = b_p; *t_p; t_p++) {
548 if ((*t_p)->deref_type == nir_deref_type_cast ||
549 (*t_p)->deref_type == nir_deref_type_ptr_as_array)
550 return nir_derefs_may_alias_bit;
551 }
552
553 while (*a_p != NULL && *b_p != NULL) {
554 nir_deref_instr *a_tail = *(a_p++);
555 nir_deref_instr *b_tail = *(b_p++);
556
557 switch (a_tail->deref_type) {
558 case nir_deref_type_array:
559 case nir_deref_type_array_wildcard: {
560 assert(b_tail->deref_type == nir_deref_type_array ||
561 b_tail->deref_type == nir_deref_type_array_wildcard);
562
563 if (a_tail->deref_type == nir_deref_type_array_wildcard) {
564 if (b_tail->deref_type != nir_deref_type_array_wildcard)
565 result &= ~nir_derefs_b_contains_a_bit;
566 } else if (b_tail->deref_type == nir_deref_type_array_wildcard) {
567 if (a_tail->deref_type != nir_deref_type_array_wildcard)
568 result &= ~nir_derefs_a_contains_b_bit;
569 } else {
570 assert(a_tail->deref_type == nir_deref_type_array &&
571 b_tail->deref_type == nir_deref_type_array);
572 assert(a_tail->arr.index.is_ssa && b_tail->arr.index.is_ssa);
573
574 if (nir_src_is_const(a_tail->arr.index) &&
575 nir_src_is_const(b_tail->arr.index)) {
576 /* If they're both direct and have different offsets, they
577 * don't even alias much less anything else.
578 */
579 if (nir_src_as_uint(a_tail->arr.index) !=
580 nir_src_as_uint(b_tail->arr.index))
581 return nir_derefs_do_not_alias;
582 } else if (a_tail->arr.index.ssa == b_tail->arr.index.ssa) {
583 /* They're the same indirect, continue on */
584 } else {
585 /* They're not the same index so we can't prove anything about
586 * containment.
587 */
588 result &= ~(nir_derefs_a_contains_b_bit | nir_derefs_b_contains_a_bit);
589 }
590 }
591 break;
592 }
593
594 case nir_deref_type_struct: {
595 /* If they're different struct members, they don't even alias */
596 if (a_tail->strct.index != b_tail->strct.index)
597 return nir_derefs_do_not_alias;
598 break;
599 }
600
601 default:
602 unreachable("Invalid deref type");
603 }
604 }
605
606 /* If a is longer than b, then it can't contain b */
607 if (*a_p != NULL)
608 result &= ~nir_derefs_a_contains_b_bit;
609 if (*b_p != NULL)
610 result &= ~nir_derefs_b_contains_a_bit;
611
612 /* If a contains b and b contains a they must be equal. */
613 if ((result & nir_derefs_a_contains_b_bit) && (result & nir_derefs_b_contains_a_bit))
614 result |= nir_derefs_equal_bit;
615
616 return result;
617 }
618
619 nir_deref_compare_result
nir_compare_derefs(nir_deref_instr * a,nir_deref_instr * b)620 nir_compare_derefs(nir_deref_instr *a, nir_deref_instr *b)
621 {
622 if (a == b) {
623 return nir_derefs_equal_bit | nir_derefs_may_alias_bit |
624 nir_derefs_a_contains_b_bit | nir_derefs_b_contains_a_bit;
625 }
626
627 nir_deref_path a_path, b_path;
628 nir_deref_path_init(&a_path, a, NULL);
629 nir_deref_path_init(&b_path, b, NULL);
630 assert(a_path.path[0]->deref_type == nir_deref_type_var ||
631 a_path.path[0]->deref_type == nir_deref_type_cast);
632 assert(b_path.path[0]->deref_type == nir_deref_type_var ||
633 b_path.path[0]->deref_type == nir_deref_type_cast);
634
635 nir_deref_compare_result result = nir_compare_deref_paths(&a_path, &b_path);
636
637 nir_deref_path_finish(&a_path);
638 nir_deref_path_finish(&b_path);
639
640 return result;
641 }
642
643 struct rematerialize_deref_state {
644 bool progress;
645 nir_builder builder;
646 nir_block *block;
647 struct hash_table *cache;
648 };
649
650 static nir_deref_instr *
rematerialize_deref_in_block(nir_deref_instr * deref,struct rematerialize_deref_state * state)651 rematerialize_deref_in_block(nir_deref_instr *deref,
652 struct rematerialize_deref_state *state)
653 {
654 if (deref->instr.block == state->block)
655 return deref;
656
657 if (!state->cache) {
658 state->cache = _mesa_pointer_hash_table_create(NULL);
659 }
660
661 struct hash_entry *cached = _mesa_hash_table_search(state->cache, deref);
662 if (cached)
663 return cached->data;
664
665 nir_builder *b = &state->builder;
666 nir_deref_instr *new_deref =
667 nir_deref_instr_create(b->shader, deref->deref_type);
668 new_deref->modes = deref->modes;
669 new_deref->type = deref->type;
670
671 if (deref->deref_type == nir_deref_type_var) {
672 new_deref->var = deref->var;
673 } else {
674 nir_deref_instr *parent = nir_src_as_deref(deref->parent);
675 if (parent) {
676 parent = rematerialize_deref_in_block(parent, state);
677 new_deref->parent = nir_src_for_ssa(&parent->dest.ssa);
678 } else {
679 nir_src_copy(&new_deref->parent, &deref->parent, new_deref);
680 }
681 }
682
683 switch (deref->deref_type) {
684 case nir_deref_type_var:
685 case nir_deref_type_array_wildcard:
686 /* Nothing more to do */
687 break;
688
689 case nir_deref_type_cast:
690 new_deref->cast.ptr_stride = deref->cast.ptr_stride;
691 break;
692
693 case nir_deref_type_array:
694 case nir_deref_type_ptr_as_array:
695 assert(!nir_src_as_deref(deref->arr.index));
696 nir_src_copy(&new_deref->arr.index, &deref->arr.index, new_deref);
697 break;
698
699 case nir_deref_type_struct:
700 new_deref->strct.index = deref->strct.index;
701 break;
702
703 default:
704 unreachable("Invalid deref instruction type");
705 }
706
707 nir_ssa_dest_init(&new_deref->instr, &new_deref->dest,
708 deref->dest.ssa.num_components,
709 deref->dest.ssa.bit_size,
710 deref->dest.ssa.name);
711 nir_builder_instr_insert(b, &new_deref->instr);
712
713 return new_deref;
714 }
715
716 static bool
rematerialize_deref_src(nir_src * src,void * _state)717 rematerialize_deref_src(nir_src *src, void *_state)
718 {
719 struct rematerialize_deref_state *state = _state;
720
721 nir_deref_instr *deref = nir_src_as_deref(*src);
722 if (!deref)
723 return true;
724
725 nir_deref_instr *block_deref = rematerialize_deref_in_block(deref, state);
726 if (block_deref != deref) {
727 nir_instr_rewrite_src(src->parent_instr, src,
728 nir_src_for_ssa(&block_deref->dest.ssa));
729 nir_deref_instr_remove_if_unused(deref);
730 state->progress = true;
731 }
732
733 return true;
734 }
735
736 /** Re-materialize derefs in every block
737 *
738 * This pass re-materializes deref instructions in every block in which it is
739 * used. After this pass has been run, every use of a deref will be of a
740 * deref in the same block as the use. Also, all unused derefs will be
741 * deleted as a side-effect.
742 *
743 * Derefs used as sources of phi instructions are not rematerialized.
744 */
745 bool
nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl * impl)746 nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl)
747 {
748 struct rematerialize_deref_state state = { 0 };
749 nir_builder_init(&state.builder, impl);
750
751 nir_foreach_block_unstructured(block, impl) {
752 state.block = block;
753
754 /* Start each block with a fresh cache */
755 if (state.cache)
756 _mesa_hash_table_clear(state.cache, NULL);
757
758 nir_foreach_instr_safe(instr, block) {
759 if (instr->type == nir_instr_type_deref &&
760 nir_deref_instr_remove_if_unused(nir_instr_as_deref(instr)))
761 continue;
762
763 /* If a deref is used in a phi, we can't rematerialize it, as the new
764 * derefs would appear before the phi, which is not valid.
765 */
766 if (instr->type == nir_instr_type_phi)
767 continue;
768
769 state.builder.cursor = nir_before_instr(instr);
770 nir_foreach_src(instr, rematerialize_deref_src, &state);
771 }
772
773 #ifndef NDEBUG
774 nir_if *following_if = nir_block_get_following_if(block);
775 if (following_if)
776 assert(!nir_src_as_deref(following_if->condition));
777 #endif
778 }
779
780 _mesa_hash_table_destroy(state.cache, NULL);
781
782 return state.progress;
783 }
784
785 static void
nir_deref_instr_fixup_child_types(nir_deref_instr * parent)786 nir_deref_instr_fixup_child_types(nir_deref_instr *parent)
787 {
788 nir_foreach_use(use, &parent->dest.ssa) {
789 if (use->parent_instr->type != nir_instr_type_deref)
790 continue;
791
792 nir_deref_instr *child = nir_instr_as_deref(use->parent_instr);
793 switch (child->deref_type) {
794 case nir_deref_type_var:
795 unreachable("nir_deref_type_var cannot be a child");
796
797 case nir_deref_type_array:
798 case nir_deref_type_array_wildcard:
799 child->type = glsl_get_array_element(parent->type);
800 break;
801
802 case nir_deref_type_ptr_as_array:
803 child->type = parent->type;
804 break;
805
806 case nir_deref_type_struct:
807 child->type = glsl_get_struct_field(parent->type,
808 child->strct.index);
809 break;
810
811 case nir_deref_type_cast:
812 /* We stop the recursion here */
813 continue;
814 }
815
816 /* Recurse into children */
817 nir_deref_instr_fixup_child_types(child);
818 }
819 }
820
821 static bool
is_trivial_array_deref_cast(nir_deref_instr * cast)822 is_trivial_array_deref_cast(nir_deref_instr *cast)
823 {
824 assert(is_trivial_deref_cast(cast));
825
826 nir_deref_instr *parent = nir_src_as_deref(cast->parent);
827
828 if (parent->deref_type == nir_deref_type_array) {
829 return cast->cast.ptr_stride ==
830 glsl_get_explicit_stride(nir_deref_instr_parent(parent)->type);
831 } else if (parent->deref_type == nir_deref_type_ptr_as_array) {
832 return cast->cast.ptr_stride ==
833 nir_deref_instr_array_stride(parent);
834 } else {
835 return false;
836 }
837 }
838
839 static bool
is_deref_ptr_as_array(nir_instr * instr)840 is_deref_ptr_as_array(nir_instr *instr)
841 {
842 return instr->type == nir_instr_type_deref &&
843 nir_instr_as_deref(instr)->deref_type == nir_deref_type_ptr_as_array;
844 }
845
846 static bool
opt_remove_restricting_cast_alignments(nir_deref_instr * cast)847 opt_remove_restricting_cast_alignments(nir_deref_instr *cast)
848 {
849 assert(cast->deref_type == nir_deref_type_cast);
850 if (cast->cast.align_mul == 0)
851 return false;
852
853 nir_deref_instr *parent = nir_src_as_deref(cast->parent);
854 if (parent == NULL)
855 return false;
856
857 /* Don't use any default alignment for this check. We don't want to fall
858 * back to type alignment too early in case we find out later that we're
859 * somehow a child of a packed struct.
860 */
861 uint32_t parent_mul, parent_offset;
862 if (!nir_get_explicit_deref_align(parent, false /* default_to_type_align */,
863 &parent_mul, &parent_offset))
864 return false;
865
866 /* If this cast increases the alignment, we want to keep it.
867 *
868 * There is a possibility that the larger alignment provided by this cast
869 * somehow disagrees with the smaller alignment further up the deref chain.
870 * In that case, we choose to favor the alignment closer to the actual
871 * memory operation which, in this case, is the cast and not its parent so
872 * keeping the cast alignment is the right thing to do.
873 */
874 if (parent_mul < cast->cast.align_mul)
875 return false;
876
877 /* If we've gotten here, we have a parent deref with an align_mul at least
878 * as large as ours so we can potentially throw away the alignment
879 * information on this deref. There are two cases to consider here:
880 *
881 * 1. We can chase the deref all the way back to the variable. In this
882 * case, we have "perfect" knowledge, modulo indirect array derefs.
883 * Unless we've done something wrong in our indirect/wildcard stride
884 * calculations, our knowledge from the deref walk is better than the
885 * client's.
886 *
887 * 2. We can't chase it all the way back to the variable. In this case,
888 * because our call to nir_get_explicit_deref_align(parent, ...) above
889 * above passes default_to_type_align=false, the only way we can even
890 * get here is if something further up the deref chain has a cast with
891 * an alignment which can only happen if we get an alignment from the
892 * client (most likely a decoration in the SPIR-V). If the client has
893 * provided us with two conflicting alignments in the deref chain,
894 * that's their fault and we can do whatever we want.
895 *
896 * In either case, we should be without our rights, at this point, to throw
897 * away the alignment information on this deref. However, to be "nice" to
898 * weird clients, we do one more check. It really shouldn't happen but
899 * it's possible that the parent's alignment offset disagrees with the
900 * cast's alignment offset. In this case, we consider the cast as
901 * providing more information (or at least more valid information) and keep
902 * it even if the align_mul from the parent is larger.
903 */
904 assert(cast->cast.align_mul <= parent_mul);
905 if (parent_offset % cast->cast.align_mul != cast->cast.align_offset)
906 return false;
907
908 /* If we got here, the parent has better alignment information than the
909 * child and we can get rid of the child alignment information.
910 */
911 cast->cast.align_mul = 0;
912 cast->cast.align_offset = 0;
913 return true;
914 }
915
916 /**
917 * Remove casts that just wrap other casts.
918 */
919 static bool
opt_remove_cast_cast(nir_deref_instr * cast)920 opt_remove_cast_cast(nir_deref_instr *cast)
921 {
922 nir_deref_instr *first_cast = cast;
923
924 while (true) {
925 nir_deref_instr *parent = nir_deref_instr_parent(first_cast);
926 if (parent == NULL || parent->deref_type != nir_deref_type_cast)
927 break;
928 first_cast = parent;
929 }
930 if (cast == first_cast)
931 return false;
932
933 nir_instr_rewrite_src(&cast->instr, &cast->parent,
934 nir_src_for_ssa(first_cast->parent.ssa));
935 return true;
936 }
937
938 /* Restrict variable modes in casts.
939 *
940 * If we know from something higher up the deref chain that the deref has a
941 * specific mode, we can cast to more general and back but we can never cast
942 * across modes. For non-cast derefs, we should only ever do anything here if
943 * the parent eventually comes from a cast that we restricted earlier.
944 */
945 static bool
opt_restrict_deref_modes(nir_deref_instr * deref)946 opt_restrict_deref_modes(nir_deref_instr *deref)
947 {
948 if (deref->deref_type == nir_deref_type_var) {
949 assert(deref->modes == deref->var->data.mode);
950 return false;
951 }
952
953 nir_deref_instr *parent = nir_src_as_deref(deref->parent);
954 if (parent == NULL || parent->modes == deref->modes)
955 return false;
956
957 assert(parent->modes & deref->modes);
958 deref->modes &= parent->modes;
959 return true;
960 }
961
962 static bool
opt_remove_sampler_cast(nir_deref_instr * cast)963 opt_remove_sampler_cast(nir_deref_instr *cast)
964 {
965 assert(cast->deref_type == nir_deref_type_cast);
966 nir_deref_instr *parent = nir_src_as_deref(cast->parent);
967 if (parent == NULL)
968 return false;
969
970 /* Strip both types down to their non-array type and bail if there are any
971 * discrepancies in array lengths.
972 */
973 const struct glsl_type *parent_type = parent->type;
974 const struct glsl_type *cast_type = cast->type;
975 while (glsl_type_is_array(parent_type) && glsl_type_is_array(cast_type)) {
976 if (glsl_get_length(parent_type) != glsl_get_length(cast_type))
977 return false;
978 parent_type = glsl_get_array_element(parent_type);
979 cast_type = glsl_get_array_element(cast_type);
980 }
981
982 if (glsl_type_is_array(parent_type) || glsl_type_is_array(cast_type))
983 return false;
984
985 if (!glsl_type_is_sampler(parent_type) ||
986 cast_type != glsl_bare_sampler_type())
987 return false;
988
989 /* We're a cast from a more detailed sampler type to a bare sampler */
990 nir_ssa_def_rewrite_uses(&cast->dest.ssa,
991 nir_src_for_ssa(&parent->dest.ssa));
992 nir_instr_remove(&cast->instr);
993
994 /* Recursively crawl the deref tree and clean up types */
995 nir_deref_instr_fixup_child_types(parent);
996
997 return true;
998 }
999
1000 /**
1001 * Is this casting a struct to a contained struct.
1002 * struct a { struct b field0 };
1003 * ssa_5 is structa;
1004 * deref_cast (structb *)ssa_5 (function_temp structb);
1005 * converts to
1006 * deref_struct &ssa_5->field0 (function_temp structb);
1007 * This allows subsequent copy propagation to work.
1008 */
1009 static bool
opt_replace_struct_wrapper_cast(nir_builder * b,nir_deref_instr * cast)1010 opt_replace_struct_wrapper_cast(nir_builder *b, nir_deref_instr *cast)
1011 {
1012 nir_deref_instr *parent = nir_src_as_deref(cast->parent);
1013 if (!parent)
1014 return false;
1015
1016 if (cast->cast.align_mul > 0)
1017 return false;
1018
1019 if (!glsl_type_is_struct(parent->type))
1020 return false;
1021
1022 if (glsl_get_struct_field_offset(parent->type, 0) != 0)
1023 return false;
1024
1025 if (cast->type != glsl_get_struct_field(parent->type, 0))
1026 return false;
1027
1028 nir_deref_instr *replace = nir_build_deref_struct(b, parent, 0);
1029 nir_ssa_def_rewrite_uses(&cast->dest.ssa, nir_src_for_ssa(&replace->dest.ssa));
1030 nir_deref_instr_remove_if_unused(cast);
1031 return true;
1032 }
1033
1034 static bool
opt_deref_cast(nir_builder * b,nir_deref_instr * cast)1035 opt_deref_cast(nir_builder *b, nir_deref_instr *cast)
1036 {
1037 bool progress = false;
1038
1039 progress |= opt_remove_restricting_cast_alignments(cast);
1040
1041 if (opt_replace_struct_wrapper_cast(b, cast))
1042 return true;
1043
1044 if (opt_remove_sampler_cast(cast))
1045 return true;
1046
1047 progress |= opt_remove_cast_cast(cast);
1048 if (!is_trivial_deref_cast(cast))
1049 return progress;
1050
1051 /* If this deref still contains useful alignment information, we don't want
1052 * to delete it.
1053 */
1054 if (cast->cast.align_mul > 0)
1055 return progress;
1056
1057 bool trivial_array_cast = is_trivial_array_deref_cast(cast);
1058
1059 assert(cast->dest.is_ssa);
1060 assert(cast->parent.is_ssa);
1061
1062 nir_foreach_use_safe(use_src, &cast->dest.ssa) {
1063 /* If this isn't a trivial array cast, we can't propagate into
1064 * ptr_as_array derefs.
1065 */
1066 if (is_deref_ptr_as_array(use_src->parent_instr) &&
1067 !trivial_array_cast)
1068 continue;
1069
1070 nir_instr_rewrite_src(use_src->parent_instr, use_src, cast->parent);
1071 progress = true;
1072 }
1073
1074 /* If uses would be a bit crazy */
1075 assert(list_is_empty(&cast->dest.ssa.if_uses));
1076
1077 if (nir_deref_instr_remove_if_unused(cast))
1078 progress = true;
1079
1080 return progress;
1081 }
1082
1083 static bool
opt_deref_ptr_as_array(nir_builder * b,nir_deref_instr * deref)1084 opt_deref_ptr_as_array(nir_builder *b, nir_deref_instr *deref)
1085 {
1086 assert(deref->deref_type == nir_deref_type_ptr_as_array);
1087
1088 nir_deref_instr *parent = nir_deref_instr_parent(deref);
1089
1090 if (nir_src_is_const(deref->arr.index) &&
1091 nir_src_as_int(deref->arr.index) == 0) {
1092 /* If it's a ptr_as_array deref with an index of 0, it does nothing
1093 * and we can just replace its uses with its parent.
1094 *
1095 * The source of a ptr_as_array deref always has a deref_type of
1096 * nir_deref_type_array or nir_deref_type_cast. If it's a cast, it
1097 * may be trivial and we may be able to get rid of that too. Any
1098 * trivial cast of trivial cast cases should be handled already by
1099 * opt_deref_cast() above.
1100 */
1101 if (parent->deref_type == nir_deref_type_cast &&
1102 is_trivial_deref_cast(parent))
1103 parent = nir_deref_instr_parent(parent);
1104 nir_ssa_def_rewrite_uses(&deref->dest.ssa,
1105 nir_src_for_ssa(&parent->dest.ssa));
1106 nir_instr_remove(&deref->instr);
1107 return true;
1108 }
1109
1110 if (parent->deref_type != nir_deref_type_array &&
1111 parent->deref_type != nir_deref_type_ptr_as_array)
1112 return false;
1113
1114 assert(parent->parent.is_ssa);
1115 assert(parent->arr.index.is_ssa);
1116 assert(deref->arr.index.is_ssa);
1117
1118 nir_ssa_def *new_idx = nir_iadd(b, parent->arr.index.ssa,
1119 deref->arr.index.ssa);
1120
1121 deref->deref_type = parent->deref_type;
1122 nir_instr_rewrite_src(&deref->instr, &deref->parent, parent->parent);
1123 nir_instr_rewrite_src(&deref->instr, &deref->arr.index,
1124 nir_src_for_ssa(new_idx));
1125 return true;
1126 }
1127
1128 static bool
is_vector_bitcast_deref(nir_deref_instr * cast,nir_component_mask_t mask,bool is_write)1129 is_vector_bitcast_deref(nir_deref_instr *cast,
1130 nir_component_mask_t mask,
1131 bool is_write)
1132 {
1133 if (cast->deref_type != nir_deref_type_cast)
1134 return false;
1135
1136 /* Don't throw away useful alignment information */
1137 if (cast->cast.align_mul > 0)
1138 return false;
1139
1140 /* It has to be a cast of another deref */
1141 nir_deref_instr *parent = nir_src_as_deref(cast->parent);
1142 if (parent == NULL)
1143 return false;
1144
1145 /* The parent has to be a vector or scalar */
1146 if (!glsl_type_is_vector_or_scalar(parent->type))
1147 return false;
1148
1149 /* Don't bother with 1-bit types */
1150 unsigned cast_bit_size = glsl_get_bit_size(cast->type);
1151 unsigned parent_bit_size = glsl_get_bit_size(parent->type);
1152 if (cast_bit_size == 1 || parent_bit_size == 1)
1153 return false;
1154
1155 /* A strided vector type means it's not tightly packed */
1156 if (glsl_get_explicit_stride(cast->type) ||
1157 glsl_get_explicit_stride(parent->type))
1158 return false;
1159
1160 assert(cast_bit_size > 0 && cast_bit_size % 8 == 0);
1161 assert(parent_bit_size > 0 && parent_bit_size % 8 == 0);
1162 unsigned bytes_used = util_last_bit(mask) * (cast_bit_size / 8);
1163 unsigned parent_bytes = glsl_get_vector_elements(parent->type) *
1164 (parent_bit_size / 8);
1165 if (bytes_used > parent_bytes)
1166 return false;
1167
1168 if (is_write && !nir_component_mask_can_reinterpret(mask, cast_bit_size,
1169 parent_bit_size))
1170 return false;
1171
1172 return true;
1173 }
1174
1175 static nir_ssa_def *
resize_vector(nir_builder * b,nir_ssa_def * data,unsigned num_components)1176 resize_vector(nir_builder *b, nir_ssa_def *data, unsigned num_components)
1177 {
1178 if (num_components == data->num_components)
1179 return data;
1180
1181 unsigned swiz[NIR_MAX_VEC_COMPONENTS] = { 0, };
1182 for (unsigned i = 0; i < MIN2(num_components, data->num_components); i++)
1183 swiz[i] = i;
1184
1185 return nir_swizzle(b, data, swiz, num_components);
1186 }
1187
1188 static bool
opt_load_vec_deref(nir_builder * b,nir_intrinsic_instr * load)1189 opt_load_vec_deref(nir_builder *b, nir_intrinsic_instr *load)
1190 {
1191 nir_deref_instr *deref = nir_src_as_deref(load->src[0]);
1192 nir_component_mask_t read_mask =
1193 nir_ssa_def_components_read(&load->dest.ssa);
1194
1195 /* LLVM loves take advantage of the fact that vec3s in OpenCL are
1196 * vec4-aligned and so it can just read/write them as vec4s. This
1197 * results in a LOT of vec4->vec3 casts on loads and stores.
1198 */
1199 if (is_vector_bitcast_deref(deref, read_mask, false)) {
1200 const unsigned old_num_comps = load->dest.ssa.num_components;
1201 const unsigned old_bit_size = load->dest.ssa.bit_size;
1202
1203 nir_deref_instr *parent = nir_src_as_deref(deref->parent);
1204 const unsigned new_num_comps = glsl_get_vector_elements(parent->type);
1205 const unsigned new_bit_size = glsl_get_bit_size(parent->type);
1206
1207 /* Stomp it to reference the parent */
1208 nir_instr_rewrite_src(&load->instr, &load->src[0],
1209 nir_src_for_ssa(&parent->dest.ssa));
1210 assert(load->dest.is_ssa);
1211 load->dest.ssa.bit_size = new_bit_size;
1212 load->dest.ssa.num_components = new_num_comps;
1213 load->num_components = new_num_comps;
1214
1215 b->cursor = nir_after_instr(&load->instr);
1216 nir_ssa_def *data = &load->dest.ssa;
1217 if (old_bit_size != new_bit_size)
1218 data = nir_bitcast_vector(b, &load->dest.ssa, old_bit_size);
1219 data = resize_vector(b, data, old_num_comps);
1220
1221 nir_ssa_def_rewrite_uses_after(&load->dest.ssa, nir_src_for_ssa(data),
1222 data->parent_instr);
1223 return true;
1224 }
1225
1226 return false;
1227 }
1228
1229 static bool
opt_store_vec_deref(nir_builder * b,nir_intrinsic_instr * store)1230 opt_store_vec_deref(nir_builder *b, nir_intrinsic_instr *store)
1231 {
1232 nir_deref_instr *deref = nir_src_as_deref(store->src[0]);
1233 nir_component_mask_t write_mask = nir_intrinsic_write_mask(store);
1234
1235 /* LLVM loves take advantage of the fact that vec3s in OpenCL are
1236 * vec4-aligned and so it can just read/write them as vec4s. This
1237 * results in a LOT of vec4->vec3 casts on loads and stores.
1238 */
1239 if (is_vector_bitcast_deref(deref, write_mask, true)) {
1240 assert(store->src[1].is_ssa);
1241 nir_ssa_def *data = store->src[1].ssa;
1242
1243 const unsigned old_bit_size = data->bit_size;
1244
1245 nir_deref_instr *parent = nir_src_as_deref(deref->parent);
1246 const unsigned new_num_comps = glsl_get_vector_elements(parent->type);
1247 const unsigned new_bit_size = glsl_get_bit_size(parent->type);
1248
1249 nir_instr_rewrite_src(&store->instr, &store->src[0],
1250 nir_src_for_ssa(&parent->dest.ssa));
1251
1252 /* Restrict things down as needed so the bitcast doesn't fail */
1253 data = nir_channels(b, data, (1 << util_last_bit(write_mask)) - 1);
1254 if (old_bit_size != new_bit_size)
1255 data = nir_bitcast_vector(b, data, new_bit_size);
1256 data = resize_vector(b, data, new_num_comps);
1257 nir_instr_rewrite_src(&store->instr, &store->src[1],
1258 nir_src_for_ssa(data));
1259 store->num_components = new_num_comps;
1260
1261 /* Adjust the write mask */
1262 write_mask = nir_component_mask_reinterpret(write_mask, old_bit_size,
1263 new_bit_size);
1264 nir_intrinsic_set_write_mask(store, write_mask);
1265 return true;
1266 }
1267
1268 return false;
1269 }
1270
1271 static bool
opt_known_deref_mode_is(nir_builder * b,nir_intrinsic_instr * intrin)1272 opt_known_deref_mode_is(nir_builder *b, nir_intrinsic_instr *intrin)
1273 {
1274 nir_variable_mode modes = nir_intrinsic_memory_modes(intrin);
1275 nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
1276 if (deref == NULL)
1277 return false;
1278
1279 nir_ssa_def *deref_is = NULL;
1280
1281 if (nir_deref_mode_must_be(deref, modes))
1282 deref_is = nir_imm_true(b);
1283
1284 if (!nir_deref_mode_may_be(deref, modes))
1285 deref_is = nir_imm_false(b);
1286
1287 if (deref_is == NULL)
1288 return false;
1289
1290 nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(deref_is));
1291 nir_instr_remove(&intrin->instr);
1292 return true;
1293 }
1294
1295 bool
nir_opt_deref_impl(nir_function_impl * impl)1296 nir_opt_deref_impl(nir_function_impl *impl)
1297 {
1298 bool progress = false;
1299
1300 nir_builder b;
1301 nir_builder_init(&b, impl);
1302
1303 nir_foreach_block(block, impl) {
1304 nir_foreach_instr_safe(instr, block) {
1305 b.cursor = nir_before_instr(instr);
1306
1307 switch (instr->type) {
1308 case nir_instr_type_deref: {
1309 nir_deref_instr *deref = nir_instr_as_deref(instr);
1310
1311 if (opt_restrict_deref_modes(deref))
1312 progress = true;
1313
1314 switch (deref->deref_type) {
1315 case nir_deref_type_ptr_as_array:
1316 if (opt_deref_ptr_as_array(&b, deref))
1317 progress = true;
1318 break;
1319
1320 case nir_deref_type_cast:
1321 if (opt_deref_cast(&b, deref))
1322 progress = true;
1323 break;
1324
1325 default:
1326 /* Do nothing */
1327 break;
1328 }
1329 break;
1330 }
1331
1332 case nir_instr_type_intrinsic: {
1333 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1334 switch (intrin->intrinsic) {
1335 case nir_intrinsic_load_deref:
1336 if (opt_load_vec_deref(&b, intrin))
1337 progress = true;
1338 break;
1339
1340 case nir_intrinsic_store_deref:
1341 if (opt_store_vec_deref(&b, intrin))
1342 progress = true;
1343 break;
1344
1345 case nir_intrinsic_deref_mode_is:
1346 if (opt_known_deref_mode_is(&b, intrin))
1347 progress = true;
1348 break;
1349
1350 default:
1351 /* Do nothing */
1352 break;
1353 }
1354 break;
1355 }
1356
1357 default:
1358 /* Do nothing */
1359 break;
1360 }
1361 }
1362 }
1363
1364 if (progress) {
1365 nir_metadata_preserve(impl, nir_metadata_block_index |
1366 nir_metadata_dominance);
1367 } else {
1368 nir_metadata_preserve(impl, nir_metadata_all);
1369 }
1370
1371 return progress;
1372 }
1373
1374 bool
nir_opt_deref(nir_shader * shader)1375 nir_opt_deref(nir_shader *shader)
1376 {
1377 bool progress = false;
1378
1379 nir_foreach_function(func, shader) {
1380 if (func->impl && nir_opt_deref_impl(func->impl))
1381 progress = true;
1382 }
1383
1384 return progress;
1385 }
1386