• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_ICLKERNEL_H
25 #define ARM_COMPUTE_ICLKERNEL_H
26 
27 #include "arm_compute/core/CL/CLKernelLibrary.h"
28 #include "arm_compute/core/CL/CLTypes.h"
29 #include "arm_compute/core/CL/OpenCL.h"
30 #include "arm_compute/core/GPUTarget.h"
31 #include "arm_compute/core/IKernel.h"
32 #include "arm_compute/core/Validate.h"
33 #include "arm_compute/core/experimental/Types.h"
34 #include "arm_compute/runtime/CL/CLTuningParams.h"
35 
36 #include "src/core/CL/DefaultLWSHeuristics.h"
37 
38 #include <string>
39 
40 namespace arm_compute
41 {
42 namespace
43 {
is_same_lws(cl::NDRange lws0,cl::NDRange lws1)44 bool is_same_lws(cl::NDRange lws0, cl::NDRange lws1)
45 {
46     if(lws0.dimensions() != lws1.dimensions())
47     {
48         return false;
49     }
50 
51     for(size_t i = 0; i < lws0.dimensions(); ++i)
52     {
53         if(lws0.get()[i] != lws1.get()[i])
54         {
55             return false;
56         }
57     }
58 
59     return true;
60 }
61 } // namespace
62 template <typename T>
63 class ICLArray;
64 class ICLTensor;
65 class Window;
66 /** Common interface for all the OpenCL kernels */
67 class ICLKernel : public IKernel
68 {
69 private:
70     /** Returns the number of arguments enqueued per array object.
71      *
72      * @return The number of arguments enqueued per array object.
73      */
74     template <unsigned int        dimension_size>
num_arguments_per_array()75     constexpr static unsigned int num_arguments_per_array()
76     {
77         return num_arguments_per_tensor<dimension_size>();
78     }
79     /** Returns the number of arguments enqueued per tensor object.
80      *
81      * @return The number of arguments enqueued per tensor object.
82      */
83     template <unsigned int        dimension_size>
num_arguments_per_tensor()84     constexpr static unsigned int num_arguments_per_tensor()
85     {
86         return 2 + 2 * dimension_size;
87     }
88 
default_lws_tune(const Window & window)89     cl::NDRange default_lws_tune(const Window &window)
90     {
91         return get_default_lws_for_type(_type, gws_from_window(window));
92     }
93 
94     using IKernel::configure; //Prevent children from calling IKernel::configure() directly
95 protected:
96     /** Configure the kernel's window and local workgroup size hint.
97      *
98      * @param[in] window    The maximum window which will be returned by window()
99      * @param[in] lws_hint  Local-Workgroup-Size to use.
100      * @param[in] wbsm_hint (Optional) Workgroup-Batch-Size-Modifier to use.
101      */
102     void configure_internal(const Window &window, cl::NDRange lws_hint, cl_int wbsm_hint = 0)
103     {
104         configure_internal(window, CLTuningParams(lws_hint, wbsm_hint));
105     }
106 
107     /** Configure the kernel's window and tuning parameters hints.
108      *
109      * @param[in] window             The maximum window which will be returned by window()
110      * @param[in] tuning_params_hint (Optional) Tuning parameters to use.
111      */
112     void configure_internal(const Window &window, CLTuningParams tuning_params_hint = CLTuningParams(CLKernelLibrary::get().default_ndrange(), 0))
113     {
114         _tuning_params_hint = tuning_params_hint;
115 
116         if(is_same_lws(_tuning_params_hint.get_lws(), CLKernelLibrary::get().default_ndrange()))
117         {
118             _tuning_params_hint.set_lws(default_lws_tune(window));
119         }
120 
121         IKernel::configure(window);
122     }
123 
124 public:
125     /** Constructor */
ICLKernel()126     ICLKernel()
127         : _kernel(nullptr), _target(GPUTarget::MIDGARD), _config_id(arm_compute::default_config_id), _max_workgroup_size(0), _type(CLKernelType::UNKNOWN), _tuning_params_hint()
128     {
129     }
130     /** Returns a reference to the OpenCL kernel of this object.
131      *
132      * @return A reference to the OpenCL kernel of this object.
133      */
kernel()134     cl::Kernel &kernel()
135     {
136         return _kernel;
137     }
138     /** Returns the CL kernel type
139      *
140      * @return The CL kernel type
141      */
type()142     CLKernelType type() const
143     {
144         return _type;
145     }
146     /** Add the passed 1D array's parameters to the object's kernel's arguments starting from the index idx.
147      *
148      * @param[in,out] idx            Index at which to start adding the array's arguments. Will be incremented by the number of kernel arguments set.
149      * @param[in]     array          Array to set as an argument of the object's kernel.
150      * @param[in]     strides        @ref Strides object containing stride of each dimension in bytes.
151      * @param[in]     num_dimensions Number of dimensions of the @p array.
152      * @param[in]     window         Window the kernel will be executed on.
153      */
154     template <typename T>
add_1D_array_argument(unsigned int & idx,const ICLArray<T> * array,const Strides & strides,unsigned int num_dimensions,const Window & window)155     void add_1D_array_argument(unsigned int &idx, const ICLArray<T> *array, const Strides &strides, unsigned int num_dimensions, const Window &window)
156     {
157         add_array_argument<T, 1>(idx, array, strides, num_dimensions, window);
158     }
159     /** Add the passed 1D tensor's parameters to the object's kernel's arguments starting from the index idx.
160      *
161      * @param[in,out] idx    Index at which to start adding the tensor's arguments. Will be incremented by the number of kernel arguments set.
162      * @param[in]     tensor Tensor to set as an argument of the object's kernel.
163      * @param[in]     window Window the kernel will be executed on.
164      */
add_1D_tensor_argument(unsigned int & idx,const ICLTensor * tensor,const Window & window)165     void add_1D_tensor_argument(unsigned int &idx, const ICLTensor *tensor, const Window &window)
166     {
167         add_tensor_argument<1>(idx, tensor, window);
168     }
169     /** Add the passed 1D tensor's parameters to the object's kernel's arguments starting from the index idx if the condition is true.
170      *
171      * @param[in]     cond   Condition to check
172      * @param[in,out] idx    Index at which to start adding the tensor's arguments. Will be incremented by the number of kernel arguments set.
173      * @param[in]     tensor Tensor to set as an argument of the object's kernel.
174      * @param[in]     window Window the kernel will be executed on.
175      */
add_1D_tensor_argument_if(bool cond,unsigned int & idx,const ICLTensor * tensor,const Window & window)176     void add_1D_tensor_argument_if(bool cond, unsigned int &idx, const ICLTensor *tensor, const Window &window)
177     {
178         if(cond)
179         {
180             add_1D_tensor_argument(idx, tensor, window);
181         }
182     }
183     /** Add the passed 2D tensor's parameters to the object's kernel's arguments starting from the index idx.
184      *
185      * @param[in,out] idx    Index at which to start adding the tensor's arguments. Will be incremented by the number of kernel arguments set.
186      * @param[in]     tensor Tensor to set as an argument of the object's kernel.
187      * @param[in]     window Window the kernel will be executed on.
188      */
add_2D_tensor_argument(unsigned int & idx,const ICLTensor * tensor,const Window & window)189     void add_2D_tensor_argument(unsigned int &idx, const ICLTensor *tensor, const Window &window)
190     {
191         add_tensor_argument<2>(idx, tensor, window);
192     }
193     /** Add the passed 2D tensor's parameters to the object's kernel's arguments starting from the index idx if the condition is true.
194      *
195      * @param[in]     cond   Condition to check
196      * @param[in,out] idx    Index at which to start adding the tensor's arguments. Will be incremented by the number of kernel arguments set.
197      * @param[in]     tensor Tensor to set as an argument of the object's kernel.
198      * @param[in]     window Window the kernel will be executed on.
199      */
add_2D_tensor_argument_if(bool cond,unsigned int & idx,const ICLTensor * tensor,const Window & window)200     void add_2D_tensor_argument_if(bool cond, unsigned int &idx, const ICLTensor *tensor, const Window &window)
201     {
202         if(cond)
203         {
204             add_2D_tensor_argument(idx, tensor, window);
205         }
206     }
207     /** Add the passed 3D tensor's parameters to the object's kernel's arguments starting from the index idx.
208      *
209      * @param[in,out] idx    Index at which to start adding the tensor's arguments. Will be incremented by the number of kernel arguments set.
210      * @param[in]     tensor Tensor to set as an argument of the object's kernel.
211      * @param[in]     window Window the kernel will be executed on.
212      */
add_3D_tensor_argument(unsigned int & idx,const ICLTensor * tensor,const Window & window)213     void add_3D_tensor_argument(unsigned int &idx, const ICLTensor *tensor, const Window &window)
214     {
215         add_tensor_argument<3>(idx, tensor, window);
216     }
217     /** Add the passed 4D tensor's parameters to the object's kernel's arguments starting from the index idx.
218      *
219      * @param[in,out] idx    Index at which to start adding the tensor's arguments. Will be incremented by the number of kernel arguments set.
220      * @param[in]     tensor Tensor to set as an argument of the object's kernel.
221      * @param[in]     window Window the kernel will be executed on.
222      */
add_4D_tensor_argument(unsigned int & idx,const ICLTensor * tensor,const Window & window)223     void add_4D_tensor_argument(unsigned int &idx, const ICLTensor *tensor, const Window &window)
224     {
225         add_tensor_argument<4>(idx, tensor, window);
226     }
227     /** Add the passed 5D tensor's parameters to the object's kernel's arguments starting from the index idx.
228      *
229      * @param[in,out] idx    Index at which to start adding the tensor's arguments. Will be incremented by the number of kernel arguments set.
230      * @param[in]     tensor Tensor to set as an argument of the object's kernel.
231      * @param[in]     window Window the kernel will be executed on.
232      */
add_5D_tensor_argument(unsigned int & idx,const ICLTensor * tensor,const Window & window)233     void add_5D_tensor_argument(unsigned int &idx, const ICLTensor *tensor, const Window &window)
234     {
235         add_tensor_argument<5>(idx, tensor, window);
236     }
237 
238     /** Add the passed NHW 3D tensor's parameters to the object's kernel's arguments by passing strides, dimensions and the offset to the first valid element in bytes.
239      *
240      * @param[in,out] idx    Index at which to start adding the tensor's arguments. Will be incremented by the number of kernel arguments set.
241      * @param[in]     tensor Tensor to set as an argument of the object's kernel.
242      */
243     void add_3d_tensor_nhw_argument(unsigned int &idx, const ICLTensor *tensor);
244 
245     /** Returns the number of arguments enqueued per NHW 3D Tensor object.
246      *
247      * @return The number of arguments enqueued per NHW 3D Tensor object.
248      */
num_arguments_per_3d_tensor_nhw()249     constexpr static unsigned int num_arguments_per_3d_tensor_nhw()
250     {
251         constexpr unsigned int no_args_per_3d_tensor_nhw = 7u;
252         return no_args_per_3d_tensor_nhw;
253     }
254 
255     /** Add the passed NHWC 4D tensor's parameters to the object's kernel's arguments by passing strides, dimensions and the offset to the first valid element in bytes.
256      *
257      * @param[in,out] idx    Index at which to start adding the tensor's arguments. Will be incremented by the number of kernel arguments set.
258      * @param[in]     tensor Tensor to set as an argument of the object's kernel.
259      */
260     void add_4d_tensor_nhwc_argument(unsigned int &idx, const ICLTensor *tensor);
261 
262     /** Returns the number of arguments enqueued per NHWC 4D Tensor object.
263      *
264      * @return The number of arguments enqueued per NHWC 4D Tensor object.
265      */
num_arguments_per_4d_tensor_nhwc()266     constexpr static unsigned int num_arguments_per_4d_tensor_nhwc()
267     {
268         constexpr unsigned int no_args_per_4d_tensor_nhwc = 9u;
269         return no_args_per_4d_tensor_nhwc;
270     }
271 
272     /** Returns the number of arguments enqueued per 1D array object.
273      *
274      * @return The number of arguments enqueues per 1D array object.
275      */
num_arguments_per_1D_array()276     constexpr static unsigned int num_arguments_per_1D_array()
277     {
278         return num_arguments_per_array<1>();
279     }
280     /** Returns the number of arguments enqueued per 1D tensor object.
281      *
282      * @return The number of arguments enqueues per 1D tensor object.
283      */
num_arguments_per_1D_tensor()284     constexpr static unsigned int num_arguments_per_1D_tensor()
285     {
286         return num_arguments_per_tensor<1>();
287     }
288     /** Returns the number of arguments enqueued per 2D tensor object.
289      *
290      * @return The number of arguments enqueues per 2D tensor object.
291      */
num_arguments_per_2D_tensor()292     constexpr static unsigned int num_arguments_per_2D_tensor()
293     {
294         return num_arguments_per_tensor<2>();
295     }
296     /** Returns the number of arguments enqueued per 3D tensor object.
297      *
298      * @return The number of arguments enqueues per 3D tensor object.
299      */
num_arguments_per_3D_tensor()300     constexpr static unsigned int num_arguments_per_3D_tensor()
301     {
302         return num_arguments_per_tensor<3>();
303     }
304     /** Returns the number of arguments enqueued per 4D tensor object.
305      *
306      * @return The number of arguments enqueues per 4D tensor object.
307      */
num_arguments_per_4D_tensor()308     constexpr static unsigned int num_arguments_per_4D_tensor()
309     {
310         return num_arguments_per_tensor<4>();
311     }
312     /** Enqueue the OpenCL kernel to process the given window  on the passed OpenCL command queue.
313      *
314      * @note The queue is *not* flushed by this method, and therefore the kernel will not have been executed by the time this method returns.
315      *
316      * @param[in]     window Region on which to execute the kernel. (Must be a valid region of the window returned by window()).
317      * @param[in,out] queue  Command queue on which to enqueue the kernel.
318      */
run(const Window & window,cl::CommandQueue & queue)319     virtual void run(const Window &window, cl::CommandQueue &queue)
320     {
321         ARM_COMPUTE_UNUSED(window, queue);
322     }
323     /** Enqueue the OpenCL kernel to process the given window  on the passed OpenCL command queue.
324      *
325      * @note The queue is *not* flushed by this method, and therefore the kernel will not have been executed by the time this method returns.
326      *
327      * @param[in]     tensors A vector containing the tensors to operato on.
328      * @param[in]     window  Region on which to execute the kernel. (Must be a valid region of the window returned by window()).
329      * @param[in,out] queue   Command queue on which to enqueue the kernel.
330      */
run_op(ITensorPack & tensors,const Window & window,cl::CommandQueue & queue)331     virtual void run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
332     {
333         ARM_COMPUTE_UNUSED(tensors, window, queue);
334     }
335     /** Add the passed parameters to the object's kernel's arguments starting from the index idx.
336      *
337      * @param[in,out] idx   Index at which to start adding the arguments. Will be incremented by the number of kernel arguments set.
338      * @param[in]     value Value to set as an argument of the object's kernel.
339      */
340     template <typename T>
add_argument(unsigned int & idx,T value)341     void add_argument(unsigned int &idx, T value)
342     {
343         _kernel.setArg(idx++, value);
344     }
345 
346     /** Set the Local-Workgroup-Size hint
347      *
348      * @note This method should be called after the configuration of the kernel
349      *
350      * @param[in] lws_hint Local-Workgroup-Size to use
351      */
set_lws_hint(const cl::NDRange & lws_hint)352     void set_lws_hint(const cl::NDRange &lws_hint)
353     {
354         ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); // lws_hint will be overwritten by configure()
355         _tuning_params_hint.set_lws(lws_hint);
356     }
357 
358     /** Return the Local-Workgroup-Size hint
359      *
360      * @return Current lws hint
361      */
lws_hint()362     cl::NDRange lws_hint() const
363     {
364         return _tuning_params_hint.get_lws();
365     }
366 
367     /** Set the workgroup batch size modifier hint
368      *
369      * @note This method should be called after the configuration of the kernel
370      *
371      * @param[in] wbsm_hint workgroup batch size modifier value
372      */
set_wbsm_hint(const cl_int & wbsm_hint)373     void set_wbsm_hint(const cl_int &wbsm_hint)
374     {
375         ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); // wbsm_hint will be overwritten by configure()
376         _tuning_params_hint.set_wbsm(wbsm_hint);
377     }
378 
379     /** Return the workgroup batch size modifier hint
380      *
381      * @return Current wbsm hint
382      */
wbsm_hint()383     cl_int wbsm_hint() const
384     {
385         return _tuning_params_hint.get_wbsm();
386     }
387 
388     /** Get the configuration ID
389      *
390      * @note The configuration ID can be used by the caller to distinguish different calls of the same OpenCL kernel
391      *       In particular, this method can be used by CLScheduler to keep track of the best LWS for each configuration of the same kernel.
392      *       The configuration ID should be provided only for the kernels potentially affected by the LWS geometry
393      *
394      * @note This method should be called after the configuration of the kernel
395      *
396      * @return configuration id string
397      */
config_id()398     const std::string &config_id() const
399     {
400         return _config_id;
401     }
402 
403     /** Set the targeted GPU architecture
404      *
405      * @param[in] target The targeted GPU architecture
406      */
set_target(GPUTarget target)407     void set_target(GPUTarget target)
408     {
409         _target = target;
410     }
411 
412     /** Set the targeted GPU architecture according to the CL device
413      *
414      * @param[in] device A CL device
415      */
416     void set_target(cl::Device &device);
417 
418     /** Get the targeted GPU architecture
419      *
420      * @return The targeted GPU architecture.
421      */
get_target()422     GPUTarget get_target() const
423     {
424         return _target;
425     }
426 
427     /** Get the maximum workgroup size for the device the CLKernelLibrary uses.
428      *
429      * @return The maximum workgroup size value.
430      */
431     size_t get_max_workgroup_size();
432     /** Get the global work size given an execution window
433      *
434      * @param[in] window Execution window
435      *
436      * @return Global work size of the given execution window
437      */
438     static cl::NDRange gws_from_window(const Window &window);
439 
440 private:
441     /** Add the passed array's parameters to the object's kernel's arguments starting from the index idx.
442      *
443      * @param[in,out] idx            Index at which to start adding the array's arguments. Will be incremented by the number of kernel arguments set.
444      * @param[in]     array          Array to set as an argument of the object's kernel.
445      * @param[in]     strides        @ref Strides object containing stride of each dimension in bytes.
446      * @param[in]     num_dimensions Number of dimensions of the @p array.
447      * @param[in]     window         Window the kernel will be executed on.
448      */
449     template <typename T, unsigned int dimension_size>
450     void add_array_argument(unsigned int &idx, const ICLArray<T> *array, const Strides &strides, unsigned int num_dimensions, const Window &window);
451     /** Add the passed tensor's parameters to the object's kernel's arguments starting from the index idx.
452      *
453      * @param[in,out] idx    Index at which to start adding the tensor's arguments. Will be incremented by the number of kernel arguments set.
454      * @param[in]     tensor Tensor to set as an argument of the object's kernel.
455      * @param[in]     window Window the kernel will be executed on.
456      */
457     template <unsigned int dimension_size>
458     void add_tensor_argument(unsigned int &idx, const ICLTensor *tensor, const Window &window);
459 
460 protected:
461     cl::Kernel   _kernel;             /**< OpenCL kernel to run */
462     GPUTarget    _target;             /**< The targeted GPU */
463     std::string  _config_id;          /**< Configuration ID */
464     size_t       _max_workgroup_size; /**< The maximum workgroup size for this kernel */
465     CLKernelType _type;               /**< The CL kernel type */
466 private:
467     CLTuningParams _tuning_params_hint; /**< Tuning parameters hint for the OpenCL kernel */
468 };
469 
470 /** Add the kernel to the command queue with the given window.
471  *
472  * @note Depending on the size of the window, this might translate into several jobs being enqueued.
473  *
474  * @note If kernel->kernel() is empty then the function will return without adding anything to the queue.
475  *
476  * @param[in,out] queue                OpenCL command queue.
477  * @param[in]     kernel               Kernel to enqueue
478  * @param[in]     window               Window the kernel has to process.
479  * @param[in]     lws_hint             (Optional) Local workgroup size requested. Default is based on the device target.
480  * @param[in]     use_dummy_work_items (Optional) Use dummy work items in order to have two dimensional power of two NDRange. Default is false
481  *                                     Note: it is kernel responsibility to check if the work-item is out-of-range
482  *
483  * @note If any dimension of the lws is greater than the global workgroup size then no lws will be passed.
484  */
485 void enqueue(cl::CommandQueue &queue, ICLKernel &kernel, const Window &window, const cl::NDRange &lws_hint = CLKernelLibrary::get().default_ndrange(), bool use_dummy_work_items = false);
486 
487 /** Add the passed array's parameters to the object's kernel's arguments starting from the index idx.
488  *
489  * @param[in,out] idx            Index at which to start adding the array's arguments. Will be incremented by the number of kernel arguments set.
490  * @param[in]     array          Array to set as an argument of the object's kernel.
491  * @param[in]     strides        @ref Strides object containing stride of each dimension in bytes.
492  * @param[in]     num_dimensions Number of dimensions of the @p array.
493  * @param[in]     window         Window the kernel will be executed on.
494  */
495 template <typename T, unsigned int dimension_size>
add_array_argument(unsigned & idx,const ICLArray<T> * array,const Strides & strides,unsigned int num_dimensions,const Window & window)496 void ICLKernel::add_array_argument(unsigned &idx, const ICLArray<T> *array, const Strides &strides, unsigned int num_dimensions, const Window &window)
497 {
498     ARM_COMPUTE_ERROR_ON(array == nullptr);
499 
500     // Calculate offset to the start of the window
501     unsigned int offset_first_element = 0;
502 
503     for(unsigned int n = 0; n < num_dimensions; ++n)
504     {
505         offset_first_element += window[n].start() * strides[n];
506     }
507 
508     unsigned int idx_start = idx;
509     _kernel.setArg(idx++, array->cl_buffer());
510 
511     for(unsigned int dimension = 0; dimension < dimension_size; dimension++)
512     {
513         _kernel.setArg<cl_uint>(idx++, strides[dimension]);
514         _kernel.setArg<cl_uint>(idx++, strides[dimension] * window[dimension].step());
515     }
516 
517     _kernel.setArg<cl_uint>(idx++, offset_first_element);
518 
519     ARM_COMPUTE_ERROR_ON_MSG_VAR(idx_start + num_arguments_per_array<dimension_size>() != idx,
520                                  "add_%dD_array_argument() is supposed to add exactly %d arguments to the kernel", dimension_size, num_arguments_per_array<dimension_size>());
521     ARM_COMPUTE_UNUSED(idx_start);
522 }
523 }
524 #endif /*ARM_COMPUTE_ICLKERNEL_H */
525