• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG.  Note that the
11 // loops identified may actually be several natural loops that share the same
12 // header node... not just a single natural loop.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/IVDescriptors.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/IRPrintingPasses.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/PassManager.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <algorithm>
42 using namespace llvm;
43 
44 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
45 template class llvm::LoopBase<BasicBlock, Loop>;
46 template class llvm::LoopInfoBase<BasicBlock, Loop>;
47 
48 // Always verify loopinfo if expensive checking is enabled.
49 #ifdef EXPENSIVE_CHECKS
50 bool llvm::VerifyLoopInfo = true;
51 #else
52 bool llvm::VerifyLoopInfo = false;
53 #endif
54 static cl::opt<bool, true>
55     VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
56                     cl::Hidden, cl::desc("Verify loop info (time consuming)"));
57 
58 //===----------------------------------------------------------------------===//
59 // Loop implementation
60 //
61 
isLoopInvariant(const Value * V) const62 bool Loop::isLoopInvariant(const Value *V) const {
63   if (const Instruction *I = dyn_cast<Instruction>(V))
64     return !contains(I);
65   return true; // All non-instructions are loop invariant
66 }
67 
hasLoopInvariantOperands(const Instruction * I) const68 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
69   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
70 }
71 
makeLoopInvariant(Value * V,bool & Changed,Instruction * InsertPt,MemorySSAUpdater * MSSAU) const72 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt,
73                              MemorySSAUpdater *MSSAU) const {
74   if (Instruction *I = dyn_cast<Instruction>(V))
75     return makeLoopInvariant(I, Changed, InsertPt, MSSAU);
76   return true; // All non-instructions are loop-invariant.
77 }
78 
makeLoopInvariant(Instruction * I,bool & Changed,Instruction * InsertPt,MemorySSAUpdater * MSSAU) const79 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
80                              Instruction *InsertPt,
81                              MemorySSAUpdater *MSSAU) const {
82   // Test if the value is already loop-invariant.
83   if (isLoopInvariant(I))
84     return true;
85   if (!isSafeToSpeculativelyExecute(I))
86     return false;
87   if (I->mayReadFromMemory())
88     return false;
89   // EH block instructions are immobile.
90   if (I->isEHPad())
91     return false;
92   // Determine the insertion point, unless one was given.
93   if (!InsertPt) {
94     BasicBlock *Preheader = getLoopPreheader();
95     // Without a preheader, hoisting is not feasible.
96     if (!Preheader)
97       return false;
98     InsertPt = Preheader->getTerminator();
99   }
100   // Don't hoist instructions with loop-variant operands.
101   for (Value *Operand : I->operands())
102     if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU))
103       return false;
104 
105   // Hoist.
106   I->moveBefore(InsertPt);
107   if (MSSAU)
108     if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I))
109       MSSAU->moveToPlace(MUD, InsertPt->getParent(),
110                          MemorySSA::BeforeTerminator);
111 
112   // There is possibility of hoisting this instruction above some arbitrary
113   // condition. Any metadata defined on it can be control dependent on this
114   // condition. Conservatively strip it here so that we don't give any wrong
115   // information to the optimizer.
116   I->dropUnknownNonDebugMetadata();
117 
118   Changed = true;
119   return true;
120 }
121 
getIncomingAndBackEdge(BasicBlock * & Incoming,BasicBlock * & Backedge) const122 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming,
123                                   BasicBlock *&Backedge) const {
124   BasicBlock *H = getHeader();
125 
126   Incoming = nullptr;
127   Backedge = nullptr;
128   pred_iterator PI = pred_begin(H);
129   assert(PI != pred_end(H) && "Loop must have at least one backedge!");
130   Backedge = *PI++;
131   if (PI == pred_end(H))
132     return false; // dead loop
133   Incoming = *PI++;
134   if (PI != pred_end(H))
135     return false; // multiple backedges?
136 
137   if (contains(Incoming)) {
138     if (contains(Backedge))
139       return false;
140     std::swap(Incoming, Backedge);
141   } else if (!contains(Backedge))
142     return false;
143 
144   assert(Incoming && Backedge && "expected non-null incoming and backedges");
145   return true;
146 }
147 
getCanonicalInductionVariable() const148 PHINode *Loop::getCanonicalInductionVariable() const {
149   BasicBlock *H = getHeader();
150 
151   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
152   if (!getIncomingAndBackEdge(Incoming, Backedge))
153     return nullptr;
154 
155   // Loop over all of the PHI nodes, looking for a canonical indvar.
156   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
157     PHINode *PN = cast<PHINode>(I);
158     if (ConstantInt *CI =
159             dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
160       if (CI->isZero())
161         if (Instruction *Inc =
162                 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
163           if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
164             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
165               if (CI->isOne())
166                 return PN;
167   }
168   return nullptr;
169 }
170 
171 /// Get the latch condition instruction.
getLatchCmpInst(const Loop & L)172 static ICmpInst *getLatchCmpInst(const Loop &L) {
173   if (BasicBlock *Latch = L.getLoopLatch())
174     if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()))
175       if (BI->isConditional())
176         return dyn_cast<ICmpInst>(BI->getCondition());
177 
178   return nullptr;
179 }
180 
181 /// Return the final value of the loop induction variable if found.
findFinalIVValue(const Loop & L,const PHINode & IndVar,const Instruction & StepInst)182 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar,
183                                const Instruction &StepInst) {
184   ICmpInst *LatchCmpInst = getLatchCmpInst(L);
185   if (!LatchCmpInst)
186     return nullptr;
187 
188   Value *Op0 = LatchCmpInst->getOperand(0);
189   Value *Op1 = LatchCmpInst->getOperand(1);
190   if (Op0 == &IndVar || Op0 == &StepInst)
191     return Op1;
192 
193   if (Op1 == &IndVar || Op1 == &StepInst)
194     return Op0;
195 
196   return nullptr;
197 }
198 
getBounds(const Loop & L,PHINode & IndVar,ScalarEvolution & SE)199 Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L,
200                                                        PHINode &IndVar,
201                                                        ScalarEvolution &SE) {
202   InductionDescriptor IndDesc;
203   if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc))
204     return None;
205 
206   Value *InitialIVValue = IndDesc.getStartValue();
207   Instruction *StepInst = IndDesc.getInductionBinOp();
208   if (!InitialIVValue || !StepInst)
209     return None;
210 
211   const SCEV *Step = IndDesc.getStep();
212   Value *StepInstOp1 = StepInst->getOperand(1);
213   Value *StepInstOp0 = StepInst->getOperand(0);
214   Value *StepValue = nullptr;
215   if (SE.getSCEV(StepInstOp1) == Step)
216     StepValue = StepInstOp1;
217   else if (SE.getSCEV(StepInstOp0) == Step)
218     StepValue = StepInstOp0;
219 
220   Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst);
221   if (!FinalIVValue)
222     return None;
223 
224   return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue,
225                     SE);
226 }
227 
228 using Direction = Loop::LoopBounds::Direction;
229 
getCanonicalPredicate() const230 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const {
231   BasicBlock *Latch = L.getLoopLatch();
232   assert(Latch && "Expecting valid latch");
233 
234   BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator());
235   assert(BI && BI->isConditional() && "Expecting conditional latch branch");
236 
237   ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition());
238   assert(LatchCmpInst &&
239          "Expecting the latch compare instruction to be a CmpInst");
240 
241   // Need to inverse the predicate when first successor is not the loop
242   // header
243   ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader())
244                                  ? LatchCmpInst->getPredicate()
245                                  : LatchCmpInst->getInversePredicate();
246 
247   if (LatchCmpInst->getOperand(0) == &getFinalIVValue())
248     Pred = ICmpInst::getSwappedPredicate(Pred);
249 
250   // Need to flip strictness of the predicate when the latch compare instruction
251   // is not using StepInst
252   if (LatchCmpInst->getOperand(0) == &getStepInst() ||
253       LatchCmpInst->getOperand(1) == &getStepInst())
254     return Pred;
255 
256   // Cannot flip strictness of NE and EQ
257   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
258     return ICmpInst::getFlippedStrictnessPredicate(Pred);
259 
260   Direction D = getDirection();
261   if (D == Direction::Increasing)
262     return ICmpInst::ICMP_SLT;
263 
264   if (D == Direction::Decreasing)
265     return ICmpInst::ICMP_SGT;
266 
267   // If cannot determine the direction, then unable to find the canonical
268   // predicate
269   return ICmpInst::BAD_ICMP_PREDICATE;
270 }
271 
getDirection() const272 Direction Loop::LoopBounds::getDirection() const {
273   if (const SCEVAddRecExpr *StepAddRecExpr =
274           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst())))
275     if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) {
276       if (SE.isKnownPositive(StepRecur))
277         return Direction::Increasing;
278       if (SE.isKnownNegative(StepRecur))
279         return Direction::Decreasing;
280     }
281 
282   return Direction::Unknown;
283 }
284 
getBounds(ScalarEvolution & SE) const285 Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const {
286   if (PHINode *IndVar = getInductionVariable(SE))
287     return LoopBounds::getBounds(*this, *IndVar, SE);
288 
289   return None;
290 }
291 
getInductionVariable(ScalarEvolution & SE) const292 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const {
293   if (!isLoopSimplifyForm())
294     return nullptr;
295 
296   BasicBlock *Header = getHeader();
297   assert(Header && "Expected a valid loop header");
298   ICmpInst *CmpInst = getLatchCmpInst(*this);
299   if (!CmpInst)
300     return nullptr;
301 
302   Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0));
303   Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1));
304 
305   for (PHINode &IndVar : Header->phis()) {
306     InductionDescriptor IndDesc;
307     if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc))
308       continue;
309 
310     Instruction *StepInst = IndDesc.getInductionBinOp();
311 
312     // case 1:
313     // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
314     // StepInst = IndVar + step
315     // cmp = StepInst < FinalValue
316     if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1)
317       return &IndVar;
318 
319     // case 2:
320     // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
321     // StepInst = IndVar + step
322     // cmp = IndVar < FinalValue
323     if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1)
324       return &IndVar;
325   }
326 
327   return nullptr;
328 }
329 
getInductionDescriptor(ScalarEvolution & SE,InductionDescriptor & IndDesc) const330 bool Loop::getInductionDescriptor(ScalarEvolution &SE,
331                                   InductionDescriptor &IndDesc) const {
332   if (PHINode *IndVar = getInductionVariable(SE))
333     return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc);
334 
335   return false;
336 }
337 
isAuxiliaryInductionVariable(PHINode & AuxIndVar,ScalarEvolution & SE) const338 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar,
339                                         ScalarEvolution &SE) const {
340   // Located in the loop header
341   BasicBlock *Header = getHeader();
342   if (AuxIndVar.getParent() != Header)
343     return false;
344 
345   // No uses outside of the loop
346   for (User *U : AuxIndVar.users())
347     if (const Instruction *I = dyn_cast<Instruction>(U))
348       if (!contains(I))
349         return false;
350 
351   InductionDescriptor IndDesc;
352   if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc))
353     return false;
354 
355   // The step instruction opcode should be add or sub.
356   if (IndDesc.getInductionOpcode() != Instruction::Add &&
357       IndDesc.getInductionOpcode() != Instruction::Sub)
358     return false;
359 
360   // Incremented by a loop invariant step for each loop iteration
361   return SE.isLoopInvariant(IndDesc.getStep(), this);
362 }
363 
getLoopGuardBranch() const364 BranchInst *Loop::getLoopGuardBranch() const {
365   if (!isLoopSimplifyForm())
366     return nullptr;
367 
368   BasicBlock *Preheader = getLoopPreheader();
369   assert(Preheader && getLoopLatch() &&
370          "Expecting a loop with valid preheader and latch");
371 
372   // Loop should be in rotate form.
373   if (!isRotatedForm())
374     return nullptr;
375 
376   // Disallow loops with more than one unique exit block, as we do not verify
377   // that GuardOtherSucc post dominates all exit blocks.
378   BasicBlock *ExitFromLatch = getUniqueExitBlock();
379   if (!ExitFromLatch)
380     return nullptr;
381 
382   BasicBlock *ExitFromLatchSucc = ExitFromLatch->getUniqueSuccessor();
383   if (!ExitFromLatchSucc)
384     return nullptr;
385 
386   BasicBlock *GuardBB = Preheader->getUniquePredecessor();
387   if (!GuardBB)
388     return nullptr;
389 
390   assert(GuardBB->getTerminator() && "Expecting valid guard terminator");
391 
392   BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator());
393   if (!GuardBI || GuardBI->isUnconditional())
394     return nullptr;
395 
396   BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader)
397                                    ? GuardBI->getSuccessor(1)
398                                    : GuardBI->getSuccessor(0);
399   return (GuardOtherSucc == ExitFromLatchSucc) ? GuardBI : nullptr;
400 }
401 
isCanonical(ScalarEvolution & SE) const402 bool Loop::isCanonical(ScalarEvolution &SE) const {
403   InductionDescriptor IndDesc;
404   if (!getInductionDescriptor(SE, IndDesc))
405     return false;
406 
407   ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue());
408   if (!Init || !Init->isZero())
409     return false;
410 
411   if (IndDesc.getInductionOpcode() != Instruction::Add)
412     return false;
413 
414   ConstantInt *Step = IndDesc.getConstIntStepValue();
415   if (!Step || !Step->isOne())
416     return false;
417 
418   return true;
419 }
420 
421 // Check that 'BB' doesn't have any uses outside of the 'L'
isBlockInLCSSAForm(const Loop & L,const BasicBlock & BB,DominatorTree & DT)422 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
423                                DominatorTree &DT) {
424   for (const Instruction &I : BB) {
425     // Tokens can't be used in PHI nodes and live-out tokens prevent loop
426     // optimizations, so for the purposes of considered LCSSA form, we
427     // can ignore them.
428     if (I.getType()->isTokenTy())
429       continue;
430 
431     for (const Use &U : I.uses()) {
432       const Instruction *UI = cast<Instruction>(U.getUser());
433       const BasicBlock *UserBB = UI->getParent();
434       if (const PHINode *P = dyn_cast<PHINode>(UI))
435         UserBB = P->getIncomingBlock(U);
436 
437       // Check the current block, as a fast-path, before checking whether
438       // the use is anywhere in the loop.  Most values are used in the same
439       // block they are defined in.  Also, blocks not reachable from the
440       // entry are special; uses in them don't need to go through PHIs.
441       if (UserBB != &BB && !L.contains(UserBB) &&
442           DT.isReachableFromEntry(UserBB))
443         return false;
444     }
445   }
446   return true;
447 }
448 
isLCSSAForm(DominatorTree & DT) const449 bool Loop::isLCSSAForm(DominatorTree &DT) const {
450   // For each block we check that it doesn't have any uses outside of this loop.
451   return all_of(this->blocks(), [&](const BasicBlock *BB) {
452     return isBlockInLCSSAForm(*this, *BB, DT);
453   });
454 }
455 
isRecursivelyLCSSAForm(DominatorTree & DT,const LoopInfo & LI) const456 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
457   // For each block we check that it doesn't have any uses outside of its
458   // innermost loop. This process will transitively guarantee that the current
459   // loop and all of the nested loops are in LCSSA form.
460   return all_of(this->blocks(), [&](const BasicBlock *BB) {
461     return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
462   });
463 }
464 
isLoopSimplifyForm() const465 bool Loop::isLoopSimplifyForm() const {
466   // Normal-form loops have a preheader, a single backedge, and all of their
467   // exits have all their predecessors inside the loop.
468   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
469 }
470 
471 // Routines that reform the loop CFG and split edges often fail on indirectbr.
isSafeToClone() const472 bool Loop::isSafeToClone() const {
473   // Return false if any loop blocks contain indirectbrs, or there are any calls
474   // to noduplicate functions.
475   // FIXME: it should be ok to clone CallBrInst's if we correctly update the
476   // operand list to reflect the newly cloned labels.
477   for (BasicBlock *BB : this->blocks()) {
478     if (isa<IndirectBrInst>(BB->getTerminator()) ||
479         isa<CallBrInst>(BB->getTerminator()))
480       return false;
481 
482     for (Instruction &I : *BB)
483       if (auto CS = CallSite(&I))
484         if (CS.cannotDuplicate())
485           return false;
486   }
487   return true;
488 }
489 
getLoopID() const490 MDNode *Loop::getLoopID() const {
491   MDNode *LoopID = nullptr;
492 
493   // Go through the latch blocks and check the terminator for the metadata.
494   SmallVector<BasicBlock *, 4> LatchesBlocks;
495   getLoopLatches(LatchesBlocks);
496   for (BasicBlock *BB : LatchesBlocks) {
497     Instruction *TI = BB->getTerminator();
498     MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
499 
500     if (!MD)
501       return nullptr;
502 
503     if (!LoopID)
504       LoopID = MD;
505     else if (MD != LoopID)
506       return nullptr;
507   }
508   if (!LoopID || LoopID->getNumOperands() == 0 ||
509       LoopID->getOperand(0) != LoopID)
510     return nullptr;
511   return LoopID;
512 }
513 
setLoopID(MDNode * LoopID) const514 void Loop::setLoopID(MDNode *LoopID) const {
515   assert((!LoopID || LoopID->getNumOperands() > 0) &&
516          "Loop ID needs at least one operand");
517   assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
518          "Loop ID should refer to itself");
519 
520   SmallVector<BasicBlock *, 4> LoopLatches;
521   getLoopLatches(LoopLatches);
522   for (BasicBlock *BB : LoopLatches)
523     BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
524 }
525 
setLoopAlreadyUnrolled()526 void Loop::setLoopAlreadyUnrolled() {
527   LLVMContext &Context = getHeader()->getContext();
528 
529   MDNode *DisableUnrollMD =
530       MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable"));
531   MDNode *LoopID = getLoopID();
532   MDNode *NewLoopID = makePostTransformationMetadata(
533       Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD});
534   setLoopID(NewLoopID);
535 }
536 
isAnnotatedParallel() const537 bool Loop::isAnnotatedParallel() const {
538   MDNode *DesiredLoopIdMetadata = getLoopID();
539 
540   if (!DesiredLoopIdMetadata)
541     return false;
542 
543   MDNode *ParallelAccesses =
544       findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
545   SmallPtrSet<MDNode *, 4>
546       ParallelAccessGroups; // For scalable 'contains' check.
547   if (ParallelAccesses) {
548     for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) {
549       MDNode *AccGroup = cast<MDNode>(MD.get());
550       assert(isValidAsAccessGroup(AccGroup) &&
551              "List item must be an access group");
552       ParallelAccessGroups.insert(AccGroup);
553     }
554   }
555 
556   // The loop branch contains the parallel loop metadata. In order to ensure
557   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
558   // dependencies (thus converted the loop back to a sequential loop), check
559   // that all the memory instructions in the loop belong to an access group that
560   // is parallel to this loop.
561   for (BasicBlock *BB : this->blocks()) {
562     for (Instruction &I : *BB) {
563       if (!I.mayReadOrWriteMemory())
564         continue;
565 
566       if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) {
567         auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool {
568           if (AG->getNumOperands() == 0) {
569             assert(isValidAsAccessGroup(AG) && "Item must be an access group");
570             return ParallelAccessGroups.count(AG);
571           }
572 
573           for (const MDOperand &AccessListItem : AG->operands()) {
574             MDNode *AccGroup = cast<MDNode>(AccessListItem.get());
575             assert(isValidAsAccessGroup(AccGroup) &&
576                    "List item must be an access group");
577             if (ParallelAccessGroups.count(AccGroup))
578               return true;
579           }
580           return false;
581         };
582 
583         if (ContainsAccessGroup(AccessGroup))
584           continue;
585       }
586 
587       // The memory instruction can refer to the loop identifier metadata
588       // directly or indirectly through another list metadata (in case of
589       // nested parallel loops). The loop identifier metadata refers to
590       // itself so we can check both cases with the same routine.
591       MDNode *LoopIdMD =
592           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
593 
594       if (!LoopIdMD)
595         return false;
596 
597       bool LoopIdMDFound = false;
598       for (const MDOperand &MDOp : LoopIdMD->operands()) {
599         if (MDOp == DesiredLoopIdMetadata) {
600           LoopIdMDFound = true;
601           break;
602         }
603       }
604 
605       if (!LoopIdMDFound)
606         return false;
607     }
608   }
609   return true;
610 }
611 
getStartLoc() const612 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
613 
getLocRange() const614 Loop::LocRange Loop::getLocRange() const {
615   // If we have a debug location in the loop ID, then use it.
616   if (MDNode *LoopID = getLoopID()) {
617     DebugLoc Start;
618     // We use the first DebugLoc in the header as the start location of the loop
619     // and if there is a second DebugLoc in the header we use it as end location
620     // of the loop.
621     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
622       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
623         if (!Start)
624           Start = DebugLoc(L);
625         else
626           return LocRange(Start, DebugLoc(L));
627       }
628     }
629 
630     if (Start)
631       return LocRange(Start);
632   }
633 
634   // Try the pre-header first.
635   if (BasicBlock *PHeadBB = getLoopPreheader())
636     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
637       return LocRange(DL);
638 
639   // If we have no pre-header or there are no instructions with debug
640   // info in it, try the header.
641   if (BasicBlock *HeadBB = getHeader())
642     return LocRange(HeadBB->getTerminator()->getDebugLoc());
643 
644   return LocRange();
645 }
646 
647 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const648 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
649 
dumpVerbose() const650 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
651   print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
652 }
653 #endif
654 
655 //===----------------------------------------------------------------------===//
656 // UnloopUpdater implementation
657 //
658 
659 namespace {
660 /// Find the new parent loop for all blocks within the "unloop" whose last
661 /// backedges has just been removed.
662 class UnloopUpdater {
663   Loop &Unloop;
664   LoopInfo *LI;
665 
666   LoopBlocksDFS DFS;
667 
668   // Map unloop's immediate subloops to their nearest reachable parents. Nested
669   // loops within these subloops will not change parents. However, an immediate
670   // subloop's new parent will be the nearest loop reachable from either its own
671   // exits *or* any of its nested loop's exits.
672   DenseMap<Loop *, Loop *> SubloopParents;
673 
674   // Flag the presence of an irreducible backedge whose destination is a block
675   // directly contained by the original unloop.
676   bool FoundIB;
677 
678 public:
UnloopUpdater(Loop * UL,LoopInfo * LInfo)679   UnloopUpdater(Loop *UL, LoopInfo *LInfo)
680       : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
681 
682   void updateBlockParents();
683 
684   void removeBlocksFromAncestors();
685 
686   void updateSubloopParents();
687 
688 protected:
689   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
690 };
691 } // end anonymous namespace
692 
693 /// Update the parent loop for all blocks that are directly contained within the
694 /// original "unloop".
updateBlockParents()695 void UnloopUpdater::updateBlockParents() {
696   if (Unloop.getNumBlocks()) {
697     // Perform a post order CFG traversal of all blocks within this loop,
698     // propagating the nearest loop from successors to predecessors.
699     LoopBlocksTraversal Traversal(DFS, LI);
700     for (BasicBlock *POI : Traversal) {
701 
702       Loop *L = LI->getLoopFor(POI);
703       Loop *NL = getNearestLoop(POI, L);
704 
705       if (NL != L) {
706         // For reducible loops, NL is now an ancestor of Unloop.
707         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
708                "uninitialized successor");
709         LI->changeLoopFor(POI, NL);
710       } else {
711         // Or the current block is part of a subloop, in which case its parent
712         // is unchanged.
713         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
714       }
715     }
716   }
717   // Each irreducible loop within the unloop induces a round of iteration using
718   // the DFS result cached by Traversal.
719   bool Changed = FoundIB;
720   for (unsigned NIters = 0; Changed; ++NIters) {
721     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
722 
723     // Iterate over the postorder list of blocks, propagating the nearest loop
724     // from successors to predecessors as before.
725     Changed = false;
726     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
727                                    POE = DFS.endPostorder();
728          POI != POE; ++POI) {
729 
730       Loop *L = LI->getLoopFor(*POI);
731       Loop *NL = getNearestLoop(*POI, L);
732       if (NL != L) {
733         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
734                "uninitialized successor");
735         LI->changeLoopFor(*POI, NL);
736         Changed = true;
737       }
738     }
739   }
740 }
741 
742 /// Remove unloop's blocks from all ancestors below their new parents.
removeBlocksFromAncestors()743 void UnloopUpdater::removeBlocksFromAncestors() {
744   // Remove all unloop's blocks (including those in nested subloops) from
745   // ancestors below the new parent loop.
746   for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
747        BI != BE; ++BI) {
748     Loop *OuterParent = LI->getLoopFor(*BI);
749     if (Unloop.contains(OuterParent)) {
750       while (OuterParent->getParentLoop() != &Unloop)
751         OuterParent = OuterParent->getParentLoop();
752       OuterParent = SubloopParents[OuterParent];
753     }
754     // Remove blocks from former Ancestors except Unloop itself which will be
755     // deleted.
756     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
757          OldParent = OldParent->getParentLoop()) {
758       assert(OldParent && "new loop is not an ancestor of the original");
759       OldParent->removeBlockFromLoop(*BI);
760     }
761   }
762 }
763 
764 /// Update the parent loop for all subloops directly nested within unloop.
updateSubloopParents()765 void UnloopUpdater::updateSubloopParents() {
766   while (!Unloop.empty()) {
767     Loop *Subloop = *std::prev(Unloop.end());
768     Unloop.removeChildLoop(std::prev(Unloop.end()));
769 
770     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
771     if (Loop *Parent = SubloopParents[Subloop])
772       Parent->addChildLoop(Subloop);
773     else
774       LI->addTopLevelLoop(Subloop);
775   }
776 }
777 
778 /// Return the nearest parent loop among this block's successors. If a successor
779 /// is a subloop header, consider its parent to be the nearest parent of the
780 /// subloop's exits.
781 ///
782 /// For subloop blocks, simply update SubloopParents and return NULL.
getNearestLoop(BasicBlock * BB,Loop * BBLoop)783 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
784 
785   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
786   // is considered uninitialized.
787   Loop *NearLoop = BBLoop;
788 
789   Loop *Subloop = nullptr;
790   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
791     Subloop = NearLoop;
792     // Find the subloop ancestor that is directly contained within Unloop.
793     while (Subloop->getParentLoop() != &Unloop) {
794       Subloop = Subloop->getParentLoop();
795       assert(Subloop && "subloop is not an ancestor of the original loop");
796     }
797     // Get the current nearest parent of the Subloop exits, initially Unloop.
798     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
799   }
800 
801   succ_iterator I = succ_begin(BB), E = succ_end(BB);
802   if (I == E) {
803     assert(!Subloop && "subloop blocks must have a successor");
804     NearLoop = nullptr; // unloop blocks may now exit the function.
805   }
806   for (; I != E; ++I) {
807     if (*I == BB)
808       continue; // self loops are uninteresting
809 
810     Loop *L = LI->getLoopFor(*I);
811     if (L == &Unloop) {
812       // This successor has not been processed. This path must lead to an
813       // irreducible backedge.
814       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
815       FoundIB = true;
816     }
817     if (L != &Unloop && Unloop.contains(L)) {
818       // Successor is in a subloop.
819       if (Subloop)
820         continue; // Branching within subloops. Ignore it.
821 
822       // BB branches from the original into a subloop header.
823       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
824 
825       // Get the current nearest parent of the Subloop's exits.
826       L = SubloopParents[L];
827       // L could be Unloop if the only exit was an irreducible backedge.
828     }
829     if (L == &Unloop) {
830       continue;
831     }
832     // Handle critical edges from Unloop into a sibling loop.
833     if (L && !L->contains(&Unloop)) {
834       L = L->getParentLoop();
835     }
836     // Remember the nearest parent loop among successors or subloop exits.
837     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
838       NearLoop = L;
839   }
840   if (Subloop) {
841     SubloopParents[Subloop] = NearLoop;
842     return BBLoop;
843   }
844   return NearLoop;
845 }
846 
LoopInfo(const DomTreeBase<BasicBlock> & DomTree)847 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
848 
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator &)849 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
850                           FunctionAnalysisManager::Invalidator &) {
851   // Check whether the analysis, all analyses on functions, or the function's
852   // CFG have been preserved.
853   auto PAC = PA.getChecker<LoopAnalysis>();
854   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
855            PAC.preservedSet<CFGAnalyses>());
856 }
857 
erase(Loop * Unloop)858 void LoopInfo::erase(Loop *Unloop) {
859   assert(!Unloop->isInvalid() && "Loop has already been erased!");
860 
861   auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
862 
863   // First handle the special case of no parent loop to simplify the algorithm.
864   if (!Unloop->getParentLoop()) {
865     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
866     for (Loop::block_iterator I = Unloop->block_begin(),
867                               E = Unloop->block_end();
868          I != E; ++I) {
869 
870       // Don't reparent blocks in subloops.
871       if (getLoopFor(*I) != Unloop)
872         continue;
873 
874       // Blocks no longer have a parent but are still referenced by Unloop until
875       // the Unloop object is deleted.
876       changeLoopFor(*I, nullptr);
877     }
878 
879     // Remove the loop from the top-level LoopInfo object.
880     for (iterator I = begin();; ++I) {
881       assert(I != end() && "Couldn't find loop");
882       if (*I == Unloop) {
883         removeLoop(I);
884         break;
885       }
886     }
887 
888     // Move all of the subloops to the top-level.
889     while (!Unloop->empty())
890       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
891 
892     return;
893   }
894 
895   // Update the parent loop for all blocks within the loop. Blocks within
896   // subloops will not change parents.
897   UnloopUpdater Updater(Unloop, this);
898   Updater.updateBlockParents();
899 
900   // Remove blocks from former ancestor loops.
901   Updater.removeBlocksFromAncestors();
902 
903   // Add direct subloops as children in their new parent loop.
904   Updater.updateSubloopParents();
905 
906   // Remove unloop from its parent loop.
907   Loop *ParentLoop = Unloop->getParentLoop();
908   for (Loop::iterator I = ParentLoop->begin();; ++I) {
909     assert(I != ParentLoop->end() && "Couldn't find loop");
910     if (*I == Unloop) {
911       ParentLoop->removeChildLoop(I);
912       break;
913     }
914   }
915 }
916 
917 AnalysisKey LoopAnalysis::Key;
918 
run(Function & F,FunctionAnalysisManager & AM)919 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
920   // FIXME: Currently we create a LoopInfo from scratch for every function.
921   // This may prove to be too wasteful due to deallocating and re-allocating
922   // memory each time for the underlying map and vector datastructures. At some
923   // point it may prove worthwhile to use a freelist and recycle LoopInfo
924   // objects. I don't want to add that kind of complexity until the scope of
925   // the problem is better understood.
926   LoopInfo LI;
927   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
928   return LI;
929 }
930 
run(Function & F,FunctionAnalysisManager & AM)931 PreservedAnalyses LoopPrinterPass::run(Function &F,
932                                        FunctionAnalysisManager &AM) {
933   AM.getResult<LoopAnalysis>(F).print(OS);
934   return PreservedAnalyses::all();
935 }
936 
printLoop(Loop & L,raw_ostream & OS,const std::string & Banner)937 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
938 
939   if (forcePrintModuleIR()) {
940     // handling -print-module-scope
941     OS << Banner << " (loop: ";
942     L.getHeader()->printAsOperand(OS, false);
943     OS << ")\n";
944 
945     // printing whole module
946     OS << *L.getHeader()->getModule();
947     return;
948   }
949 
950   OS << Banner;
951 
952   auto *PreHeader = L.getLoopPreheader();
953   if (PreHeader) {
954     OS << "\n; Preheader:";
955     PreHeader->print(OS);
956     OS << "\n; Loop:";
957   }
958 
959   for (auto *Block : L.blocks())
960     if (Block)
961       Block->print(OS);
962     else
963       OS << "Printing <null> block";
964 
965   SmallVector<BasicBlock *, 8> ExitBlocks;
966   L.getExitBlocks(ExitBlocks);
967   if (!ExitBlocks.empty()) {
968     OS << "\n; Exit blocks";
969     for (auto *Block : ExitBlocks)
970       if (Block)
971         Block->print(OS);
972       else
973         OS << "Printing <null> block";
974   }
975 }
976 
findOptionMDForLoopID(MDNode * LoopID,StringRef Name)977 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) {
978   // No loop metadata node, no loop properties.
979   if (!LoopID)
980     return nullptr;
981 
982   // First operand should refer to the metadata node itself, for legacy reasons.
983   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
984   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
985 
986   // Iterate over the metdata node operands and look for MDString metadata.
987   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
988     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
989     if (!MD || MD->getNumOperands() < 1)
990       continue;
991     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
992     if (!S)
993       continue;
994     // Return the operand node if MDString holds expected metadata.
995     if (Name.equals(S->getString()))
996       return MD;
997   }
998 
999   // Loop property not found.
1000   return nullptr;
1001 }
1002 
findOptionMDForLoop(const Loop * TheLoop,StringRef Name)1003 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) {
1004   return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
1005 }
1006 
isValidAsAccessGroup(MDNode * Node)1007 bool llvm::isValidAsAccessGroup(MDNode *Node) {
1008   return Node->getNumOperands() == 0 && Node->isDistinct();
1009 }
1010 
makePostTransformationMetadata(LLVMContext & Context,MDNode * OrigLoopID,ArrayRef<StringRef> RemovePrefixes,ArrayRef<MDNode * > AddAttrs)1011 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context,
1012                                              MDNode *OrigLoopID,
1013                                              ArrayRef<StringRef> RemovePrefixes,
1014                                              ArrayRef<MDNode *> AddAttrs) {
1015   // First remove any existing loop metadata related to this transformation.
1016   SmallVector<Metadata *, 4> MDs;
1017 
1018   // Reserve first location for self reference to the LoopID metadata node.
1019   TempMDTuple TempNode = MDNode::getTemporary(Context, None);
1020   MDs.push_back(TempNode.get());
1021 
1022   // Remove metadata for the transformation that has been applied or that became
1023   // outdated.
1024   if (OrigLoopID) {
1025     for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) {
1026       bool IsVectorMetadata = false;
1027       Metadata *Op = OrigLoopID->getOperand(i);
1028       if (MDNode *MD = dyn_cast<MDNode>(Op)) {
1029         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1030         if (S)
1031           IsVectorMetadata =
1032               llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool {
1033                 return S->getString().startswith(Prefix);
1034               });
1035       }
1036       if (!IsVectorMetadata)
1037         MDs.push_back(Op);
1038     }
1039   }
1040 
1041   // Add metadata to avoid reapplying a transformation, such as
1042   // llvm.loop.unroll.disable and llvm.loop.isvectorized.
1043   MDs.append(AddAttrs.begin(), AddAttrs.end());
1044 
1045   MDNode *NewLoopID = MDNode::getDistinct(Context, MDs);
1046   // Replace the temporary node with a self-reference.
1047   NewLoopID->replaceOperandWith(0, NewLoopID);
1048   return NewLoopID;
1049 }
1050 
1051 //===----------------------------------------------------------------------===//
1052 // LoopInfo implementation
1053 //
1054 
LoopInfoWrapperPass()1055 LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID) {
1056   initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
1057 }
1058 
1059 char LoopInfoWrapperPass::ID = 0;
1060 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1061                       true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)1062 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1063 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1064                     true, true)
1065 
1066 bool LoopInfoWrapperPass::runOnFunction(Function &) {
1067   releaseMemory();
1068   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
1069   return false;
1070 }
1071 
verifyAnalysis() const1072 void LoopInfoWrapperPass::verifyAnalysis() const {
1073   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
1074   // function each time verifyAnalysis is called is very expensive. The
1075   // -verify-loop-info option can enable this. In order to perform some
1076   // checking by default, LoopPass has been taught to call verifyLoop manually
1077   // during loop pass sequences.
1078   if (VerifyLoopInfo) {
1079     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1080     LI.verify(DT);
1081   }
1082 }
1083 
getAnalysisUsage(AnalysisUsage & AU) const1084 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1085   AU.setPreservesAll();
1086   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1087 }
1088 
print(raw_ostream & OS,const Module *) const1089 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
1090   LI.print(OS);
1091 }
1092 
run(Function & F,FunctionAnalysisManager & AM)1093 PreservedAnalyses LoopVerifierPass::run(Function &F,
1094                                         FunctionAnalysisManager &AM) {
1095   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1096   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1097   LI.verify(DT);
1098   return PreservedAnalyses::all();
1099 }
1100 
1101 //===----------------------------------------------------------------------===//
1102 // LoopBlocksDFS implementation
1103 //
1104 
1105 /// Traverse the loop blocks and store the DFS result.
1106 /// Useful for clients that just want the final DFS result and don't need to
1107 /// visit blocks during the initial traversal.
perform(LoopInfo * LI)1108 void LoopBlocksDFS::perform(LoopInfo *LI) {
1109   LoopBlocksTraversal Traversal(*this, LI);
1110   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
1111                                         POE = Traversal.end();
1112        POI != POE; ++POI)
1113     ;
1114 }
1115