1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "perfetto/ext/trace_processor/export_json.h"
18 #include "src/trace_processor/export_json.h"
19
20 #include <stdio.h>
21 #include <sstream>
22
23 #include <algorithm>
24 #include <cinttypes>
25 #include <cmath>
26 #include <cstring>
27 #include <deque>
28 #include <limits>
29 #include <memory>
30
31 #include "perfetto/base/build_config.h"
32 #include "perfetto/ext/base/string_splitter.h"
33 #include "perfetto/ext/base/string_utils.h"
34 #include "src/trace_processor/importers/json/json_utils.h"
35 #include "src/trace_processor/storage/metadata.h"
36 #include "src/trace_processor/storage/trace_storage.h"
37 #include "src/trace_processor/trace_processor_storage_impl.h"
38 #include "src/trace_processor/types/trace_processor_context.h"
39
40 #if PERFETTO_BUILDFLAG(PERFETTO_TP_JSON)
41 #include <json/reader.h>
42 #include <json/writer.h>
43 #endif
44
45 namespace perfetto {
46 namespace trace_processor {
47 namespace json {
48
49 namespace {
50
51 class FileWriter : public OutputWriter {
52 public:
FileWriter(FILE * file)53 FileWriter(FILE* file) : file_(file) {}
~FileWriter()54 ~FileWriter() override { fflush(file_); }
55
AppendString(const std::string & s)56 util::Status AppendString(const std::string& s) override {
57 size_t written =
58 fwrite(s.data(), sizeof(std::string::value_type), s.size(), file_);
59 if (written != s.size())
60 return util::ErrStatus("Error writing to file: %d", ferror(file_));
61 return util::OkStatus();
62 }
63
64 private:
65 FILE* file_;
66 };
67
68 #if PERFETTO_BUILDFLAG(PERFETTO_TP_JSON)
69 using IndexMap = perfetto::trace_processor::TraceStorage::Stats::IndexMap;
70
71 const char kLegacyEventArgsKey[] = "legacy_event";
72 const char kLegacyEventPassthroughUtidKey[] = "passthrough_utid";
73 const char kLegacyEventCategoryKey[] = "category";
74 const char kLegacyEventNameKey[] = "name";
75 const char kLegacyEventPhaseKey[] = "phase";
76 const char kLegacyEventDurationNsKey[] = "duration_ns";
77 const char kLegacyEventThreadTimestampNsKey[] = "thread_timestamp_ns";
78 const char kLegacyEventThreadDurationNsKey[] = "thread_duration_ns";
79 const char kLegacyEventThreadInstructionCountKey[] = "thread_instruction_count";
80 const char kLegacyEventThreadInstructionDeltaKey[] = "thread_instruction_delta";
81 const char kLegacyEventUseAsyncTtsKey[] = "use_async_tts";
82 const char kLegacyEventUnscopedIdKey[] = "unscoped_id";
83 const char kLegacyEventGlobalIdKey[] = "global_id";
84 const char kLegacyEventLocalIdKey[] = "local_id";
85 const char kLegacyEventIdScopeKey[] = "id_scope";
86 const char kStrippedArgument[] = "__stripped__";
87
GetNonNullString(const TraceStorage * storage,std::optional<StringId> id)88 const char* GetNonNullString(const TraceStorage* storage,
89 std::optional<StringId> id) {
90 return id == std::nullopt || *id == kNullStringId
91 ? ""
92 : storage->GetString(*id).c_str();
93 }
94
95 class JsonExporter {
96 public:
JsonExporter(const TraceStorage * storage,OutputWriter * output,ArgumentFilterPredicate argument_filter,MetadataFilterPredicate metadata_filter,LabelFilterPredicate label_filter)97 JsonExporter(const TraceStorage* storage,
98 OutputWriter* output,
99 ArgumentFilterPredicate argument_filter,
100 MetadataFilterPredicate metadata_filter,
101 LabelFilterPredicate label_filter)
102 : storage_(storage),
103 args_builder_(storage_),
104 writer_(output, argument_filter, metadata_filter, label_filter) {}
105
Export()106 util::Status Export() {
107 util::Status status = MapUniquePidsAndTids();
108 if (!status.ok())
109 return status;
110
111 status = ExportThreadNames();
112 if (!status.ok())
113 return status;
114
115 status = ExportProcessNames();
116 if (!status.ok())
117 return status;
118
119 status = ExportProcessUptimes();
120 if (!status.ok())
121 return status;
122
123 status = ExportSlices();
124 if (!status.ok())
125 return status;
126
127 status = ExportFlows();
128 if (!status.ok())
129 return status;
130
131 status = ExportRawEvents();
132 if (!status.ok())
133 return status;
134
135 status = ExportCpuProfileSamples();
136 if (!status.ok())
137 return status;
138
139 status = ExportMetadata();
140 if (!status.ok())
141 return status;
142
143 status = ExportStats();
144 if (!status.ok())
145 return status;
146
147 status = ExportMemorySnapshots();
148 if (!status.ok())
149 return status;
150
151 return util::OkStatus();
152 }
153
154 private:
155 class TraceFormatWriter {
156 public:
TraceFormatWriter(OutputWriter * output,ArgumentFilterPredicate argument_filter,MetadataFilterPredicate metadata_filter,LabelFilterPredicate label_filter)157 TraceFormatWriter(OutputWriter* output,
158 ArgumentFilterPredicate argument_filter,
159 MetadataFilterPredicate metadata_filter,
160 LabelFilterPredicate label_filter)
161 : output_(output),
162 argument_filter_(argument_filter),
163 metadata_filter_(metadata_filter),
164 label_filter_(label_filter),
165 first_event_(true) {
166 Json::StreamWriterBuilder b;
167 b.settings_["indentation"] = "";
168 writer_.reset(b.newStreamWriter());
169 WriteHeader();
170 }
171
~TraceFormatWriter()172 ~TraceFormatWriter() { WriteFooter(); }
173
WriteCommonEvent(const Json::Value & event)174 void WriteCommonEvent(const Json::Value& event) {
175 if (label_filter_ && !label_filter_("traceEvents"))
176 return;
177
178 DoWriteEvent(event);
179 }
180
AddAsyncBeginEvent(const Json::Value & event)181 void AddAsyncBeginEvent(const Json::Value& event) {
182 if (label_filter_ && !label_filter_("traceEvents"))
183 return;
184
185 async_begin_events_.push_back(event);
186 }
187
AddAsyncInstantEvent(const Json::Value & event)188 void AddAsyncInstantEvent(const Json::Value& event) {
189 if (label_filter_ && !label_filter_("traceEvents"))
190 return;
191
192 async_instant_events_.push_back(event);
193 }
194
AddAsyncEndEvent(const Json::Value & event)195 void AddAsyncEndEvent(const Json::Value& event) {
196 if (label_filter_ && !label_filter_("traceEvents"))
197 return;
198
199 async_end_events_.push_back(event);
200 }
201
SortAndEmitAsyncEvents()202 void SortAndEmitAsyncEvents() {
203 // Catapult doesn't handle out-of-order begin/end events well, especially
204 // when their timestamps are the same, but their order is incorrect. Since
205 // we process events sorted by begin timestamp, |async_begin_events_| and
206 // |async_instant_events_| are already sorted. We now only have to sort
207 // |async_end_events_| and merge-sort all events into a single sequence.
208
209 // Sort |async_end_events_|. Note that we should order by ascending
210 // timestamp, but in reverse-stable order. This way, a child slices's end
211 // is emitted before its parent's end event, even if both end events have
212 // the same timestamp. To accomplish this, we perform a stable sort in
213 // descending order and later iterate via reverse iterators.
214 struct {
215 bool operator()(const Json::Value& a, const Json::Value& b) const {
216 return a["ts"].asInt64() > b["ts"].asInt64();
217 }
218 } CompareEvents;
219 std::stable_sort(async_end_events_.begin(), async_end_events_.end(),
220 CompareEvents);
221
222 // Merge sort by timestamp. If events share the same timestamp, prefer
223 // instant events, then end events, so that old slices close before new
224 // ones are opened, but instant events remain in their deepest nesting
225 // level.
226 auto instant_event_it = async_instant_events_.begin();
227 auto end_event_it = async_end_events_.rbegin();
228 auto begin_event_it = async_begin_events_.begin();
229
230 auto has_instant_event = instant_event_it != async_instant_events_.end();
231 auto has_end_event = end_event_it != async_end_events_.rend();
232 auto has_begin_event = begin_event_it != async_begin_events_.end();
233
234 auto emit_next_instant = [&instant_event_it, &has_instant_event, this]() {
235 DoWriteEvent(*instant_event_it);
236 instant_event_it++;
237 has_instant_event = instant_event_it != async_instant_events_.end();
238 };
239 auto emit_next_end = [&end_event_it, &has_end_event, this]() {
240 DoWriteEvent(*end_event_it);
241 end_event_it++;
242 has_end_event = end_event_it != async_end_events_.rend();
243 };
244 auto emit_next_begin = [&begin_event_it, &has_begin_event, this]() {
245 DoWriteEvent(*begin_event_it);
246 begin_event_it++;
247 has_begin_event = begin_event_it != async_begin_events_.end();
248 };
249
250 auto emit_next_instant_or_end = [&instant_event_it, &end_event_it,
251 &emit_next_instant, &emit_next_end]() {
252 if ((*instant_event_it)["ts"].asInt64() <=
253 (*end_event_it)["ts"].asInt64()) {
254 emit_next_instant();
255 } else {
256 emit_next_end();
257 }
258 };
259 auto emit_next_instant_or_begin = [&instant_event_it, &begin_event_it,
260 &emit_next_instant,
261 &emit_next_begin]() {
262 if ((*instant_event_it)["ts"].asInt64() <=
263 (*begin_event_it)["ts"].asInt64()) {
264 emit_next_instant();
265 } else {
266 emit_next_begin();
267 }
268 };
269 auto emit_next_end_or_begin = [&end_event_it, &begin_event_it,
270 &emit_next_end, &emit_next_begin]() {
271 if ((*end_event_it)["ts"].asInt64() <=
272 (*begin_event_it)["ts"].asInt64()) {
273 emit_next_end();
274 } else {
275 emit_next_begin();
276 }
277 };
278
279 // While we still have events in all iterators, consider each.
280 while (has_instant_event && has_end_event && has_begin_event) {
281 if ((*instant_event_it)["ts"].asInt64() <=
282 (*end_event_it)["ts"].asInt64()) {
283 emit_next_instant_or_begin();
284 } else {
285 emit_next_end_or_begin();
286 }
287 }
288
289 // Only instant and end events left.
290 while (has_instant_event && has_end_event) {
291 emit_next_instant_or_end();
292 }
293
294 // Only instant and begin events left.
295 while (has_instant_event && has_begin_event) {
296 emit_next_instant_or_begin();
297 }
298
299 // Only end and begin events left.
300 while (has_end_event && has_begin_event) {
301 emit_next_end_or_begin();
302 }
303
304 // Remaining instant events.
305 while (has_instant_event) {
306 emit_next_instant();
307 }
308
309 // Remaining end events.
310 while (has_end_event) {
311 emit_next_end();
312 }
313
314 // Remaining begin events.
315 while (has_begin_event) {
316 emit_next_begin();
317 }
318 }
319
WriteMetadataEvent(const char * metadata_type,const char * metadata_arg_name,const char * metadata_arg_value,uint32_t pid,uint32_t tid)320 void WriteMetadataEvent(const char* metadata_type,
321 const char* metadata_arg_name,
322 const char* metadata_arg_value,
323 uint32_t pid,
324 uint32_t tid) {
325 if (label_filter_ && !label_filter_("traceEvents"))
326 return;
327
328 std::ostringstream ss;
329 if (!first_event_)
330 ss << ",\n";
331
332 Json::Value value;
333 value["ph"] = "M";
334 value["cat"] = "__metadata";
335 value["ts"] = 0;
336 value["name"] = metadata_type;
337 value["pid"] = Json::Int(pid);
338 value["tid"] = Json::Int(tid);
339
340 Json::Value args;
341 args[metadata_arg_name] = metadata_arg_value;
342 value["args"] = args;
343
344 writer_->write(value, &ss);
345 output_->AppendString(ss.str());
346 first_event_ = false;
347 }
348
MergeMetadata(const Json::Value & value)349 void MergeMetadata(const Json::Value& value) {
350 for (const auto& member : value.getMemberNames()) {
351 metadata_[member] = value[member];
352 }
353 }
354
AppendTelemetryMetadataString(const char * key,const char * value)355 void AppendTelemetryMetadataString(const char* key, const char* value) {
356 metadata_["telemetry"][key].append(value);
357 }
358
AppendTelemetryMetadataInt(const char * key,int64_t value)359 void AppendTelemetryMetadataInt(const char* key, int64_t value) {
360 metadata_["telemetry"][key].append(Json::Int64(value));
361 }
362
AppendTelemetryMetadataBool(const char * key,bool value)363 void AppendTelemetryMetadataBool(const char* key, bool value) {
364 metadata_["telemetry"][key].append(value);
365 }
366
SetTelemetryMetadataTimestamp(const char * key,int64_t value)367 void SetTelemetryMetadataTimestamp(const char* key, int64_t value) {
368 metadata_["telemetry"][key] = static_cast<double>(value) / 1000.0;
369 }
370
SetStats(const char * key,int64_t value)371 void SetStats(const char* key, int64_t value) {
372 metadata_["trace_processor_stats"][key] = Json::Int64(value);
373 }
374
SetStats(const char * key,const IndexMap & indexed_values)375 void SetStats(const char* key, const IndexMap& indexed_values) {
376 constexpr const char* kBufferStatsPrefix = "traced_buf_";
377
378 // Stats for the same buffer should be grouped together in the JSON.
379 if (strncmp(kBufferStatsPrefix, key, strlen(kBufferStatsPrefix)) == 0) {
380 for (const auto& value : indexed_values) {
381 metadata_["trace_processor_stats"]["traced_buf"][value.first]
382 [key + strlen(kBufferStatsPrefix)] =
383 Json::Int64(value.second);
384 }
385 return;
386 }
387
388 // Other indexed value stats are exported as array under their key.
389 for (const auto& value : indexed_values) {
390 metadata_["trace_processor_stats"][key][value.first] =
391 Json::Int64(value.second);
392 }
393 }
394
AddSystemTraceData(const std::string & data)395 void AddSystemTraceData(const std::string& data) {
396 system_trace_data_ += data;
397 }
398
AddUserTraceData(const std::string & data)399 void AddUserTraceData(const std::string& data) {
400 if (user_trace_data_.empty())
401 user_trace_data_ = "[";
402 user_trace_data_ += data;
403 }
404
405 private:
WriteHeader()406 void WriteHeader() {
407 if (!label_filter_)
408 output_->AppendString("{\"traceEvents\":[\n");
409 }
410
WriteFooter()411 void WriteFooter() {
412 SortAndEmitAsyncEvents();
413
414 // Filter metadata entries.
415 if (metadata_filter_) {
416 for (const auto& member : metadata_.getMemberNames()) {
417 if (!metadata_filter_(member.c_str()))
418 metadata_[member] = kStrippedArgument;
419 }
420 }
421
422 if ((!label_filter_ || label_filter_("traceEvents")) &&
423 !user_trace_data_.empty()) {
424 user_trace_data_ += "]";
425
426 Json::CharReaderBuilder builder;
427 auto reader =
428 std::unique_ptr<Json::CharReader>(builder.newCharReader());
429 Json::Value result;
430 if (reader->parse(user_trace_data_.data(),
431 user_trace_data_.data() + user_trace_data_.length(),
432 &result, nullptr)) {
433 for (const auto& event : result) {
434 WriteCommonEvent(event);
435 }
436 } else {
437 PERFETTO_DLOG(
438 "can't parse legacy user json trace export, skipping. data: %s",
439 user_trace_data_.c_str());
440 }
441 }
442
443 std::ostringstream ss;
444 if (!label_filter_)
445 ss << "]";
446
447 if ((!label_filter_ || label_filter_("systemTraceEvents")) &&
448 !system_trace_data_.empty()) {
449 ss << ",\"systemTraceEvents\":\n";
450 writer_->write(Json::Value(system_trace_data_), &ss);
451 }
452
453 if ((!label_filter_ || label_filter_("metadata")) && !metadata_.empty()) {
454 ss << ",\"metadata\":\n";
455 writer_->write(metadata_, &ss);
456 }
457
458 if (!label_filter_)
459 ss << "}";
460
461 output_->AppendString(ss.str());
462 }
463
DoWriteEvent(const Json::Value & event)464 void DoWriteEvent(const Json::Value& event) {
465 std::ostringstream ss;
466 if (!first_event_)
467 ss << ",\n";
468
469 ArgumentNameFilterPredicate argument_name_filter;
470 bool strip_args =
471 argument_filter_ &&
472 !argument_filter_(event["cat"].asCString(), event["name"].asCString(),
473 &argument_name_filter);
474 if ((strip_args || argument_name_filter) && event.isMember("args")) {
475 Json::Value event_copy = event;
476 if (strip_args) {
477 event_copy["args"] = kStrippedArgument;
478 } else {
479 auto& args = event_copy["args"];
480 for (const auto& member : event["args"].getMemberNames()) {
481 if (!argument_name_filter(member.c_str()))
482 args[member] = kStrippedArgument;
483 }
484 }
485 writer_->write(event_copy, &ss);
486 } else {
487 writer_->write(event, &ss);
488 }
489 first_event_ = false;
490
491 output_->AppendString(ss.str());
492 }
493
494 OutputWriter* output_;
495 ArgumentFilterPredicate argument_filter_;
496 MetadataFilterPredicate metadata_filter_;
497 LabelFilterPredicate label_filter_;
498
499 std::unique_ptr<Json::StreamWriter> writer_;
500 bool first_event_;
501 Json::Value metadata_;
502 std::string system_trace_data_;
503 std::string user_trace_data_;
504 std::vector<Json::Value> async_begin_events_;
505 std::vector<Json::Value> async_instant_events_;
506 std::vector<Json::Value> async_end_events_;
507 };
508
509 class ArgsBuilder {
510 public:
ArgsBuilder(const TraceStorage * storage)511 explicit ArgsBuilder(const TraceStorage* storage)
512 : storage_(storage),
513 empty_value_(Json::objectValue),
514 nan_value_(Json::StaticString("NaN")),
515 inf_value_(Json::StaticString("Infinity")),
516 neg_inf_value_(Json::StaticString("-Infinity")) {
517 const auto& arg_table = storage_->arg_table();
518 uint32_t count = arg_table.row_count();
519 if (count == 0) {
520 args_sets_.resize(1, empty_value_);
521 return;
522 }
523 args_sets_.resize(arg_table.arg_set_id()[count - 1] + 1, empty_value_);
524
525 for (uint32_t i = 0; i < count; ++i) {
526 ArgSetId set_id = arg_table.arg_set_id()[i];
527 const char* key = arg_table.key().GetString(i).c_str();
528 Variadic value = storage_->GetArgValue(i);
529 AppendArg(set_id, key, VariadicToJson(value));
530 }
531 PostprocessArgs();
532 }
533
GetArgs(ArgSetId set_id) const534 const Json::Value& GetArgs(ArgSetId set_id) const {
535 // If |set_id| was empty and added to the storage last, it may not be in
536 // args_sets_.
537 if (set_id > args_sets_.size())
538 return empty_value_;
539 return args_sets_[set_id];
540 }
541
542 private:
VariadicToJson(Variadic variadic)543 Json::Value VariadicToJson(Variadic variadic) {
544 switch (variadic.type) {
545 case Variadic::kInt:
546 return Json::Int64(variadic.int_value);
547 case Variadic::kUint:
548 return Json::UInt64(variadic.uint_value);
549 case Variadic::kString:
550 return GetNonNullString(storage_, variadic.string_value);
551 case Variadic::kReal:
552 if (std::isnan(variadic.real_value)) {
553 return nan_value_;
554 } else if (std::isinf(variadic.real_value) &&
555 variadic.real_value > 0) {
556 return inf_value_;
557 } else if (std::isinf(variadic.real_value) &&
558 variadic.real_value < 0) {
559 return neg_inf_value_;
560 } else {
561 return variadic.real_value;
562 }
563 case Variadic::kPointer:
564 return base::Uint64ToHexString(variadic.pointer_value);
565 case Variadic::kBool:
566 return variadic.bool_value;
567 case Variadic::kNull:
568 return base::Uint64ToHexString(0);
569 case Variadic::kJson:
570 Json::CharReaderBuilder b;
571 auto reader = std::unique_ptr<Json::CharReader>(b.newCharReader());
572
573 Json::Value result;
574 std::string v = GetNonNullString(storage_, variadic.json_value);
575 reader->parse(v.data(), v.data() + v.length(), &result, nullptr);
576 return result;
577 }
578 PERFETTO_FATAL("Not reached"); // For gcc.
579 }
580
AppendArg(ArgSetId set_id,const std::string & key,const Json::Value & value)581 void AppendArg(ArgSetId set_id,
582 const std::string& key,
583 const Json::Value& value) {
584 Json::Value* target = &args_sets_[set_id];
585 for (base::StringSplitter parts(key, '.'); parts.Next();) {
586 if (PERFETTO_UNLIKELY(!target->isNull() && !target->isObject())) {
587 PERFETTO_DLOG("Malformed arguments. Can't append %s to %s.",
588 key.c_str(),
589 args_sets_[set_id].toStyledString().c_str());
590 return;
591 }
592 std::string key_part = parts.cur_token();
593 size_t bracketpos = key_part.find('[');
594 if (bracketpos == key_part.npos) { // A single item
595 target = &(*target)[key_part];
596 } else { // A list item
597 target = &(*target)[key_part.substr(0, bracketpos)];
598 while (bracketpos != key_part.npos) {
599 // We constructed this string from an int earlier in trace_processor
600 // so it shouldn't be possible for this (or the StringToUInt32
601 // below) to fail.
602 std::string s =
603 key_part.substr(bracketpos + 1, key_part.find(']', bracketpos) -
604 bracketpos - 1);
605 if (PERFETTO_UNLIKELY(!target->isNull() && !target->isArray())) {
606 PERFETTO_DLOG("Malformed arguments. Can't append %s to %s.",
607 key.c_str(),
608 args_sets_[set_id].toStyledString().c_str());
609 return;
610 }
611 std::optional<uint32_t> index = base::StringToUInt32(s);
612 if (PERFETTO_UNLIKELY(!index)) {
613 PERFETTO_ELOG("Expected to be able to extract index from %s",
614 key_part.c_str());
615 return;
616 }
617 target = &(*target)[index.value()];
618 bracketpos = key_part.find('[', bracketpos + 1);
619 }
620 }
621 }
622 *target = value;
623 }
624
PostprocessArgs()625 void PostprocessArgs() {
626 for (Json::Value& args : args_sets_) {
627 // Move all fields from "debug" key to upper level.
628 if (args.isMember("debug")) {
629 Json::Value debug = args["debug"];
630 args.removeMember("debug");
631 for (const auto& member : debug.getMemberNames()) {
632 args[member] = debug[member];
633 }
634 }
635
636 // Rename source fields.
637 if (args.isMember("task")) {
638 if (args["task"].isMember("posted_from")) {
639 Json::Value posted_from = args["task"]["posted_from"];
640 args["task"].removeMember("posted_from");
641 if (posted_from.isMember("function_name")) {
642 args["src_func"] = posted_from["function_name"];
643 args["src_file"] = posted_from["file_name"];
644 } else if (posted_from.isMember("file_name")) {
645 args["src"] = posted_from["file_name"];
646 }
647 }
648 if (args["task"].empty())
649 args.removeMember("task");
650 }
651 if (args.isMember("source")) {
652 Json::Value source = args["source"];
653 if (source.isObject() && source.isMember("function_name")) {
654 args["function_name"] = source["function_name"];
655 args["file_name"] = source["file_name"];
656 args.removeMember("source");
657 }
658 }
659 }
660 }
661
662 const TraceStorage* storage_;
663 std::vector<Json::Value> args_sets_;
664 const Json::Value empty_value_;
665 const Json::Value nan_value_;
666 const Json::Value inf_value_;
667 const Json::Value neg_inf_value_;
668 };
669
MapUniquePidsAndTids()670 util::Status MapUniquePidsAndTids() {
671 const auto& process_table = storage_->process_table();
672 for (UniquePid upid = 0; upid < process_table.row_count(); upid++) {
673 uint32_t exported_pid = process_table.pid()[upid];
674 auto it_and_inserted =
675 exported_pids_to_upids_.emplace(exported_pid, upid);
676 if (!it_and_inserted.second) {
677 exported_pid = NextExportedPidOrTidForDuplicates();
678 it_and_inserted = exported_pids_to_upids_.emplace(exported_pid, upid);
679 }
680 upids_to_exported_pids_.emplace(upid, exported_pid);
681 }
682
683 const auto& thread_table = storage_->thread_table();
684 for (UniqueTid utid = 0; utid < thread_table.row_count(); utid++) {
685 uint32_t exported_pid = 0;
686 std::optional<UniquePid> upid = thread_table.upid()[utid];
687 if (upid) {
688 auto exported_pid_it = upids_to_exported_pids_.find(*upid);
689 PERFETTO_DCHECK(exported_pid_it != upids_to_exported_pids_.end());
690 exported_pid = exported_pid_it->second;
691 }
692
693 uint32_t exported_tid = thread_table.tid()[utid];
694 auto it_and_inserted = exported_pids_and_tids_to_utids_.emplace(
695 std::make_pair(exported_pid, exported_tid), utid);
696 if (!it_and_inserted.second) {
697 exported_tid = NextExportedPidOrTidForDuplicates();
698 it_and_inserted = exported_pids_and_tids_to_utids_.emplace(
699 std::make_pair(exported_pid, exported_tid), utid);
700 }
701 utids_to_exported_pids_and_tids_.emplace(
702 utid, std::make_pair(exported_pid, exported_tid));
703 }
704
705 return util::OkStatus();
706 }
707
ExportThreadNames()708 util::Status ExportThreadNames() {
709 const auto& thread_table = storage_->thread_table();
710 for (UniqueTid utid = 0; utid < thread_table.row_count(); ++utid) {
711 auto opt_name = thread_table.name()[utid];
712 if (opt_name.has_value()) {
713 const char* thread_name = GetNonNullString(storage_, opt_name);
714 auto pid_and_tid = UtidToPidAndTid(utid);
715 writer_.WriteMetadataEvent("thread_name", "name", thread_name,
716 pid_and_tid.first, pid_and_tid.second);
717 }
718 }
719 return util::OkStatus();
720 }
721
ExportProcessNames()722 util::Status ExportProcessNames() {
723 const auto& process_table = storage_->process_table();
724 for (UniquePid upid = 0; upid < process_table.row_count(); ++upid) {
725 auto opt_name = process_table.name()[upid];
726 if (opt_name.has_value()) {
727 const char* process_name = GetNonNullString(storage_, opt_name);
728 writer_.WriteMetadataEvent("process_name", "name", process_name,
729 UpidToPid(upid), /*tid=*/0);
730 }
731 }
732 return util::OkStatus();
733 }
734
735 // For each process it writes an approximate uptime, based on the process'
736 // start time and the last slice in the entire trace. This same last slice is
737 // used with all processes, so the process could have ended earlier.
ExportProcessUptimes()738 util::Status ExportProcessUptimes() {
739 int64_t last_timestamp_ns = FindLastSliceTimestamp();
740 if (last_timestamp_ns <= 0)
741 return util::OkStatus();
742
743 const auto& process_table = storage_->process_table();
744 for (UniquePid upid = 0; upid < process_table.row_count(); ++upid) {
745 std::optional<int64_t> start_timestamp_ns =
746 process_table.start_ts()[upid];
747 if (!start_timestamp_ns.has_value())
748 continue;
749
750 int64_t process_uptime_seconds =
751 (last_timestamp_ns - start_timestamp_ns.value()) /
752 (1000 * 1000 * 1000);
753
754 writer_.WriteMetadataEvent("process_uptime_seconds", "uptime",
755 std::to_string(process_uptime_seconds).c_str(),
756 UpidToPid(upid), /*tid=*/0);
757 }
758
759 return util::OkStatus();
760 }
761
762 // Returns the last slice's end timestamp for the entire trace. If no slices
763 // are found 0 is returned.
FindLastSliceTimestamp()764 int64_t FindLastSliceTimestamp() {
765 int64_t last_ts = 0;
766 const auto& slices = storage_->slice_table();
767 for (uint32_t i = 0; i < slices.row_count(); ++i) {
768 int64_t duration_ns = slices.dur()[i];
769 int64_t timestamp_ns = slices.ts()[i];
770
771 if (duration_ns + timestamp_ns > last_ts) {
772 last_ts = duration_ns + timestamp_ns;
773 }
774 }
775 return last_ts;
776 }
777
ExportSlices()778 util::Status ExportSlices() {
779 const auto& slices = storage_->slice_table();
780 for (auto it = slices.IterateRows(); it; ++it) {
781 // Skip slices with empty category - these are ftrace/system slices that
782 // were also imported into the raw table and will be exported from there
783 // by trace_to_text.
784 // TODO(b/153609716): Add a src column or do_not_export flag instead.
785 if (!it.category())
786 continue;
787 auto cat = storage_->GetString(*it.category());
788 if (cat.c_str() == nullptr || cat == "binder")
789 continue;
790
791 Json::Value event;
792 event["ts"] = Json::Int64(it.ts() / 1000);
793 event["cat"] = GetNonNullString(storage_, it.category());
794 event["name"] = GetNonNullString(storage_, it.name());
795 event["pid"] = 0;
796 event["tid"] = 0;
797
798 std::optional<UniqueTid> legacy_utid;
799 std::string legacy_phase;
800
801 event["args"] = args_builder_.GetArgs(it.arg_set_id()); // Makes a copy.
802 if (event["args"].isMember(kLegacyEventArgsKey)) {
803 const auto& legacy_args = event["args"][kLegacyEventArgsKey];
804
805 if (legacy_args.isMember(kLegacyEventPassthroughUtidKey)) {
806 legacy_utid = legacy_args[kLegacyEventPassthroughUtidKey].asUInt();
807 }
808 if (legacy_args.isMember(kLegacyEventPhaseKey)) {
809 legacy_phase = legacy_args[kLegacyEventPhaseKey].asString();
810 }
811
812 event["args"].removeMember(kLegacyEventArgsKey);
813 }
814
815 // To prevent duplicate export of slices, only export slices on descriptor
816 // or chrome tracks (i.e. TrackEvent slices). Slices on other tracks may
817 // also be present as raw events and handled by trace_to_text. Only add
818 // more track types here if they are not already covered by trace_to_text.
819 TrackId track_id = it.track_id();
820
821 const auto& track_table = storage_->track_table();
822
823 auto track_row_ref = *track_table.FindById(track_id);
824 auto track_args_id = track_row_ref.source_arg_set_id();
825 const Json::Value* track_args = nullptr;
826 bool legacy_chrome_track = false;
827 bool is_child_track = false;
828 if (track_args_id) {
829 track_args = &args_builder_.GetArgs(*track_args_id);
830 legacy_chrome_track = (*track_args)["source"].asString() == "chrome";
831 is_child_track = track_args->isMember("is_root_in_scope") &&
832 !(*track_args)["is_root_in_scope"].asBool();
833 }
834
835 const auto& thread_track = storage_->thread_track_table();
836 const auto& process_track = storage_->process_track_table();
837 const auto& virtual_track_slices = storage_->virtual_track_slices();
838
839 int64_t duration_ns = it.dur();
840 std::optional<int64_t> thread_ts_ns;
841 std::optional<int64_t> thread_duration_ns;
842 std::optional<int64_t> thread_instruction_count;
843 std::optional<int64_t> thread_instruction_delta;
844
845 if (it.thread_dur()) {
846 thread_ts_ns = it.thread_ts();
847 thread_duration_ns = it.thread_dur();
848 thread_instruction_count = it.thread_instruction_count();
849 thread_instruction_delta = it.thread_instruction_delta();
850 } else {
851 SliceId id = it.id();
852 std::optional<uint32_t> vtrack_slice_row =
853 virtual_track_slices.FindRowForSliceId(id);
854 if (vtrack_slice_row) {
855 thread_ts_ns =
856 virtual_track_slices.thread_timestamp_ns()[*vtrack_slice_row];
857 thread_duration_ns =
858 virtual_track_slices.thread_duration_ns()[*vtrack_slice_row];
859 thread_instruction_count =
860 virtual_track_slices
861 .thread_instruction_counts()[*vtrack_slice_row];
862 thread_instruction_delta =
863 virtual_track_slices
864 .thread_instruction_deltas()[*vtrack_slice_row];
865 }
866 }
867
868 auto opt_thread_track_row = thread_track.id().IndexOf(TrackId{track_id});
869
870 if (opt_thread_track_row && !is_child_track) {
871 // Synchronous (thread) slice or instant event.
872 UniqueTid utid = thread_track.utid()[*opt_thread_track_row];
873 auto pid_and_tid = UtidToPidAndTid(utid);
874 event["pid"] = Json::Int(pid_and_tid.first);
875 event["tid"] = Json::Int(pid_and_tid.second);
876
877 if (duration_ns == 0) {
878 if (legacy_phase.empty()) {
879 // Use "I" instead of "i" phase for backwards-compat with old
880 // consumers.
881 event["ph"] = "I";
882 } else {
883 event["ph"] = legacy_phase;
884 }
885 if (thread_ts_ns && thread_ts_ns > 0) {
886 event["tts"] = Json::Int64(*thread_ts_ns / 1000);
887 }
888 if (thread_instruction_count && *thread_instruction_count > 0) {
889 event["ticount"] = Json::Int64(*thread_instruction_count);
890 }
891 event["s"] = "t";
892 } else {
893 if (duration_ns > 0) {
894 event["ph"] = "X";
895 event["dur"] = Json::Int64(duration_ns / 1000);
896 } else {
897 // If the slice didn't finish, the duration may be negative. Only
898 // write a begin event without end event in this case.
899 event["ph"] = "B";
900 }
901 if (thread_ts_ns && *thread_ts_ns > 0) {
902 event["tts"] = Json::Int64(*thread_ts_ns / 1000);
903 // Only write thread duration for completed events.
904 if (duration_ns > 0 && thread_duration_ns)
905 event["tdur"] = Json::Int64(*thread_duration_ns / 1000);
906 }
907 if (thread_instruction_count && *thread_instruction_count > 0) {
908 event["ticount"] = Json::Int64(*thread_instruction_count);
909 // Only write thread instruction delta for completed events.
910 if (duration_ns > 0 && thread_instruction_delta)
911 event["tidelta"] = Json::Int64(*thread_instruction_delta);
912 }
913 }
914 writer_.WriteCommonEvent(event);
915 } else if (is_child_track ||
916 (legacy_chrome_track && track_args->isMember("source_id"))) {
917 // Async event slice.
918 auto opt_process_row = process_track.id().IndexOf(TrackId{track_id});
919 if (legacy_chrome_track) {
920 // Legacy async tracks are always process-associated and have args.
921 PERFETTO_DCHECK(opt_process_row);
922 PERFETTO_DCHECK(track_args);
923 uint32_t upid = process_track.upid()[*opt_process_row];
924 uint32_t exported_pid = UpidToPid(upid);
925 event["pid"] = Json::Int(exported_pid);
926 event["tid"] =
927 Json::Int(legacy_utid ? UtidToPidAndTid(*legacy_utid).second
928 : exported_pid);
929
930 // Preserve original event IDs for legacy tracks. This is so that e.g.
931 // memory dump IDs show up correctly in the JSON trace.
932 PERFETTO_DCHECK(track_args->isMember("source_id"));
933 PERFETTO_DCHECK(track_args->isMember("source_id_is_process_scoped"));
934 PERFETTO_DCHECK(track_args->isMember("source_scope"));
935 uint64_t source_id =
936 static_cast<uint64_t>((*track_args)["source_id"].asInt64());
937 std::string source_scope = (*track_args)["source_scope"].asString();
938 if (!source_scope.empty())
939 event["scope"] = source_scope;
940 bool source_id_is_process_scoped =
941 (*track_args)["source_id_is_process_scoped"].asBool();
942 if (source_id_is_process_scoped) {
943 event["id2"]["local"] = base::Uint64ToHexString(source_id);
944 } else {
945 // Some legacy importers don't understand "id2" fields, so we use
946 // the "usually" global "id" field instead. This works as long as
947 // the event phase is not in {'N', 'D', 'O', '(', ')'}, see
948 // "LOCAL_ID_PHASES" in catapult.
949 event["id"] = base::Uint64ToHexString(source_id);
950 }
951 } else {
952 if (opt_thread_track_row) {
953 UniqueTid utid = thread_track.utid()[*opt_thread_track_row];
954 auto pid_and_tid = UtidToPidAndTid(utid);
955 event["pid"] = Json::Int(pid_and_tid.first);
956 event["tid"] = Json::Int(pid_and_tid.second);
957 event["id2"]["local"] = base::Uint64ToHexString(track_id.value);
958 } else if (opt_process_row) {
959 uint32_t upid = process_track.upid()[*opt_process_row];
960 uint32_t exported_pid = UpidToPid(upid);
961 event["pid"] = Json::Int(exported_pid);
962 event["tid"] =
963 Json::Int(legacy_utid ? UtidToPidAndTid(*legacy_utid).second
964 : exported_pid);
965 event["id2"]["local"] = base::Uint64ToHexString(track_id.value);
966 } else {
967 if (legacy_utid) {
968 auto pid_and_tid = UtidToPidAndTid(*legacy_utid);
969 event["pid"] = Json::Int(pid_and_tid.first);
970 event["tid"] = Json::Int(pid_and_tid.second);
971 }
972
973 // Some legacy importers don't understand "id2" fields, so we use
974 // the "usually" global "id" field instead. This works as long as
975 // the event phase is not in {'N', 'D', 'O', '(', ')'}, see
976 // "LOCAL_ID_PHASES" in catapult.
977 event["id"] = base::Uint64ToHexString(track_id.value);
978 }
979 }
980
981 if (thread_ts_ns && *thread_ts_ns > 0) {
982 event["tts"] = Json::Int64(*thread_ts_ns / 1000);
983 event["use_async_tts"] = Json::Int(1);
984 }
985 if (thread_instruction_count && *thread_instruction_count > 0) {
986 event["ticount"] = Json::Int64(*thread_instruction_count);
987 event["use_async_tts"] = Json::Int(1);
988 }
989
990 if (duration_ns == 0) {
991 if (legacy_phase.empty()) {
992 // Instant async event.
993 event["ph"] = "n";
994 writer_.AddAsyncInstantEvent(event);
995 } else {
996 // Async step events.
997 event["ph"] = legacy_phase;
998 writer_.AddAsyncBeginEvent(event);
999 }
1000 } else { // Async start and end.
1001 event["ph"] = legacy_phase.empty() ? "b" : legacy_phase;
1002 writer_.AddAsyncBeginEvent(event);
1003 // If the slice didn't finish, the duration may be negative. Don't
1004 // write the end event in this case.
1005 if (duration_ns > 0) {
1006 event["ph"] = legacy_phase.empty() ? "e" : "F";
1007 event["ts"] = Json::Int64((it.ts() + duration_ns) / 1000);
1008 if (thread_ts_ns && thread_duration_ns && *thread_ts_ns > 0) {
1009 event["tts"] =
1010 Json::Int64((*thread_ts_ns + *thread_duration_ns) / 1000);
1011 }
1012 if (thread_instruction_count && thread_instruction_delta &&
1013 *thread_instruction_count > 0) {
1014 event["ticount"] = Json::Int64(
1015 (*thread_instruction_count + *thread_instruction_delta));
1016 }
1017 event["args"].clear();
1018 writer_.AddAsyncEndEvent(event);
1019 }
1020 }
1021 } else {
1022 // Global or process-scoped instant event.
1023 PERFETTO_DCHECK(legacy_chrome_track || !is_child_track);
1024 if (duration_ns != 0) {
1025 // We don't support exporting slices on the default global or process
1026 // track to JSON (JSON only supports instant events on these tracks).
1027 PERFETTO_DLOG(
1028 "skipping non-instant slice on global or process track");
1029 } else {
1030 if (legacy_phase.empty()) {
1031 // Use "I" instead of "i" phase for backwards-compat with old
1032 // consumers.
1033 event["ph"] = "I";
1034 } else {
1035 event["ph"] = legacy_phase;
1036 }
1037
1038 auto opt_process_row = process_track.id().IndexOf(TrackId{track_id});
1039 if (opt_process_row.has_value()) {
1040 uint32_t upid = process_track.upid()[*opt_process_row];
1041 uint32_t exported_pid = UpidToPid(upid);
1042 event["pid"] = Json::Int(exported_pid);
1043 event["tid"] =
1044 Json::Int(legacy_utid ? UtidToPidAndTid(*legacy_utid).second
1045 : exported_pid);
1046 event["s"] = "p";
1047 } else {
1048 event["s"] = "g";
1049 }
1050 writer_.WriteCommonEvent(event);
1051 }
1052 }
1053 }
1054 return util::OkStatus();
1055 }
1056
CreateFlowEventV1(uint32_t flow_id,SliceId slice_id,std::string name,std::string cat,Json::Value args,bool flow_begin)1057 std::optional<Json::Value> CreateFlowEventV1(uint32_t flow_id,
1058 SliceId slice_id,
1059 std::string name,
1060 std::string cat,
1061 Json::Value args,
1062 bool flow_begin) {
1063 const auto& slices = storage_->slice_table();
1064 const auto& thread_tracks = storage_->thread_track_table();
1065
1066 auto opt_slice_idx = slices.id().IndexOf(slice_id);
1067 if (!opt_slice_idx)
1068 return std::nullopt;
1069 uint32_t slice_idx = opt_slice_idx.value();
1070
1071 TrackId track_id = storage_->slice_table().track_id()[slice_idx];
1072 auto opt_thread_track_idx = thread_tracks.id().IndexOf(track_id);
1073 // catapult only supports flow events attached to thread-track slices
1074 if (!opt_thread_track_idx)
1075 return std::nullopt;
1076
1077 UniqueTid utid = thread_tracks.utid()[opt_thread_track_idx.value()];
1078 auto pid_and_tid = UtidToPidAndTid(utid);
1079 Json::Value event;
1080 event["id"] = flow_id;
1081 event["pid"] = Json::Int(pid_and_tid.first);
1082 event["tid"] = Json::Int(pid_and_tid.second);
1083 event["cat"] = cat;
1084 event["name"] = name;
1085 event["ph"] = (flow_begin ? "s" : "f");
1086 event["ts"] = Json::Int64(slices.ts()[slice_idx] / 1000);
1087 if (!flow_begin) {
1088 event["bp"] = "e";
1089 }
1090 event["args"] = std::move(args);
1091 return std::move(event);
1092 }
1093
ExportFlows()1094 util::Status ExportFlows() {
1095 const auto& flow_table = storage_->flow_table();
1096 const auto& slice_table = storage_->slice_table();
1097 for (uint32_t i = 0; i < flow_table.row_count(); i++) {
1098 SliceId slice_out = flow_table.slice_out()[i];
1099 SliceId slice_in = flow_table.slice_in()[i];
1100 uint32_t arg_set_id = flow_table.arg_set_id()[i];
1101
1102 std::string cat;
1103 std::string name;
1104 auto args = args_builder_.GetArgs(arg_set_id);
1105 if (arg_set_id != kInvalidArgSetId) {
1106 cat = args["cat"].asString();
1107 name = args["name"].asString();
1108 // Don't export these args since they are only used for this export and
1109 // weren't part of the original event.
1110 args.removeMember("name");
1111 args.removeMember("cat");
1112 } else {
1113 auto opt_slice_out_idx = slice_table.id().IndexOf(slice_out);
1114 PERFETTO_DCHECK(opt_slice_out_idx.has_value());
1115 std::optional<StringId> cat_id =
1116 slice_table.category()[opt_slice_out_idx.value()];
1117 std::optional<StringId> name_id =
1118 slice_table.name()[opt_slice_out_idx.value()];
1119 cat = GetNonNullString(storage_, cat_id);
1120 name = GetNonNullString(storage_, name_id);
1121 }
1122
1123 auto out_event = CreateFlowEventV1(i, slice_out, name, cat, args,
1124 /* flow_begin = */ true);
1125 auto in_event = CreateFlowEventV1(i, slice_in, name, cat, std::move(args),
1126 /* flow_begin = */ false);
1127
1128 if (out_event && in_event) {
1129 writer_.WriteCommonEvent(out_event.value());
1130 writer_.WriteCommonEvent(in_event.value());
1131 }
1132 }
1133 return util::OkStatus();
1134 }
1135
ConvertLegacyRawEventToJson(uint32_t index)1136 Json::Value ConvertLegacyRawEventToJson(uint32_t index) {
1137 const auto& events = storage_->raw_table();
1138
1139 Json::Value event;
1140 event["ts"] = Json::Int64(events.ts()[index] / 1000);
1141
1142 UniqueTid utid = static_cast<UniqueTid>(events.utid()[index]);
1143 auto pid_and_tid = UtidToPidAndTid(utid);
1144 event["pid"] = Json::Int(pid_and_tid.first);
1145 event["tid"] = Json::Int(pid_and_tid.second);
1146
1147 // Raw legacy events store all other params in the arg set. Make a copy of
1148 // the converted args here, parse, and then remove the legacy params.
1149 event["args"] = args_builder_.GetArgs(events.arg_set_id()[index]);
1150 const Json::Value& legacy_args = event["args"][kLegacyEventArgsKey];
1151
1152 PERFETTO_DCHECK(legacy_args.isMember(kLegacyEventCategoryKey));
1153 event["cat"] = legacy_args[kLegacyEventCategoryKey];
1154
1155 PERFETTO_DCHECK(legacy_args.isMember(kLegacyEventNameKey));
1156 event["name"] = legacy_args[kLegacyEventNameKey];
1157
1158 PERFETTO_DCHECK(legacy_args.isMember(kLegacyEventPhaseKey));
1159 event["ph"] = legacy_args[kLegacyEventPhaseKey];
1160
1161 // Object snapshot events are supposed to have a mandatory "snapshot" arg,
1162 // which may be removed in trace processor if it is empty.
1163 if (legacy_args[kLegacyEventPhaseKey] == "O" &&
1164 !event["args"].isMember("snapshot")) {
1165 event["args"]["snapshot"] = Json::Value(Json::objectValue);
1166 }
1167
1168 if (legacy_args.isMember(kLegacyEventDurationNsKey))
1169 event["dur"] = legacy_args[kLegacyEventDurationNsKey].asInt64() / 1000;
1170
1171 if (legacy_args.isMember(kLegacyEventThreadTimestampNsKey)) {
1172 event["tts"] =
1173 legacy_args[kLegacyEventThreadTimestampNsKey].asInt64() / 1000;
1174 }
1175
1176 if (legacy_args.isMember(kLegacyEventThreadDurationNsKey)) {
1177 event["tdur"] =
1178 legacy_args[kLegacyEventThreadDurationNsKey].asInt64() / 1000;
1179 }
1180
1181 if (legacy_args.isMember(kLegacyEventThreadInstructionCountKey))
1182 event["ticount"] = legacy_args[kLegacyEventThreadInstructionCountKey];
1183
1184 if (legacy_args.isMember(kLegacyEventThreadInstructionDeltaKey))
1185 event["tidelta"] = legacy_args[kLegacyEventThreadInstructionDeltaKey];
1186
1187 if (legacy_args.isMember(kLegacyEventUseAsyncTtsKey))
1188 event["use_async_tts"] = legacy_args[kLegacyEventUseAsyncTtsKey];
1189
1190 if (legacy_args.isMember(kLegacyEventUnscopedIdKey)) {
1191 event["id"] = base::Uint64ToHexString(
1192 legacy_args[kLegacyEventUnscopedIdKey].asUInt64());
1193 }
1194
1195 if (legacy_args.isMember(kLegacyEventGlobalIdKey)) {
1196 event["id2"]["global"] = base::Uint64ToHexString(
1197 legacy_args[kLegacyEventGlobalIdKey].asUInt64());
1198 }
1199
1200 if (legacy_args.isMember(kLegacyEventLocalIdKey)) {
1201 event["id2"]["local"] = base::Uint64ToHexString(
1202 legacy_args[kLegacyEventLocalIdKey].asUInt64());
1203 }
1204
1205 if (legacy_args.isMember(kLegacyEventIdScopeKey))
1206 event["scope"] = legacy_args[kLegacyEventIdScopeKey];
1207
1208 event["args"].removeMember(kLegacyEventArgsKey);
1209
1210 return event;
1211 }
1212
ExportRawEvents()1213 util::Status ExportRawEvents() {
1214 std::optional<StringId> raw_legacy_event_key_id =
1215 storage_->string_pool().GetId("track_event.legacy_event");
1216 std::optional<StringId> raw_legacy_system_trace_event_id =
1217 storage_->string_pool().GetId("chrome_event.legacy_system_trace");
1218 std::optional<StringId> raw_legacy_user_trace_event_id =
1219 storage_->string_pool().GetId("chrome_event.legacy_user_trace");
1220 std::optional<StringId> raw_chrome_metadata_event_id =
1221 storage_->string_pool().GetId("chrome_event.metadata");
1222
1223 const auto& events = storage_->raw_table();
1224 for (uint32_t i = 0; i < events.row_count(); ++i) {
1225 if (raw_legacy_event_key_id &&
1226 events.name()[i] == *raw_legacy_event_key_id) {
1227 Json::Value event = ConvertLegacyRawEventToJson(i);
1228 writer_.WriteCommonEvent(event);
1229 } else if (raw_legacy_system_trace_event_id &&
1230 events.name()[i] == *raw_legacy_system_trace_event_id) {
1231 Json::Value args = args_builder_.GetArgs(events.arg_set_id()[i]);
1232 PERFETTO_DCHECK(args.isMember("data"));
1233 writer_.AddSystemTraceData(args["data"].asString());
1234 } else if (raw_legacy_user_trace_event_id &&
1235 events.name()[i] == *raw_legacy_user_trace_event_id) {
1236 Json::Value args = args_builder_.GetArgs(events.arg_set_id()[i]);
1237 PERFETTO_DCHECK(args.isMember("data"));
1238 writer_.AddUserTraceData(args["data"].asString());
1239 } else if (raw_chrome_metadata_event_id &&
1240 events.name()[i] == *raw_chrome_metadata_event_id) {
1241 Json::Value args = args_builder_.GetArgs(events.arg_set_id()[i]);
1242 writer_.MergeMetadata(args);
1243 }
1244 }
1245 return util::OkStatus();
1246 }
1247
1248 class MergedProfileSamplesEmitter {
1249 public:
1250 // The TraceFormatWriter must outlive this instance.
MergedProfileSamplesEmitter(TraceFormatWriter & writer)1251 MergedProfileSamplesEmitter(TraceFormatWriter& writer) : writer_(writer) {}
1252
AddEventForUtid(UniqueTid utid,int64_t ts,CallsiteId callsite_id,const Json::Value & event)1253 uint64_t AddEventForUtid(UniqueTid utid,
1254 int64_t ts,
1255 CallsiteId callsite_id,
1256 const Json::Value& event) {
1257 auto current_sample = current_events_.find(utid);
1258
1259 // If there's a current entry for our thread and it matches the callsite
1260 // of the new sample, update the entry with the new timestamp. Otherwise
1261 // create a new entry.
1262 if (current_sample != current_events_.end() &&
1263 current_sample->second.callsite_id() == callsite_id) {
1264 current_sample->second.UpdateWithNewSample(ts);
1265 return current_sample->second.event_id();
1266 } else {
1267 if (current_sample != current_events_.end())
1268 current_events_.erase(current_sample);
1269
1270 auto new_entry = current_events_.emplace(
1271 std::piecewise_construct, std::forward_as_tuple(utid),
1272 std::forward_as_tuple(writer_, callsite_id, ts, event));
1273 return new_entry.first->second.event_id();
1274 }
1275 }
1276
GenerateNewEventId()1277 static uint64_t GenerateNewEventId() {
1278 // "n"-phase events are nestable async events which get tied together
1279 // with their id, so we need to give each one a unique ID as we only
1280 // want the samples to show up on their own track in the trace-viewer
1281 // but not nested together (unless they're nested under a merged event).
1282 static size_t g_id_counter = 0;
1283 return ++g_id_counter;
1284 }
1285
1286 private:
1287 class Sample {
1288 public:
Sample(TraceFormatWriter & writer,CallsiteId callsite_id,int64_t ts,const Json::Value & event)1289 Sample(TraceFormatWriter& writer,
1290 CallsiteId callsite_id,
1291 int64_t ts,
1292 const Json::Value& event)
1293 : writer_(writer),
1294 callsite_id_(callsite_id),
1295 begin_ts_(ts),
1296 end_ts_(ts),
1297 event_(event),
1298 event_id_(MergedProfileSamplesEmitter::GenerateNewEventId()),
1299 sample_count_(1) {}
1300
~Sample()1301 ~Sample() {
1302 // No point writing a merged event if we only got a single sample
1303 // as ExportCpuProfileSamples will already be writing the instant event.
1304 if (sample_count_ == 1)
1305 return;
1306
1307 event_["id"] = base::Uint64ToHexString(event_id_);
1308
1309 // Write the BEGIN event.
1310 event_["ph"] = "b";
1311 // We subtract 1us as a workaround for the first async event not
1312 // nesting underneath the parent event if the timestamp is identical.
1313 int64_t begin_in_us_ = begin_ts_ / 1000;
1314 event_["ts"] = Json::Int64(std::min(begin_in_us_ - 1, begin_in_us_));
1315 writer_.WriteCommonEvent(event_);
1316
1317 // Write the END event.
1318 event_["ph"] = "e";
1319 event_["ts"] = Json::Int64(end_ts_ / 1000);
1320 // No need for args for the end event; remove them to save some space.
1321 event_["args"].clear();
1322 writer_.WriteCommonEvent(event_);
1323 }
1324
UpdateWithNewSample(int64_t ts)1325 void UpdateWithNewSample(int64_t ts) {
1326 // We assume samples for a given thread will appear in timestamp
1327 // order; if this assumption stops holding true, we'll have to sort the
1328 // samples first.
1329 if (ts < end_ts_ || begin_ts_ > ts) {
1330 PERFETTO_ELOG(
1331 "Got an timestamp out of sequence while merging stack samples "
1332 "during JSON export!\n");
1333 PERFETTO_DCHECK(false);
1334 }
1335
1336 end_ts_ = ts;
1337 sample_count_++;
1338 }
1339
event_id() const1340 uint64_t event_id() const { return event_id_; }
callsite_id() const1341 CallsiteId callsite_id() const { return callsite_id_; }
1342
1343 public:
1344 Sample(const Sample&) = delete;
1345 Sample& operator=(const Sample&) = delete;
1346 Sample& operator=(Sample&& value) = delete;
1347
1348 TraceFormatWriter& writer_;
1349 CallsiteId callsite_id_;
1350 int64_t begin_ts_;
1351 int64_t end_ts_;
1352 Json::Value event_;
1353 uint64_t event_id_;
1354 size_t sample_count_;
1355 };
1356
1357 MergedProfileSamplesEmitter(const MergedProfileSamplesEmitter&) = delete;
1358 MergedProfileSamplesEmitter& operator=(const MergedProfileSamplesEmitter&) =
1359 delete;
1360 MergedProfileSamplesEmitter& operator=(
1361 MergedProfileSamplesEmitter&& value) = delete;
1362
1363 std::unordered_map<UniqueTid, Sample> current_events_;
1364 TraceFormatWriter& writer_;
1365 };
1366
ExportCpuProfileSamples()1367 util::Status ExportCpuProfileSamples() {
1368 MergedProfileSamplesEmitter merged_sample_emitter(writer_);
1369
1370 const tables::CpuProfileStackSampleTable& samples =
1371 storage_->cpu_profile_stack_sample_table();
1372 for (uint32_t i = 0; i < samples.row_count(); ++i) {
1373 Json::Value event;
1374 event["ts"] = Json::Int64(samples.ts()[i] / 1000);
1375
1376 UniqueTid utid = static_cast<UniqueTid>(samples.utid()[i]);
1377 auto pid_and_tid = UtidToPidAndTid(utid);
1378 event["pid"] = Json::Int(pid_and_tid.first);
1379 event["tid"] = Json::Int(pid_and_tid.second);
1380
1381 event["ph"] = "n";
1382 event["cat"] = "disabled-by-default-cpu_profiler";
1383 event["name"] = "StackCpuSampling";
1384 event["s"] = "t";
1385
1386 // Add a dummy thread timestamp to this event to match the format of
1387 // instant events. Useful in the UI to view args of a selected group of
1388 // samples.
1389 event["tts"] = Json::Int64(1);
1390
1391 const auto& callsites = storage_->stack_profile_callsite_table();
1392 const auto& frames = storage_->stack_profile_frame_table();
1393 const auto& mappings = storage_->stack_profile_mapping_table();
1394
1395 std::vector<std::string> callstack;
1396 std::optional<CallsiteId> opt_callsite_id = samples.callsite_id()[i];
1397
1398 while (opt_callsite_id) {
1399 CallsiteId callsite_id = *opt_callsite_id;
1400 uint32_t callsite_row = *callsites.id().IndexOf(callsite_id);
1401
1402 FrameId frame_id = callsites.frame_id()[callsite_row];
1403 uint32_t frame_row = *frames.id().IndexOf(frame_id);
1404
1405 MappingId mapping_id = frames.mapping()[frame_row];
1406 uint32_t mapping_row = *mappings.id().IndexOf(mapping_id);
1407
1408 NullTermStringView symbol_name;
1409 auto opt_symbol_set_id = frames.symbol_set_id()[frame_row];
1410 if (opt_symbol_set_id) {
1411 symbol_name = storage_->GetString(
1412 storage_->symbol_table().name()[*opt_symbol_set_id]);
1413 }
1414
1415 base::StackString<1024> frame_entry(
1416 "%s - %s [%s]\n",
1417 (symbol_name.empty()
1418 ? base::Uint64ToHexString(
1419 static_cast<uint64_t>(frames.rel_pc()[frame_row]))
1420 .c_str()
1421 : symbol_name.c_str()),
1422 GetNonNullString(storage_, mappings.name()[mapping_row]),
1423 GetNonNullString(storage_, mappings.build_id()[mapping_row]));
1424
1425 callstack.emplace_back(frame_entry.ToStdString());
1426
1427 opt_callsite_id = callsites.parent_id()[callsite_row];
1428 }
1429
1430 std::string merged_callstack;
1431 for (auto entry = callstack.rbegin(); entry != callstack.rend();
1432 ++entry) {
1433 merged_callstack += *entry;
1434 }
1435
1436 event["args"]["frames"] = merged_callstack;
1437 event["args"]["process_priority"] = samples.process_priority()[i];
1438
1439 // TODO(oysteine): Used for backwards compatibility with the memlog
1440 // pipeline, should remove once we've switched to looking directly at the
1441 // tid.
1442 event["args"]["thread_id"] = Json::Int(pid_and_tid.second);
1443
1444 // Emit duration events for adjacent samples with the same callsite.
1445 // For now, only do this when the trace has already been symbolized i.e.
1446 // are not directly output by Chrome, to avoid interfering with other
1447 // processing pipelines.
1448 std::optional<CallsiteId> opt_current_callsite_id =
1449 samples.callsite_id()[i];
1450
1451 if (opt_current_callsite_id && storage_->symbol_table().row_count() > 0) {
1452 uint64_t parent_event_id = merged_sample_emitter.AddEventForUtid(
1453 utid, samples.ts()[i], *opt_current_callsite_id, event);
1454 event["id"] = base::Uint64ToHexString(parent_event_id);
1455 } else {
1456 event["id"] = base::Uint64ToHexString(
1457 MergedProfileSamplesEmitter::GenerateNewEventId());
1458 }
1459
1460 writer_.WriteCommonEvent(event);
1461 }
1462
1463 return util::OkStatus();
1464 }
1465
ExportMetadata()1466 util::Status ExportMetadata() {
1467 const auto& trace_metadata = storage_->metadata_table();
1468 const auto& keys = trace_metadata.name();
1469 const auto& int_values = trace_metadata.int_value();
1470 const auto& str_values = trace_metadata.str_value();
1471
1472 // Create a mapping from key string ids to keys.
1473 std::unordered_map<StringId, metadata::KeyId> key_map;
1474 for (uint32_t i = 0; i < metadata::kNumKeys; ++i) {
1475 auto id = *storage_->string_pool().GetId(metadata::kNames[i]);
1476 key_map[id] = static_cast<metadata::KeyId>(i);
1477 }
1478
1479 for (uint32_t pos = 0; pos < trace_metadata.row_count(); pos++) {
1480 auto key_it = key_map.find(keys[pos]);
1481 // Skip exporting dynamic entries; the cr-xxx entries that come from
1482 // the ChromeMetadata proto message are already exported from the raw
1483 // table.
1484 if (key_it == key_map.end())
1485 continue;
1486
1487 // Cast away from enum type, as otherwise -Wswitch-enum will demand an
1488 // exhaustive list of cases, even if there's a default case.
1489 metadata::KeyId key = key_it->second;
1490 switch (static_cast<size_t>(key)) {
1491 case metadata::benchmark_description:
1492 writer_.AppendTelemetryMetadataString(
1493 "benchmarkDescriptions", str_values.GetString(pos).c_str());
1494 break;
1495
1496 case metadata::benchmark_name:
1497 writer_.AppendTelemetryMetadataString(
1498 "benchmarks", str_values.GetString(pos).c_str());
1499 break;
1500
1501 case metadata::benchmark_start_time_us:
1502 writer_.SetTelemetryMetadataTimestamp("benchmarkStart",
1503 *int_values[pos]);
1504 break;
1505
1506 case metadata::benchmark_had_failures:
1507 writer_.AppendTelemetryMetadataBool("hadFailures", *int_values[pos]);
1508 break;
1509
1510 case metadata::benchmark_label:
1511 writer_.AppendTelemetryMetadataString(
1512 "labels", str_values.GetString(pos).c_str());
1513 break;
1514
1515 case metadata::benchmark_story_name:
1516 writer_.AppendTelemetryMetadataString(
1517 "stories", str_values.GetString(pos).c_str());
1518 break;
1519
1520 case metadata::benchmark_story_run_index:
1521 writer_.AppendTelemetryMetadataInt("storysetRepeats",
1522 *int_values[pos]);
1523 break;
1524
1525 case metadata::benchmark_story_run_time_us:
1526 writer_.SetTelemetryMetadataTimestamp("traceStart", *int_values[pos]);
1527 break;
1528
1529 case metadata::benchmark_story_tags: // repeated
1530 writer_.AppendTelemetryMetadataString(
1531 "storyTags", str_values.GetString(pos).c_str());
1532 break;
1533
1534 default:
1535 PERFETTO_DLOG("Ignoring metadata key %zu", static_cast<size_t>(key));
1536 break;
1537 }
1538 }
1539 return util::OkStatus();
1540 }
1541
ExportStats()1542 util::Status ExportStats() {
1543 const auto& stats = storage_->stats();
1544
1545 for (size_t idx = 0; idx < stats::kNumKeys; idx++) {
1546 if (stats::kTypes[idx] == stats::kSingle) {
1547 writer_.SetStats(stats::kNames[idx], stats[idx].value);
1548 } else {
1549 PERFETTO_DCHECK(stats::kTypes[idx] == stats::kIndexed);
1550 writer_.SetStats(stats::kNames[idx], stats[idx].indexed_values);
1551 }
1552 }
1553
1554 return util::OkStatus();
1555 }
1556
ExportMemorySnapshots()1557 util::Status ExportMemorySnapshots() {
1558 const auto& memory_snapshots = storage_->memory_snapshot_table();
1559 std::optional<StringId> private_footprint_id =
1560 storage_->string_pool().GetId("chrome.private_footprint_kb");
1561 std::optional<StringId> peak_resident_set_id =
1562 storage_->string_pool().GetId("chrome.peak_resident_set_kb");
1563
1564 for (uint32_t memory_index = 0; memory_index < memory_snapshots.row_count();
1565 ++memory_index) {
1566 Json::Value event_base;
1567
1568 event_base["ph"] = "v";
1569 event_base["cat"] = "disabled-by-default-memory-infra";
1570 auto snapshot_id = memory_snapshots.id()[memory_index].value;
1571 event_base["id"] = base::Uint64ToHexString(snapshot_id);
1572 int64_t snapshot_ts = memory_snapshots.timestamp()[memory_index];
1573 event_base["ts"] = Json::Int64(snapshot_ts / 1000);
1574 // TODO(crbug:1116359): Add dump type to the snapshot proto
1575 // to properly fill event_base["name"]
1576 event_base["name"] = "periodic_interval";
1577 event_base["args"]["dumps"]["level_of_detail"] = GetNonNullString(
1578 storage_, memory_snapshots.detail_level()[memory_index]);
1579
1580 // Export OS dump events for processes with relevant data.
1581 const auto& process_table = storage_->process_table();
1582 for (UniquePid upid = 0; upid < process_table.row_count(); ++upid) {
1583 Json::Value event =
1584 FillInProcessEventDetails(event_base, process_table.pid()[upid]);
1585 Json::Value& totals = event["args"]["dumps"]["process_totals"];
1586
1587 const auto& process_counters = storage_->process_counter_track_table();
1588
1589 for (uint32_t counter_index = 0;
1590 counter_index < process_counters.row_count(); ++counter_index) {
1591 if (process_counters.upid()[counter_index] != upid)
1592 continue;
1593 TrackId track_id = process_counters.id()[counter_index];
1594 if (private_footprint_id && (process_counters.name()[counter_index] ==
1595 private_footprint_id)) {
1596 totals["private_footprint_bytes"] = base::Uint64ToHexStringNoPrefix(
1597 GetCounterValue(track_id, snapshot_ts));
1598 } else if (peak_resident_set_id &&
1599 (process_counters.name()[counter_index] ==
1600 peak_resident_set_id)) {
1601 totals["peak_resident_set_size"] = base::Uint64ToHexStringNoPrefix(
1602 GetCounterValue(track_id, snapshot_ts));
1603 }
1604 }
1605
1606 auto process_args_id = process_table.arg_set_id()[upid];
1607 if (process_args_id) {
1608 const Json::Value* process_args =
1609 &args_builder_.GetArgs(process_args_id);
1610 if (process_args->isMember("is_peak_rss_resettable")) {
1611 totals["is_peak_rss_resettable"] =
1612 (*process_args)["is_peak_rss_resettable"];
1613 }
1614 }
1615
1616 const auto& smaps_table = storage_->profiler_smaps_table();
1617 // Do not create vm_regions without memory maps, since catapult expects
1618 // to have rows.
1619 Json::Value* smaps =
1620 smaps_table.row_count() > 0
1621 ? &event["args"]["dumps"]["process_mmaps"]["vm_regions"]
1622 : nullptr;
1623 for (uint32_t smaps_index = 0; smaps_index < smaps_table.row_count();
1624 ++smaps_index) {
1625 if (smaps_table.upid()[smaps_index] != upid)
1626 continue;
1627 if (smaps_table.ts()[smaps_index] != snapshot_ts)
1628 continue;
1629 Json::Value region;
1630 region["mf"] =
1631 GetNonNullString(storage_, smaps_table.file_name()[smaps_index]);
1632 region["pf"] =
1633 Json::Int64(smaps_table.protection_flags()[smaps_index]);
1634 region["sa"] = base::Uint64ToHexStringNoPrefix(
1635 static_cast<uint64_t>(smaps_table.start_address()[smaps_index]));
1636 region["sz"] = base::Uint64ToHexStringNoPrefix(
1637 static_cast<uint64_t>(smaps_table.size_kb()[smaps_index]) * 1024);
1638 region["ts"] =
1639 Json::Int64(smaps_table.module_timestamp()[smaps_index]);
1640 region["id"] = GetNonNullString(
1641 storage_, smaps_table.module_debugid()[smaps_index]);
1642 region["df"] = GetNonNullString(
1643 storage_, smaps_table.module_debug_path()[smaps_index]);
1644 region["bs"]["pc"] = base::Uint64ToHexStringNoPrefix(
1645 static_cast<uint64_t>(
1646 smaps_table.private_clean_resident_kb()[smaps_index]) *
1647 1024);
1648 region["bs"]["pd"] = base::Uint64ToHexStringNoPrefix(
1649 static_cast<uint64_t>(
1650 smaps_table.private_dirty_kb()[smaps_index]) *
1651 1024);
1652 region["bs"]["pss"] = base::Uint64ToHexStringNoPrefix(
1653 static_cast<uint64_t>(
1654 smaps_table.proportional_resident_kb()[smaps_index]) *
1655 1024);
1656 region["bs"]["sc"] = base::Uint64ToHexStringNoPrefix(
1657 static_cast<uint64_t>(
1658 smaps_table.shared_clean_resident_kb()[smaps_index]) *
1659 1024);
1660 region["bs"]["sd"] = base::Uint64ToHexStringNoPrefix(
1661 static_cast<uint64_t>(
1662 smaps_table.shared_dirty_resident_kb()[smaps_index]) *
1663 1024);
1664 region["bs"]["sw"] = base::Uint64ToHexStringNoPrefix(
1665 static_cast<uint64_t>(smaps_table.swap_kb()[smaps_index]) * 1024);
1666 smaps->append(region);
1667 }
1668
1669 if (!totals.empty() || (smaps && !smaps->empty()))
1670 writer_.WriteCommonEvent(event);
1671 }
1672
1673 // Export chrome dump events for process snapshots in current memory
1674 // snapshot.
1675 const auto& process_snapshots = storage_->process_memory_snapshot_table();
1676
1677 for (uint32_t process_index = 0;
1678 process_index < process_snapshots.row_count(); ++process_index) {
1679 if (process_snapshots.snapshot_id()[process_index].value != snapshot_id)
1680 continue;
1681
1682 auto process_snapshot_id = process_snapshots.id()[process_index].value;
1683 uint32_t pid = UpidToPid(process_snapshots.upid()[process_index]);
1684
1685 // Shared memory nodes are imported into a fake process with pid 0.
1686 // Catapult expects them to be associated with one of the real processes
1687 // of the snapshot, so we choose the first one we can find and replace
1688 // the pid.
1689 if (pid == 0) {
1690 for (uint32_t i = 0; i < process_snapshots.row_count(); ++i) {
1691 if (process_snapshots.snapshot_id()[i].value != snapshot_id)
1692 continue;
1693 uint32_t new_pid = UpidToPid(process_snapshots.upid()[i]);
1694 if (new_pid != 0) {
1695 pid = new_pid;
1696 break;
1697 }
1698 }
1699 }
1700
1701 Json::Value event = FillInProcessEventDetails(event_base, pid);
1702
1703 const auto& snapshot_nodes = storage_->memory_snapshot_node_table();
1704
1705 for (uint32_t node_index = 0; node_index < snapshot_nodes.row_count();
1706 ++node_index) {
1707 if (snapshot_nodes.process_snapshot_id()[node_index].value !=
1708 process_snapshot_id) {
1709 continue;
1710 }
1711 const char* path =
1712 GetNonNullString(storage_, snapshot_nodes.path()[node_index]);
1713 event["args"]["dumps"]["allocators"][path]["guid"] =
1714 base::Uint64ToHexStringNoPrefix(
1715 static_cast<uint64_t>(snapshot_nodes.id()[node_index].value));
1716 if (snapshot_nodes.size()[node_index]) {
1717 AddAttributeToMemoryNode(&event, path, "size",
1718 snapshot_nodes.size()[node_index],
1719 "bytes");
1720 }
1721 if (snapshot_nodes.effective_size()[node_index]) {
1722 AddAttributeToMemoryNode(
1723 &event, path, "effective_size",
1724 snapshot_nodes.effective_size()[node_index], "bytes");
1725 }
1726
1727 auto node_args_id = snapshot_nodes.arg_set_id()[node_index];
1728 if (!node_args_id)
1729 continue;
1730 const Json::Value* node_args =
1731 &args_builder_.GetArgs(node_args_id.value());
1732 for (const auto& arg_name : node_args->getMemberNames()) {
1733 const Json::Value& arg_value = (*node_args)[arg_name]["value"];
1734 if (arg_value.empty())
1735 continue;
1736 if (arg_value.isString()) {
1737 AddAttributeToMemoryNode(&event, path, arg_name,
1738 arg_value.asString());
1739 } else if (arg_value.isInt64()) {
1740 Json::Value unit = (*node_args)[arg_name]["unit"];
1741 if (unit.empty())
1742 unit = "unknown";
1743 AddAttributeToMemoryNode(&event, path, arg_name,
1744 arg_value.asInt64(), unit.asString());
1745 }
1746 }
1747 }
1748
1749 const auto& snapshot_edges = storage_->memory_snapshot_edge_table();
1750
1751 for (uint32_t edge_index = 0; edge_index < snapshot_edges.row_count();
1752 ++edge_index) {
1753 SnapshotNodeId source_node_id =
1754 snapshot_edges.source_node_id()[edge_index];
1755 uint32_t source_node_row =
1756 *snapshot_nodes.id().IndexOf(source_node_id);
1757
1758 if (snapshot_nodes.process_snapshot_id()[source_node_row].value !=
1759 process_snapshot_id) {
1760 continue;
1761 }
1762 Json::Value edge;
1763 edge["source"] = base::Uint64ToHexStringNoPrefix(
1764 snapshot_edges.source_node_id()[edge_index].value);
1765 edge["target"] = base::Uint64ToHexStringNoPrefix(
1766 snapshot_edges.target_node_id()[edge_index].value);
1767 edge["importance"] =
1768 Json::Int(snapshot_edges.importance()[edge_index]);
1769 edge["type"] = "ownership";
1770 event["args"]["dumps"]["allocators_graph"].append(edge);
1771 }
1772 writer_.WriteCommonEvent(event);
1773 }
1774 }
1775 return util::OkStatus();
1776 }
1777
UpidToPid(UniquePid upid)1778 uint32_t UpidToPid(UniquePid upid) {
1779 auto pid_it = upids_to_exported_pids_.find(upid);
1780 PERFETTO_DCHECK(pid_it != upids_to_exported_pids_.end());
1781 return pid_it->second;
1782 }
1783
UtidToPidAndTid(UniqueTid utid)1784 std::pair<uint32_t, uint32_t> UtidToPidAndTid(UniqueTid utid) {
1785 auto pid_and_tid_it = utids_to_exported_pids_and_tids_.find(utid);
1786 PERFETTO_DCHECK(pid_and_tid_it != utids_to_exported_pids_and_tids_.end());
1787 return pid_and_tid_it->second;
1788 }
1789
NextExportedPidOrTidForDuplicates()1790 uint32_t NextExportedPidOrTidForDuplicates() {
1791 // Ensure that the exported substitute value does not represent a valid
1792 // pid/tid. This would be very unlikely in practice.
1793 while (IsValidPidOrTid(next_exported_pid_or_tid_for_duplicates_))
1794 next_exported_pid_or_tid_for_duplicates_--;
1795 return next_exported_pid_or_tid_for_duplicates_--;
1796 }
1797
IsValidPidOrTid(uint32_t pid_or_tid)1798 bool IsValidPidOrTid(uint32_t pid_or_tid) {
1799 const auto& process_table = storage_->process_table();
1800 for (UniquePid upid = 0; upid < process_table.row_count(); upid++) {
1801 if (process_table.pid()[upid] == pid_or_tid)
1802 return true;
1803 }
1804
1805 const auto& thread_table = storage_->thread_table();
1806 for (UniqueTid utid = 0; utid < thread_table.row_count(); utid++) {
1807 if (thread_table.tid()[utid] == pid_or_tid)
1808 return true;
1809 }
1810
1811 return false;
1812 }
1813
FillInProcessEventDetails(const Json::Value & event,uint32_t pid)1814 Json::Value FillInProcessEventDetails(const Json::Value& event,
1815 uint32_t pid) {
1816 Json::Value output = event;
1817 output["pid"] = Json::Int(pid);
1818 output["tid"] = Json::Int(-1);
1819 return output;
1820 }
1821
AddAttributeToMemoryNode(Json::Value * event,const std::string & path,const std::string & key,int64_t value,const std::string & units)1822 void AddAttributeToMemoryNode(Json::Value* event,
1823 const std::string& path,
1824 const std::string& key,
1825 int64_t value,
1826 const std::string& units) {
1827 (*event)["args"]["dumps"]["allocators"][path]["attrs"][key]["value"] =
1828 base::Uint64ToHexStringNoPrefix(static_cast<uint64_t>(value));
1829 (*event)["args"]["dumps"]["allocators"][path]["attrs"][key]["type"] =
1830 "scalar";
1831 (*event)["args"]["dumps"]["allocators"][path]["attrs"][key]["units"] =
1832 units;
1833 }
1834
AddAttributeToMemoryNode(Json::Value * event,const std::string & path,const std::string & key,const std::string & value,const std::string & units="")1835 void AddAttributeToMemoryNode(Json::Value* event,
1836 const std::string& path,
1837 const std::string& key,
1838 const std::string& value,
1839 const std::string& units = "") {
1840 (*event)["args"]["dumps"]["allocators"][path]["attrs"][key]["value"] =
1841 value;
1842 (*event)["args"]["dumps"]["allocators"][path]["attrs"][key]["type"] =
1843 "string";
1844 (*event)["args"]["dumps"]["allocators"][path]["attrs"][key]["units"] =
1845 units;
1846 }
1847
GetCounterValue(TrackId track_id,int64_t ts)1848 uint64_t GetCounterValue(TrackId track_id, int64_t ts) {
1849 const auto& counter_table = storage_->counter_table();
1850 auto begin = counter_table.ts().begin();
1851 auto end = counter_table.ts().end();
1852 PERFETTO_DCHECK(counter_table.ts().IsSorted() &&
1853 counter_table.ts().IsColumnType<int64_t>());
1854 // The timestamp column is sorted, so we can binary search for a matching
1855 // timestamp. Note that we don't use RowMap operations like FilterInto()
1856 // here because they bloat trace processor's binary size in Chrome too much.
1857 auto it = std::lower_bound(begin, end, ts,
1858 [](const SqlValue& value, int64_t expected_ts) {
1859 return value.AsLong() < expected_ts;
1860 });
1861 for (; it < end; ++it) {
1862 if ((*it).AsLong() != ts)
1863 break;
1864 if (counter_table.track_id()[it.row()].value == track_id.value)
1865 return static_cast<uint64_t>(counter_table.value()[it.row()]);
1866 }
1867 return 0;
1868 }
1869
1870 const TraceStorage* storage_;
1871 ArgsBuilder args_builder_;
1872 TraceFormatWriter writer_;
1873
1874 // If a pid/tid is duplicated between two or more different processes/threads
1875 // (pid/tid reuse), we export the subsequent occurrences with different
1876 // pids/tids that is visibly different from regular pids/tids - counting down
1877 // from uint32_t max.
1878 uint32_t next_exported_pid_or_tid_for_duplicates_ =
1879 std::numeric_limits<uint32_t>::max();
1880
1881 std::map<UniquePid, uint32_t> upids_to_exported_pids_;
1882 std::map<uint32_t, UniquePid> exported_pids_to_upids_;
1883 std::map<UniqueTid, std::pair<uint32_t, uint32_t>>
1884 utids_to_exported_pids_and_tids_;
1885 std::map<std::pair<uint32_t, uint32_t>, UniqueTid>
1886 exported_pids_and_tids_to_utids_;
1887 };
1888
1889 #endif // PERFETTO_BUILDFLAG(PERFETTO_TP_JSON)
1890
1891 } // namespace
1892
1893 OutputWriter::OutputWriter() = default;
1894 OutputWriter::~OutputWriter() = default;
1895
ExportJson(const TraceStorage * storage,OutputWriter * output,ArgumentFilterPredicate argument_filter,MetadataFilterPredicate metadata_filter,LabelFilterPredicate label_filter)1896 util::Status ExportJson(const TraceStorage* storage,
1897 OutputWriter* output,
1898 ArgumentFilterPredicate argument_filter,
1899 MetadataFilterPredicate metadata_filter,
1900 LabelFilterPredicate label_filter) {
1901 #if PERFETTO_BUILDFLAG(PERFETTO_TP_JSON)
1902 JsonExporter exporter(storage, output, std::move(argument_filter),
1903 std::move(metadata_filter), std::move(label_filter));
1904 return exporter.Export();
1905 #else
1906 perfetto::base::ignore_result(storage);
1907 perfetto::base::ignore_result(output);
1908 perfetto::base::ignore_result(argument_filter);
1909 perfetto::base::ignore_result(metadata_filter);
1910 perfetto::base::ignore_result(label_filter);
1911 return util::ErrStatus("JSON support is not compiled in this build");
1912 #endif // PERFETTO_BUILDFLAG(PERFETTO_TP_JSON)
1913 }
1914
ExportJson(TraceProcessorStorage * tp,OutputWriter * output,ArgumentFilterPredicate argument_filter,MetadataFilterPredicate metadata_filter,LabelFilterPredicate label_filter)1915 util::Status ExportJson(TraceProcessorStorage* tp,
1916 OutputWriter* output,
1917 ArgumentFilterPredicate argument_filter,
1918 MetadataFilterPredicate metadata_filter,
1919 LabelFilterPredicate label_filter) {
1920 const TraceStorage* storage = reinterpret_cast<TraceProcessorStorageImpl*>(tp)
1921 ->context()
1922 ->storage.get();
1923 return ExportJson(storage, output, argument_filter, metadata_filter,
1924 label_filter);
1925 }
1926
ExportJson(const TraceStorage * storage,FILE * output)1927 util::Status ExportJson(const TraceStorage* storage, FILE* output) {
1928 FileWriter writer(output);
1929 return ExportJson(storage, &writer, nullptr, nullptr, nullptr);
1930 }
1931
1932 } // namespace json
1933 } // namespace trace_processor
1934 } // namespace perfetto
1935