• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_HELPERS_ASYMM_H
25 #define ARM_COMPUTE_HELPERS_ASYMM_H
26 
27 #include "helpers.h"
28 
29 /** Convert the given vector with round to nearest even rounding mode
30  *
31  * @param[in] x    The target to be converted
32  * @param[in] type The target type
33  *
34  * @return The converted vector
35  */
36 #define CONVERT_DOWN_RTE_STR(x, type) (convert_##type##_rte((x)))
37 #define CONVERT_DOWN_RTE(x, type) CONVERT_DOWN_RTE_STR(x, type)
38 
39 /** Quantize a floating-point scalar value to 8-bit asymmetric
40  *
41  * @param[in] input  Input value to quantize
42  * @param[in] offset Quantization offset
43  * @param[in] scale  Quantization scale
44  *
45  * @return quantized value
46  */
quantize_qasymm8(float input,float offset,float scale)47 inline uchar quantize_qasymm8(float input, float offset, float scale)
48 {
49     float out_f32 = input / scale + offset;
50     uchar res_u8  = CONVERT_SAT(CONVERT_DOWN_RTE(out_f32, int), uchar);
51     return res_u8;
52 }
53 
54 /** Dequantize a scalar value from 8-bit asymmetric to floating-point
55  *
56  * @param[in] input  Input value to quantize
57  * @param[in] offset Quantization offset
58  * @param[in] scale  Quantization scale
59  *
60  * @return quantized value
61  */
dequantize_qasymm8(uchar input,float offset,float scale)62 inline float dequantize_qasymm8(uchar input, float offset, float scale)
63 {
64     return ((float)input - offset) * scale;
65 }
66 
67 /** Dequantize a scalar value from signed 8-bit asymmetric to floating-point
68  *
69  * @param[in] input  Input value to quantize
70  * @param[in] offset Quantization offset
71  * @param[in] scale  Quantization scale
72  *
73  * @return quantized value
74  */
dequantize_qasymm8_signed(char input,float offset,float scale)75 inline float dequantize_qasymm8_signed(char input, float offset, float scale)
76 {
77     return ((float)input - offset) * scale;
78 }
79 
80 /** Quantize a vector of values from floating-point
81  *
82  * @param[in] type Output data type.
83  * @param[in] size Size of vector.
84  *
85  * @return quantized values
86  */
87 #define QUANTIZE_IMPL(type, size)                                                                                       \
88     inline VEC_DATA_TYPE(type, size) quantize_##type##size(VEC_DATA_TYPE(float, size) input, float offset, float scale) \
89     {                                                                                                                   \
90         VEC_DATA_TYPE(float, size)                                                                                      \
91         out_f32 = input / (VEC_DATA_TYPE(float, size))(scale) + (VEC_DATA_TYPE(float, size))(offset);                   \
92         VEC_DATA_TYPE(type, size)                                                                                       \
93         res = CONVERT_SAT(CONVERT_DOWN_RTE(out_f32, VEC_DATA_TYPE(int, size)), VEC_DATA_TYPE(type, size));              \
94         return res;                                                                                                     \
95     }
96 
97 /** Dequantize a vector of values to floating-point
98  *
99  * @param[in] type Input data type.
100  * @param[in] size Size of vector.
101  *
102  * @return dequantized values in floating point
103  */
104 #define DEQUANTIZE_IMPL(type, size)                                                                                       \
105     inline VEC_DATA_TYPE(float, size) dequantize_##type##size(VEC_DATA_TYPE(type, size) input, float offset, float scale) \
106     {                                                                                                                     \
107         return (CONVERT(input, VEC_DATA_TYPE(float, size)) - offset) * scale;                                             \
108     }
109 
110 /** Correctly-rounded-to-nearest division by a power-of-two.
111  *
112  * @param[in] size Size of vector.
113  *
114  * @return Correctly-rounded-to-nearest division by a power-of-two.
115  */
116 #define ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(size)                                                                                        \
117     inline VEC_DATA_TYPE(int, size) asymm_rounding_divide_by_POW2_##size(VEC_DATA_TYPE(int, size) x, VEC_DATA_TYPE(int, size) exponent) \
118     {                                                                                                                                   \
119         const VEC_DATA_TYPE(int, size)                                                                                                  \
120         zero = (VEC_DATA_TYPE(int, size))0;                                                                                         \
121         const VEC_DATA_TYPE(int, size)                                                                                                  \
122         one = (VEC_DATA_TYPE(int, size))1;                                                                                          \
123         VEC_DATA_TYPE(int, size)                                                                                                        \
124         mask = (one << exponent) - one;                                                                                                 \
125         VEC_DATA_TYPE(int, size)                                                                                                        \
126         threshold = (mask >> 1) + select(zero, one, (SELECT_VEC_DATA_TYPE(int, size))(x < 0));                                          \
127         return (x >> exponent) + select(zero, one, (SELECT_VEC_DATA_TYPE(int, size))((x & mask) > threshold));                          \
128     }
129 
130 /** Product of two numbers, interpreting them as fixed-point values in the interval [-1, 1),
131  * rounding to the nearest value, and saturating -1 * -1 to the maximum value.
132  *
133  * @param[in] size Size of vector.
134  *
135  * @return Product of two fixed-point numbers.
136  */
137 #define ASYMM_MULT_IMPL(size)                                                                                \
138     inline VEC_DATA_TYPE(int, size) asymm_mult##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \
139     {                                                                                                        \
140         VEC_DATA_TYPE(int, size)                                                                             \
141         overflow = a == b && a == INT_MIN;                                                                   \
142         VEC_DATA_TYPE(long, size)                                                                            \
143         a_64 = convert_long##size(a);                                                                        \
144         VEC_DATA_TYPE(long, size)                                                                            \
145         b_64 = convert_long##size(b);                                                                        \
146         VEC_DATA_TYPE(long, size)                                                                            \
147         ab_64 = a_64 * b_64;                                                                                 \
148         /* Revert COMPMID-907 */                                                                             \
149         VEC_DATA_TYPE(long, size)                                                                            \
150         mask1 = 1 << 30;                                                                                     \
151         VEC_DATA_TYPE(long, size)                                                                            \
152         mask2 = 1 - (1 << 30);                                                                               \
153         VEC_DATA_TYPE(long, size)                                                                            \
154         is_positive_or_zero = ab_64 >= 0;                                                                    \
155         VEC_DATA_TYPE(long, size)                                                                            \
156         nudge = select(mask2, mask1, (SELECT_VEC_DATA_TYPE(long, size))(is_positive_or_zero));               \
157         VEC_DATA_TYPE(long, size)                                                                            \
158         mask = 1ll << 31;                                                                                    \
159         VEC_DATA_TYPE(int, size)                                                                             \
160         ab_x2_high32 = convert_int##size((ab_64 + nudge) / mask);                                            \
161         return select(ab_x2_high32, INT_MAX, (SELECT_VEC_DATA_TYPE(int, size))(overflow));                   \
162     }
163 
164 /** Calculates \f$ exp(x) \f$ for x in [-1/4, 0).
165  *
166  * @param[in] size Size of vector.
167  *
168  * @return Result in fixed-point format Q0.
169  */
170 #define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(size)                                                    \
171     inline VEC_DATA_TYPE(int, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(VEC_DATA_TYPE(int, size) a) \
172     {                                                                                                                               \
173         const VEC_DATA_TYPE(int, size) constant_term     = 1895147668;                                                              \
174         const VEC_DATA_TYPE(int, size) constant_1_over_3 = 715827883;                                                               \
175         const int k_fractional_bits = 31;                                                                                           \
176         VEC_DATA_TYPE(int, size)                                                                                                    \
177         x = a + (1 << (k_fractional_bits - 3));                                                                                     \
178         VEC_DATA_TYPE(int, size)                                                                                                    \
179         x2 = ASYMM_MULT(x, x, size);                                                                                                \
180         VEC_DATA_TYPE(int, size)                                                                                                    \
181         x3 = ASYMM_MULT(x2, x, size);                                                                                               \
182         VEC_DATA_TYPE(int, size)                                                                                                    \
183         x4 = ASYMM_MULT(x2, x2, size);                                                                                              \
184         VEC_DATA_TYPE(int, size)                                                                                                    \
185         x4_over_4 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4, 2, size);                                                                     \
186         VEC_DATA_TYPE(int, size)                                                                                                    \
187         x4_over_24_plus_x3_over_6_plus_x2 = ASYMM_MULT((x4_over_4 + x3), constant_1_over_3, size) + x2;                             \
188         VEC_DATA_TYPE(int, size)                                                                                                    \
189         x4_over_24_plus_x3_over_6_plus_x2_over_2 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4_over_24_plus_x3_over_6_plus_x2, 1, size);       \
190         return constant_term + ASYMM_MULT(constant_term, x + x4_over_24_plus_x3_over_6_plus_x2_over_2, size);                       \
191     }
192 
193 /** Each bit of the result is set to the corresponding bit of either then_val or
194  * else_val depending on whether the corresponding bit of if_mask is set.
195  * Equivalent to the VBSL instruction in Arm® Neon™.
196  *
197  * @param[in] size Size of vector.
198  *
199  * @returns Result contaning bits from @p then_val or from @p else_val depending on corresponding bit in @p if_mask is set or not.
200  */
201 #define ASYMM_SELECT_USING_MASK_IMPL(size)                                                                                                                                \
202     inline VEC_DATA_TYPE(int, size) asymm_select_using_mask##size(VEC_DATA_TYPE(int, size) if_mask, VEC_DATA_TYPE(int, size) then_val, VEC_DATA_TYPE(int, size) else_val) \
203     {                                                                                                                                                                     \
204         return (if_mask & then_val) ^ (~if_mask & else_val);                                                                                                              \
205     }
206 
207 /** For each element of input vector, the corresponding bits of the result item are set
208  * if the input item is zero.
209  *
210  * @param[in] size Size of vector.
211  *
212  * @returns Output vector with bits set when corresponding bit in @p a is zero.
213  */
214 #define ASYMM_MASK_IF_ZERO_IMPL(size)                                                    \
215     inline VEC_DATA_TYPE(int, size) asymm_mask_if_zero##size(VEC_DATA_TYPE(int, size) a) \
216     {                                                                                    \
217         const VEC_DATA_TYPE(int, size) all_zeros = 0;                                    \
218         const VEC_DATA_TYPE(int, size) all_ones  = ~0;                                   \
219         return select(all_zeros, all_ones, (SELECT_VEC_DATA_TYPE(int, size))(a == 0));   \
220     }
221 
222 /** For each element of input vector, the corresponding bits of the result item are set
223  * if the input item is non-zero.
224  *
225  * @param[in] size Size of vector.
226  *
227  * @returns Output vector with bits set when corresponding bit in @p a is non zero.
228  */
229 #define ASYMM_MASK_IF_NON_ZERO_IMPL(size)                                                    \
230     inline VEC_DATA_TYPE(int, size) asymm_mask_if_non_zero##size(VEC_DATA_TYPE(int, size) a) \
231     {                                                                                        \
232         const VEC_DATA_TYPE(int, size) all_zeros = 0;                                        \
233         const VEC_DATA_TYPE(int, size) all_ones  = ~0;                                       \
234         return select(all_zeros, all_ones, (SELECT_VEC_DATA_TYPE(int, size))(a != 0));       \
235     }
236 
237 #define EXP_BARREL_SHIFTER_IMPL(size)                                                                                                                                                                         \
238     inline VEC_DATA_TYPE(int, size) exp_barrel_shifter##size(VEC_DATA_TYPE(int, size) result, int exponent, int fp_multiplier, int k_integer_bits, int k_fractional_bits, VEC_DATA_TYPE(int, size) remainder) \
239     {                                                                                                                                                                                                         \
240         if(k_integer_bits > exponent)                                                                                                                                                                         \
241         {                                                                                                                                                                                                     \
242             const int k_shift_amount = k_integer_bits > exponent ? k_fractional_bits + exponent : 0;                                                                                                          \
243             return ASYMM_SELECT_USING_MASK(                                                                                                                                                                   \
244                     ASYMM_MASK_IF_NON_ZERO(remainder & (1 << k_shift_amount), size),                                                                                                                              \
245                     ASYMM_MULT(result, fp_multiplier, size), result, size);                                                                                                                                       \
246         }                                                                                                                                                                                                     \
247         \
248         return result;                                                                                                                                                                                        \
249     }
250 
251 /** Calculates \f$ exp(x) \f$ for x < 0.
252  *
253  * @param[in] size Size of vector.
254  *
255  * @return Result in fixed-point format Q0.
256  */
257 #define ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(size)                                                                               \
258     inline VEC_DATA_TYPE(int, size) asymm_exp_on_negative_values##size(VEC_DATA_TYPE(int, size) a, int k_integer_bits)        \
259     {                                                                                                                         \
260         const int k_fractional_bits = 31 - k_integer_bits;                                                                    \
261         VEC_DATA_TYPE(int, size)                                                                                              \
262         k_one_quarter = 1 << (k_fractional_bits - 2);                                                                         \
263         VEC_DATA_TYPE(int, size)                                                                                              \
264         mask = k_one_quarter - 1;                                                                                             \
265         VEC_DATA_TYPE(int, size)                                                                                              \
266         a_mod_quarter_minus_one_quarter = (a & mask) - k_one_quarter;                                                         \
267         VEC_DATA_TYPE(int, size)                                                                                              \
268         a_mod_quarter_minus_one_quarter_scaled = a_mod_quarter_minus_one_quarter << k_integer_bits;                           \
269         VEC_DATA_TYPE(int, size)                                                                                              \
270         result = ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a_mod_quarter_minus_one_quarter_scaled, size); \
271         VEC_DATA_TYPE(int, size)                                                                                              \
272         remainder = a_mod_quarter_minus_one_quarter - a;                                                                      \
273         \
274         result = EXP_BARREL_SHIFTER(result, -2, 1672461947, k_integer_bits, k_fractional_bits, remainder, size);              \
275         result = EXP_BARREL_SHIFTER(result, -1, 1302514674, k_integer_bits, k_fractional_bits, remainder, size);              \
276         result = EXP_BARREL_SHIFTER(result, +0, 790015084, k_integer_bits, k_fractional_bits, remainder, size);               \
277         result = EXP_BARREL_SHIFTER(result, +1, 290630308, k_integer_bits, k_fractional_bits, remainder, size);               \
278         result = EXP_BARREL_SHIFTER(result, +2, 39332535, k_integer_bits, k_fractional_bits, remainder, size);                \
279         result = EXP_BARREL_SHIFTER(result, +3, 720401, k_integer_bits, k_fractional_bits, remainder, size);                  \
280         result = EXP_BARREL_SHIFTER(result, +4, 242, k_integer_bits, k_fractional_bits, remainder, size);                     \
281         \
282         if(k_integer_bits > 5)                                                                                                \
283         {                                                                                                                     \
284             const VEC_DATA_TYPE(int, size) clamp = -(1 << (k_fractional_bits + 5));                                           \
285             result = ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_NON_ZERO(a < clamp, size), 0, result, size);                       \
286         }                                                                                                                     \
287         \
288         const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX;                                                                      \
289         return ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_ZERO(a, size), Q0_one, result, size);                                    \
290     }
291 
292 /** Calculates the product of a integer value by a power of two, with either a positive exponent
293  * (equivalent to an arithmetic left shift, saturating) or a negative exponent
294  * (equivalent to an arithmetic right shift, rounding to nearest).
295  *
296  * @param[in] size Size of vector.
297  *
298  * @return Arithmetic left or right shift.
299  */
300 #define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(size)                                                                  \
301     inline VEC_DATA_TYPE(int, size) asymm_saturating_rounding_mult_by_pow2##size(VEC_DATA_TYPE(int, size) x, int exponent) \
302     {                                                                                                                      \
303         if(exponent < 0)                                                                                                   \
304         {                                                                                                                  \
305             return ASYMM_ROUNDING_DIVIDE_BY_POW2(x, -exponent, size);                                                      \
306         }                                                                                                                  \
307         \
308         const VEC_DATA_TYPE(int, size) min = INT_MIN;                                                                      \
309         const VEC_DATA_TYPE(int, size) max = INT_MAX;                                                                      \
310         int threshold = ((1 << (31 - exponent)) - 1);                                                                      \
311         VEC_DATA_TYPE(int, size)                                                                                           \
312         positive_mask = ASYMM_MASK_IF_NON_ZERO(x > threshold, size);                                                       \
313         VEC_DATA_TYPE(int, size)                                                                                           \
314         negative_mask = ASYMM_MASK_IF_NON_ZERO(x < -threshold, size);                                                      \
315         VEC_DATA_TYPE(int, size)                                                                                           \
316         result = x << exponent;                                                                                            \
317         result = ASYMM_SELECT_USING_MASK(positive_mask, max, result, size);                                                \
318         result = ASYMM_SELECT_USING_MASK(negative_mask, min, result, size);                                                \
319         return result;                                                                                                     \
320     }
321 
322 /** Calculates (a+b)/2, rounded to the nearest integer.
323  * Equivalent to VRHADD in the Arm Arm® Neon™ instruction set.
324  *
325  * @param[in] size Size of vector.
326  *
327  * @return (a+b)/2, rounded to the nearest integer.
328  */
329 #define ASYMM_ROUNDING_HALF_SUM_IMPL(size)                                                                                \
330     inline VEC_DATA_TYPE(int, size) asymm_rounding_half_sum##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \
331     {                                                                                                                     \
332         VEC_DATA_TYPE(long, size)                                                                                         \
333         a64 = convert_long##size(a);                                                                                      \
334         VEC_DATA_TYPE(long, size)                                                                                         \
335         b64 = convert_long##size(b);                                                                                      \
336         VEC_DATA_TYPE(long, size)                                                                                         \
337         sum = a64 + b64;                                                                                                  \
338         const VEC_DATA_TYPE(long, size) one       = 1;                                                                    \
339         const VEC_DATA_TYPE(long, size) minus_one = -1;                                                                   \
340         VEC_DATA_TYPE(long, size)                                                                                         \
341         sign = select(minus_one, one, (SELECT_VEC_DATA_TYPE(long, size))(sum >= 0));                                      \
342         return convert_int##size((sum + sign) / 2);                                                                       \
343     }
344 
345 /** Calculates \f$ 1 / (1 + x) \f$ for x in (0, 1).
346  *
347  * @param[in] size Size of vector.
348  *
349  * @return Result in fixed-point format Q0.
350  */
351 #define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(size)                                                    \
352     inline VEC_DATA_TYPE(int, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(VEC_DATA_TYPE(int, size) a) \
353     {                                                                                                        \
354         const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX;                                                     \
355         const VEC_DATA_TYPE(int, size) Q2_one = 1 << (31 - 2);                                               \
356         VEC_DATA_TYPE(int, size)                                                                             \
357         half_denominator = ASYMM_ROUNDING_HALF_SUM(a, Q0_one, size);                                         \
358         const VEC_DATA_TYPE(int, size) Q2_48_over_17     = 1515870810;                                       \
359         const VEC_DATA_TYPE(int, size) Q2_neg_32_over_17 = -1010580540;                                      \
360         VEC_DATA_TYPE(int, size)                                                                             \
361         x = Q2_48_over_17 + ASYMM_MULT(half_denominator, Q2_neg_32_over_17, size);                           \
362         for(int i = 0; i < 3; i++)                                                                           \
363         {                                                                                                    \
364             VEC_DATA_TYPE(int, size)                                                                         \
365             half_denominator_times_x = ASYMM_MULT(half_denominator, x, size);                                \
366             VEC_DATA_TYPE(int, size)                                                                         \
367             one_minus_half_denominator_times_x = Q2_one - half_denominator_times_x;                          \
368             VEC_DATA_TYPE(int, size)                                                                         \
369             tmp = ASYMM_MULT(x, one_minus_half_denominator_times_x, size);                                   \
370             x   = x + ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(tmp, 2, size);                                  \
371         }                                                                                                    \
372         return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, 1, size);                                           \
373     }
374 
375 /** Considering the integer value as fixed-point, change the number of integer bits and update value accordingly.
376  *
377  * @param[in] size Size of vector.
378  *
379  * @return Rescaled value.
380  */
381 #define ASYMM_RESCALE_IMPL(size)                                                                                                    \
382     inline VEC_DATA_TYPE(int, size) asymm_rescale##size(VEC_DATA_TYPE(int, size) value, int src_integer_bits, int dst_integer_bits) \
383     {                                                                                                                               \
384         int exponent = src_integer_bits - dst_integer_bits;                                                                         \
385         return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(value, exponent, size);                                                       \
386     }
387 
388 #define QUANTIZE_STR(input, offset, scale, type, size) quantize_##type##size(input, offset, scale)
389 #define QUANTIZE(input, offset, scale, type, size) QUANTIZE_STR(input, offset, scale, type, size)
390 #define DEQUANTIZE_STR(input, offset, scale, type, size) dequantize_##type##size(input, offset, scale)
391 #define DEQUANTIZE(input, offset, scale, type, size) DEQUANTIZE_STR(input, offset, scale, type, size)
392 
393 #define ASYMM_ROUNDING_DIVIDE_BY_POW2_STR(x, exponent, size) asymm_rounding_divide_by_POW2_##size(x, exponent)
394 #define ASYMM_ROUNDING_DIVIDE_BY_POW2(x, exponent, size) ASYMM_ROUNDING_DIVIDE_BY_POW2_STR(x, exponent, size)
395 #define ASYMM_MULT_STR(a, b, size) asymm_mult##size(a, b)
396 #define ASYMM_MULT(a, b, size) ASYMM_MULT_STR(a, b, size)
397 #define ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(x, quantized_multiplier, left_shift, size) \
398     ASYMM_MULT(x *((VEC_DATA_TYPE(int, size))(1) << (-left_shift)), quantized_multiplier, size)
399 #define ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(x, quantized_multiplier, right_shift, size) \
400     ASYMM_ROUNDING_DIVIDE_BY_POW2(ASYMM_MULT(x, quantized_multiplier, size), right_shift, size)
401 #define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(a)
402 #define ASYMM_SELECT_USING_MASK(if_mask, then_val, else_val, size) asymm_select_using_mask##size(if_mask, then_val, else_val)
403 #define ASYMM_MASK_IF_ZERO(a, size) asymm_mask_if_zero##size(a)
404 #define ASYMM_MASK_IF_NON_ZERO(a, size) asymm_mask_if_non_zero##size(a)
405 #define EXP_BARREL_SHIFTER(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder, size) exp_barrel_shifter##size(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder)
406 #define ASYMM_EXP_ON_NEGATIVE_VALUES_STR(a, k_integer_bits, size) asymm_exp_on_negative_values##size(a, k_integer_bits)
407 #define ASYMM_EXP_ON_NEGATIVE_VALUES(a, k_integer_bits, size) ASYMM_EXP_ON_NEGATIVE_VALUES_STR(a, k_integer_bits, size)
408 #define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_STR(a, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(a)
409 #define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1(a, size) ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_STR(a, size)
410 #define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, exponent, size) asymm_saturating_rounding_mult_by_pow2##size(x, exponent)
411 #define ASYMM_ROUNDING_HALF_SUM(a, b, size) asymm_rounding_half_sum##size(a, b)
412 #define ASYMM_RESCALE_STR(value, src_integer_bits, dst_integer_bits, size) asymm_rescale##size(value, src_integer_bits, dst_integer_bits)
413 #define ASYMM_RESCALE(value, src_integer_bits, dst_integer_bits, size) ASYMM_RESCALE_STR(value, src_integer_bits, dst_integer_bits, size)
414 
415 #define MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(size)                                                                             \
416     inline VEC_DATA_TYPE(int, size) multiply_by_quantized_multiplier##size(VEC_DATA_TYPE(int, size) input, int qmul, int shift) \
417     {                                                                                                                           \
418         const int left_shift  = shift > 0 ? shift : 0;                                                                          \
419         const int right_shift = shift > 0 ? 0 : -shift;                                                                         \
420         return ASYMM_ROUNDING_DIVIDE_BY_POW2(ASYMM_MULT(input * (1 << left_shift), qmul, size), right_shift, size);             \
421     }
422 #define MULTIPLY_BY_QUANTIZED_MULTIPLIER(input, qmul, shift, size) multiply_by_quantized_multiplier##size(input, qmul, shift)
423 
424 QUANTIZE_IMPL(uchar, 1)
425 QUANTIZE_IMPL(char, 1)
426 QUANTIZE_IMPL(uint, 1)
427 QUANTIZE_IMPL(int, 1)
428 QUANTIZE_IMPL(uchar, 2)
429 QUANTIZE_IMPL(char, 2)
430 QUANTIZE_IMPL(uint, 2)
431 QUANTIZE_IMPL(int, 2)
432 QUANTIZE_IMPL(uchar, 3)
433 QUANTIZE_IMPL(char, 3)
434 QUANTIZE_IMPL(uint, 3)
435 QUANTIZE_IMPL(int, 3)
436 QUANTIZE_IMPL(uchar, 4)
437 QUANTIZE_IMPL(ushort, 4)
438 QUANTIZE_IMPL(short, 4)
439 QUANTIZE_IMPL(int, 4)
440 QUANTIZE_IMPL(uchar, 8)
441 QUANTIZE_IMPL(char, 8)
442 QUANTIZE_IMPL(uint, 8)
443 QUANTIZE_IMPL(int, 8)
444 QUANTIZE_IMPL(uchar, 16)
445 QUANTIZE_IMPL(char, 16)
446 QUANTIZE_IMPL(ushort, 16)
447 QUANTIZE_IMPL(short, 16)
448 QUANTIZE_IMPL(uint, 16)
449 QUANTIZE_IMPL(int, 16)
450 
451 DEQUANTIZE_IMPL(uchar, 1)
452 DEQUANTIZE_IMPL(char, 1)
453 DEQUANTIZE_IMPL(uint, 1)
454 DEQUANTIZE_IMPL(int, 1)
455 DEQUANTIZE_IMPL(uchar, 2)
456 DEQUANTIZE_IMPL(char, 2)
457 DEQUANTIZE_IMPL(uint, 2)
458 DEQUANTIZE_IMPL(int, 2)
459 DEQUANTIZE_IMPL(uchar, 3)
460 DEQUANTIZE_IMPL(char, 3)
461 DEQUANTIZE_IMPL(uint, 3)
462 DEQUANTIZE_IMPL(int, 3)
463 DEQUANTIZE_IMPL(uchar, 4)
464 DEQUANTIZE_IMPL(ushort, 4)
465 DEQUANTIZE_IMPL(short, 4)
466 DEQUANTIZE_IMPL(int, 4)
467 DEQUANTIZE_IMPL(uchar, 8)
468 DEQUANTIZE_IMPL(char, 8)
469 DEQUANTIZE_IMPL(uint, 8)
470 DEQUANTIZE_IMPL(int, 8)
471 DEQUANTIZE_IMPL(uchar, 16)
472 DEQUANTIZE_IMPL(char, 16)
473 DEQUANTIZE_IMPL(ushort, 16)
474 DEQUANTIZE_IMPL(short, 16)
475 DEQUANTIZE_IMPL(uint, 16)
476 DEQUANTIZE_IMPL(int, 16)
477 
478 ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(1)
479 ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(2)
480 ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(3)
481 ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(4)
482 ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(8)
483 ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(16)
484 
485 ASYMM_MULT_IMPL(1)
486 ASYMM_MULT_IMPL(2)
487 ASYMM_MULT_IMPL(3)
488 ASYMM_MULT_IMPL(4)
489 ASYMM_MULT_IMPL(8)
490 ASYMM_MULT_IMPL(16)
491 
492 ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(1)
493 ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(2)
494 ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(3)
495 ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(4)
496 ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(8)
497 ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(16)
498 
499 ASYMM_SELECT_USING_MASK_IMPL(1)
500 ASYMM_SELECT_USING_MASK_IMPL(2)
501 ASYMM_SELECT_USING_MASK_IMPL(3)
502 ASYMM_SELECT_USING_MASK_IMPL(4)
503 ASYMM_SELECT_USING_MASK_IMPL(8)
504 ASYMM_SELECT_USING_MASK_IMPL(16)
505 
506 ASYMM_MASK_IF_ZERO_IMPL(1)
507 ASYMM_MASK_IF_ZERO_IMPL(2)
508 ASYMM_MASK_IF_ZERO_IMPL(3)
509 ASYMM_MASK_IF_ZERO_IMPL(4)
510 ASYMM_MASK_IF_ZERO_IMPL(8)
511 ASYMM_MASK_IF_ZERO_IMPL(16)
512 
513 ASYMM_MASK_IF_NON_ZERO_IMPL(1)
514 ASYMM_MASK_IF_NON_ZERO_IMPL(2)
515 ASYMM_MASK_IF_NON_ZERO_IMPL(3)
516 ASYMM_MASK_IF_NON_ZERO_IMPL(4)
517 ASYMM_MASK_IF_NON_ZERO_IMPL(8)
518 ASYMM_MASK_IF_NON_ZERO_IMPL(16)
519 
520 EXP_BARREL_SHIFTER_IMPL(1)
521 EXP_BARREL_SHIFTER_IMPL(2)
522 EXP_BARREL_SHIFTER_IMPL(3)
523 EXP_BARREL_SHIFTER_IMPL(4)
524 EXP_BARREL_SHIFTER_IMPL(8)
525 EXP_BARREL_SHIFTER_IMPL(16)
526 
527 ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(1)
528 ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(2)
529 ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(3)
530 ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(4)
531 ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(8)
532 ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(16)
533 
534 ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(1)
535 ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(2)
536 ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(3)
537 ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(4)
538 ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(8)
539 ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(16)
540 
541 ASYMM_ROUNDING_HALF_SUM_IMPL(1)
542 ASYMM_ROUNDING_HALF_SUM_IMPL(2)
543 ASYMM_ROUNDING_HALF_SUM_IMPL(3)
544 ASYMM_ROUNDING_HALF_SUM_IMPL(4)
545 ASYMM_ROUNDING_HALF_SUM_IMPL(8)
546 ASYMM_ROUNDING_HALF_SUM_IMPL(16)
547 
548 ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(1)
549 ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(2)
550 ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(3)
551 ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(4)
552 ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(8)
553 ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(16)
554 
555 ASYMM_RESCALE_IMPL(1)
556 ASYMM_RESCALE_IMPL(2)
557 ASYMM_RESCALE_IMPL(3)
558 ASYMM_RESCALE_IMPL(4)
559 ASYMM_RESCALE_IMPL(8)
560 ASYMM_RESCALE_IMPL(16)
561 
562 MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(1)
563 MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(2)
564 MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(3)
565 MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(4)
566 MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(8)
567 MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(16)
568 
569 #endif // ARM_COMPUTE_HELPERS_ASYMM_H
570