• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*!
2 This crate provides a library for parsing, compiling, and executing regular
3 expressions. Its syntax is similar to Perl-style regular expressions, but lacks
4 a few features like look around and backreferences. In exchange, all searches
5 execute in linear time with respect to the size of the regular expression and
6 search text.
7 
8 This crate's documentation provides some simple examples, describes
9 [Unicode support](#unicode) and exhaustively lists the
10 [supported syntax](#syntax).
11 
12 For more specific details on the API for regular expressions, please see the
13 documentation for the [`Regex`](struct.Regex.html) type.
14 
15 # Usage
16 
17 This crate is [on crates.io](https://crates.io/crates/regex) and can be
18 used by adding `regex` to your dependencies in your project's `Cargo.toml`.
19 
20 ```toml
21 [dependencies]
22 regex = "1"
23 ```
24 
25 # Example: find a date
26 
27 General use of regular expressions in this package involves compiling an
28 expression and then using it to search, split or replace text. For example,
29 to confirm that some text resembles a date:
30 
31 ```rust
32 use regex::Regex;
33 let re = Regex::new(r"^\d{4}-\d{2}-\d{2}$").unwrap();
34 assert!(re.is_match("2014-01-01"));
35 ```
36 
37 Notice the use of the `^` and `$` anchors. In this crate, every expression
38 is executed with an implicit `.*?` at the beginning and end, which allows
39 it to match anywhere in the text. Anchors can be used to ensure that the
40 full text matches an expression.
41 
42 This example also demonstrates the utility of
43 [raw strings](https://doc.rust-lang.org/stable/reference/tokens.html#raw-string-literals)
44 in Rust, which
45 are just like regular strings except they are prefixed with an `r` and do
46 not process any escape sequences. For example, `"\\d"` is the same
47 expression as `r"\d"`.
48 
49 # Example: Avoid compiling the same regex in a loop
50 
51 It is an anti-pattern to compile the same regular expression in a loop
52 since compilation is typically expensive. (It takes anywhere from a few
53 microseconds to a few **milliseconds** depending on the size of the
54 regex.) Not only is compilation itself expensive, but this also prevents
55 optimizations that reuse allocations internally to the matching engines.
56 
57 In Rust, it can sometimes be a pain to pass regular expressions around if
58 they're used from inside a helper function. Instead, we recommend using the
59 [`lazy_static`](https://crates.io/crates/lazy_static) crate to ensure that
60 regular expressions are compiled exactly once.
61 
62 For example:
63 
64 ```rust
65 use lazy_static::lazy_static;
66 use regex::Regex;
67 
68 fn some_helper_function(text: &str) -> bool {
69     lazy_static! {
70         static ref RE: Regex = Regex::new("...").unwrap();
71     }
72     RE.is_match(text)
73 }
74 
75 fn main() {}
76 ```
77 
78 Specifically, in this example, the regex will be compiled when it is used for
79 the first time. On subsequent uses, it will reuse the previous compilation.
80 
81 # Example: iterating over capture groups
82 
83 This crate provides convenient iterators for matching an expression
84 repeatedly against a search string to find successive non-overlapping
85 matches. For example, to find all dates in a string and be able to access
86 them by their component pieces:
87 
88 ```rust
89 # use regex::Regex;
90 # fn main() {
91 let re = Regex::new(r"(\d{4})-(\d{2})-(\d{2})").unwrap();
92 let text = "2012-03-14, 2013-01-01 and 2014-07-05";
93 for cap in re.captures_iter(text) {
94     println!("Month: {} Day: {} Year: {}", &cap[2], &cap[3], &cap[1]);
95 }
96 // Output:
97 // Month: 03 Day: 14 Year: 2012
98 // Month: 01 Day: 01 Year: 2013
99 // Month: 07 Day: 05 Year: 2014
100 # }
101 ```
102 
103 Notice that the year is in the capture group indexed at `1`. This is
104 because the *entire match* is stored in the capture group at index `0`.
105 
106 # Example: replacement with named capture groups
107 
108 Building on the previous example, perhaps we'd like to rearrange the date
109 formats. This can be done with text replacement. But to make the code
110 clearer, we can *name*  our capture groups and use those names as variables
111 in our replacement text:
112 
113 ```rust
114 # use regex::Regex;
115 # fn main() {
116 let re = Regex::new(r"(?P<y>\d{4})-(?P<m>\d{2})-(?P<d>\d{2})").unwrap();
117 let before = "2012-03-14, 2013-01-01 and 2014-07-05";
118 let after = re.replace_all(before, "$m/$d/$y");
119 assert_eq!(after, "03/14/2012, 01/01/2013 and 07/05/2014");
120 # }
121 ```
122 
123 The `replace` methods are actually polymorphic in the replacement, which
124 provides more flexibility than is seen here. (See the documentation for
125 `Regex::replace` for more details.)
126 
127 Note that if your regex gets complicated, you can use the `x` flag to
128 enable insignificant whitespace mode, which also lets you write comments:
129 
130 ```rust
131 # use regex::Regex;
132 # fn main() {
133 let re = Regex::new(r"(?x)
134   (?P<y>\d{4}) # the year
135   -
136   (?P<m>\d{2}) # the month
137   -
138   (?P<d>\d{2}) # the day
139 ").unwrap();
140 let before = "2012-03-14, 2013-01-01 and 2014-07-05";
141 let after = re.replace_all(before, "$m/$d/$y");
142 assert_eq!(after, "03/14/2012, 01/01/2013 and 07/05/2014");
143 # }
144 ```
145 
146 If you wish to match against whitespace in this mode, you can still use `\s`,
147 `\n`, `\t`, etc. For escaping a single space character, you can escape it
148 directly with `\ `, use its hex character code `\x20` or temporarily disable
149 the `x` flag, e.g., `(?-x: )`.
150 
151 # Example: match multiple regular expressions simultaneously
152 
153 This demonstrates how to use a `RegexSet` to match multiple (possibly
154 overlapping) regular expressions in a single scan of the search text:
155 
156 ```rust
157 use regex::RegexSet;
158 
159 let set = RegexSet::new(&[
160     r"\w+",
161     r"\d+",
162     r"\pL+",
163     r"foo",
164     r"bar",
165     r"barfoo",
166     r"foobar",
167 ]).unwrap();
168 
169 // Iterate over and collect all of the matches.
170 let matches: Vec<_> = set.matches("foobar").into_iter().collect();
171 assert_eq!(matches, vec![0, 2, 3, 4, 6]);
172 
173 // You can also test whether a particular regex matched:
174 let matches = set.matches("foobar");
175 assert!(!matches.matched(5));
176 assert!(matches.matched(6));
177 ```
178 
179 # Pay for what you use
180 
181 With respect to searching text with a regular expression, there are three
182 questions that can be asked:
183 
184 1. Does the text match this expression?
185 2. If so, where does it match?
186 3. Where did the capturing groups match?
187 
188 Generally speaking, this crate could provide a function to answer only #3,
189 which would subsume #1 and #2 automatically. However, it can be significantly
190 more expensive to compute the location of capturing group matches, so it's best
191 not to do it if you don't need to.
192 
193 Therefore, only use what you need. For example, don't use `find` if you
194 only need to test if an expression matches a string. (Use `is_match`
195 instead.)
196 
197 # Unicode
198 
199 This implementation executes regular expressions **only** on valid UTF-8
200 while exposing match locations as byte indices into the search string. (To
201 relax this restriction, use the [`bytes`](bytes/index.html) sub-module.)
202 
203 Only simple case folding is supported. Namely, when matching
204 case-insensitively, the characters are first mapped using the "simple" case
205 folding rules defined by Unicode.
206 
207 Regular expressions themselves are **only** interpreted as a sequence of
208 Unicode scalar values. This means you can use Unicode characters directly
209 in your expression:
210 
211 ```rust
212 # use regex::Regex;
213 # fn main() {
214 let re = Regex::new(r"(?i)Δ+").unwrap();
215 let mat = re.find("ΔδΔ").unwrap();
216 assert_eq!((mat.start(), mat.end()), (0, 6));
217 # }
218 ```
219 
220 Most features of the regular expressions in this crate are Unicode aware. Here
221 are some examples:
222 
223 * `.` will match any valid UTF-8 encoded Unicode scalar value except for `\n`.
224   (To also match `\n`, enable the `s` flag, e.g., `(?s:.)`.)
225 * `\w`, `\d` and `\s` are Unicode aware. For example, `\s` will match all forms
226   of whitespace categorized by Unicode.
227 * `\b` matches a Unicode word boundary.
228 * Negated character classes like `[^a]` match all Unicode scalar values except
229   for `a`.
230 * `^` and `$` are **not** Unicode aware in multi-line mode. Namely, they only
231   recognize `\n` and not any of the other forms of line terminators defined
232   by Unicode.
233 
234 Unicode general categories, scripts, script extensions, ages and a smattering
235 of boolean properties are available as character classes. For example, you can
236 match a sequence of numerals, Greek or Cherokee letters:
237 
238 ```rust
239 # use regex::Regex;
240 # fn main() {
241 let re = Regex::new(r"[\pN\p{Greek}\p{Cherokee}]+").unwrap();
242 let mat = re.find("abcΔᎠβⅠᏴγδⅡxyz").unwrap();
243 assert_eq!((mat.start(), mat.end()), (3, 23));
244 # }
245 ```
246 
247 For a more detailed breakdown of Unicode support with respect to
248 [UTS#18](https://unicode.org/reports/tr18/),
249 please see the
250 [UNICODE](https://github.com/rust-lang/regex/blob/master/UNICODE.md)
251 document in the root of the regex repository.
252 
253 # Opt out of Unicode support
254 
255 The `bytes` sub-module provides a `Regex` type that can be used to match
256 on `&[u8]`. By default, text is interpreted as UTF-8 just like it is with
257 the main `Regex` type. However, this behavior can be disabled by turning
258 off the `u` flag, even if doing so could result in matching invalid UTF-8.
259 For example, when the `u` flag is disabled, `.` will match any byte instead
260 of any Unicode scalar value.
261 
262 Disabling the `u` flag is also possible with the standard `&str`-based `Regex`
263 type, but it is only allowed where the UTF-8 invariant is maintained. For
264 example, `(?-u:\w)` is an ASCII-only `\w` character class and is legal in an
265 `&str`-based `Regex`, but `(?-u:\xFF)` will attempt to match the raw byte
266 `\xFF`, which is invalid UTF-8 and therefore is illegal in `&str`-based
267 regexes.
268 
269 Finally, since Unicode support requires bundling large Unicode data
270 tables, this crate exposes knobs to disable the compilation of those
271 data tables, which can be useful for shrinking binary size and reducing
272 compilation times. For details on how to do that, see the section on [crate
273 features](#crate-features).
274 
275 # Syntax
276 
277 The syntax supported in this crate is documented below.
278 
279 Note that the regular expression parser and abstract syntax are exposed in
280 a separate crate, [`regex-syntax`](https://docs.rs/regex-syntax).
281 
282 ## Matching one character
283 
284 <pre class="rust">
285 .             any character except new line (includes new line with s flag)
286 \d            digit (\p{Nd})
287 \D            not digit
288 \pN           One-letter name Unicode character class
289 \p{Greek}     Unicode character class (general category or script)
290 \PN           Negated one-letter name Unicode character class
291 \P{Greek}     negated Unicode character class (general category or script)
292 </pre>
293 
294 ### Character classes
295 
296 <pre class="rust">
297 [xyz]         A character class matching either x, y or z (union).
298 [^xyz]        A character class matching any character except x, y and z.
299 [a-z]         A character class matching any character in range a-z.
300 [[:alpha:]]   ASCII character class ([A-Za-z])
301 [[:^alpha:]]  Negated ASCII character class ([^A-Za-z])
302 [x[^xyz]]     Nested/grouping character class (matching any character except y and z)
303 [a-y&&xyz]    Intersection (matching x or y)
304 [0-9&&[^4]]   Subtraction using intersection and negation (matching 0-9 except 4)
305 [0-9--4]      Direct subtraction (matching 0-9 except 4)
306 [a-g~~b-h]    Symmetric difference (matching `a` and `h` only)
307 [\[\]]        Escaping in character classes (matching [ or ])
308 </pre>
309 
310 Any named character class may appear inside a bracketed `[...]` character
311 class. For example, `[\p{Greek}[:digit:]]` matches any Greek or ASCII
312 digit. `[\p{Greek}&&\pL]` matches Greek letters.
313 
314 Precedence in character classes, from most binding to least:
315 
316 1. Ranges: `a-cd` == `[a-c]d`
317 2. Union: `ab&&bc` == `[ab]&&[bc]`
318 3. Intersection: `^a-z&&b` == `^[a-z&&b]`
319 4. Negation
320 
321 ## Composites
322 
323 <pre class="rust">
324 xy    concatenation (x followed by y)
325 x|y   alternation (x or y, prefer x)
326 </pre>
327 
328 ## Repetitions
329 
330 <pre class="rust">
331 x*        zero or more of x (greedy)
332 x+        one or more of x (greedy)
333 x?        zero or one of x (greedy)
334 x*?       zero or more of x (ungreedy/lazy)
335 x+?       one or more of x (ungreedy/lazy)
336 x??       zero or one of x (ungreedy/lazy)
337 x{n,m}    at least n x and at most m x (greedy)
338 x{n,}     at least n x (greedy)
339 x{n}      exactly n x
340 x{n,m}?   at least n x and at most m x (ungreedy/lazy)
341 x{n,}?    at least n x (ungreedy/lazy)
342 x{n}?     exactly n x
343 </pre>
344 
345 ## Empty matches
346 
347 <pre class="rust">
348 ^     the beginning of text (or start-of-line with multi-line mode)
349 $     the end of text (or end-of-line with multi-line mode)
350 \A    only the beginning of text (even with multi-line mode enabled)
351 \z    only the end of text (even with multi-line mode enabled)
352 \b    a Unicode word boundary (\w on one side and \W, \A, or \z on other)
353 \B    not a Unicode word boundary
354 </pre>
355 
356 The empty regex is valid and matches the empty string. For example, the empty
357 regex matches `abc` at positions `0`, `1`, `2` and `3`.
358 
359 ## Grouping and flags
360 
361 <pre class="rust">
362 (exp)          numbered capture group (indexed by opening parenthesis)
363 (?P&lt;name&gt;exp)  named (also numbered) capture group (allowed chars: [_0-9a-zA-Z.\[\]])
364 (?:exp)        non-capturing group
365 (?flags)       set flags within current group
366 (?flags:exp)   set flags for exp (non-capturing)
367 </pre>
368 
369 Flags are each a single character. For example, `(?x)` sets the flag `x`
370 and `(?-x)` clears the flag `x`. Multiple flags can be set or cleared at
371 the same time: `(?xy)` sets both the `x` and `y` flags and `(?x-y)` sets
372 the `x` flag and clears the `y` flag.
373 
374 All flags are by default disabled unless stated otherwise. They are:
375 
376 <pre class="rust">
377 i     case-insensitive: letters match both upper and lower case
378 m     multi-line mode: ^ and $ match begin/end of line
379 s     allow . to match \n
380 U     swap the meaning of x* and x*?
381 u     Unicode support (enabled by default)
382 x     ignore whitespace and allow line comments (starting with `#`)
383 </pre>
384 
385 Flags can be toggled within a pattern. Here's an example that matches
386 case-insensitively for the first part but case-sensitively for the second part:
387 
388 ```rust
389 # use regex::Regex;
390 # fn main() {
391 let re = Regex::new(r"(?i)a+(?-i)b+").unwrap();
392 let cap = re.captures("AaAaAbbBBBb").unwrap();
393 assert_eq!(&cap[0], "AaAaAbb");
394 # }
395 ```
396 
397 Notice that the `a+` matches either `a` or `A`, but the `b+` only matches
398 `b`.
399 
400 Multi-line mode means `^` and `$` no longer match just at the beginning/end of
401 the input, but at the beginning/end of lines:
402 
403 ```
404 # use regex::Regex;
405 let re = Regex::new(r"(?m)^line \d+").unwrap();
406 let m = re.find("line one\nline 2\n").unwrap();
407 assert_eq!(m.as_str(), "line 2");
408 ```
409 
410 Note that `^` matches after new lines, even at the end of input:
411 
412 ```
413 # use regex::Regex;
414 let re = Regex::new(r"(?m)^").unwrap();
415 let m = re.find_iter("test\n").last().unwrap();
416 assert_eq!((m.start(), m.end()), (5, 5));
417 ```
418 
419 Here is an example that uses an ASCII word boundary instead of a Unicode
420 word boundary:
421 
422 ```rust
423 # use regex::Regex;
424 # fn main() {
425 let re = Regex::new(r"(?-u:\b).+(?-u:\b)").unwrap();
426 let cap = re.captures("$$abc$$").unwrap();
427 assert_eq!(&cap[0], "abc");
428 # }
429 ```
430 
431 ## Escape sequences
432 
433 <pre class="rust">
434 \*          literal *, works for any punctuation character: \.+*?()|[]{}^$
435 \a          bell (\x07)
436 \f          form feed (\x0C)
437 \t          horizontal tab
438 \n          new line
439 \r          carriage return
440 \v          vertical tab (\x0B)
441 \123        octal character code (up to three digits) (when enabled)
442 \x7F        hex character code (exactly two digits)
443 \x{10FFFF}  any hex character code corresponding to a Unicode code point
444 \u007F      hex character code (exactly four digits)
445 \u{7F}      any hex character code corresponding to a Unicode code point
446 \U0000007F  hex character code (exactly eight digits)
447 \U{7F}      any hex character code corresponding to a Unicode code point
448 </pre>
449 
450 ## Perl character classes (Unicode friendly)
451 
452 These classes are based on the definitions provided in
453 [UTS#18](https://www.unicode.org/reports/tr18/#Compatibility_Properties):
454 
455 <pre class="rust">
456 \d     digit (\p{Nd})
457 \D     not digit
458 \s     whitespace (\p{White_Space})
459 \S     not whitespace
460 \w     word character (\p{Alphabetic} + \p{M} + \d + \p{Pc} + \p{Join_Control})
461 \W     not word character
462 </pre>
463 
464 ## ASCII character classes
465 
466 <pre class="rust">
467 [[:alnum:]]    alphanumeric ([0-9A-Za-z])
468 [[:alpha:]]    alphabetic ([A-Za-z])
469 [[:ascii:]]    ASCII ([\x00-\x7F])
470 [[:blank:]]    blank ([\t ])
471 [[:cntrl:]]    control ([\x00-\x1F\x7F])
472 [[:digit:]]    digits ([0-9])
473 [[:graph:]]    graphical ([!-~])
474 [[:lower:]]    lower case ([a-z])
475 [[:print:]]    printable ([ -~])
476 [[:punct:]]    punctuation ([!-/:-@\[-`{-~])
477 [[:space:]]    whitespace ([\t\n\v\f\r ])
478 [[:upper:]]    upper case ([A-Z])
479 [[:word:]]     word characters ([0-9A-Za-z_])
480 [[:xdigit:]]   hex digit ([0-9A-Fa-f])
481 </pre>
482 
483 # Crate features
484 
485 By default, this crate tries pretty hard to make regex matching both as fast
486 as possible and as correct as it can be, within reason. This means that there
487 is a lot of code dedicated to performance, the handling of Unicode data and the
488 Unicode data itself. Overall, this leads to more dependencies, larger binaries
489 and longer compile times.  This trade off may not be appropriate in all cases,
490 and indeed, even when all Unicode and performance features are disabled, one
491 is still left with a perfectly serviceable regex engine that will work well
492 in many cases.
493 
494 This crate exposes a number of features for controlling that trade off. Some
495 of these features are strictly performance oriented, such that disabling them
496 won't result in a loss of functionality, but may result in worse performance.
497 Other features, such as the ones controlling the presence or absence of Unicode
498 data, can result in a loss of functionality. For example, if one disables the
499 `unicode-case` feature (described below), then compiling the regex `(?i)a`
500 will fail since Unicode case insensitivity is enabled by default. Instead,
501 callers must use `(?i-u)a` instead to disable Unicode case folding. Stated
502 differently, enabling or disabling any of the features below can only add or
503 subtract from the total set of valid regular expressions. Enabling or disabling
504 a feature will never modify the match semantics of a regular expression.
505 
506 All features below are enabled by default.
507 
508 ### Ecosystem features
509 
510 * **std** -
511   When enabled, this will cause `regex` to use the standard library. Currently,
512   disabling this feature will always result in a compilation error. It is
513   intended to add `alloc`-only support to regex in the future.
514 
515 ### Performance features
516 
517 * **perf** -
518   Enables all performance related features. This feature is enabled by default
519   and will always cover all features that improve performance, even if more
520   are added in the future.
521 * **perf-dfa** -
522   Enables the use of a lazy DFA for matching. The lazy DFA is used to compile
523   portions of a regex to a very fast DFA on an as-needed basis. This can
524   result in substantial speedups, usually by an order of magnitude on large
525   haystacks. The lazy DFA does not bring in any new dependencies, but it can
526   make compile times longer.
527 * **perf-inline** -
528   Enables the use of aggressive inlining inside match routines. This reduces
529   the overhead of each match. The aggressive inlining, however, increases
530   compile times and binary size.
531 * **perf-literal** -
532   Enables the use of literal optimizations for speeding up matches. In some
533   cases, literal optimizations can result in speedups of _several_ orders of
534   magnitude. Disabling this drops the `aho-corasick` and `memchr` dependencies.
535 * **perf-cache** -
536   This feature used to enable a faster internal cache at the cost of using
537   additional dependencies, but this is no longer an option. A fast internal
538   cache is now used unconditionally with no additional dependencies. This may
539   change in the future.
540 
541 ### Unicode features
542 
543 * **unicode** -
544   Enables all Unicode features. This feature is enabled by default, and will
545   always cover all Unicode features, even if more are added in the future.
546 * **unicode-age** -
547   Provide the data for the
548   [Unicode `Age` property](https://www.unicode.org/reports/tr44/tr44-24.html#Character_Age).
549   This makes it possible to use classes like `\p{Age:6.0}` to refer to all
550   codepoints first introduced in Unicode 6.0
551 * **unicode-bool** -
552   Provide the data for numerous Unicode boolean properties. The full list
553   is not included here, but contains properties like `Alphabetic`, `Emoji`,
554   `Lowercase`, `Math`, `Uppercase` and `White_Space`.
555 * **unicode-case** -
556   Provide the data for case insensitive matching using
557   [Unicode's "simple loose matches" specification](https://www.unicode.org/reports/tr18/#Simple_Loose_Matches).
558 * **unicode-gencat** -
559   Provide the data for
560   [Unicode general categories](https://www.unicode.org/reports/tr44/tr44-24.html#General_Category_Values).
561   This includes, but is not limited to, `Decimal_Number`, `Letter`,
562   `Math_Symbol`, `Number` and `Punctuation`.
563 * **unicode-perl** -
564   Provide the data for supporting the Unicode-aware Perl character classes,
565   corresponding to `\w`, `\s` and `\d`. This is also necessary for using
566   Unicode-aware word boundary assertions. Note that if this feature is
567   disabled, the `\s` and `\d` character classes are still available if the
568   `unicode-bool` and `unicode-gencat` features are enabled, respectively.
569 * **unicode-script** -
570   Provide the data for
571   [Unicode scripts and script extensions](https://www.unicode.org/reports/tr24/).
572   This includes, but is not limited to, `Arabic`, `Cyrillic`, `Hebrew`,
573   `Latin` and `Thai`.
574 * **unicode-segment** -
575   Provide the data necessary to provide the properties used to implement the
576   [Unicode text segmentation algorithms](https://www.unicode.org/reports/tr29/).
577   This enables using classes like `\p{gcb=Extend}`, `\p{wb=Katakana}` and
578   `\p{sb=ATerm}`.
579 
580 
581 # Untrusted input
582 
583 This crate can handle both untrusted regular expressions and untrusted
584 search text.
585 
586 Untrusted regular expressions are handled by capping the size of a compiled
587 regular expression.
588 (See [`RegexBuilder::size_limit`](struct.RegexBuilder.html#method.size_limit).)
589 Without this, it would be trivial for an attacker to exhaust your system's
590 memory with expressions like `a{100}{100}{100}`.
591 
592 Untrusted search text is allowed because the matching engine(s) in this
593 crate have time complexity `O(mn)` (with `m ~ regex` and `n ~ search
594 text`), which means there's no way to cause exponential blow-up like with
595 some other regular expression engines. (We pay for this by disallowing
596 features like arbitrary look-ahead and backreferences.)
597 
598 When a DFA is used, pathological cases with exponential state blow-up are
599 avoided by constructing the DFA lazily or in an "online" manner. Therefore,
600 at most one new state can be created for each byte of input. This satisfies
601 our time complexity guarantees, but can lead to memory growth
602 proportional to the size of the input. As a stopgap, the DFA is only
603 allowed to store a fixed number of states. When the limit is reached, its
604 states are wiped and continues on, possibly duplicating previous work. If
605 the limit is reached too frequently, it gives up and hands control off to
606 another matching engine with fixed memory requirements.
607 (The DFA size limit can also be tweaked. See
608 [`RegexBuilder::dfa_size_limit`](struct.RegexBuilder.html#method.dfa_size_limit).)
609 */
610 
611 #![deny(missing_docs)]
612 #![cfg_attr(feature = "pattern", feature(pattern))]
613 #![warn(missing_debug_implementations)]
614 
615 #[cfg(not(feature = "std"))]
616 compile_error!("`std` feature is currently required to build this crate");
617 
618 // To check README's example
619 // TODO: Re-enable this once the MSRV is 1.43 or greater.
620 // See: https://github.com/rust-lang/regex/issues/684
621 // See: https://github.com/rust-lang/regex/issues/685
622 // #[cfg(doctest)]
623 // doc_comment::doctest!("../README.md");
624 
625 #[cfg(feature = "std")]
626 pub use crate::error::Error;
627 #[cfg(feature = "std")]
628 pub use crate::re_builder::set_unicode::*;
629 #[cfg(feature = "std")]
630 pub use crate::re_builder::unicode::*;
631 #[cfg(feature = "std")]
632 pub use crate::re_set::unicode::*;
633 #[cfg(feature = "std")]
634 pub use crate::re_unicode::{
635     escape, CaptureLocations, CaptureMatches, CaptureNames, Captures,
636     Locations, Match, Matches, NoExpand, Regex, Replacer, ReplacerRef, Split,
637     SplitN, SubCaptureMatches,
638 };
639 
640 /**
641 Match regular expressions on arbitrary bytes.
642 
643 This module provides a nearly identical API to the one found in the
644 top-level of this crate. There are two important differences:
645 
646 1. Matching is done on `&[u8]` instead of `&str`. Additionally, `Vec<u8>`
647 is used where `String` would have been used.
648 2. Unicode support can be disabled even when disabling it would result in
649 matching invalid UTF-8 bytes.
650 
651 # Example: match null terminated string
652 
653 This shows how to find all null-terminated strings in a slice of bytes:
654 
655 ```rust
656 # use regex::bytes::Regex;
657 let re = Regex::new(r"(?-u)(?P<cstr>[^\x00]+)\x00").unwrap();
658 let text = b"foo\x00bar\x00baz\x00";
659 
660 // Extract all of the strings without the null terminator from each match.
661 // The unwrap is OK here since a match requires the `cstr` capture to match.
662 let cstrs: Vec<&[u8]> =
663     re.captures_iter(text)
664       .map(|c| c.name("cstr").unwrap().as_bytes())
665       .collect();
666 assert_eq!(vec![&b"foo"[..], &b"bar"[..], &b"baz"[..]], cstrs);
667 ```
668 
669 # Example: selectively enable Unicode support
670 
671 This shows how to match an arbitrary byte pattern followed by a UTF-8 encoded
672 string (e.g., to extract a title from a Matroska file):
673 
674 ```rust
675 # use std::str;
676 # use regex::bytes::Regex;
677 let re = Regex::new(
678     r"(?-u)\x7b\xa9(?:[\x80-\xfe]|[\x40-\xff].)(?u:(.*))"
679 ).unwrap();
680 let text = b"\x12\xd0\x3b\x5f\x7b\xa9\x85\xe2\x98\x83\x80\x98\x54\x76\x68\x65";
681 let caps = re.captures(text).unwrap();
682 
683 // Notice that despite the `.*` at the end, it will only match valid UTF-8
684 // because Unicode mode was enabled with the `u` flag. Without the `u` flag,
685 // the `.*` would match the rest of the bytes.
686 let mat = caps.get(1).unwrap();
687 assert_eq!((7, 10), (mat.start(), mat.end()));
688 
689 // If there was a match, Unicode mode guarantees that `title` is valid UTF-8.
690 let title = str::from_utf8(&caps[1]).unwrap();
691 assert_eq!("☃", title);
692 ```
693 
694 In general, if the Unicode flag is enabled in a capture group and that capture
695 is part of the overall match, then the capture is *guaranteed* to be valid
696 UTF-8.
697 
698 # Syntax
699 
700 The supported syntax is pretty much the same as the syntax for Unicode
701 regular expressions with a few changes that make sense for matching arbitrary
702 bytes:
703 
704 1. The `u` flag can be disabled even when disabling it might cause the regex to
705 match invalid UTF-8. When the `u` flag is disabled, the regex is said to be in
706 "ASCII compatible" mode.
707 2. In ASCII compatible mode, neither Unicode scalar values nor Unicode
708 character classes are allowed.
709 3. In ASCII compatible mode, Perl character classes (`\w`, `\d` and `\s`)
710 revert to their typical ASCII definition. `\w` maps to `[[:word:]]`, `\d` maps
711 to `[[:digit:]]` and `\s` maps to `[[:space:]]`.
712 4. In ASCII compatible mode, word boundaries use the ASCII compatible `\w` to
713 determine whether a byte is a word byte or not.
714 5. Hexadecimal notation can be used to specify arbitrary bytes instead of
715 Unicode codepoints. For example, in ASCII compatible mode, `\xFF` matches the
716 literal byte `\xFF`, while in Unicode mode, `\xFF` is a Unicode codepoint that
717 matches its UTF-8 encoding of `\xC3\xBF`. Similarly for octal notation when
718 enabled.
719 6. In ASCII compatible mode, `.` matches any *byte* except for `\n`. When the
720 `s` flag is additionally enabled, `.` matches any byte.
721 
722 # Performance
723 
724 In general, one should expect performance on `&[u8]` to be roughly similar to
725 performance on `&str`.
726 */
727 #[cfg(feature = "std")]
728 pub mod bytes {
729     pub use crate::re_builder::bytes::*;
730     pub use crate::re_builder::set_bytes::*;
731     pub use crate::re_bytes::*;
732     pub use crate::re_set::bytes::*;
733 }
734 
735 mod backtrack;
736 mod compile;
737 #[cfg(feature = "perf-dfa")]
738 mod dfa;
739 mod error;
740 mod exec;
741 mod expand;
742 mod find_byte;
743 mod input;
744 mod literal;
745 #[cfg(feature = "pattern")]
746 mod pattern;
747 mod pikevm;
748 mod pool;
749 mod prog;
750 mod re_builder;
751 mod re_bytes;
752 mod re_set;
753 mod re_trait;
754 mod re_unicode;
755 mod sparse;
756 mod utf8;
757 
758 /// The `internal` module exists to support suspicious activity, such as
759 /// testing different matching engines and supporting the `regex-debug` CLI
760 /// utility.
761 #[doc(hidden)]
762 #[cfg(feature = "std")]
763 pub mod internal {
764     pub use crate::compile::Compiler;
765     pub use crate::exec::{Exec, ExecBuilder};
766     pub use crate::input::{Char, CharInput, Input, InputAt};
767     pub use crate::literal::LiteralSearcher;
768     pub use crate::prog::{EmptyLook, Inst, InstRanges, Program};
769 }
770