1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <assert.h>
18 #include <dirent.h>
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <inttypes.h>
22 #include <linux/ioctl.h>
23 #include <memory.h>
24 #include <stdint.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <sys/capability.h>
29 #include <sys/epoll.h>
30 #include <sys/inotify.h>
31 #include <sys/ioctl.h>
32 #include <sys/stat.h>
33 #include <sys/sysmacros.h>
34 #include <unistd.h>
35
36 #define LOG_TAG "EventHub"
37
38 // #define LOG_NDEBUG 0
39 #include <android-base/file.h>
40 #include <android-base/stringprintf.h>
41 #include <android-base/strings.h>
42 #include <cutils/properties.h>
43 #include <ftl/enum.h>
44 #include <input/KeyCharacterMap.h>
45 #include <input/KeyLayoutMap.h>
46 #include <input/PrintTools.h>
47 #include <input/VirtualKeyMap.h>
48 #include <openssl/sha.h>
49 #include <statslog.h>
50 #include <utils/Errors.h>
51 #include <utils/Log.h>
52 #include <utils/Timers.h>
53
54 #include <filesystem>
55 #include <optional>
56 #include <regex>
57 #include <utility>
58
59 #include "EventHub.h"
60
61 #include "KeyCodeClassifications.h"
62
63 #define INDENT " "
64 #define INDENT2 " "
65 #define INDENT3 " "
66
67 using android::base::StringPrintf;
68
69 namespace android {
70
71 using namespace ftl::flag_operators;
72
73 static const char* DEVICE_INPUT_PATH = "/dev/input";
74 // v4l2 devices go directly into /dev
75 static const char* DEVICE_PATH = "/dev";
76
77 static constexpr size_t OBFUSCATED_LENGTH = 8;
78
79 static constexpr int32_t FF_STRONG_MAGNITUDE_CHANNEL_IDX = 0;
80 static constexpr int32_t FF_WEAK_MAGNITUDE_CHANNEL_IDX = 1;
81
82 static constexpr size_t EVENT_BUFFER_SIZE = 256;
83
84 // Mapping for input battery class node IDs lookup.
85 // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
86 static const std::unordered_map<std::string, InputBatteryClass> BATTERY_CLASSES =
87 {{"capacity", InputBatteryClass::CAPACITY},
88 {"capacity_level", InputBatteryClass::CAPACITY_LEVEL},
89 {"status", InputBatteryClass::STATUS}};
90
91 // Mapping for input battery class node names lookup.
92 // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
93 static const std::unordered_map<InputBatteryClass, std::string> BATTERY_NODES =
94 {{InputBatteryClass::CAPACITY, "capacity"},
95 {InputBatteryClass::CAPACITY_LEVEL, "capacity_level"},
96 {InputBatteryClass::STATUS, "status"}};
97
98 // must be kept in sync with definitions in kernel /drivers/power/supply/power_supply_sysfs.c
99 static const std::unordered_map<std::string, int32_t> BATTERY_STATUS =
100 {{"Unknown", BATTERY_STATUS_UNKNOWN},
101 {"Charging", BATTERY_STATUS_CHARGING},
102 {"Discharging", BATTERY_STATUS_DISCHARGING},
103 {"Not charging", BATTERY_STATUS_NOT_CHARGING},
104 {"Full", BATTERY_STATUS_FULL}};
105
106 // Mapping taken from
107 // https://gitlab.freedesktop.org/upower/upower/-/blob/master/src/linux/up-device-supply.c#L484
108 static const std::unordered_map<std::string, int32_t> BATTERY_LEVEL = {{"Critical", 5},
109 {"Low", 10},
110 {"Normal", 55},
111 {"High", 70},
112 {"Full", 100},
113 {"Unknown", 50}};
114
115 // Mapping for input led class node names lookup.
116 // https://www.kernel.org/doc/html/latest/leds/leds-class.html
117 static const std::unordered_map<std::string, InputLightClass> LIGHT_CLASSES =
118 {{"red", InputLightClass::RED},
119 {"green", InputLightClass::GREEN},
120 {"blue", InputLightClass::BLUE},
121 {"global", InputLightClass::GLOBAL},
122 {"brightness", InputLightClass::BRIGHTNESS},
123 {"multi_index", InputLightClass::MULTI_INDEX},
124 {"multi_intensity", InputLightClass::MULTI_INTENSITY},
125 {"max_brightness", InputLightClass::MAX_BRIGHTNESS},
126 {"kbd_backlight", InputLightClass::KEYBOARD_BACKLIGHT}};
127
128 // Mapping for input multicolor led class node names.
129 // https://www.kernel.org/doc/html/latest/leds/leds-class-multicolor.html
130 static const std::unordered_map<InputLightClass, std::string> LIGHT_NODES =
131 {{InputLightClass::BRIGHTNESS, "brightness"},
132 {InputLightClass::MULTI_INDEX, "multi_index"},
133 {InputLightClass::MULTI_INTENSITY, "multi_intensity"}};
134
135 // Mapping for light color name and the light color
136 const std::unordered_map<std::string, LightColor> LIGHT_COLORS = {{"red", LightColor::RED},
137 {"green", LightColor::GREEN},
138 {"blue", LightColor::BLUE}};
139
140 // Mapping for country code to Layout info.
141 // See bCountryCode in 6.2.1 of https://usb.org/sites/default/files/hid1_11.pdf.
142 const std::unordered_map<std::int32_t, RawLayoutInfo> LAYOUT_INFOS =
143 {{0, RawLayoutInfo{.languageTag = "", .layoutType = ""}}, // NOT_SUPPORTED
144 {1, RawLayoutInfo{.languageTag = "ar-Arab", .layoutType = ""}}, // ARABIC
145 {2, RawLayoutInfo{.languageTag = "fr-BE", .layoutType = ""}}, // BELGIAN
146 {3, RawLayoutInfo{.languageTag = "fr-CA", .layoutType = ""}}, // CANADIAN_BILINGUAL
147 {4, RawLayoutInfo{.languageTag = "fr-CA", .layoutType = ""}}, // CANADIAN_FRENCH
148 {5, RawLayoutInfo{.languageTag = "cs", .layoutType = ""}}, // CZECH_REPUBLIC
149 {6, RawLayoutInfo{.languageTag = "da", .layoutType = ""}}, // DANISH
150 {7, RawLayoutInfo{.languageTag = "fi", .layoutType = ""}}, // FINNISH
151 {8, RawLayoutInfo{.languageTag = "fr-FR", .layoutType = ""}}, // FRENCH
152 {9, RawLayoutInfo{.languageTag = "de", .layoutType = ""}}, // GERMAN
153 {10, RawLayoutInfo{.languageTag = "el", .layoutType = ""}}, // GREEK
154 {11, RawLayoutInfo{.languageTag = "iw", .layoutType = ""}}, // HEBREW
155 {12, RawLayoutInfo{.languageTag = "hu", .layoutType = ""}}, // HUNGARY
156 {13, RawLayoutInfo{.languageTag = "en", .layoutType = "extended"}}, // INTERNATIONAL (ISO)
157 {14, RawLayoutInfo{.languageTag = "it", .layoutType = ""}}, // ITALIAN
158 {15, RawLayoutInfo{.languageTag = "ja", .layoutType = ""}}, // JAPAN
159 {16, RawLayoutInfo{.languageTag = "ko", .layoutType = ""}}, // KOREAN
160 {17, RawLayoutInfo{.languageTag = "es-419", .layoutType = ""}}, // LATIN_AMERICA
161 {18, RawLayoutInfo{.languageTag = "nl", .layoutType = ""}}, // DUTCH
162 {19, RawLayoutInfo{.languageTag = "nb", .layoutType = ""}}, // NORWEGIAN
163 {20, RawLayoutInfo{.languageTag = "fa", .layoutType = ""}}, // PERSIAN
164 {21, RawLayoutInfo{.languageTag = "pl", .layoutType = ""}}, // POLAND
165 {22, RawLayoutInfo{.languageTag = "pt", .layoutType = ""}}, // PORTUGUESE
166 {23, RawLayoutInfo{.languageTag = "ru", .layoutType = ""}}, // RUSSIA
167 {24, RawLayoutInfo{.languageTag = "sk", .layoutType = ""}}, // SLOVAKIA
168 {25, RawLayoutInfo{.languageTag = "es-ES", .layoutType = ""}}, // SPANISH
169 {26, RawLayoutInfo{.languageTag = "sv", .layoutType = ""}}, // SWEDISH
170 {27, RawLayoutInfo{.languageTag = "fr-CH", .layoutType = ""}}, // SWISS_FRENCH
171 {28, RawLayoutInfo{.languageTag = "de-CH", .layoutType = ""}}, // SWISS_GERMAN
172 {29, RawLayoutInfo{.languageTag = "de-CH", .layoutType = ""}}, // SWITZERLAND
173 {30, RawLayoutInfo{.languageTag = "zh-TW", .layoutType = ""}}, // TAIWAN
174 {31, RawLayoutInfo{.languageTag = "tr", .layoutType = "turkish_q"}}, // TURKISH_Q
175 {32, RawLayoutInfo{.languageTag = "en-GB", .layoutType = ""}}, // UK
176 {33, RawLayoutInfo{.languageTag = "en-US", .layoutType = ""}}, // US
177 {34, RawLayoutInfo{.languageTag = "", .layoutType = ""}}, // YUGOSLAVIA
178 {35, RawLayoutInfo{.languageTag = "tr", .layoutType = "turkish_f"}}}; // TURKISH_F
179
sha1(const std::string & in)180 static std::string sha1(const std::string& in) {
181 SHA_CTX ctx;
182 SHA1_Init(&ctx);
183 SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.c_str()), in.size());
184 u_char digest[SHA_DIGEST_LENGTH];
185 SHA1_Final(digest, &ctx);
186
187 std::string out;
188 for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
189 out += StringPrintf("%02x", digest[i]);
190 }
191 return out;
192 }
193
194 /**
195 * Return true if name matches "v4l-touch*"
196 */
isV4lTouchNode(std::string name)197 static bool isV4lTouchNode(std::string name) {
198 return name.find("v4l-touch") != std::string::npos;
199 }
200
201 /**
202 * Returns true if V4L devices should be scanned.
203 *
204 * The system property ro.input.video_enabled can be used to control whether
205 * EventHub scans and opens V4L devices. As V4L does not support multiple
206 * clients, EventHub effectively blocks access to these devices when it opens
207 * them.
208 *
209 * Setting this to "false" would prevent any video devices from being discovered and
210 * associated with input devices.
211 *
212 * This property can be used as follows:
213 * 1. To turn off features that are dependent on video device presence.
214 * 2. During testing and development, to allow other clients to read video devices
215 * directly from /dev.
216 */
isV4lScanningEnabled()217 static bool isV4lScanningEnabled() {
218 return property_get_bool("ro.input.video_enabled", /*default_value=*/true);
219 }
220
processEventTimestamp(const struct input_event & event)221 static nsecs_t processEventTimestamp(const struct input_event& event) {
222 // Use the time specified in the event instead of the current time
223 // so that downstream code can get more accurate estimates of
224 // event dispatch latency from the time the event is enqueued onto
225 // the evdev client buffer.
226 //
227 // The event's timestamp fortuitously uses the same monotonic clock
228 // time base as the rest of Android. The kernel event device driver
229 // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
230 // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
231 // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
232 // system call that also queries ktime_get_ts().
233
234 const nsecs_t inputEventTime = seconds_to_nanoseconds(event.input_event_sec) +
235 microseconds_to_nanoseconds(event.input_event_usec);
236 return inputEventTime;
237 }
238
239 /**
240 * Returns the sysfs root path of the input device.
241 */
getSysfsRootPath(const char * devicePath)242 static std::optional<std::filesystem::path> getSysfsRootPath(const char* devicePath) {
243 std::error_code errorCode;
244
245 // Stat the device path to get the major and minor number of the character file
246 struct stat statbuf;
247 if (stat(devicePath, &statbuf) == -1) {
248 ALOGE("Could not stat device %s due to error: %s.", devicePath, std::strerror(errno));
249 return std::nullopt;
250 }
251
252 unsigned int major_num = major(statbuf.st_rdev);
253 unsigned int minor_num = minor(statbuf.st_rdev);
254
255 // Realpath "/sys/dev/char/{major}:{minor}" to get the sysfs path to the input event
256 auto sysfsPath = std::filesystem::path("/sys/dev/char/");
257 sysfsPath /= std::to_string(major_num) + ":" + std::to_string(minor_num);
258 sysfsPath = std::filesystem::canonical(sysfsPath, errorCode);
259
260 // Make sure nothing went wrong in call to canonical()
261 if (errorCode) {
262 ALOGW("Could not run filesystem::canonical() due to error %d : %s.", errorCode.value(),
263 errorCode.message().c_str());
264 return std::nullopt;
265 }
266
267 // Continue to go up a directory until we reach a directory named "input"
268 while (sysfsPath != "/" && sysfsPath.filename() != "input") {
269 sysfsPath = sysfsPath.parent_path();
270 }
271
272 // Then go up one more and you will be at the sysfs root of the device
273 sysfsPath = sysfsPath.parent_path();
274
275 // Make sure we didn't reach root path and that directory actually exists
276 if (sysfsPath == "/" || !std::filesystem::exists(sysfsPath, errorCode)) {
277 if (errorCode) {
278 ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
279 errorCode.message().c_str());
280 }
281
282 // Not found
283 return std::nullopt;
284 }
285
286 return sysfsPath;
287 }
288
289 /**
290 * Returns the list of files under a specified path.
291 */
allFilesInPath(const std::filesystem::path & path)292 static std::vector<std::filesystem::path> allFilesInPath(const std::filesystem::path& path) {
293 std::vector<std::filesystem::path> nodes;
294 std::error_code errorCode;
295 auto iter = std::filesystem::directory_iterator(path, errorCode);
296 while (!errorCode && iter != std::filesystem::directory_iterator()) {
297 nodes.push_back(iter->path());
298 iter++;
299 }
300 return nodes;
301 }
302
303 /**
304 * Returns the list of files under a specified directory in a sysfs path.
305 * Example:
306 * findSysfsNodes(sysfsRootPath, SysfsClass::LEDS) will return all led nodes under "leds" directory
307 * in the sysfs path.
308 */
findSysfsNodes(const std::filesystem::path & sysfsRoot,SysfsClass clazz)309 static std::vector<std::filesystem::path> findSysfsNodes(const std::filesystem::path& sysfsRoot,
310 SysfsClass clazz) {
311 std::string nodeStr = ftl::enum_string(clazz);
312 std::for_each(nodeStr.begin(), nodeStr.end(),
313 [](char& c) { c = std::tolower(static_cast<unsigned char>(c)); });
314 std::vector<std::filesystem::path> nodes;
315 for (auto path = sysfsRoot; path != "/" && nodes.empty(); path = path.parent_path()) {
316 nodes = allFilesInPath(path / nodeStr);
317 }
318 return nodes;
319 }
320
getColorIndexArray(std::filesystem::path path)321 static std::optional<std::array<LightColor, COLOR_NUM>> getColorIndexArray(
322 std::filesystem::path path) {
323 std::string indexStr;
324 if (!base::ReadFileToString(path, &indexStr)) {
325 return std::nullopt;
326 }
327
328 // Parse the multi color LED index file, refer to kernel docs
329 // leds/leds-class-multicolor.html
330 std::regex indexPattern("(red|green|blue)\\s(red|green|blue)\\s(red|green|blue)[\\n]");
331 std::smatch results;
332 std::array<LightColor, COLOR_NUM> colors;
333 if (!std::regex_match(indexStr, results, indexPattern)) {
334 return std::nullopt;
335 }
336
337 for (size_t i = 1; i < results.size(); i++) {
338 const auto it = LIGHT_COLORS.find(results[i].str());
339 if (it != LIGHT_COLORS.end()) {
340 // intensities.emplace(it->second, 0);
341 colors[i - 1] = it->second;
342 }
343 }
344 return colors;
345 }
346
347 /**
348 * Read country code information exposed through the sysfs path and convert it to Layout info.
349 */
readLayoutConfiguration(const std::filesystem::path & sysfsRootPath)350 static std::optional<RawLayoutInfo> readLayoutConfiguration(
351 const std::filesystem::path& sysfsRootPath) {
352 // Check the sysfs root path
353 int32_t hidCountryCode = -1;
354 std::string str;
355 if (base::ReadFileToString(sysfsRootPath / "country", &str)) {
356 hidCountryCode = std::stoi(str, nullptr, 16);
357 // Update this condition if new supported country codes are added to HID spec.
358 if (hidCountryCode > 35 || hidCountryCode < 0) {
359 ALOGE("HID country code should be in range [0, 35], but for sysfs path %s it was %d",
360 sysfsRootPath.c_str(), hidCountryCode);
361 }
362 }
363 const auto it = LAYOUT_INFOS.find(hidCountryCode);
364 if (it != LAYOUT_INFOS.end()) {
365 return it->second;
366 }
367
368 return std::nullopt;
369 }
370
371 /**
372 * Read information about batteries exposed through the sysfs path.
373 */
readBatteryConfiguration(const std::filesystem::path & sysfsRootPath)374 static std::unordered_map<int32_t /*batteryId*/, RawBatteryInfo> readBatteryConfiguration(
375 const std::filesystem::path& sysfsRootPath) {
376 std::unordered_map<int32_t, RawBatteryInfo> batteryInfos;
377 int32_t nextBatteryId = 0;
378 // Check if device has any battery.
379 const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::POWER_SUPPLY);
380 for (const auto& nodePath : paths) {
381 RawBatteryInfo info;
382 info.id = ++nextBatteryId;
383 info.path = nodePath;
384 info.name = nodePath.filename();
385
386 // Scan the path for all the files
387 // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
388 const auto& files = allFilesInPath(nodePath);
389 for (const auto& file : files) {
390 const auto it = BATTERY_CLASSES.find(file.filename().string());
391 if (it != BATTERY_CLASSES.end()) {
392 info.flags |= it->second;
393 }
394 }
395 batteryInfos.insert_or_assign(info.id, info);
396 ALOGD("configureBatteryLocked rawBatteryId %d name %s", info.id, info.name.c_str());
397 }
398 return batteryInfos;
399 }
400
401 /**
402 * Read information about lights exposed through the sysfs path.
403 */
readLightsConfiguration(const std::filesystem::path & sysfsRootPath)404 static std::unordered_map<int32_t /*lightId*/, RawLightInfo> readLightsConfiguration(
405 const std::filesystem::path& sysfsRootPath) {
406 std::unordered_map<int32_t, RawLightInfo> lightInfos;
407 int32_t nextLightId = 0;
408 // Check if device has any lights.
409 const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::LEDS);
410 for (const auto& nodePath : paths) {
411 RawLightInfo info;
412 info.id = ++nextLightId;
413 info.path = nodePath;
414 info.name = nodePath.filename();
415 info.maxBrightness = std::nullopt;
416
417 // Light name should follow the naming pattern <name>:<color>:<function>
418 // Refer kernel docs /leds/leds-class.html for valid supported LED names.
419 std::regex indexPattern("([a-zA-Z0-9_.:]*:)?([a-zA-Z0-9_.]*):([a-zA-Z0-9_.]*)");
420 std::smatch results;
421
422 if (std::regex_match(info.name, results, indexPattern)) {
423 // regex_match will return full match at index 0 and <name> at index 1. For RawLightInfo
424 // we only care about sections <color> and <function> which will be at index 2 and 3.
425 for (int i = 2; i <= 3; i++) {
426 const auto it = LIGHT_CLASSES.find(results.str(i));
427 if (it != LIGHT_CLASSES.end()) {
428 info.flags |= it->second;
429 }
430 }
431
432 // Set name of the raw light to <function> which represents playerIDs for LEDs that
433 // turn on/off based on the current player ID (Refer to PeripheralController.cpp for
434 // player ID logic)
435 info.name = results.str(3);
436 }
437 // Scan the path for all the files
438 // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
439 const auto& files = allFilesInPath(nodePath);
440 for (const auto& file : files) {
441 const auto it = LIGHT_CLASSES.find(file.filename().string());
442 if (it != LIGHT_CLASSES.end()) {
443 info.flags |= it->second;
444 // If the node has maximum brightness, read it
445 if (it->second == InputLightClass::MAX_BRIGHTNESS) {
446 std::string str;
447 if (base::ReadFileToString(file, &str)) {
448 info.maxBrightness = std::stoi(str);
449 }
450 }
451 }
452 }
453 lightInfos.insert_or_assign(info.id, info);
454 ALOGD("configureLightsLocked rawLightId %d name %s", info.id, info.name.c_str());
455 }
456 return lightInfos;
457 }
458
459 // --- Global Functions ---
460
getAbsAxisUsage(int32_t axis,ftl::Flags<InputDeviceClass> deviceClasses)461 ftl::Flags<InputDeviceClass> getAbsAxisUsage(int32_t axis,
462 ftl::Flags<InputDeviceClass> deviceClasses) {
463 // Touch devices get dibs on touch-related axes.
464 if (deviceClasses.test(InputDeviceClass::TOUCH)) {
465 switch (axis) {
466 case ABS_X:
467 case ABS_Y:
468 case ABS_PRESSURE:
469 case ABS_TOOL_WIDTH:
470 case ABS_DISTANCE:
471 case ABS_TILT_X:
472 case ABS_TILT_Y:
473 case ABS_MT_SLOT:
474 case ABS_MT_TOUCH_MAJOR:
475 case ABS_MT_TOUCH_MINOR:
476 case ABS_MT_WIDTH_MAJOR:
477 case ABS_MT_WIDTH_MINOR:
478 case ABS_MT_ORIENTATION:
479 case ABS_MT_POSITION_X:
480 case ABS_MT_POSITION_Y:
481 case ABS_MT_TOOL_TYPE:
482 case ABS_MT_BLOB_ID:
483 case ABS_MT_TRACKING_ID:
484 case ABS_MT_PRESSURE:
485 case ABS_MT_DISTANCE:
486 return InputDeviceClass::TOUCH;
487 }
488 }
489
490 if (deviceClasses.test(InputDeviceClass::SENSOR)) {
491 switch (axis) {
492 case ABS_X:
493 case ABS_Y:
494 case ABS_Z:
495 case ABS_RX:
496 case ABS_RY:
497 case ABS_RZ:
498 return InputDeviceClass::SENSOR;
499 }
500 }
501
502 // External stylus gets the pressure axis
503 if (deviceClasses.test(InputDeviceClass::EXTERNAL_STYLUS)) {
504 if (axis == ABS_PRESSURE) {
505 return InputDeviceClass::EXTERNAL_STYLUS;
506 }
507 }
508
509 // Joystick devices get the rest.
510 return deviceClasses & InputDeviceClass::JOYSTICK;
511 }
512
513 // --- RawAbsoluteAxisInfo ---
514
operator <<(std::ostream & out,const RawAbsoluteAxisInfo & info)515 std::ostream& operator<<(std::ostream& out, const RawAbsoluteAxisInfo& info) {
516 if (info.valid) {
517 out << "min=" << info.minValue << ", max=" << info.maxValue << ", flat=" << info.flat
518 << ", fuzz=" << info.fuzz << ", resolution=" << info.resolution;
519 } else {
520 out << "unknown range";
521 }
522 return out;
523 }
524
525 // --- EventHub::Device ---
526
Device(int fd,int32_t id,std::string path,InputDeviceIdentifier identifier,std::shared_ptr<const AssociatedDevice> assocDev)527 EventHub::Device::Device(int fd, int32_t id, std::string path, InputDeviceIdentifier identifier,
528 std::shared_ptr<const AssociatedDevice> assocDev)
529 : fd(fd),
530 id(id),
531 path(std::move(path)),
532 identifier(std::move(identifier)),
533 classes(0),
534 configuration(nullptr),
535 virtualKeyMap(nullptr),
536 ffEffectPlaying(false),
537 ffEffectId(-1),
538 associatedDevice(std::move(assocDev)),
539 controllerNumber(0),
540 enabled(true),
541 isVirtual(fd < 0) {}
542
~Device()543 EventHub::Device::~Device() {
544 close();
545 }
546
close()547 void EventHub::Device::close() {
548 if (fd >= 0) {
549 ::close(fd);
550 fd = -1;
551 }
552 }
553
enable()554 status_t EventHub::Device::enable() {
555 fd = open(path.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
556 if (fd < 0) {
557 ALOGE("could not open %s, %s\n", path.c_str(), strerror(errno));
558 return -errno;
559 }
560 enabled = true;
561 return OK;
562 }
563
disable()564 status_t EventHub::Device::disable() {
565 close();
566 enabled = false;
567 return OK;
568 }
569
hasValidFd() const570 bool EventHub::Device::hasValidFd() const {
571 return !isVirtual && enabled;
572 }
573
getKeyCharacterMap() const574 const std::shared_ptr<KeyCharacterMap> EventHub::Device::getKeyCharacterMap() const {
575 return keyMap.keyCharacterMap;
576 }
577
578 template <std::size_t N>
readDeviceBitMask(unsigned long ioctlCode,BitArray<N> & bitArray)579 status_t EventHub::Device::readDeviceBitMask(unsigned long ioctlCode, BitArray<N>& bitArray) {
580 if (!hasValidFd()) {
581 return BAD_VALUE;
582 }
583 if ((_IOC_SIZE(ioctlCode) == 0)) {
584 ioctlCode |= _IOC(0, 0, 0, bitArray.bytes());
585 }
586
587 typename BitArray<N>::Buffer buffer;
588 status_t ret = ioctl(fd, ioctlCode, buffer.data());
589 bitArray.loadFromBuffer(buffer);
590 return ret;
591 }
592
configureFd()593 void EventHub::Device::configureFd() {
594 // Set fd parameters with ioctl, such as key repeat, suspend block, and clock type
595 if (classes.test(InputDeviceClass::KEYBOARD)) {
596 // Disable kernel key repeat since we handle it ourselves
597 unsigned int repeatRate[] = {0, 0};
598 if (ioctl(fd, EVIOCSREP, repeatRate)) {
599 ALOGW("Unable to disable kernel key repeat for %s: %s", path.c_str(), strerror(errno));
600 }
601 }
602
603 // Tell the kernel that we want to use the monotonic clock for reporting timestamps
604 // associated with input events. This is important because the input system
605 // uses the timestamps extensively and assumes they were recorded using the monotonic
606 // clock.
607 int clockId = CLOCK_MONOTONIC;
608 if (classes.test(InputDeviceClass::SENSOR)) {
609 // Each new sensor event should use the same time base as
610 // SystemClock.elapsedRealtimeNanos().
611 clockId = CLOCK_BOOTTIME;
612 }
613 bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
614 ALOGI("usingClockIoctl=%s", toString(usingClockIoctl));
615 }
616
hasKeycodeLocked(int keycode) const617 bool EventHub::Device::hasKeycodeLocked(int keycode) const {
618 if (!keyMap.haveKeyLayout()) {
619 return false;
620 }
621
622 std::vector<int32_t> scanCodes = keyMap.keyLayoutMap->findScanCodesForKey(keycode);
623 const size_t N = scanCodes.size();
624 for (size_t i = 0; i < N && i <= KEY_MAX; i++) {
625 int32_t sc = scanCodes[i];
626 if (sc >= 0 && sc <= KEY_MAX && keyBitmask.test(sc)) {
627 return true;
628 }
629 }
630
631 std::vector<int32_t> usageCodes = keyMap.keyLayoutMap->findUsageCodesForKey(keycode);
632 if (usageCodes.size() > 0 && mscBitmask.test(MSC_SCAN)) {
633 return true;
634 }
635
636 return false;
637 }
638
loadConfigurationLocked()639 void EventHub::Device::loadConfigurationLocked() {
640 configurationFile =
641 getInputDeviceConfigurationFilePathByDeviceIdentifier(identifier,
642 InputDeviceConfigurationFileType::
643 CONFIGURATION);
644 if (configurationFile.empty()) {
645 ALOGD("No input device configuration file found for device '%s'.", identifier.name.c_str());
646 } else {
647 android::base::Result<std::unique_ptr<PropertyMap>> propertyMap =
648 PropertyMap::load(configurationFile.c_str());
649 if (!propertyMap.ok()) {
650 ALOGE("Error loading input device configuration file for device '%s'. "
651 "Using default configuration.",
652 identifier.name.c_str());
653 } else {
654 configuration = std::move(*propertyMap);
655 }
656 }
657 }
658
loadVirtualKeyMapLocked()659 bool EventHub::Device::loadVirtualKeyMapLocked() {
660 // The virtual key map is supplied by the kernel as a system board property file.
661 std::string propPath = "/sys/board_properties/virtualkeys.";
662 propPath += identifier.getCanonicalName();
663 if (access(propPath.c_str(), R_OK)) {
664 return false;
665 }
666 virtualKeyMap = VirtualKeyMap::load(propPath);
667 return virtualKeyMap != nullptr;
668 }
669
loadKeyMapLocked()670 status_t EventHub::Device::loadKeyMapLocked() {
671 return keyMap.load(identifier, configuration.get());
672 }
673
isExternalDeviceLocked()674 bool EventHub::Device::isExternalDeviceLocked() {
675 if (configuration) {
676 std::optional<bool> isInternal = configuration->getBool("device.internal");
677 if (isInternal.has_value()) {
678 return !isInternal.value();
679 }
680 }
681 return identifier.bus == BUS_USB || identifier.bus == BUS_BLUETOOTH;
682 }
683
deviceHasMicLocked()684 bool EventHub::Device::deviceHasMicLocked() {
685 if (configuration) {
686 std::optional<bool> hasMic = configuration->getBool("audio.mic");
687 if (hasMic.has_value()) {
688 return hasMic.value();
689 }
690 }
691 return false;
692 }
693
setLedStateLocked(int32_t led,bool on)694 void EventHub::Device::setLedStateLocked(int32_t led, bool on) {
695 int32_t sc;
696 if (hasValidFd() && mapLed(led, &sc) != NAME_NOT_FOUND) {
697 struct input_event ev;
698 ev.input_event_sec = 0;
699 ev.input_event_usec = 0;
700 ev.type = EV_LED;
701 ev.code = sc;
702 ev.value = on ? 1 : 0;
703
704 ssize_t nWrite;
705 do {
706 nWrite = write(fd, &ev, sizeof(struct input_event));
707 } while (nWrite == -1 && errno == EINTR);
708 }
709 }
710
setLedForControllerLocked()711 void EventHub::Device::setLedForControllerLocked() {
712 for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
713 setLedStateLocked(ALED_CONTROLLER_1 + i, controllerNumber == i + 1);
714 }
715 }
716
mapLed(int32_t led,int32_t * outScanCode) const717 status_t EventHub::Device::mapLed(int32_t led, int32_t* outScanCode) const {
718 if (!keyMap.haveKeyLayout()) {
719 return NAME_NOT_FOUND;
720 }
721
722 std::optional<int32_t> scanCode = keyMap.keyLayoutMap->findScanCodeForLed(led);
723 if (scanCode.has_value()) {
724 if (*scanCode >= 0 && *scanCode <= LED_MAX && ledBitmask.test(*scanCode)) {
725 *outScanCode = *scanCode;
726 return NO_ERROR;
727 }
728 }
729 return NAME_NOT_FOUND;
730 }
731
732 /**
733 * Get the capabilities for the current process.
734 * Crashes the system if unable to create / check / destroy the capabilities object.
735 */
736 class Capabilities final {
737 public:
Capabilities()738 explicit Capabilities() {
739 mCaps = cap_get_proc();
740 LOG_ALWAYS_FATAL_IF(mCaps == nullptr, "Could not get capabilities of the current process");
741 }
742
743 /**
744 * Check whether the current process has a specific capability
745 * in the set of effective capabilities.
746 * Return CAP_SET if the process has the requested capability
747 * Return CAP_CLEAR otherwise.
748 */
checkEffectiveCapability(cap_value_t capability)749 cap_flag_value_t checkEffectiveCapability(cap_value_t capability) {
750 cap_flag_value_t value;
751 const int result = cap_get_flag(mCaps, capability, CAP_EFFECTIVE, &value);
752 LOG_ALWAYS_FATAL_IF(result == -1, "Could not obtain the requested capability");
753 return value;
754 }
755
~Capabilities()756 ~Capabilities() {
757 const int result = cap_free(mCaps);
758 LOG_ALWAYS_FATAL_IF(result == -1, "Could not release the capabilities structure");
759 }
760
761 private:
762 cap_t mCaps;
763 };
764
ensureProcessCanBlockSuspend()765 static void ensureProcessCanBlockSuspend() {
766 Capabilities capabilities;
767 const bool canBlockSuspend =
768 capabilities.checkEffectiveCapability(CAP_BLOCK_SUSPEND) == CAP_SET;
769 LOG_ALWAYS_FATAL_IF(!canBlockSuspend,
770 "Input must be able to block suspend to properly process events");
771 }
772
773 // --- EventHub ---
774
775 const int EventHub::EPOLL_MAX_EVENTS;
776
EventHub(void)777 EventHub::EventHub(void)
778 : mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD),
779 mNextDeviceId(1),
780 mControllerNumbers(),
781 mNeedToSendFinishedDeviceScan(false),
782 mNeedToReopenDevices(false),
783 mNeedToScanDevices(true),
784 mPendingEventCount(0),
785 mPendingEventIndex(0),
786 mPendingINotify(false) {
787 ensureProcessCanBlockSuspend();
788
789 mEpollFd = epoll_create1(EPOLL_CLOEXEC);
790 LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));
791
792 mINotifyFd = inotify_init1(IN_CLOEXEC);
793 LOG_ALWAYS_FATAL_IF(mINotifyFd < 0, "Could not create inotify instance: %s", strerror(errno));
794
795 std::error_code errorCode;
796 bool isDeviceInotifyAdded = false;
797 if (std::filesystem::exists(DEVICE_INPUT_PATH, errorCode)) {
798 addDeviceInputInotify();
799 } else {
800 addDeviceInotify();
801 isDeviceInotifyAdded = true;
802 if (errorCode) {
803 ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
804 errorCode.message().c_str());
805 }
806 }
807
808 if (isV4lScanningEnabled() && !isDeviceInotifyAdded) {
809 addDeviceInotify();
810 } else {
811 ALOGI("Video device scanning disabled");
812 }
813
814 struct epoll_event eventItem = {};
815 eventItem.events = EPOLLIN | EPOLLWAKEUP;
816 eventItem.data.fd = mINotifyFd;
817 int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
818 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno);
819
820 int wakeFds[2];
821 result = pipe2(wakeFds, O_CLOEXEC);
822 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno);
823
824 mWakeReadPipeFd = wakeFds[0];
825 mWakeWritePipeFd = wakeFds[1];
826
827 result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
828 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d",
829 errno);
830
831 result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
832 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d",
833 errno);
834
835 eventItem.data.fd = mWakeReadPipeFd;
836 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
837 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d",
838 errno);
839 }
840
~EventHub(void)841 EventHub::~EventHub(void) {
842 closeAllDevicesLocked();
843
844 ::close(mEpollFd);
845 ::close(mINotifyFd);
846 ::close(mWakeReadPipeFd);
847 ::close(mWakeWritePipeFd);
848 }
849
850 /**
851 * On devices that don't have any input devices (like some development boards), the /dev/input
852 * directory will be absent. However, the user may still plug in an input device at a later time.
853 * Add watch for contents of /dev/input only when /dev/input appears.
854 */
addDeviceInputInotify()855 void EventHub::addDeviceInputInotify() {
856 mDeviceInputWd = inotify_add_watch(mINotifyFd, DEVICE_INPUT_PATH, IN_DELETE | IN_CREATE);
857 LOG_ALWAYS_FATAL_IF(mDeviceInputWd < 0, "Could not register INotify for %s: %s",
858 DEVICE_INPUT_PATH, strerror(errno));
859 }
860
addDeviceInotify()861 void EventHub::addDeviceInotify() {
862 mDeviceWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
863 LOG_ALWAYS_FATAL_IF(mDeviceWd < 0, "Could not register INotify for %s: %s", DEVICE_PATH,
864 strerror(errno));
865 }
866
populateDeviceAbsoluteAxisInfo(Device & device)867 void EventHub::populateDeviceAbsoluteAxisInfo(Device& device) {
868 for (int axis = 0; axis <= ABS_MAX; axis++) {
869 if (!device.absBitmask.test(axis)) {
870 continue;
871 }
872 struct input_absinfo info {};
873 if (ioctl(device.fd, EVIOCGABS(axis), &info)) {
874 ALOGE("Error reading absolute controller %d for device %s fd %d, errno=%d", axis,
875 device.identifier.name.c_str(), device.fd, errno);
876 continue;
877 }
878 if (info.minimum == info.maximum) {
879 continue;
880 }
881 RawAbsoluteAxisInfo& outAxisInfo = device.rawAbsoluteAxisInfoCache[axis];
882 outAxisInfo.valid = true;
883 outAxisInfo.minValue = info.minimum;
884 outAxisInfo.maxValue = info.maximum;
885 outAxisInfo.flat = info.flat;
886 outAxisInfo.fuzz = info.fuzz;
887 outAxisInfo.resolution = info.resolution;
888 }
889 }
890
getDeviceIdentifier(int32_t deviceId) const891 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
892 std::scoped_lock _l(mLock);
893 Device* device = getDeviceLocked(deviceId);
894 return device != nullptr ? device->identifier : InputDeviceIdentifier();
895 }
896
getDeviceClasses(int32_t deviceId) const897 ftl::Flags<InputDeviceClass> EventHub::getDeviceClasses(int32_t deviceId) const {
898 std::scoped_lock _l(mLock);
899 Device* device = getDeviceLocked(deviceId);
900 return device != nullptr ? device->classes : ftl::Flags<InputDeviceClass>(0);
901 }
902
getDeviceControllerNumber(int32_t deviceId) const903 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
904 std::scoped_lock _l(mLock);
905 Device* device = getDeviceLocked(deviceId);
906 return device != nullptr ? device->controllerNumber : 0;
907 }
908
getConfiguration(int32_t deviceId) const909 std::optional<PropertyMap> EventHub::getConfiguration(int32_t deviceId) const {
910 std::scoped_lock _l(mLock);
911 Device* device = getDeviceLocked(deviceId);
912 if (device == nullptr || device->configuration == nullptr) {
913 return {};
914 }
915 return *device->configuration;
916 }
917
getAbsoluteAxisInfo(int32_t deviceId,int axis,RawAbsoluteAxisInfo * outAxisInfo) const918 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
919 RawAbsoluteAxisInfo* outAxisInfo) const {
920 outAxisInfo->clear();
921 if (axis < 0 || axis > ABS_MAX) {
922 return -1;
923 }
924 std::scoped_lock _l(mLock);
925 Device* device = getDeviceLocked(deviceId);
926 if (device == nullptr) {
927 return -1;
928 }
929 auto it = device->rawAbsoluteAxisInfoCache.find(axis);
930 if (it == device->rawAbsoluteAxisInfoCache.end()) {
931 return -1;
932 }
933 *outAxisInfo = it->second;
934 return OK;
935 }
936
hasRelativeAxis(int32_t deviceId,int axis) const937 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
938 if (axis >= 0 && axis <= REL_MAX) {
939 std::scoped_lock _l(mLock);
940 Device* device = getDeviceLocked(deviceId);
941 return device != nullptr ? device->relBitmask.test(axis) : false;
942 }
943 return false;
944 }
945
hasInputProperty(int32_t deviceId,int property) const946 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
947 std::scoped_lock _l(mLock);
948
949 Device* device = getDeviceLocked(deviceId);
950 return property >= 0 && property <= INPUT_PROP_MAX && device != nullptr
951 ? device->propBitmask.test(property)
952 : false;
953 }
954
hasMscEvent(int32_t deviceId,int mscEvent) const955 bool EventHub::hasMscEvent(int32_t deviceId, int mscEvent) const {
956 std::scoped_lock _l(mLock);
957
958 Device* device = getDeviceLocked(deviceId);
959 return mscEvent >= 0 && mscEvent <= MSC_MAX && device != nullptr
960 ? device->mscBitmask.test(mscEvent)
961 : false;
962 }
963
getScanCodeState(int32_t deviceId,int32_t scanCode) const964 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
965 if (scanCode >= 0 && scanCode <= KEY_MAX) {
966 std::scoped_lock _l(mLock);
967
968 Device* device = getDeviceLocked(deviceId);
969 if (device != nullptr && device->hasValidFd() && device->keyBitmask.test(scanCode)) {
970 if (device->readDeviceBitMask(EVIOCGKEY(0), device->keyState) >= 0) {
971 return device->keyState.test(scanCode) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
972 }
973 }
974 }
975 return AKEY_STATE_UNKNOWN;
976 }
977
getKeyCodeState(int32_t deviceId,int32_t keyCode) const978 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
979 std::scoped_lock _l(mLock);
980
981 Device* device = getDeviceLocked(deviceId);
982 if (device != nullptr && device->hasValidFd() && device->keyMap.haveKeyLayout()) {
983 std::vector<int32_t> scanCodes = device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode);
984 if (scanCodes.size() != 0) {
985 if (device->readDeviceBitMask(EVIOCGKEY(0), device->keyState) >= 0) {
986 for (size_t i = 0; i < scanCodes.size(); i++) {
987 int32_t sc = scanCodes[i];
988 if (sc >= 0 && sc <= KEY_MAX && device->keyState.test(sc)) {
989 return AKEY_STATE_DOWN;
990 }
991 }
992 return AKEY_STATE_UP;
993 }
994 }
995 }
996 return AKEY_STATE_UNKNOWN;
997 }
998
getKeyCodeForKeyLocation(int32_t deviceId,int32_t locationKeyCode) const999 int32_t EventHub::getKeyCodeForKeyLocation(int32_t deviceId, int32_t locationKeyCode) const {
1000 std::scoped_lock _l(mLock);
1001
1002 Device* device = getDeviceLocked(deviceId);
1003 if (device == nullptr || !device->hasValidFd() || device->keyMap.keyCharacterMap == nullptr ||
1004 device->keyMap.keyLayoutMap == nullptr) {
1005 return AKEYCODE_UNKNOWN;
1006 }
1007 std::vector<int32_t> scanCodes =
1008 device->keyMap.keyLayoutMap->findScanCodesForKey(locationKeyCode);
1009 if (scanCodes.empty()) {
1010 ALOGW("Failed to get key code for key location: no scan code maps to key code %d for input"
1011 "device %d",
1012 locationKeyCode, deviceId);
1013 return AKEYCODE_UNKNOWN;
1014 }
1015 if (scanCodes.size() > 1) {
1016 ALOGW("Multiple scan codes map to the same key code %d, returning only the first match",
1017 locationKeyCode);
1018 }
1019 int32_t outKeyCode;
1020 status_t mapKeyRes =
1021 device->getKeyCharacterMap()->mapKey(scanCodes[0], /*usageCode=*/0, &outKeyCode);
1022 switch (mapKeyRes) {
1023 case OK:
1024 break;
1025 case NAME_NOT_FOUND:
1026 // key character map doesn't re-map this scanCode, hence the keyCode remains the same
1027 outKeyCode = locationKeyCode;
1028 break;
1029 default:
1030 ALOGW("Failed to get key code for key location: Key character map returned error %s",
1031 statusToString(mapKeyRes).c_str());
1032 outKeyCode = AKEYCODE_UNKNOWN;
1033 break;
1034 }
1035 // Remap if there is a Key remapping added to the KCM and return the remapped key
1036 return device->getKeyCharacterMap()->applyKeyRemapping(outKeyCode);
1037 }
1038
getSwitchState(int32_t deviceId,int32_t sw) const1039 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
1040 if (sw >= 0 && sw <= SW_MAX) {
1041 std::scoped_lock _l(mLock);
1042
1043 Device* device = getDeviceLocked(deviceId);
1044 if (device != nullptr && device->hasValidFd() && device->swBitmask.test(sw)) {
1045 if (device->readDeviceBitMask(EVIOCGSW(0), device->swState) >= 0) {
1046 return device->swState.test(sw) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
1047 }
1048 }
1049 }
1050 return AKEY_STATE_UNKNOWN;
1051 }
1052
getAbsoluteAxisValue(int32_t deviceId,int32_t axis,int32_t * outValue) const1053 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
1054 *outValue = 0;
1055
1056 if (axis >= 0 && axis <= ABS_MAX) {
1057 std::scoped_lock _l(mLock);
1058
1059 Device* device = getDeviceLocked(deviceId);
1060 if (device != nullptr && device->hasValidFd() && device->absBitmask.test(axis)) {
1061 struct input_absinfo info;
1062 if (ioctl(device->fd, EVIOCGABS(axis), &info)) {
1063 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis,
1064 device->identifier.name.c_str(), device->fd, errno);
1065 return -errno;
1066 }
1067
1068 *outValue = info.value;
1069 return OK;
1070 }
1071 }
1072 return -1;
1073 }
1074
markSupportedKeyCodes(int32_t deviceId,const std::vector<int32_t> & keyCodes,uint8_t * outFlags) const1075 bool EventHub::markSupportedKeyCodes(int32_t deviceId, const std::vector<int32_t>& keyCodes,
1076 uint8_t* outFlags) const {
1077 std::scoped_lock _l(mLock);
1078
1079 Device* device = getDeviceLocked(deviceId);
1080 if (device != nullptr && device->keyMap.haveKeyLayout()) {
1081 for (size_t codeIndex = 0; codeIndex < keyCodes.size(); codeIndex++) {
1082 if (device->hasKeycodeLocked(keyCodes[codeIndex])) {
1083 outFlags[codeIndex] = 1;
1084 }
1085 }
1086 return true;
1087 }
1088 return false;
1089 }
1090
addKeyRemapping(int32_t deviceId,int32_t fromKeyCode,int32_t toKeyCode) const1091 void EventHub::addKeyRemapping(int32_t deviceId, int32_t fromKeyCode, int32_t toKeyCode) const {
1092 std::scoped_lock _l(mLock);
1093 Device* device = getDeviceLocked(deviceId);
1094 if (device == nullptr) {
1095 return;
1096 }
1097 const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap();
1098 if (kcm) {
1099 kcm->addKeyRemapping(fromKeyCode, toKeyCode);
1100 }
1101 }
1102
mapKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t metaState,int32_t * outKeycode,int32_t * outMetaState,uint32_t * outFlags) const1103 status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t metaState,
1104 int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
1105 std::scoped_lock _l(mLock);
1106 Device* device = getDeviceLocked(deviceId);
1107 status_t status = NAME_NOT_FOUND;
1108
1109 if (device != nullptr) {
1110 // Check the key character map first.
1111 const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap();
1112 if (kcm) {
1113 if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
1114 *outFlags = 0;
1115 status = NO_ERROR;
1116 }
1117 }
1118
1119 // Check the key layout next.
1120 if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
1121 if (!device->keyMap.keyLayoutMap->mapKey(scanCode, usageCode, outKeycode, outFlags)) {
1122 status = NO_ERROR;
1123 }
1124 }
1125
1126 if (status == NO_ERROR) {
1127 if (kcm) {
1128 // Remap keys based on user-defined key remappings and key behavior defined in the
1129 // corresponding kcm file
1130 *outKeycode = kcm->applyKeyRemapping(*outKeycode);
1131
1132 // Remap keys based on Key behavior defined in KCM file
1133 std::tie(*outKeycode, *outMetaState) =
1134 kcm->applyKeyBehavior(*outKeycode, metaState);
1135 } else {
1136 *outMetaState = metaState;
1137 }
1138 }
1139 }
1140
1141 if (status != NO_ERROR) {
1142 *outKeycode = 0;
1143 *outFlags = 0;
1144 *outMetaState = metaState;
1145 }
1146
1147 return status;
1148 }
1149
mapAxis(int32_t deviceId,int32_t scanCode,AxisInfo * outAxisInfo) const1150 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
1151 std::scoped_lock _l(mLock);
1152 Device* device = getDeviceLocked(deviceId);
1153
1154 if (device == nullptr || !device->keyMap.haveKeyLayout()) {
1155 return NAME_NOT_FOUND;
1156 }
1157 std::optional<AxisInfo> info = device->keyMap.keyLayoutMap->mapAxis(scanCode);
1158 if (!info.has_value()) {
1159 return NAME_NOT_FOUND;
1160 }
1161 *outAxisInfo = *info;
1162 return NO_ERROR;
1163 }
1164
mapSensor(int32_t deviceId,int32_t absCode) const1165 base::Result<std::pair<InputDeviceSensorType, int32_t>> EventHub::mapSensor(int32_t deviceId,
1166 int32_t absCode) const {
1167 std::scoped_lock _l(mLock);
1168 Device* device = getDeviceLocked(deviceId);
1169
1170 if (device != nullptr && device->keyMap.haveKeyLayout()) {
1171 return device->keyMap.keyLayoutMap->mapSensor(absCode);
1172 }
1173 return Errorf("Device not found or device has no key layout.");
1174 }
1175
1176 // Gets the battery info map from battery ID to RawBatteryInfo of the miscellaneous device
1177 // associated with the device ID. Returns an empty map if no miscellaneous device found.
getBatteryInfoLocked(int32_t deviceId) const1178 const std::unordered_map<int32_t, RawBatteryInfo>& EventHub::getBatteryInfoLocked(
1179 int32_t deviceId) const {
1180 static const std::unordered_map<int32_t, RawBatteryInfo> EMPTY_BATTERY_INFO = {};
1181 Device* device = getDeviceLocked(deviceId);
1182 if (device == nullptr || !device->associatedDevice) {
1183 return EMPTY_BATTERY_INFO;
1184 }
1185 return device->associatedDevice->batteryInfos;
1186 }
1187
getRawBatteryIds(int32_t deviceId) const1188 std::vector<int32_t> EventHub::getRawBatteryIds(int32_t deviceId) const {
1189 std::scoped_lock _l(mLock);
1190 std::vector<int32_t> batteryIds;
1191
1192 for (const auto& [id, info] : getBatteryInfoLocked(deviceId)) {
1193 batteryIds.push_back(id);
1194 }
1195
1196 return batteryIds;
1197 }
1198
getRawBatteryInfo(int32_t deviceId,int32_t batteryId) const1199 std::optional<RawBatteryInfo> EventHub::getRawBatteryInfo(int32_t deviceId,
1200 int32_t batteryId) const {
1201 std::scoped_lock _l(mLock);
1202
1203 const auto infos = getBatteryInfoLocked(deviceId);
1204
1205 auto it = infos.find(batteryId);
1206 if (it != infos.end()) {
1207 return it->second;
1208 }
1209
1210 return std::nullopt;
1211 }
1212
1213 // Gets the light info map from light ID to RawLightInfo of the miscellaneous device associated
1214 // with the device ID. Returns an empty map if no miscellaneous device found.
getLightInfoLocked(int32_t deviceId) const1215 const std::unordered_map<int32_t, RawLightInfo>& EventHub::getLightInfoLocked(
1216 int32_t deviceId) const {
1217 static const std::unordered_map<int32_t, RawLightInfo> EMPTY_LIGHT_INFO = {};
1218 Device* device = getDeviceLocked(deviceId);
1219 if (device == nullptr || !device->associatedDevice) {
1220 return EMPTY_LIGHT_INFO;
1221 }
1222 return device->associatedDevice->lightInfos;
1223 }
1224
getRawLightIds(int32_t deviceId) const1225 std::vector<int32_t> EventHub::getRawLightIds(int32_t deviceId) const {
1226 std::scoped_lock _l(mLock);
1227 std::vector<int32_t> lightIds;
1228
1229 for (const auto& [id, info] : getLightInfoLocked(deviceId)) {
1230 lightIds.push_back(id);
1231 }
1232
1233 return lightIds;
1234 }
1235
getRawLightInfo(int32_t deviceId,int32_t lightId) const1236 std::optional<RawLightInfo> EventHub::getRawLightInfo(int32_t deviceId, int32_t lightId) const {
1237 std::scoped_lock _l(mLock);
1238
1239 const auto infos = getLightInfoLocked(deviceId);
1240
1241 auto it = infos.find(lightId);
1242 if (it != infos.end()) {
1243 return it->second;
1244 }
1245
1246 return std::nullopt;
1247 }
1248
getLightBrightness(int32_t deviceId,int32_t lightId) const1249 std::optional<int32_t> EventHub::getLightBrightness(int32_t deviceId, int32_t lightId) const {
1250 std::scoped_lock _l(mLock);
1251
1252 const auto infos = getLightInfoLocked(deviceId);
1253 auto it = infos.find(lightId);
1254 if (it == infos.end()) {
1255 return std::nullopt;
1256 }
1257 std::string buffer;
1258 if (!base::ReadFileToString(it->second.path / LIGHT_NODES.at(InputLightClass::BRIGHTNESS),
1259 &buffer)) {
1260 return std::nullopt;
1261 }
1262 return std::stoi(buffer);
1263 }
1264
getLightIntensities(int32_t deviceId,int32_t lightId) const1265 std::optional<std::unordered_map<LightColor, int32_t>> EventHub::getLightIntensities(
1266 int32_t deviceId, int32_t lightId) const {
1267 std::scoped_lock _l(mLock);
1268
1269 const auto infos = getLightInfoLocked(deviceId);
1270 auto lightIt = infos.find(lightId);
1271 if (lightIt == infos.end()) {
1272 return std::nullopt;
1273 }
1274
1275 auto ret =
1276 getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
1277
1278 if (!ret.has_value()) {
1279 return std::nullopt;
1280 }
1281 std::array<LightColor, COLOR_NUM> colors = ret.value();
1282
1283 std::string intensityStr;
1284 if (!base::ReadFileToString(lightIt->second.path /
1285 LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY),
1286 &intensityStr)) {
1287 return std::nullopt;
1288 }
1289
1290 // Intensity node outputs 3 color values
1291 std::regex intensityPattern("([0-9]+)\\s([0-9]+)\\s([0-9]+)[\\n]");
1292 std::smatch results;
1293
1294 if (!std::regex_match(intensityStr, results, intensityPattern)) {
1295 return std::nullopt;
1296 }
1297 std::unordered_map<LightColor, int32_t> intensities;
1298 for (size_t i = 1; i < results.size(); i++) {
1299 int value = std::stoi(results[i].str());
1300 intensities.emplace(colors[i - 1], value);
1301 }
1302 return intensities;
1303 }
1304
setLightBrightness(int32_t deviceId,int32_t lightId,int32_t brightness)1305 void EventHub::setLightBrightness(int32_t deviceId, int32_t lightId, int32_t brightness) {
1306 std::scoped_lock _l(mLock);
1307
1308 const auto infos = getLightInfoLocked(deviceId);
1309 auto lightIt = infos.find(lightId);
1310 if (lightIt == infos.end()) {
1311 ALOGE("%s lightId %d not found ", __func__, lightId);
1312 return;
1313 }
1314
1315 if (!base::WriteStringToFile(std::to_string(brightness),
1316 lightIt->second.path /
1317 LIGHT_NODES.at(InputLightClass::BRIGHTNESS))) {
1318 ALOGE("Can not write to file, error: %s", strerror(errno));
1319 }
1320 }
1321
setLightIntensities(int32_t deviceId,int32_t lightId,std::unordered_map<LightColor,int32_t> intensities)1322 void EventHub::setLightIntensities(int32_t deviceId, int32_t lightId,
1323 std::unordered_map<LightColor, int32_t> intensities) {
1324 std::scoped_lock _l(mLock);
1325
1326 const auto infos = getLightInfoLocked(deviceId);
1327 auto lightIt = infos.find(lightId);
1328 if (lightIt == infos.end()) {
1329 ALOGE("Light Id %d does not exist.", lightId);
1330 return;
1331 }
1332
1333 auto ret =
1334 getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
1335
1336 if (!ret.has_value()) {
1337 return;
1338 }
1339 std::array<LightColor, COLOR_NUM> colors = ret.value();
1340
1341 std::string rgbStr;
1342 for (size_t i = 0; i < COLOR_NUM; i++) {
1343 auto it = intensities.find(colors[i]);
1344 if (it != intensities.end()) {
1345 rgbStr += std::to_string(it->second);
1346 // Insert space between colors
1347 if (i < COLOR_NUM - 1) {
1348 rgbStr += " ";
1349 }
1350 }
1351 }
1352 // Append new line
1353 rgbStr += "\n";
1354
1355 if (!base::WriteStringToFile(rgbStr,
1356 lightIt->second.path /
1357 LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY))) {
1358 ALOGE("Can not write to file, error: %s", strerror(errno));
1359 }
1360 }
1361
getRawLayoutInfo(int32_t deviceId) const1362 std::optional<RawLayoutInfo> EventHub::getRawLayoutInfo(int32_t deviceId) const {
1363 std::scoped_lock _l(mLock);
1364 Device* device = getDeviceLocked(deviceId);
1365 if (device == nullptr || !device->associatedDevice) {
1366 return std::nullopt;
1367 }
1368 return device->associatedDevice->layoutInfo;
1369 }
1370
setExcludedDevices(const std::vector<std::string> & devices)1371 void EventHub::setExcludedDevices(const std::vector<std::string>& devices) {
1372 std::scoped_lock _l(mLock);
1373
1374 mExcludedDevices = devices;
1375 }
1376
hasScanCode(int32_t deviceId,int32_t scanCode) const1377 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
1378 std::scoped_lock _l(mLock);
1379 Device* device = getDeviceLocked(deviceId);
1380 if (device != nullptr && scanCode >= 0 && scanCode <= KEY_MAX) {
1381 return device->keyBitmask.test(scanCode);
1382 }
1383 return false;
1384 }
1385
hasKeyCode(int32_t deviceId,int32_t keyCode) const1386 bool EventHub::hasKeyCode(int32_t deviceId, int32_t keyCode) const {
1387 std::scoped_lock _l(mLock);
1388 Device* device = getDeviceLocked(deviceId);
1389 if (device != nullptr) {
1390 return device->hasKeycodeLocked(keyCode);
1391 }
1392 return false;
1393 }
1394
hasLed(int32_t deviceId,int32_t led) const1395 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
1396 std::scoped_lock _l(mLock);
1397 Device* device = getDeviceLocked(deviceId);
1398 int32_t sc;
1399 if (device != nullptr && device->mapLed(led, &sc) == NO_ERROR) {
1400 return device->ledBitmask.test(sc);
1401 }
1402 return false;
1403 }
1404
setLedState(int32_t deviceId,int32_t led,bool on)1405 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
1406 std::scoped_lock _l(mLock);
1407 Device* device = getDeviceLocked(deviceId);
1408 if (device != nullptr && device->hasValidFd()) {
1409 device->setLedStateLocked(led, on);
1410 }
1411 }
1412
getVirtualKeyDefinitions(int32_t deviceId,std::vector<VirtualKeyDefinition> & outVirtualKeys) const1413 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
1414 std::vector<VirtualKeyDefinition>& outVirtualKeys) const {
1415 outVirtualKeys.clear();
1416
1417 std::scoped_lock _l(mLock);
1418 Device* device = getDeviceLocked(deviceId);
1419 if (device != nullptr && device->virtualKeyMap) {
1420 const std::vector<VirtualKeyDefinition> virtualKeys =
1421 device->virtualKeyMap->getVirtualKeys();
1422 outVirtualKeys.insert(outVirtualKeys.end(), virtualKeys.begin(), virtualKeys.end());
1423 }
1424 }
1425
getKeyCharacterMap(int32_t deviceId) const1426 const std::shared_ptr<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
1427 std::scoped_lock _l(mLock);
1428 Device* device = getDeviceLocked(deviceId);
1429 if (device != nullptr) {
1430 return device->getKeyCharacterMap();
1431 }
1432 return nullptr;
1433 }
1434
1435 // If provided map is null, it will reset key character map to default KCM.
setKeyboardLayoutOverlay(int32_t deviceId,std::shared_ptr<KeyCharacterMap> map)1436 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, std::shared_ptr<KeyCharacterMap> map) {
1437 std::scoped_lock _l(mLock);
1438 Device* device = getDeviceLocked(deviceId);
1439 if (device == nullptr || device->keyMap.keyCharacterMap == nullptr) {
1440 return false;
1441 }
1442 if (map == nullptr) {
1443 device->keyMap.keyCharacterMap->clearLayoutOverlay();
1444 return true;
1445 }
1446 device->keyMap.keyCharacterMap->combine(*map);
1447 return true;
1448 }
1449
generateDescriptor(InputDeviceIdentifier & identifier)1450 static std::string generateDescriptor(InputDeviceIdentifier& identifier) {
1451 std::string rawDescriptor;
1452 rawDescriptor += StringPrintf(":%04x:%04x:", identifier.vendor, identifier.product);
1453 // TODO add handling for USB devices to not uniqueify kbs that show up twice
1454 if (!identifier.uniqueId.empty()) {
1455 rawDescriptor += "uniqueId:";
1456 rawDescriptor += identifier.uniqueId;
1457 }
1458 if (identifier.nonce != 0) {
1459 rawDescriptor += StringPrintf("nonce:%04x", identifier.nonce);
1460 }
1461
1462 if (identifier.vendor == 0 && identifier.product == 0) {
1463 // If we don't know the vendor and product id, then the device is probably
1464 // built-in so we need to rely on other information to uniquely identify
1465 // the input device. Usually we try to avoid relying on the device name or
1466 // location but for built-in input device, they are unlikely to ever change.
1467 if (!identifier.name.empty()) {
1468 rawDescriptor += "name:";
1469 rawDescriptor += identifier.name;
1470 } else if (!identifier.location.empty()) {
1471 rawDescriptor += "location:";
1472 rawDescriptor += identifier.location;
1473 }
1474 }
1475 identifier.descriptor = sha1(rawDescriptor);
1476 return rawDescriptor;
1477 }
1478
assignDescriptorLocked(InputDeviceIdentifier & identifier)1479 void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
1480 // Compute a device descriptor that uniquely identifies the device.
1481 // The descriptor is assumed to be a stable identifier. Its value should not
1482 // change between reboots, reconnections, firmware updates or new releases
1483 // of Android. In practice we sometimes get devices that cannot be uniquely
1484 // identified. In this case we enforce uniqueness between connected devices.
1485 // Ideally, we also want the descriptor to be short and relatively opaque.
1486 // Note that we explicitly do not use the path or location for external devices
1487 // as their path or location will change as they are plugged/unplugged or moved
1488 // to different ports. We do fallback to using name and location in the case of
1489 // internal devices which are detected by the vendor and product being 0 in
1490 // generateDescriptor. If two identical descriptors are detected we will fallback
1491 // to using a 'nonce' and incrementing it until the new descriptor no longer has
1492 // a match with any existing descriptors.
1493
1494 identifier.nonce = 0;
1495 std::string rawDescriptor = generateDescriptor(identifier);
1496 // Enforce that the generated descriptor is unique.
1497 while (hasDeviceWithDescriptorLocked(identifier.descriptor)) {
1498 identifier.nonce++;
1499 rawDescriptor = generateDescriptor(identifier);
1500 }
1501 ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.c_str(),
1502 identifier.descriptor.c_str());
1503 }
1504
obtainAssociatedDeviceLocked(const std::filesystem::path & devicePath) const1505 std::shared_ptr<const EventHub::AssociatedDevice> EventHub::obtainAssociatedDeviceLocked(
1506 const std::filesystem::path& devicePath) const {
1507 const std::optional<std::filesystem::path> sysfsRootPathOpt =
1508 getSysfsRootPath(devicePath.c_str());
1509 if (!sysfsRootPathOpt) {
1510 return nullptr;
1511 }
1512
1513 const auto& path = *sysfsRootPathOpt;
1514
1515 std::shared_ptr<const AssociatedDevice> associatedDevice = std::make_shared<AssociatedDevice>(
1516 AssociatedDevice{.sysfsRootPath = path,
1517 .batteryInfos = readBatteryConfiguration(path),
1518 .lightInfos = readLightsConfiguration(path),
1519 .layoutInfo = readLayoutConfiguration(path)});
1520
1521 bool associatedDeviceChanged = false;
1522 for (const auto& [id, dev] : mDevices) {
1523 if (dev->associatedDevice && dev->associatedDevice->sysfsRootPath == path) {
1524 if (*associatedDevice != *dev->associatedDevice) {
1525 associatedDeviceChanged = true;
1526 dev->associatedDevice = associatedDevice;
1527 }
1528 associatedDevice = dev->associatedDevice;
1529 }
1530 }
1531 ALOGI_IF(associatedDeviceChanged,
1532 "The AssociatedDevice changed for path '%s'. Using new AssociatedDevice: %s",
1533 path.c_str(), associatedDevice->dump().c_str());
1534
1535 return associatedDevice;
1536 }
1537
isChanged() const1538 bool EventHub::AssociatedDevice::isChanged() const {
1539 std::unordered_map<int32_t, RawBatteryInfo> newBatteryInfos =
1540 readBatteryConfiguration(sysfsRootPath);
1541 std::unordered_map<int32_t, RawLightInfo> newLightInfos =
1542 readLightsConfiguration(sysfsRootPath);
1543 std::optional<RawLayoutInfo> newLayoutInfo = readLayoutConfiguration(sysfsRootPath);
1544
1545 if (newBatteryInfos == batteryInfos && newLightInfos == lightInfos &&
1546 newLayoutInfo == layoutInfo) {
1547 return false;
1548 }
1549 return true;
1550 }
1551
vibrate(int32_t deviceId,const VibrationElement & element)1552 void EventHub::vibrate(int32_t deviceId, const VibrationElement& element) {
1553 std::scoped_lock _l(mLock);
1554 Device* device = getDeviceLocked(deviceId);
1555 if (device != nullptr && device->hasValidFd()) {
1556 ff_effect effect;
1557 memset(&effect, 0, sizeof(effect));
1558 effect.type = FF_RUMBLE;
1559 effect.id = device->ffEffectId;
1560 // evdev FF_RUMBLE effect only supports two channels of vibration.
1561 effect.u.rumble.strong_magnitude = element.getMagnitude(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
1562 effect.u.rumble.weak_magnitude = element.getMagnitude(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
1563 effect.replay.length = element.duration.count();
1564 effect.replay.delay = 0;
1565 if (ioctl(device->fd, EVIOCSFF, &effect)) {
1566 ALOGW("Could not upload force feedback effect to device %s due to error %d.",
1567 device->identifier.name.c_str(), errno);
1568 return;
1569 }
1570 device->ffEffectId = effect.id;
1571
1572 struct input_event ev;
1573 ev.input_event_sec = 0;
1574 ev.input_event_usec = 0;
1575 ev.type = EV_FF;
1576 ev.code = device->ffEffectId;
1577 ev.value = 1;
1578 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
1579 ALOGW("Could not start force feedback effect on device %s due to error %d.",
1580 device->identifier.name.c_str(), errno);
1581 return;
1582 }
1583 device->ffEffectPlaying = true;
1584 }
1585 }
1586
cancelVibrate(int32_t deviceId)1587 void EventHub::cancelVibrate(int32_t deviceId) {
1588 std::scoped_lock _l(mLock);
1589 Device* device = getDeviceLocked(deviceId);
1590 if (device != nullptr && device->hasValidFd()) {
1591 if (device->ffEffectPlaying) {
1592 device->ffEffectPlaying = false;
1593
1594 struct input_event ev;
1595 ev.input_event_sec = 0;
1596 ev.input_event_usec = 0;
1597 ev.type = EV_FF;
1598 ev.code = device->ffEffectId;
1599 ev.value = 0;
1600 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
1601 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
1602 device->identifier.name.c_str(), errno);
1603 return;
1604 }
1605 }
1606 }
1607 }
1608
getVibratorIds(int32_t deviceId) const1609 std::vector<int32_t> EventHub::getVibratorIds(int32_t deviceId) const {
1610 std::scoped_lock _l(mLock);
1611 std::vector<int32_t> vibrators;
1612 Device* device = getDeviceLocked(deviceId);
1613 if (device != nullptr && device->hasValidFd() &&
1614 device->classes.test(InputDeviceClass::VIBRATOR)) {
1615 vibrators.push_back(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
1616 vibrators.push_back(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
1617 }
1618 return vibrators;
1619 }
1620
1621 /**
1622 * Checks both mDevices and mOpeningDevices for a device with the descriptor passed.
1623 */
hasDeviceWithDescriptorLocked(const std::string & descriptor) const1624 bool EventHub::hasDeviceWithDescriptorLocked(const std::string& descriptor) const {
1625 for (const auto& device : mOpeningDevices) {
1626 if (descriptor == device->identifier.descriptor) {
1627 return true;
1628 }
1629 }
1630
1631 for (const auto& [id, device] : mDevices) {
1632 if (descriptor == device->identifier.descriptor) {
1633 return true;
1634 }
1635 }
1636 return false;
1637 }
1638
getDeviceLocked(int32_t deviceId) const1639 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
1640 if (deviceId == ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID) {
1641 deviceId = mBuiltInKeyboardId;
1642 }
1643 const auto& it = mDevices.find(deviceId);
1644 return it != mDevices.end() ? it->second.get() : nullptr;
1645 }
1646
getDeviceByPathLocked(const std::string & devicePath) const1647 EventHub::Device* EventHub::getDeviceByPathLocked(const std::string& devicePath) const {
1648 for (const auto& [id, device] : mDevices) {
1649 if (device->path == devicePath) {
1650 return device.get();
1651 }
1652 }
1653 return nullptr;
1654 }
1655
1656 /**
1657 * The file descriptor could be either input device, or a video device (associated with a
1658 * specific input device). Check both cases here, and return the device that this event
1659 * belongs to. Caller can compare the fd's once more to determine event type.
1660 * Looks through all input devices, and only attached video devices. Unattached video
1661 * devices are ignored.
1662 */
getDeviceByFdLocked(int fd) const1663 EventHub::Device* EventHub::getDeviceByFdLocked(int fd) const {
1664 for (const auto& [id, device] : mDevices) {
1665 if (device->fd == fd) {
1666 // This is an input device event
1667 return device.get();
1668 }
1669 if (device->videoDevice && device->videoDevice->getFd() == fd) {
1670 // This is a video device event
1671 return device.get();
1672 }
1673 }
1674 // We do not check mUnattachedVideoDevices here because they should not participate in epoll,
1675 // and therefore should never be looked up by fd.
1676 return nullptr;
1677 }
1678
getBatteryCapacity(int32_t deviceId,int32_t batteryId) const1679 std::optional<int32_t> EventHub::getBatteryCapacity(int32_t deviceId, int32_t batteryId) const {
1680 std::filesystem::path batteryPath;
1681 {
1682 // Do not read the sysfs node to get the battery state while holding
1683 // the EventHub lock. For some peripheral devices, reading battery state
1684 // can be broken and take 5+ seconds. Holding the lock in this case would
1685 // block all other event processing during this time. For now, we assume this
1686 // call never happens on the InputReader thread and read the sysfs node outside
1687 // the lock to prevent event processing from being blocked by this call.
1688 std::scoped_lock _l(mLock);
1689
1690 const auto& infos = getBatteryInfoLocked(deviceId);
1691 auto it = infos.find(batteryId);
1692 if (it == infos.end()) {
1693 return std::nullopt;
1694 }
1695 batteryPath = it->second.path;
1696 } // release lock
1697
1698 std::string buffer;
1699
1700 // Some devices report battery capacity as an integer through the "capacity" file
1701 if (base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::CAPACITY),
1702 &buffer)) {
1703 return std::stoi(base::Trim(buffer));
1704 }
1705
1706 // Other devices report capacity as an enum value POWER_SUPPLY_CAPACITY_LEVEL_XXX
1707 // These values are taken from kernel source code include/linux/power_supply.h
1708 if (base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::CAPACITY_LEVEL),
1709 &buffer)) {
1710 // Remove any white space such as trailing new line
1711 const auto levelIt = BATTERY_LEVEL.find(base::Trim(buffer));
1712 if (levelIt != BATTERY_LEVEL.end()) {
1713 return levelIt->second;
1714 }
1715 }
1716
1717 return std::nullopt;
1718 }
1719
getBatteryStatus(int32_t deviceId,int32_t batteryId) const1720 std::optional<int32_t> EventHub::getBatteryStatus(int32_t deviceId, int32_t batteryId) const {
1721 std::filesystem::path batteryPath;
1722 {
1723 // Do not read the sysfs node to get the battery state while holding
1724 // the EventHub lock. For some peripheral devices, reading battery state
1725 // can be broken and take 5+ seconds. Holding the lock in this case would
1726 // block all other event processing during this time. For now, we assume this
1727 // call never happens on the InputReader thread and read the sysfs node outside
1728 // the lock to prevent event processing from being blocked by this call.
1729 std::scoped_lock _l(mLock);
1730
1731 const auto& infos = getBatteryInfoLocked(deviceId);
1732 auto it = infos.find(batteryId);
1733 if (it == infos.end()) {
1734 return std::nullopt;
1735 }
1736 batteryPath = it->second.path;
1737 } // release lock
1738
1739 std::string buffer;
1740
1741 if (!base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::STATUS),
1742 &buffer)) {
1743 ALOGE("Failed to read sysfs battery info: %s", strerror(errno));
1744 return std::nullopt;
1745 }
1746
1747 // Remove white space like trailing new line
1748 const auto statusIt = BATTERY_STATUS.find(base::Trim(buffer));
1749 if (statusIt != BATTERY_STATUS.end()) {
1750 return statusIt->second;
1751 }
1752
1753 return std::nullopt;
1754 }
1755
getEvents(int timeoutMillis)1756 std::vector<RawEvent> EventHub::getEvents(int timeoutMillis) {
1757 std::scoped_lock _l(mLock);
1758
1759 std::array<input_event, EVENT_BUFFER_SIZE> readBuffer;
1760
1761 std::vector<RawEvent> events;
1762 bool awoken = false;
1763 for (;;) {
1764 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
1765
1766 // Reopen input devices if needed.
1767 if (mNeedToReopenDevices) {
1768 mNeedToReopenDevices = false;
1769
1770 ALOGI("Reopening all input devices due to a configuration change.");
1771
1772 closeAllDevicesLocked();
1773 mNeedToScanDevices = true;
1774 break; // return to the caller before we actually rescan
1775 }
1776
1777 // Report any devices that had last been added/removed.
1778 for (auto it = mClosingDevices.begin(); it != mClosingDevices.end();) {
1779 std::unique_ptr<Device> device = std::move(*it);
1780 ALOGV("Reporting device closed: id=%d, name=%s\n", device->id, device->path.c_str());
1781 const int32_t deviceId = (device->id == mBuiltInKeyboardId)
1782 ? ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID
1783 : device->id;
1784 events.push_back({
1785 .when = now,
1786 .deviceId = deviceId,
1787 .type = DEVICE_REMOVED,
1788 });
1789 it = mClosingDevices.erase(it);
1790 mNeedToSendFinishedDeviceScan = true;
1791 if (events.size() == EVENT_BUFFER_SIZE) {
1792 break;
1793 }
1794 }
1795
1796 if (mNeedToScanDevices) {
1797 mNeedToScanDevices = false;
1798 scanDevicesLocked();
1799 mNeedToSendFinishedDeviceScan = true;
1800 }
1801
1802 while (!mOpeningDevices.empty()) {
1803 std::unique_ptr<Device> device = std::move(*mOpeningDevices.rbegin());
1804 mOpeningDevices.pop_back();
1805 ALOGV("Reporting device opened: id=%d, name=%s\n", device->id, device->path.c_str());
1806 const int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
1807 events.push_back({
1808 .when = now,
1809 .deviceId = deviceId,
1810 .type = DEVICE_ADDED,
1811 });
1812
1813 // Try to find a matching video device by comparing device names
1814 for (auto it = mUnattachedVideoDevices.begin(); it != mUnattachedVideoDevices.end();
1815 it++) {
1816 std::unique_ptr<TouchVideoDevice>& videoDevice = *it;
1817 if (tryAddVideoDeviceLocked(*device, videoDevice)) {
1818 // videoDevice was transferred to 'device'
1819 it = mUnattachedVideoDevices.erase(it);
1820 break;
1821 }
1822 }
1823
1824 auto [dev_it, inserted] = mDevices.insert_or_assign(device->id, std::move(device));
1825 if (!inserted) {
1826 ALOGW("Device id %d exists, replaced.", device->id);
1827 }
1828 mNeedToSendFinishedDeviceScan = true;
1829 if (events.size() == EVENT_BUFFER_SIZE) {
1830 break;
1831 }
1832 }
1833
1834 if (mNeedToSendFinishedDeviceScan) {
1835 mNeedToSendFinishedDeviceScan = false;
1836 events.push_back({
1837 .when = now,
1838 .type = FINISHED_DEVICE_SCAN,
1839 });
1840 if (events.size() == EVENT_BUFFER_SIZE) {
1841 break;
1842 }
1843 }
1844
1845 // Grab the next input event.
1846 bool deviceChanged = false;
1847 while (mPendingEventIndex < mPendingEventCount) {
1848 const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
1849 if (eventItem.data.fd == mINotifyFd) {
1850 if (eventItem.events & EPOLLIN) {
1851 mPendingINotify = true;
1852 } else {
1853 ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
1854 }
1855 continue;
1856 }
1857
1858 if (eventItem.data.fd == mWakeReadPipeFd) {
1859 if (eventItem.events & EPOLLIN) {
1860 ALOGV("awoken after wake()");
1861 awoken = true;
1862 char wakeReadBuffer[16];
1863 ssize_t nRead;
1864 do {
1865 nRead = read(mWakeReadPipeFd, wakeReadBuffer, sizeof(wakeReadBuffer));
1866 } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(wakeReadBuffer));
1867 } else {
1868 ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
1869 eventItem.events);
1870 }
1871 continue;
1872 }
1873
1874 Device* device = getDeviceByFdLocked(eventItem.data.fd);
1875 if (device == nullptr) {
1876 ALOGE("Received unexpected epoll event 0x%08x for unknown fd %d.", eventItem.events,
1877 eventItem.data.fd);
1878 ALOG_ASSERT(!DEBUG);
1879 continue;
1880 }
1881 if (device->videoDevice && eventItem.data.fd == device->videoDevice->getFd()) {
1882 if (eventItem.events & EPOLLIN) {
1883 size_t numFrames = device->videoDevice->readAndQueueFrames();
1884 if (numFrames == 0) {
1885 ALOGE("Received epoll event for video device %s, but could not read frame",
1886 device->videoDevice->getName().c_str());
1887 }
1888 } else if (eventItem.events & EPOLLHUP) {
1889 // TODO(b/121395353) - consider adding EPOLLRDHUP
1890 ALOGI("Removing video device %s due to epoll hang-up event.",
1891 device->videoDevice->getName().c_str());
1892 unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
1893 device->videoDevice = nullptr;
1894 } else {
1895 ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
1896 device->videoDevice->getName().c_str());
1897 ALOG_ASSERT(!DEBUG);
1898 }
1899 continue;
1900 }
1901 // This must be an input event
1902 if (eventItem.events & EPOLLIN) {
1903 int32_t readSize =
1904 read(device->fd, readBuffer.data(),
1905 sizeof(decltype(readBuffer)::value_type) * readBuffer.size());
1906 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
1907 // Device was removed before INotify noticed.
1908 ALOGW("could not get event, removed? (fd: %d size: %" PRId32
1909 " capacity: %zu errno: %d)\n",
1910 device->fd, readSize, readBuffer.size(), errno);
1911 deviceChanged = true;
1912 closeDeviceLocked(*device);
1913 } else if (readSize < 0) {
1914 if (errno != EAGAIN && errno != EINTR) {
1915 ALOGW("could not get event (errno=%d)", errno);
1916 }
1917 } else if ((readSize % sizeof(struct input_event)) != 0) {
1918 ALOGE("could not get event (wrong size: %d)", readSize);
1919 } else {
1920 const int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
1921
1922 const size_t count = size_t(readSize) / sizeof(struct input_event);
1923 for (size_t i = 0; i < count; i++) {
1924 struct input_event& iev = readBuffer[i];
1925 events.push_back({
1926 .when = processEventTimestamp(iev),
1927 .readTime = systemTime(SYSTEM_TIME_MONOTONIC),
1928 .deviceId = deviceId,
1929 .type = iev.type,
1930 .code = iev.code,
1931 .value = iev.value,
1932 });
1933 }
1934 if (events.size() >= EVENT_BUFFER_SIZE) {
1935 // The result buffer is full. Reset the pending event index
1936 // so we will try to read the device again on the next iteration.
1937 mPendingEventIndex -= 1;
1938 break;
1939 }
1940 }
1941 } else if (eventItem.events & EPOLLHUP) {
1942 ALOGI("Removing device %s due to epoll hang-up event.",
1943 device->identifier.name.c_str());
1944 deviceChanged = true;
1945 closeDeviceLocked(*device);
1946 } else {
1947 ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
1948 device->identifier.name.c_str());
1949 }
1950 }
1951
1952 // readNotify() will modify the list of devices so this must be done after
1953 // processing all other events to ensure that we read all remaining events
1954 // before closing the devices.
1955 if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
1956 mPendingINotify = false;
1957 const auto res = readNotifyLocked();
1958 if (!res.ok()) {
1959 ALOGW("Failed to read from inotify: %s", res.error().message().c_str());
1960 }
1961 deviceChanged = true;
1962 }
1963
1964 // Report added or removed devices immediately.
1965 if (deviceChanged) {
1966 continue;
1967 }
1968
1969 // Return now if we have collected any events or if we were explicitly awoken.
1970 if (!events.empty() || awoken) {
1971 break;
1972 }
1973
1974 // Poll for events.
1975 // When a device driver has pending (unread) events, it acquires
1976 // a kernel wake lock. Once the last pending event has been read, the device
1977 // driver will release the kernel wake lock, but the epoll will hold the wakelock,
1978 // since we are using EPOLLWAKEUP. The wakelock is released by the epoll when epoll_wait
1979 // is called again for the same fd that produced the event.
1980 // Thus the system can only sleep if there are no events pending or
1981 // currently being processed.
1982 //
1983 // The timeout is advisory only. If the device is asleep, it will not wake just to
1984 // service the timeout.
1985 mPendingEventIndex = 0;
1986
1987 mLock.unlock(); // release lock before poll
1988
1989 int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
1990
1991 mLock.lock(); // reacquire lock after poll
1992
1993 if (pollResult == 0) {
1994 // Timed out.
1995 mPendingEventCount = 0;
1996 break;
1997 }
1998
1999 if (pollResult < 0) {
2000 // An error occurred.
2001 mPendingEventCount = 0;
2002
2003 // Sleep after errors to avoid locking up the system.
2004 // Hopefully the error is transient.
2005 if (errno != EINTR) {
2006 ALOGW("poll failed (errno=%d)\n", errno);
2007 usleep(100000);
2008 }
2009 } else {
2010 // Some events occurred.
2011 mPendingEventCount = size_t(pollResult);
2012 }
2013 }
2014
2015 // All done, return the number of events we read.
2016 return events;
2017 }
2018
getVideoFrames(int32_t deviceId)2019 std::vector<TouchVideoFrame> EventHub::getVideoFrames(int32_t deviceId) {
2020 std::scoped_lock _l(mLock);
2021
2022 Device* device = getDeviceLocked(deviceId);
2023 if (device == nullptr || !device->videoDevice) {
2024 return {};
2025 }
2026 return device->videoDevice->consumeFrames();
2027 }
2028
wake()2029 void EventHub::wake() {
2030 ALOGV("wake() called");
2031
2032 ssize_t nWrite;
2033 do {
2034 nWrite = write(mWakeWritePipeFd, "W", 1);
2035 } while (nWrite == -1 && errno == EINTR);
2036
2037 if (nWrite != 1 && errno != EAGAIN) {
2038 ALOGW("Could not write wake signal: %s", strerror(errno));
2039 }
2040 }
2041
scanDevicesLocked()2042 void EventHub::scanDevicesLocked() {
2043 status_t result;
2044 std::error_code errorCode;
2045
2046 if (std::filesystem::exists(DEVICE_INPUT_PATH, errorCode)) {
2047 result = scanDirLocked(DEVICE_INPUT_PATH);
2048 if (result < 0) {
2049 ALOGE("scan dir failed for %s", DEVICE_INPUT_PATH);
2050 }
2051 } else {
2052 if (errorCode) {
2053 ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
2054 errorCode.message().c_str());
2055 }
2056 }
2057 if (isV4lScanningEnabled()) {
2058 result = scanVideoDirLocked(DEVICE_PATH);
2059 if (result != OK) {
2060 ALOGE("scan video dir failed for %s", DEVICE_PATH);
2061 }
2062 }
2063 if (mDevices.find(ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID) == mDevices.end()) {
2064 createVirtualKeyboardLocked();
2065 }
2066 }
2067
2068 // ----------------------------------------------------------------------------
2069
registerFdForEpoll(int fd)2070 status_t EventHub::registerFdForEpoll(int fd) {
2071 // TODO(b/121395353) - consider adding EPOLLRDHUP
2072 struct epoll_event eventItem = {};
2073 eventItem.events = EPOLLIN | EPOLLWAKEUP;
2074 eventItem.data.fd = fd;
2075 if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
2076 ALOGE("Could not add fd to epoll instance: %s", strerror(errno));
2077 return -errno;
2078 }
2079 return OK;
2080 }
2081
unregisterFdFromEpoll(int fd)2082 status_t EventHub::unregisterFdFromEpoll(int fd) {
2083 if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, nullptr)) {
2084 ALOGW("Could not remove fd from epoll instance: %s", strerror(errno));
2085 return -errno;
2086 }
2087 return OK;
2088 }
2089
registerDeviceForEpollLocked(Device & device)2090 status_t EventHub::registerDeviceForEpollLocked(Device& device) {
2091 status_t result = registerFdForEpoll(device.fd);
2092 if (result != OK) {
2093 ALOGE("Could not add input device fd to epoll for device %" PRId32, device.id);
2094 return result;
2095 }
2096 if (device.videoDevice) {
2097 registerVideoDeviceForEpollLocked(*device.videoDevice);
2098 }
2099 return result;
2100 }
2101
registerVideoDeviceForEpollLocked(const TouchVideoDevice & videoDevice)2102 void EventHub::registerVideoDeviceForEpollLocked(const TouchVideoDevice& videoDevice) {
2103 status_t result = registerFdForEpoll(videoDevice.getFd());
2104 if (result != OK) {
2105 ALOGE("Could not add video device %s to epoll", videoDevice.getName().c_str());
2106 }
2107 }
2108
unregisterDeviceFromEpollLocked(Device & device)2109 status_t EventHub::unregisterDeviceFromEpollLocked(Device& device) {
2110 if (device.hasValidFd()) {
2111 status_t result = unregisterFdFromEpoll(device.fd);
2112 if (result != OK) {
2113 ALOGW("Could not remove input device fd from epoll for device %" PRId32, device.id);
2114 return result;
2115 }
2116 }
2117 if (device.videoDevice) {
2118 unregisterVideoDeviceFromEpollLocked(*device.videoDevice);
2119 }
2120 return OK;
2121 }
2122
unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice & videoDevice)2123 void EventHub::unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice& videoDevice) {
2124 if (videoDevice.hasValidFd()) {
2125 status_t result = unregisterFdFromEpoll(videoDevice.getFd());
2126 if (result != OK) {
2127 ALOGW("Could not remove video device fd from epoll for device: %s",
2128 videoDevice.getName().c_str());
2129 }
2130 }
2131 }
2132
reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier & identifier,ftl::Flags<InputDeviceClass> classes)2133 void EventHub::reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier& identifier,
2134 ftl::Flags<InputDeviceClass> classes) {
2135 SHA256_CTX ctx;
2136 SHA256_Init(&ctx);
2137 SHA256_Update(&ctx, reinterpret_cast<const uint8_t*>(identifier.uniqueId.c_str()),
2138 identifier.uniqueId.size());
2139 std::array<uint8_t, SHA256_DIGEST_LENGTH> digest;
2140 SHA256_Final(digest.data(), &ctx);
2141
2142 std::string obfuscatedId;
2143 for (size_t i = 0; i < OBFUSCATED_LENGTH; i++) {
2144 obfuscatedId += StringPrintf("%02x", digest[i]);
2145 }
2146
2147 android::util::stats_write(android::util::INPUTDEVICE_REGISTERED, identifier.name.c_str(),
2148 identifier.vendor, identifier.product, identifier.version,
2149 identifier.bus, obfuscatedId.c_str(), classes.get());
2150 }
2151
openDeviceLocked(const std::string & devicePath)2152 void EventHub::openDeviceLocked(const std::string& devicePath) {
2153 // If an input device happens to register around the time when EventHub's constructor runs, it
2154 // is possible that the same input event node (for example, /dev/input/event3) will be noticed
2155 // in both 'inotify' callback and also in the 'scanDirLocked' pass. To prevent duplicate devices
2156 // from getting registered, ensure that this path is not already covered by an existing device.
2157 for (const auto& [deviceId, device] : mDevices) {
2158 if (device->path == devicePath) {
2159 return; // device was already registered
2160 }
2161 }
2162
2163 char buffer[80];
2164
2165 ALOGV("Opening device: %s", devicePath.c_str());
2166
2167 int fd = open(devicePath.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
2168 if (fd < 0) {
2169 ALOGE("could not open %s, %s\n", devicePath.c_str(), strerror(errno));
2170 return;
2171 }
2172
2173 InputDeviceIdentifier identifier;
2174
2175 // Get device name.
2176 if (ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
2177 ALOGE("Could not get device name for %s: %s", devicePath.c_str(), strerror(errno));
2178 } else {
2179 buffer[sizeof(buffer) - 1] = '\0';
2180 identifier.name = buffer;
2181 }
2182
2183 // Check to see if the device is on our excluded list
2184 for (size_t i = 0; i < mExcludedDevices.size(); i++) {
2185 const std::string& item = mExcludedDevices[i];
2186 if (identifier.name == item) {
2187 ALOGI("ignoring event id %s driver %s\n", devicePath.c_str(), item.c_str());
2188 close(fd);
2189 return;
2190 }
2191 }
2192
2193 // Get device driver version.
2194 int driverVersion;
2195 if (ioctl(fd, EVIOCGVERSION, &driverVersion)) {
2196 ALOGE("could not get driver version for %s, %s\n", devicePath.c_str(), strerror(errno));
2197 close(fd);
2198 return;
2199 }
2200
2201 // Get device identifier.
2202 struct input_id inputId;
2203 if (ioctl(fd, EVIOCGID, &inputId)) {
2204 ALOGE("could not get device input id for %s, %s\n", devicePath.c_str(), strerror(errno));
2205 close(fd);
2206 return;
2207 }
2208 identifier.bus = inputId.bustype;
2209 identifier.product = inputId.product;
2210 identifier.vendor = inputId.vendor;
2211 identifier.version = inputId.version;
2212
2213 // Get device physical location.
2214 if (ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
2215 // fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
2216 } else {
2217 buffer[sizeof(buffer) - 1] = '\0';
2218 identifier.location = buffer;
2219 }
2220
2221 // Get device unique id.
2222 if (ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
2223 // fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
2224 } else {
2225 buffer[sizeof(buffer) - 1] = '\0';
2226 identifier.uniqueId = buffer;
2227 }
2228
2229 // Attempt to get the bluetooth address of an input device from the uniqueId.
2230 if (identifier.bus == BUS_BLUETOOTH &&
2231 std::regex_match(identifier.uniqueId,
2232 std::regex("^[A-Fa-f0-9]{2}(?::[A-Fa-f0-9]{2}){5}$"))) {
2233 identifier.bluetoothAddress = identifier.uniqueId;
2234 // The Bluetooth stack requires alphabetic characters to be uppercase in a valid address.
2235 for (auto& c : *identifier.bluetoothAddress) {
2236 c = ::toupper(c);
2237 }
2238 }
2239
2240 // Fill in the descriptor.
2241 assignDescriptorLocked(identifier);
2242
2243 // Allocate device. (The device object takes ownership of the fd at this point.)
2244 int32_t deviceId = mNextDeviceId++;
2245 std::unique_ptr<Device> device =
2246 std::make_unique<Device>(fd, deviceId, devicePath, identifier,
2247 obtainAssociatedDeviceLocked(devicePath));
2248
2249 ALOGV("add device %d: %s\n", deviceId, devicePath.c_str());
2250 ALOGV(" bus: %04x\n"
2251 " vendor %04x\n"
2252 " product %04x\n"
2253 " version %04x\n",
2254 identifier.bus, identifier.vendor, identifier.product, identifier.version);
2255 ALOGV(" name: \"%s\"\n", identifier.name.c_str());
2256 ALOGV(" location: \"%s\"\n", identifier.location.c_str());
2257 ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.c_str());
2258 ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.c_str());
2259 ALOGV(" driver: v%d.%d.%d\n", driverVersion >> 16, (driverVersion >> 8) & 0xff,
2260 driverVersion & 0xff);
2261
2262 // Load the configuration file for the device.
2263 device->loadConfigurationLocked();
2264
2265 // Figure out the kinds of events the device reports.
2266 device->readDeviceBitMask(EVIOCGBIT(EV_KEY, 0), device->keyBitmask);
2267 device->readDeviceBitMask(EVIOCGBIT(EV_ABS, 0), device->absBitmask);
2268 device->readDeviceBitMask(EVIOCGBIT(EV_REL, 0), device->relBitmask);
2269 device->readDeviceBitMask(EVIOCGBIT(EV_SW, 0), device->swBitmask);
2270 device->readDeviceBitMask(EVIOCGBIT(EV_LED, 0), device->ledBitmask);
2271 device->readDeviceBitMask(EVIOCGBIT(EV_FF, 0), device->ffBitmask);
2272 device->readDeviceBitMask(EVIOCGBIT(EV_MSC, 0), device->mscBitmask);
2273 device->readDeviceBitMask(EVIOCGPROP(0), device->propBitmask);
2274
2275 // See if this is a device with keys. This could be full keyboard, or other devices like
2276 // gamepads, joysticks, and styluses with buttons that should generate key presses.
2277 bool haveKeyboardKeys =
2278 device->keyBitmask.any(0, BTN_MISC) || device->keyBitmask.any(BTN_WHEEL, KEY_MAX + 1);
2279 bool haveGamepadButtons = device->keyBitmask.any(BTN_MISC, BTN_MOUSE) ||
2280 device->keyBitmask.any(BTN_JOYSTICK, BTN_DIGI);
2281 bool haveStylusButtons = device->keyBitmask.test(BTN_STYLUS) ||
2282 device->keyBitmask.test(BTN_STYLUS2) || device->keyBitmask.test(BTN_STYLUS3);
2283 if (haveKeyboardKeys || haveGamepadButtons || haveStylusButtons) {
2284 device->classes |= InputDeviceClass::KEYBOARD;
2285 }
2286
2287 // See if this is a cursor device such as a trackball or mouse.
2288 if (device->keyBitmask.test(BTN_MOUSE) && device->relBitmask.test(REL_X) &&
2289 device->relBitmask.test(REL_Y)) {
2290 device->classes |= InputDeviceClass::CURSOR;
2291 }
2292
2293 // See if the device is specially configured to be of a certain type.
2294 if (device->configuration) {
2295 std::string deviceType = device->configuration->getString("device.type").value_or("");
2296 if (deviceType == "rotaryEncoder") {
2297 device->classes |= InputDeviceClass::ROTARY_ENCODER;
2298 } else if (deviceType == "externalStylus") {
2299 device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
2300 }
2301 }
2302
2303 // See if this is a touch pad.
2304 // Is this a new modern multi-touch driver?
2305 if (device->absBitmask.test(ABS_MT_POSITION_X) && device->absBitmask.test(ABS_MT_POSITION_Y)) {
2306 // Some joysticks such as the PS3 controller report axes that conflict
2307 // with the ABS_MT range. Try to confirm that the device really is
2308 // a touch screen.
2309 if (device->keyBitmask.test(BTN_TOUCH) || !haveGamepadButtons) {
2310 device->classes |= (InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT);
2311 if (device->propBitmask.test(INPUT_PROP_POINTER) &&
2312 !device->keyBitmask.any(BTN_TOOL_PEN, BTN_TOOL_FINGER) && !haveStylusButtons) {
2313 device->classes |= InputDeviceClass::TOUCHPAD;
2314 }
2315 }
2316 // Is this an old style single-touch driver?
2317 } else if (device->keyBitmask.test(BTN_TOUCH) && device->absBitmask.test(ABS_X) &&
2318 device->absBitmask.test(ABS_Y)) {
2319 device->classes |= InputDeviceClass::TOUCH;
2320 // Is this a stylus that reports contact/pressure independently of touch coordinates?
2321 } else if ((device->absBitmask.test(ABS_PRESSURE) || device->keyBitmask.test(BTN_TOUCH)) &&
2322 !device->absBitmask.test(ABS_X) && !device->absBitmask.test(ABS_Y)) {
2323 device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
2324 }
2325
2326 // See if this device is a joystick.
2327 // Assumes that joysticks always have gamepad buttons in order to distinguish them
2328 // from other devices such as accelerometers that also have absolute axes.
2329 if (haveGamepadButtons) {
2330 auto assumedClasses = device->classes | InputDeviceClass::JOYSTICK;
2331 for (int i = 0; i <= ABS_MAX; i++) {
2332 if (device->absBitmask.test(i) &&
2333 (getAbsAxisUsage(i, assumedClasses).test(InputDeviceClass::JOYSTICK))) {
2334 device->classes = assumedClasses;
2335 break;
2336 }
2337 }
2338 }
2339
2340 // Check whether this device is an accelerometer.
2341 if (device->propBitmask.test(INPUT_PROP_ACCELEROMETER)) {
2342 device->classes |= InputDeviceClass::SENSOR;
2343 }
2344
2345 // Check whether this device has switches.
2346 for (int i = 0; i <= SW_MAX; i++) {
2347 if (device->swBitmask.test(i)) {
2348 device->classes |= InputDeviceClass::SWITCH;
2349 break;
2350 }
2351 }
2352
2353 // Check whether this device supports the vibrator.
2354 if (device->ffBitmask.test(FF_RUMBLE)) {
2355 device->classes |= InputDeviceClass::VIBRATOR;
2356 }
2357
2358 // Configure virtual keys.
2359 if ((device->classes.test(InputDeviceClass::TOUCH))) {
2360 // Load the virtual keys for the touch screen, if any.
2361 // We do this now so that we can make sure to load the keymap if necessary.
2362 bool success = device->loadVirtualKeyMapLocked();
2363 if (success) {
2364 device->classes |= InputDeviceClass::KEYBOARD;
2365 }
2366 }
2367
2368 // Load the key map.
2369 // We need to do this for joysticks too because the key layout may specify axes, and for
2370 // sensor as well because the key layout may specify the axes to sensor data mapping.
2371 status_t keyMapStatus = NAME_NOT_FOUND;
2372 if (device->classes.any(InputDeviceClass::KEYBOARD | InputDeviceClass::JOYSTICK |
2373 InputDeviceClass::SENSOR)) {
2374 // Load the keymap for the device.
2375 keyMapStatus = device->loadKeyMapLocked();
2376 }
2377
2378 // Configure the keyboard, gamepad or virtual keyboard.
2379 if (device->classes.test(InputDeviceClass::KEYBOARD)) {
2380 // Register the keyboard as a built-in keyboard if it is eligible.
2381 if (!keyMapStatus && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD &&
2382 isEligibleBuiltInKeyboard(device->identifier, device->configuration.get(),
2383 &device->keyMap)) {
2384 mBuiltInKeyboardId = device->id;
2385 }
2386
2387 // 'Q' key support = cheap test of whether this is an alpha-capable kbd
2388 if (device->hasKeycodeLocked(AKEYCODE_Q)) {
2389 device->classes |= InputDeviceClass::ALPHAKEY;
2390 }
2391
2392 // See if this device has a D-pad.
2393 if (std::all_of(DPAD_REQUIRED_KEYCODES.begin(), DPAD_REQUIRED_KEYCODES.end(),
2394 [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) {
2395 device->classes |= InputDeviceClass::DPAD;
2396 }
2397
2398 // See if this device has a gamepad.
2399 if (std::any_of(GAMEPAD_KEYCODES.begin(), GAMEPAD_KEYCODES.end(),
2400 [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) {
2401 device->classes |= InputDeviceClass::GAMEPAD;
2402 }
2403
2404 // See if this device has any stylus buttons that we would want to fuse with touch data.
2405 if (!device->classes.any(InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT) &&
2406 !device->classes.any(InputDeviceClass::ALPHAKEY) &&
2407 std::any_of(STYLUS_BUTTON_KEYCODES.begin(), STYLUS_BUTTON_KEYCODES.end(),
2408 [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) {
2409 device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
2410 }
2411 }
2412
2413 // If the device isn't recognized as something we handle, don't monitor it.
2414 if (device->classes == ftl::Flags<InputDeviceClass>(0)) {
2415 ALOGV("Dropping device: id=%d, path='%s', name='%s'", deviceId, devicePath.c_str(),
2416 device->identifier.name.c_str());
2417 return;
2418 }
2419
2420 // Classify InputDeviceClass::BATTERY.
2421 if (device->associatedDevice && !device->associatedDevice->batteryInfos.empty()) {
2422 device->classes |= InputDeviceClass::BATTERY;
2423 }
2424
2425 // Classify InputDeviceClass::LIGHT.
2426 if (device->associatedDevice && !device->associatedDevice->lightInfos.empty()) {
2427 device->classes |= InputDeviceClass::LIGHT;
2428 }
2429
2430 // Determine whether the device has a mic.
2431 if (device->deviceHasMicLocked()) {
2432 device->classes |= InputDeviceClass::MIC;
2433 }
2434
2435 // Determine whether the device is external or internal.
2436 if (device->isExternalDeviceLocked()) {
2437 device->classes |= InputDeviceClass::EXTERNAL;
2438 }
2439
2440 if (device->classes.any(InputDeviceClass::JOYSTICK | InputDeviceClass::DPAD) &&
2441 device->classes.test(InputDeviceClass::GAMEPAD)) {
2442 device->controllerNumber = getNextControllerNumberLocked(device->identifier.name);
2443 device->setLedForControllerLocked();
2444 }
2445
2446 if (registerDeviceForEpollLocked(*device) != OK) {
2447 return;
2448 }
2449
2450 device->configureFd();
2451
2452 // read absolute axis info for all available axes for the device
2453 populateDeviceAbsoluteAxisInfo(*device);
2454
2455 ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=%s, "
2456 "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ",
2457 deviceId, fd, devicePath.c_str(), device->identifier.name.c_str(),
2458 device->classes.string().c_str(), device->configurationFile.c_str(),
2459 device->keyMap.keyLayoutFile.c_str(), device->keyMap.keyCharacterMapFile.c_str(),
2460 toString(mBuiltInKeyboardId == deviceId));
2461
2462 addDeviceLocked(std::move(device));
2463 }
2464
openVideoDeviceLocked(const std::string & devicePath)2465 void EventHub::openVideoDeviceLocked(const std::string& devicePath) {
2466 std::unique_ptr<TouchVideoDevice> videoDevice = TouchVideoDevice::create(devicePath);
2467 if (!videoDevice) {
2468 ALOGE("Could not create touch video device for %s. Ignoring", devicePath.c_str());
2469 return;
2470 }
2471 // Transfer ownership of this video device to a matching input device
2472 for (const auto& [id, device] : mDevices) {
2473 if (tryAddVideoDeviceLocked(*device, videoDevice)) {
2474 return; // 'device' now owns 'videoDevice'
2475 }
2476 }
2477
2478 // Couldn't find a matching input device, so just add it to a temporary holding queue.
2479 // A matching input device may appear later.
2480 ALOGI("Adding video device %s to list of unattached video devices",
2481 videoDevice->getName().c_str());
2482 mUnattachedVideoDevices.push_back(std::move(videoDevice));
2483 }
2484
tryAddVideoDeviceLocked(EventHub::Device & device,std::unique_ptr<TouchVideoDevice> & videoDevice)2485 bool EventHub::tryAddVideoDeviceLocked(EventHub::Device& device,
2486 std::unique_ptr<TouchVideoDevice>& videoDevice) {
2487 if (videoDevice->getName() != device.identifier.name) {
2488 return false;
2489 }
2490 device.videoDevice = std::move(videoDevice);
2491 if (device.enabled) {
2492 registerVideoDeviceForEpollLocked(*device.videoDevice);
2493 }
2494 return true;
2495 }
2496
isDeviceEnabled(int32_t deviceId) const2497 bool EventHub::isDeviceEnabled(int32_t deviceId) const {
2498 std::scoped_lock _l(mLock);
2499 Device* device = getDeviceLocked(deviceId);
2500 if (device == nullptr) {
2501 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2502 return false;
2503 }
2504 return device->enabled;
2505 }
2506
enableDevice(int32_t deviceId)2507 status_t EventHub::enableDevice(int32_t deviceId) {
2508 std::scoped_lock _l(mLock);
2509 Device* device = getDeviceLocked(deviceId);
2510 if (device == nullptr) {
2511 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2512 return BAD_VALUE;
2513 }
2514 if (device->enabled) {
2515 ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId);
2516 return OK;
2517 }
2518 status_t result = device->enable();
2519 if (result != OK) {
2520 ALOGE("Failed to enable device %" PRId32, deviceId);
2521 return result;
2522 }
2523
2524 device->configureFd();
2525
2526 return registerDeviceForEpollLocked(*device);
2527 }
2528
disableDevice(int32_t deviceId)2529 status_t EventHub::disableDevice(int32_t deviceId) {
2530 std::scoped_lock _l(mLock);
2531 Device* device = getDeviceLocked(deviceId);
2532 if (device == nullptr) {
2533 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2534 return BAD_VALUE;
2535 }
2536 if (!device->enabled) {
2537 ALOGW("Duplicate call to %s, input device already disabled", __func__);
2538 return OK;
2539 }
2540 unregisterDeviceFromEpollLocked(*device);
2541 return device->disable();
2542 }
2543
2544 // TODO(b/274755573): Shift to uevent handling on native side and remove this method
2545 // Currently using Java UEventObserver to trigger this which uses UEvent infrastructure that uses a
2546 // NETLINK socket to observe UEvents. We can create similar infrastructure on Eventhub side to
2547 // directly observe UEvents instead of triggering from Java side.
sysfsNodeChanged(const std::string & sysfsNodePath)2548 void EventHub::sysfsNodeChanged(const std::string& sysfsNodePath) {
2549 std::scoped_lock _l(mLock);
2550
2551 // Check in opening devices
2552 for (auto it = mOpeningDevices.begin(); it != mOpeningDevices.end(); it++) {
2553 std::unique_ptr<Device>& device = *it;
2554 if (device->associatedDevice &&
2555 sysfsNodePath.find(device->associatedDevice->sysfsRootPath.string()) !=
2556 std::string::npos &&
2557 device->associatedDevice->isChanged()) {
2558 it = mOpeningDevices.erase(it);
2559 openDeviceLocked(device->path);
2560 }
2561 }
2562
2563 // Check in already added device
2564 std::vector<Device*> devicesToReopen;
2565 for (const auto& [id, device] : mDevices) {
2566 if (device->associatedDevice &&
2567 sysfsNodePath.find(device->associatedDevice->sysfsRootPath.string()) !=
2568 std::string::npos &&
2569 device->associatedDevice->isChanged()) {
2570 devicesToReopen.push_back(device.get());
2571 }
2572 }
2573 for (const auto& device : devicesToReopen) {
2574 closeDeviceLocked(*device);
2575 openDeviceLocked(device->path);
2576 }
2577 devicesToReopen.clear();
2578 }
2579
createVirtualKeyboardLocked()2580 void EventHub::createVirtualKeyboardLocked() {
2581 InputDeviceIdentifier identifier;
2582 identifier.name = "Virtual";
2583 identifier.uniqueId = "<virtual>";
2584 assignDescriptorLocked(identifier);
2585
2586 std::unique_ptr<Device> device =
2587 std::make_unique<Device>(-1, ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID, "<virtual>",
2588 identifier, /*associatedDevice=*/nullptr);
2589 device->classes = InputDeviceClass::KEYBOARD | InputDeviceClass::ALPHAKEY |
2590 InputDeviceClass::DPAD | InputDeviceClass::VIRTUAL;
2591 device->loadKeyMapLocked();
2592 addDeviceLocked(std::move(device));
2593 }
2594
addDeviceLocked(std::unique_ptr<Device> device)2595 void EventHub::addDeviceLocked(std::unique_ptr<Device> device) {
2596 reportDeviceAddedForStatisticsLocked(device->identifier, device->classes);
2597 mOpeningDevices.push_back(std::move(device));
2598 }
2599
getNextControllerNumberLocked(const std::string & name)2600 int32_t EventHub::getNextControllerNumberLocked(const std::string& name) {
2601 if (mControllerNumbers.isFull()) {
2602 ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
2603 name.c_str());
2604 return 0;
2605 }
2606 // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
2607 // one
2608 return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
2609 }
2610
releaseControllerNumberLocked(int32_t num)2611 void EventHub::releaseControllerNumberLocked(int32_t num) {
2612 if (num > 0) {
2613 mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
2614 }
2615 }
2616
closeDeviceByPathLocked(const std::string & devicePath)2617 void EventHub::closeDeviceByPathLocked(const std::string& devicePath) {
2618 Device* device = getDeviceByPathLocked(devicePath);
2619 if (device != nullptr) {
2620 closeDeviceLocked(*device);
2621 return;
2622 }
2623 ALOGV("Remove device: %s not found, device may already have been removed.", devicePath.c_str());
2624 }
2625
2626 /**
2627 * Find the video device by filename, and close it.
2628 * The video device is closed by path during an inotify event, where we don't have the
2629 * additional context about the video device fd, or the associated input device.
2630 */
closeVideoDeviceByPathLocked(const std::string & devicePath)2631 void EventHub::closeVideoDeviceByPathLocked(const std::string& devicePath) {
2632 // A video device may be owned by an existing input device, or it may be stored in
2633 // the mUnattachedVideoDevices queue. Check both locations.
2634 for (const auto& [id, device] : mDevices) {
2635 if (device->videoDevice && device->videoDevice->getPath() == devicePath) {
2636 unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
2637 device->videoDevice = nullptr;
2638 return;
2639 }
2640 }
2641 std::erase_if(mUnattachedVideoDevices,
2642 [&devicePath](const std::unique_ptr<TouchVideoDevice>& videoDevice) {
2643 return videoDevice->getPath() == devicePath;
2644 });
2645 }
2646
closeAllDevicesLocked()2647 void EventHub::closeAllDevicesLocked() {
2648 mUnattachedVideoDevices.clear();
2649 while (!mDevices.empty()) {
2650 closeDeviceLocked(*(mDevices.begin()->second));
2651 }
2652 }
2653
closeDeviceLocked(Device & device)2654 void EventHub::closeDeviceLocked(Device& device) {
2655 ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=%s", device.path.c_str(),
2656 device.identifier.name.c_str(), device.id, device.fd, device.classes.string().c_str());
2657
2658 if (device.id == mBuiltInKeyboardId) {
2659 ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
2660 device.path.c_str(), mBuiltInKeyboardId);
2661 mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
2662 }
2663
2664 unregisterDeviceFromEpollLocked(device);
2665 if (device.videoDevice) {
2666 // This must be done after the video device is removed from epoll
2667 mUnattachedVideoDevices.push_back(std::move(device.videoDevice));
2668 }
2669
2670 releaseControllerNumberLocked(device.controllerNumber);
2671 device.controllerNumber = 0;
2672 device.close();
2673 mClosingDevices.push_back(std::move(mDevices[device.id]));
2674
2675 mDevices.erase(device.id);
2676 }
2677
readNotifyLocked()2678 base::Result<void> EventHub::readNotifyLocked() {
2679 static constexpr auto EVENT_SIZE = static_cast<ssize_t>(sizeof(inotify_event));
2680 uint8_t eventBuffer[512];
2681 ssize_t sizeRead;
2682
2683 ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
2684 do {
2685 sizeRead = read(mINotifyFd, eventBuffer, sizeof(eventBuffer));
2686 } while (sizeRead < 0 && errno == EINTR);
2687
2688 if (sizeRead < EVENT_SIZE) return Errorf("could not get event, %s", strerror(errno));
2689
2690 for (ssize_t eventPos = 0; sizeRead >= EVENT_SIZE;) {
2691 const inotify_event* event;
2692 event = (const inotify_event*)(eventBuffer + eventPos);
2693 if (event->len == 0) continue;
2694
2695 handleNotifyEventLocked(*event);
2696
2697 const ssize_t eventSize = EVENT_SIZE + event->len;
2698 sizeRead -= eventSize;
2699 eventPos += eventSize;
2700 }
2701 return {};
2702 }
2703
handleNotifyEventLocked(const inotify_event & event)2704 void EventHub::handleNotifyEventLocked(const inotify_event& event) {
2705 if (event.wd == mDeviceInputWd) {
2706 std::string filename = std::string(DEVICE_INPUT_PATH) + "/" + event.name;
2707 if (event.mask & IN_CREATE) {
2708 openDeviceLocked(filename);
2709 } else {
2710 ALOGI("Removing device '%s' due to inotify event\n", filename.c_str());
2711 closeDeviceByPathLocked(filename);
2712 }
2713 } else if (event.wd == mDeviceWd) {
2714 if (isV4lTouchNode(event.name)) {
2715 std::string filename = std::string(DEVICE_PATH) + "/" + event.name;
2716 if (event.mask & IN_CREATE) {
2717 openVideoDeviceLocked(filename);
2718 } else {
2719 ALOGI("Removing video device '%s' due to inotify event", filename.c_str());
2720 closeVideoDeviceByPathLocked(filename);
2721 }
2722 } else if (strcmp(event.name, "input") == 0 && event.mask & IN_CREATE) {
2723 addDeviceInputInotify();
2724 }
2725 } else {
2726 LOG_ALWAYS_FATAL("Unexpected inotify event, wd = %i", event.wd);
2727 }
2728 }
2729
scanDirLocked(const std::string & dirname)2730 status_t EventHub::scanDirLocked(const std::string& dirname) {
2731 for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
2732 openDeviceLocked(entry.path());
2733 }
2734 return 0;
2735 }
2736
2737 /**
2738 * Look for all dirname/v4l-touch* devices, and open them.
2739 */
scanVideoDirLocked(const std::string & dirname)2740 status_t EventHub::scanVideoDirLocked(const std::string& dirname) {
2741 for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
2742 if (isV4lTouchNode(entry.path())) {
2743 ALOGI("Found touch video device %s", entry.path().c_str());
2744 openVideoDeviceLocked(entry.path());
2745 }
2746 }
2747 return OK;
2748 }
2749
requestReopenDevices()2750 void EventHub::requestReopenDevices() {
2751 ALOGV("requestReopenDevices() called");
2752
2753 std::scoped_lock _l(mLock);
2754 mNeedToReopenDevices = true;
2755 }
2756
dump(std::string & dump) const2757 void EventHub::dump(std::string& dump) const {
2758 dump += "Event Hub State:\n";
2759
2760 { // acquire lock
2761 std::scoped_lock _l(mLock);
2762
2763 dump += StringPrintf(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
2764
2765 dump += INDENT "Devices:\n";
2766
2767 for (const auto& [id, device] : mDevices) {
2768 if (mBuiltInKeyboardId == device->id) {
2769 dump += StringPrintf(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
2770 device->id, device->identifier.name.c_str());
2771 } else {
2772 dump += StringPrintf(INDENT2 "%d: %s\n", device->id,
2773 device->identifier.name.c_str());
2774 }
2775 dump += StringPrintf(INDENT3 "Classes: %s\n", device->classes.string().c_str());
2776 dump += StringPrintf(INDENT3 "Path: %s\n", device->path.c_str());
2777 dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(device->enabled));
2778 dump += StringPrintf(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.c_str());
2779 dump += StringPrintf(INDENT3 "Location: %s\n", device->identifier.location.c_str());
2780 dump += StringPrintf(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
2781 dump += StringPrintf(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.c_str());
2782 dump += StringPrintf(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
2783 "product=0x%04x, version=0x%04x, bluetoothAddress=%s\n",
2784 device->identifier.bus, device->identifier.vendor,
2785 device->identifier.product, device->identifier.version,
2786 toString(device->identifier.bluetoothAddress).c_str());
2787 dump += StringPrintf(INDENT3 "KeyLayoutFile: %s\n",
2788 device->keyMap.keyLayoutFile.c_str());
2789 dump += StringPrintf(INDENT3 "KeyCharacterMapFile: %s\n",
2790 device->keyMap.keyCharacterMapFile.c_str());
2791 if (device->associatedDevice && device->associatedDevice->layoutInfo) {
2792 dump += StringPrintf(INDENT3 "LanguageTag: %s\n",
2793 device->associatedDevice->layoutInfo->languageTag.c_str());
2794 dump += StringPrintf(INDENT3 "LayoutType: %s\n",
2795 device->associatedDevice->layoutInfo->layoutType.c_str());
2796 }
2797 dump += StringPrintf(INDENT3 "ConfigurationFile: %s\n",
2798 device->configurationFile.c_str());
2799 dump += StringPrintf(INDENT3 "VideoDevice: %s\n",
2800 device->videoDevice ? device->videoDevice->dump().c_str()
2801 : "<none>");
2802 dump += StringPrintf(INDENT3 "SysfsDevicePath: %s\n",
2803 device->associatedDevice
2804 ? device->associatedDevice->sysfsRootPath.c_str()
2805 : "<none>");
2806 }
2807
2808 dump += INDENT "Unattached video devices:\n";
2809 for (const std::unique_ptr<TouchVideoDevice>& videoDevice : mUnattachedVideoDevices) {
2810 dump += INDENT2 + videoDevice->dump() + "\n";
2811 }
2812 if (mUnattachedVideoDevices.empty()) {
2813 dump += INDENT2 "<none>\n";
2814 }
2815 } // release lock
2816 }
2817
monitor() const2818 void EventHub::monitor() const {
2819 // Acquire and release the lock to ensure that the event hub has not deadlocked.
2820 std::unique_lock<std::mutex> lock(mLock);
2821 }
2822
dump() const2823 std::string EventHub::AssociatedDevice::dump() const {
2824 return StringPrintf("path=%s, numBatteries=%zu, numLight=%zu", sysfsRootPath.c_str(),
2825 batteryInfos.size(), lightInfos.size());
2826 }
2827
2828 } // namespace android
2829