• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrTriangulator_DEFINED
9 #define GrTriangulator_DEFINED
10 
11 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
12 
13 #include "include/core/SkPath.h"
14 #include "include/core/SkPoint.h"
15 #include "include/private/SkColorData.h"
16 #include "src/base/SkArenaAlloc.h"
17 #include "src/gpu/ganesh/GrColor.h"
18 
19 class GrEagerVertexAllocator;
20 struct SkRect;
21 
22 #define TRIANGULATOR_LOGGING 0
23 #define TRIANGULATOR_WIREFRAME 0
24 
25 /**
26  * Provides utility functions for converting paths to a collection of triangles.
27  */
28 class GrTriangulator {
29 public:
30     constexpr static int kArenaDefaultChunkSize = 16 * 1024;
31 
PathToTriangles(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,GrEagerVertexAllocator * vertexAllocator,bool * isLinear)32     static int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
33                                GrEagerVertexAllocator* vertexAllocator, bool* isLinear) {
34         if (!path.isFinite()) {
35             return 0;
36         }
37         SkArenaAlloc alloc(kArenaDefaultChunkSize);
38         GrTriangulator triangulator(path, &alloc);
39         auto [ polys, success ] = triangulator.pathToPolys(tolerance, clipBounds, isLinear);
40         if (!success) {
41             return 0;
42         }
43         int count = triangulator.polysToTriangles(polys, vertexAllocator);
44         return count;
45     }
46 
47     // Enums used by GrTriangulator internals.
48     typedef enum { kLeft_Side, kRight_Side } Side;
49     enum class EdgeType { kInner, kOuter, kConnector };
50 
51     // Structs used by GrTriangulator internals.
52     struct Vertex;
53     struct VertexList;
54     struct Line;
55     struct Edge;
56     struct EdgeList;
57     struct MonotonePoly;
58     struct Poly;
59     struct Comparator;
60 
61 protected:
GrTriangulator(const SkPath & path,SkArenaAlloc * alloc)62     GrTriangulator(const SkPath& path, SkArenaAlloc* alloc) : fPath(path), fAlloc(alloc) {}
~GrTriangulator()63     virtual ~GrTriangulator() {}
64 
65     // There are six stages to the basic algorithm:
66     //
67     // 1) Linearize the path contours into piecewise linear segments:
68     void pathToContours(float tolerance, const SkRect& clipBounds, VertexList* contours,
69                         bool* isLinear) const;
70 
71     // 2) Build a mesh of edges connecting the vertices:
72     void contoursToMesh(VertexList* contours, int contourCnt, VertexList* mesh,
73                         const Comparator&);
74 
75     // 3) Sort the vertices in Y (and secondarily in X):
76     static void SortedMerge(VertexList* front, VertexList* back, VertexList* result,
77                             const Comparator&);
78     static void SortMesh(VertexList* vertices, const Comparator&);
79 
80     // 4) Simplify the mesh by inserting new vertices at intersecting edges:
81     enum class SimplifyResult {
82         kFailed,
83         kAlreadySimple,
84         kFoundSelfIntersection
85     };
86 
87     SimplifyResult SK_WARN_UNUSED_RESULT simplify(VertexList* mesh, const Comparator&);
88 
89     // 5) Tessellate the simplified mesh into monotone polygons:
90     virtual std::tuple<Poly*, bool> tessellate(const VertexList& vertices, const Comparator&);
91 
92     // 6) Triangulate the monotone polygons directly into a vertex buffer:
93     skgpu::VertexWriter polysToTriangles(Poly* polys,
94                                          SkPathFillType overrideFillType,
95                                          skgpu::VertexWriter data) const;
96 
97     // The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
98     // of vertices (and the necessity of inserting new vertices on intersection).
99     //
100     // Stages (4) and (5) use an active edge list -- a list of all edges for which the
101     // sweep line has crossed the top vertex, but not the bottom vertex.  It's sorted
102     // left-to-right based on the point where both edges are active (when both top vertices
103     // have been seen, so the "lower" top vertex of the two). If the top vertices are equal
104     // (shared), it's sorted based on the last point where both edges are active, so the
105     // "upper" bottom vertex.
106     //
107     // The most complex step is the simplification (4). It's based on the Bentley-Ottman
108     // line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
109     // not exact and may violate the mesh topology or active edge list ordering. We
110     // accommodate this by adjusting the topology of the mesh and AEL to match the intersection
111     // points. This occurs in two ways:
112     //
113     // A) Intersections may cause a shortened edge to no longer be ordered with respect to its
114     //    neighbouring edges at the top or bottom vertex. This is handled by merging the
115     //    edges (mergeCollinearVertices()).
116     // B) Intersections may cause an edge to violate the left-to-right ordering of the
117     //    active edge list. This is handled by detecting potential violations and rewinding
118     //    the active edge list to the vertex before they occur (rewind() during merging,
119     //    rewind_if_necessary() during splitting).
120     //
121     // The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
122     // Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
123     // currently uses a linked list for the active edge list, rather than a 2-3 tree as the
124     // paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
125     // become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
126     // insertions and removals was greater than the cost of infrequent O(N) lookups with the
127     // linked list implementation. With the latter, all removals are O(1), and most insertions
128     // are O(1), since we know the adjacent edge in the active edge list based on the topology.
129     // Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
130     // frequent. There may be other data structures worth investigating, however.
131     //
132     // Note that the orientation of the line sweep algorithms is determined by the aspect ratio of
133     // the path bounds. When the path is taller than it is wide, we sort vertices based on
134     // increasing Y coordinate, and secondarily by increasing X coordinate. When the path is wider
135     // than it is tall, we sort by increasing X coordinate, but secondarily by *decreasing* Y
136     // coordinate. This is so that the "left" and "right" orientation in the code remains correct
137     // (edges to the left are increasing in Y; edges to the right are decreasing in Y). That is, the
138     // setting rotates 90 degrees counterclockwise, rather that transposing.
139 
140     // Additional helpers and driver functions.
141     skgpu::VertexWriter emitMonotonePoly(const MonotonePoly*, skgpu::VertexWriter data) const;
142     skgpu::VertexWriter emitTriangle(Vertex* prev, Vertex* curr, Vertex* next, int winding,
143                                      skgpu::VertexWriter data) const;
144     skgpu::VertexWriter emitPoly(const Poly*, skgpu::VertexWriter data) const;
145 
146     Poly* makePoly(Poly** head, Vertex* v, int winding) const;
147     void appendPointToContour(const SkPoint& p, VertexList* contour) const;
148     void appendQuadraticToContour(const SkPoint[3], SkScalar toleranceSqd,
149                                   VertexList* contour) const;
150     void generateCubicPoints(const SkPoint&, const SkPoint&, const SkPoint&, const SkPoint&,
151                              SkScalar tolSqd, VertexList* contour, int pointsLeft) const;
152     bool applyFillType(int winding) const;
153     MonotonePoly* allocateMonotonePoly(Edge* edge, Side side, int winding);
154     Edge* allocateEdge(Vertex* top, Vertex* bottom, int winding, EdgeType type);
155     Edge* makeEdge(Vertex* prev, Vertex* next, EdgeType type, const Comparator&);
156     void setTop(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
157                 const Comparator&) const;
158     void setBottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
159                    const Comparator&) const;
160     void mergeEdgesAbove(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current,
161                          const Comparator&) const;
162     void mergeEdgesBelow(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current,
163                          const Comparator&) const;
164     Edge* makeConnectingEdge(Vertex* prev, Vertex* next, EdgeType, const Comparator&,
165                              int windingScale = 1);
166     void mergeVertices(Vertex* src, Vertex* dst, VertexList* mesh, const Comparator&) const;
167     static void FindEnclosingEdges(Vertex* v, EdgeList* edges, Edge** left, Edge** right);
168     void mergeCollinearEdges(Edge* edge, EdgeList* activeEdges, Vertex** current,
169                              const Comparator&) const;
170     bool splitEdge(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
171                    const Comparator&);
172     bool intersectEdgePair(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current,
173                            const Comparator&);
174     Vertex* makeSortedVertex(const SkPoint&, uint8_t alpha, VertexList* mesh, Vertex* reference,
175                              const Comparator&) const;
176     void computeBisector(Edge* edge1, Edge* edge2, Vertex*) const;
177     bool checkForIntersection(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current,
178                               VertexList* mesh, const Comparator&);
179     void sanitizeContours(VertexList* contours, int contourCnt) const;
180     bool mergeCoincidentVertices(VertexList* mesh, const Comparator&) const;
181     void buildEdges(VertexList* contours, int contourCnt, VertexList* mesh,
182                     const Comparator&);
183     std::tuple<Poly*, bool> contoursToPolys(VertexList* contours, int contourCnt);
184     std::tuple<Poly*, bool> pathToPolys(float tolerance, const SkRect& clipBounds,
185                       bool* isLinear);
186     static int64_t CountPoints(Poly* polys, SkPathFillType overrideFillType);
187     int polysToTriangles(Poly*, GrEagerVertexAllocator*) const;
188 
189     // FIXME: fPath should be plumbed through function parameters instead.
190     const SkPath fPath;
191     SkArenaAlloc* const fAlloc;
192     int fNumMonotonePolys = 0;
193     int fNumEdges = 0;
194 
195     // Internal control knobs.
196     bool fRoundVerticesToQuarterPixel = false;
197     bool fEmitCoverage = false;
198     bool fPreserveCollinearVertices = false;
199     bool fCollectBreadcrumbTriangles = false;
200 
201     // The breadcrumb triangles serve as a glue that erases T-junctions between a path's outer
202     // curves and its inner polygon triangulation. Drawing a path's outer curves, breadcrumb
203     // triangles, and inner polygon triangulation all together into the stencil buffer has the same
204     // identical rasterized effect as stenciling a classic Redbook fan.
205     //
206     // The breadcrumb triangles track all the edge splits that led from the original inner polygon
207     // edges to the final triangulation. Every time an edge splits, we emit a razor-thin breadcrumb
208     // triangle consisting of the edge's original endpoints and the split point. (We also add
209     // supplemental breadcrumb triangles to areas where abs(winding) > 1.)
210     //
211     //                a
212     //               /
213     //              /
214     //             /
215     //            x  <- Edge splits at x. New breadcrumb triangle is: [a, b, x].
216     //           /
217     //          /
218     //         b
219     //
220     // The opposite-direction shared edges between the triangulation and breadcrumb triangles should
221     // all cancel out, leaving just the set of edges from the original polygon.
222     class BreadcrumbTriangleList {
223     public:
224         struct Node {
NodeNode225             Node(SkPoint a, SkPoint b, SkPoint c) : fPts{a, b, c} {}
226             SkPoint fPts[3];
227             Node* fNext = nullptr;
228         };
head()229         const Node* head() const { return fHead; }
count()230         int count() const { return fCount; }
231 
append(SkArenaAlloc * alloc,SkPoint a,SkPoint b,SkPoint c,int winding)232         void append(SkArenaAlloc* alloc, SkPoint a, SkPoint b, SkPoint c, int winding) {
233             if (a == b || a == c || b == c || winding == 0) {
234                 return;
235             }
236             if (winding < 0) {
237                 std::swap(a, b);
238                 winding = -winding;
239             }
240             for (int i = 0; i < winding; ++i) {
241                 SkASSERT(fTail && !(*fTail));
242                 *fTail = alloc->make<Node>(a, b, c);
243                 fTail = &(*fTail)->fNext;
244             }
245             fCount += winding;
246         }
247 
concat(BreadcrumbTriangleList && list)248         void concat(BreadcrumbTriangleList&& list) {
249             SkASSERT(fTail && !(*fTail));
250             if (list.fHead) {
251                 *fTail = list.fHead;
252                 fTail = list.fTail;
253                 fCount += list.fCount;
254                 list.fHead = nullptr;
255                 list.fTail = &list.fHead;
256                 list.fCount = 0;
257             }
258         }
259 
260     private:
261         Node* fHead = nullptr;
262         Node** fTail = &fHead;
263         int fCount = 0;
264     };
265 
266     mutable BreadcrumbTriangleList fBreadcrumbList;
267 };
268 
269 /**
270  * Vertices are used in three ways: first, the path contours are converted into a
271  * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
272  * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
273  * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
274  * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
275  * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
276  * an individual Vertex from the path mesh may belong to multiple
277  * MonotonePolys, so the original Vertices cannot be re-used.
278  */
279 
280 struct GrTriangulator::Vertex {
VertexVertex281   Vertex(const SkPoint& point, uint8_t alpha)
282     : fPoint(point), fPrev(nullptr), fNext(nullptr)
283     , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
284     , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
285     , fLeftEnclosingEdge(nullptr), fRightEnclosingEdge(nullptr)
286     , fPartner(nullptr)
287     , fAlpha(alpha)
288     , fSynthetic(false)
289 #if TRIANGULATOR_LOGGING
290     , fID (-1.0f)
291 #endif
292     {}
293     SkPoint fPoint;               // Vertex position
294     Vertex* fPrev;                // Linked list of contours, then Y-sorted vertices.
295     Vertex* fNext;                // "
296     Edge*   fFirstEdgeAbove;      // Linked list of edges above this vertex.
297     Edge*   fLastEdgeAbove;       // "
298     Edge*   fFirstEdgeBelow;      // Linked list of edges below this vertex.
299     Edge*   fLastEdgeBelow;       // "
300     Edge*   fLeftEnclosingEdge;   // Nearest edge in the AEL left of this vertex.
301     Edge*   fRightEnclosingEdge;  // Nearest edge in the AEL right of this vertex.
302     Vertex* fPartner;             // Corresponding inner or outer vertex (for AA).
303     uint8_t fAlpha;
304     bool    fSynthetic;           // Is this a synthetic vertex?
305 #if TRIANGULATOR_LOGGING
306     float   fID;                  // Identifier used for logging.
307 #endif
isConnectedVertex308     bool isConnected() const { return this->fFirstEdgeAbove || this->fFirstEdgeBelow; }
309 };
310 
311 struct GrTriangulator::VertexList {
VertexListVertexList312     VertexList() : fHead(nullptr), fTail(nullptr) {}
VertexListVertexList313     VertexList(Vertex* head, Vertex* tail) : fHead(head), fTail(tail) {}
314     Vertex* fHead;
315     Vertex* fTail;
316     void insert(Vertex* v, Vertex* prev, Vertex* next);
appendVertexList317     void append(Vertex* v) { insert(v, fTail, nullptr); }
appendVertexList318     void append(const VertexList& list) {
319         if (!list.fHead) {
320             return;
321         }
322         if (fTail) {
323             fTail->fNext = list.fHead;
324             list.fHead->fPrev = fTail;
325         } else {
326             fHead = list.fHead;
327         }
328         fTail = list.fTail;
329     }
prependVertexList330     void prepend(Vertex* v) { insert(v, nullptr, fHead); }
331     void remove(Vertex* v);
closeVertexList332     void close() {
333         if (fHead && fTail) {
334             fTail->fNext = fHead;
335             fHead->fPrev = fTail;
336         }
337     }
338 #if TRIANGULATOR_LOGGING
339     void dump() const;
340 #endif
341 };
342 
343 // A line equation in implicit form. fA * x + fB * y + fC = 0, for all points (x, y) on the line.
344 struct GrTriangulator::Line {
LineLine345     Line(double a, double b, double c) : fA(a), fB(b), fC(c) {}
LineLine346     Line(Vertex* p, Vertex* q) : Line(p->fPoint, q->fPoint) {}
LineLine347     Line(const SkPoint& p, const SkPoint& q)
348         : fA(static_cast<double>(q.fY) - p.fY)      // a = dY
349         , fB(static_cast<double>(p.fX) - q.fX)      // b = -dX
350         , fC(static_cast<double>(p.fY) * q.fX -     // c = cross(q, p)
351              static_cast<double>(p.fX) * q.fY) {}
distLine352     double dist(const SkPoint& p) const { return fA * p.fX + fB * p.fY + fC; }
353     Line operator*(double v) const { return Line(fA * v, fB * v, fC * v); }
magSqLine354     double magSq() const { return fA * fA + fB * fB; }
normalizeLine355     void normalize() {
356         double len = sqrt(this->magSq());
357         if (len == 0.0) {
358             return;
359         }
360         double scale = 1.0f / len;
361         fA *= scale;
362         fB *= scale;
363         fC *= scale;
364     }
nearParallelLine365     bool nearParallel(const Line& o) const {
366         return fabs(o.fA - fA) < 0.00001 && fabs(o.fB - fB) < 0.00001;
367     }
368 
369     // Compute the intersection of two (infinite) Lines.
370     bool intersect(const Line& other, SkPoint* point) const;
371     double fA, fB, fC;
372 };
373 
374 /**
375  * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
376  * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
377  * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
378  * point). For speed, that case is only tested by the callers that require it (e.g.,
379  * rewind_if_necessary()). Edges also handle checking for intersection with other edges.
380  * Currently, this converts the edges to the parametric form, in order to avoid doing a division
381  * until an intersection has been confirmed. This is slightly slower in the "found" case, but
382  * a lot faster in the "not found" case.
383  *
384  * The coefficients of the line equation stored in double precision to avoid catastrophic
385  * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
386  * correct in float, since it's a polynomial of degree 2. The intersect() function, being
387  * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
388  * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
389  * this file).
390  */
391 
392 struct GrTriangulator::Edge {
EdgeEdge393     Edge(Vertex* top, Vertex* bottom, int winding, EdgeType type)
394         : fWinding(winding)
395         , fTop(top)
396         , fBottom(bottom)
397         , fType(type)
398         , fLeft(nullptr)
399         , fRight(nullptr)
400         , fPrevEdgeAbove(nullptr)
401         , fNextEdgeAbove(nullptr)
402         , fPrevEdgeBelow(nullptr)
403         , fNextEdgeBelow(nullptr)
404         , fLeftPoly(nullptr)
405         , fRightPoly(nullptr)
406         , fLeftPolyPrev(nullptr)
407         , fLeftPolyNext(nullptr)
408         , fRightPolyPrev(nullptr)
409         , fRightPolyNext(nullptr)
410         , fUsedInLeftPoly(false)
411         , fUsedInRightPoly(false)
412         , fLine(top, bottom) {
413         }
414     int      fWinding;          // 1 == edge goes downward; -1 = edge goes upward.
415     Vertex*  fTop;              // The top vertex in vertex-sort-order (sweep_lt).
416     Vertex*  fBottom;           // The bottom vertex in vertex-sort-order.
417     EdgeType fType;
418     Edge*    fLeft;             // The linked list of edges in the active edge list.
419     Edge*    fRight;            // "
420     Edge*    fPrevEdgeAbove;    // The linked list of edges in the bottom Vertex's "edges above".
421     Edge*    fNextEdgeAbove;    // "
422     Edge*    fPrevEdgeBelow;    // The linked list of edges in the top Vertex's "edges below".
423     Edge*    fNextEdgeBelow;    // "
424     Poly*    fLeftPoly;         // The Poly to the left of this edge, if any.
425     Poly*    fRightPoly;        // The Poly to the right of this edge, if any.
426     Edge*    fLeftPolyPrev;
427     Edge*    fLeftPolyNext;
428     Edge*    fRightPolyPrev;
429     Edge*    fRightPolyNext;
430     bool     fUsedInLeftPoly;
431     bool     fUsedInRightPoly;
432     Line     fLine;
433 
distEdge434     double dist(const SkPoint& p) const {
435         // Coerce points coincident with the vertices to have dist = 0, since converting from
436         // a double intersection point back to float storage might construct a point that's no
437         // longer on the ideal line.
438         return (p == fTop->fPoint || p == fBottom->fPoint) ? 0.0 : fLine.dist(p);
439     }
isRightOfEdge440     bool isRightOf(Vertex* v) const { return this->dist(v->fPoint) < 0.0; }
isLeftOfEdge441     bool isLeftOf(Vertex* v) const { return this->dist(v->fPoint) > 0.0; }
recomputeEdge442     void recompute() { fLine = Line(fTop, fBottom); }
443     void insertAbove(Vertex*, const Comparator&);
444     void insertBelow(Vertex*, const Comparator&);
445     void disconnect();
446     bool intersect(const Edge& other, SkPoint* p, uint8_t* alpha = nullptr) const;
447 };
448 
449 struct GrTriangulator::EdgeList {
EdgeListEdgeList450     EdgeList() : fHead(nullptr), fTail(nullptr) {}
451     Edge* fHead;
452     Edge* fTail;
453     void insert(Edge* edge, Edge* prev, Edge* next);
454     void insert(Edge* edge, Edge* prev);
appendEdgeList455     void append(Edge* e) { insert(e, fTail, nullptr); }
456     void remove(Edge* edge);
removeAllEdgeList457     void removeAll() {
458         while (fHead) {
459             this->remove(fHead);
460         }
461     }
closeEdgeList462     void close() {
463         if (fHead && fTail) {
464             fTail->fRight = fHead;
465             fHead->fLeft = fTail;
466         }
467     }
containsEdgeList468     bool contains(Edge* edge) const { return edge->fLeft || edge->fRight || fHead == edge; }
469 };
470 
471 struct GrTriangulator::MonotonePoly {
MonotonePolyMonotonePoly472     MonotonePoly(Edge* edge, Side side, int winding)
473         : fSide(side)
474         , fFirstEdge(nullptr)
475         , fLastEdge(nullptr)
476         , fPrev(nullptr)
477         , fNext(nullptr)
478         , fWinding(winding) {
479         this->addEdge(edge);
480     }
481     Side          fSide;
482     Edge*         fFirstEdge;
483     Edge*         fLastEdge;
484     MonotonePoly* fPrev;
485     MonotonePoly* fNext;
486     int fWinding;
487     void addEdge(Edge*);
488 };
489 
490 struct GrTriangulator::Poly {
491     Poly(Vertex* v, int winding);
492 
493     Poly* addEdge(Edge* e, Side side, GrTriangulator*);
lastVertexPoly494     Vertex* lastVertex() const { return fTail ? fTail->fLastEdge->fBottom : fFirstVertex; }
495     Vertex* fFirstVertex;
496     int fWinding;
497     MonotonePoly* fHead;
498     MonotonePoly* fTail;
499     Poly* fNext;
500     Poly* fPartner;
501     int fCount;
502 #if TRIANGULATOR_LOGGING
503     int fID;
504 #endif
505 };
506 
507 struct GrTriangulator::Comparator {
508     enum class Direction { kVertical, kHorizontal };
ComparatorComparator509     Comparator(Direction direction) : fDirection(direction) {}
510     bool sweep_lt(const SkPoint& a, const SkPoint& b) const;
511     Direction fDirection;
512 };
513 
514 #endif // SK_ENABLE_OPTIMIZE_SIZE
515 
516 #endif // GrTriangulator_DEFINED
517