1 /*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/core/SkAlphaType.h"
9 #include "include/core/SkBitmap.h"
10 #include "include/core/SkColor.h"
11 #include "include/core/SkColorSpace.h"
12 #include "include/core/SkColorType.h"
13 #include "include/core/SkImageInfo.h"
14 #include "include/core/SkRect.h"
15 #include "include/core/SkRefCnt.h"
16 #include "include/core/SkScalar.h"
17 #include "include/core/SkSize.h"
18 #include "include/core/SkString.h"
19 #include "include/core/SkSurfaceProps.h"
20 #include "include/core/SkTypes.h"
21 #include "include/gpu/GpuTypes.h"
22 #include "include/gpu/GrBackendSurface.h"
23 #include "include/gpu/GrDirectContext.h"
24 #include "include/gpu/GrTypes.h"
25 #include "include/private/SkColorData.h"
26 #include "include/private/SkSLSampleUsage.h"
27 #include "include/private/base/SkDebug.h"
28 #include "include/private/base/SkTArray.h"
29 #include "include/private/gpu/ganesh/GrTypesPriv.h"
30 #include "src/base/SkRandom.h"
31 #include "src/gpu/KeyBuilder.h"
32 #include "src/gpu/SkBackingFit.h"
33 #include "src/gpu/Swizzle.h"
34 #include "src/gpu/ganesh/GrAppliedClip.h"
35 #include "src/gpu/ganesh/GrCaps.h"
36 #include "src/gpu/ganesh/GrDirectContextPriv.h"
37 #include "src/gpu/ganesh/GrFragmentProcessor.h"
38 #include "src/gpu/ganesh/GrImageInfo.h"
39 #include "src/gpu/ganesh/GrPixmap.h"
40 #include "src/gpu/ganesh/GrProcessorAnalysis.h"
41 #include "src/gpu/ganesh/GrProcessorSet.h"
42 #include "src/gpu/ganesh/GrProcessorUnitTest.h"
43 #include "src/gpu/ganesh/GrProxyProvider.h"
44 #include "src/gpu/ganesh/GrSurfaceProxy.h"
45 #include "src/gpu/ganesh/GrSurfaceProxyView.h"
46 #include "src/gpu/ganesh/GrTextureProxy.h"
47 #include "src/gpu/ganesh/GrUserStencilSettings.h"
48 #include "src/gpu/ganesh/SkGr.h"
49 #include "src/gpu/ganesh/SurfaceContext.h"
50 #include "src/gpu/ganesh/SurfaceDrawContext.h"
51 #include "src/gpu/ganesh/effects/GrTextureEffect.h"
52 #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h"
53 #include "src/gpu/ganesh/ops/GrMeshDrawOp.h"
54 #include "src/gpu/ganesh/ops/GrOp.h"
55 #include "tests/CtsEnforcement.h"
56 #include "tests/Test.h"
57 #include "tests/TestHarness.h"
58 #include "tests/TestUtils.h"
59 #include "tools/flags/CommandLineFlags.h"
60
61 #include <algorithm>
62 #include <atomic>
63 #include <cmath>
64 #include <cstdint>
65 #include <initializer_list>
66 #include <memory>
67 #include <random>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 #include <vector>
72
73 class GrDstProxyView;
74 class GrMeshDrawTarget;
75 class GrOpFlushState;
76 class GrProgramInfo;
77 class GrRecordingContext;
78 class GrResourceProvider;
79 class SkArenaAlloc;
80 enum class GrXferBarrierFlags;
81 struct GrContextOptions;
82 struct GrShaderCaps;
83
84 namespace {
85 class TestOp : public GrMeshDrawOp {
86 public:
87 DEFINE_OP_CLASS_ID
Make(GrRecordingContext * rContext,std::unique_ptr<GrFragmentProcessor> fp)88 static GrOp::Owner Make(GrRecordingContext* rContext,
89 std::unique_ptr<GrFragmentProcessor> fp) {
90 return GrOp::Make<TestOp>(rContext, std::move(fp));
91 }
92
name() const93 const char* name() const override { return "TestOp"; }
94
visitProxies(const GrVisitProxyFunc & func) const95 void visitProxies(const GrVisitProxyFunc& func) const override {
96 fProcessors.visitProxies(func);
97 }
98
fixedFunctionFlags() const99 FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
100
finalize(const GrCaps & caps,const GrAppliedClip * clip,GrClampType clampType)101 GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
102 GrClampType clampType) override {
103 static constexpr GrProcessorAnalysisColor kUnknownColor;
104 SkPMColor4f overrideColor;
105 return fProcessors.finalize(
106 kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip,
107 &GrUserStencilSettings::kUnused, caps, clampType, &overrideColor);
108 }
109
110 private:
111 friend class ::GrOp; // for ctor
112
TestOp(std::unique_ptr<GrFragmentProcessor> fp)113 TestOp(std::unique_ptr<GrFragmentProcessor> fp)
114 : INHERITED(ClassID()), fProcessors(std::move(fp)) {
115 this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsHairline::kNo);
116 }
117
programInfo()118 GrProgramInfo* programInfo() override { return nullptr; }
onCreateProgramInfo(const GrCaps *,SkArenaAlloc *,const GrSurfaceProxyView & writeView,bool usesMSAASurface,GrAppliedClip &&,const GrDstProxyView &,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)119 void onCreateProgramInfo(const GrCaps*,
120 SkArenaAlloc*,
121 const GrSurfaceProxyView& writeView,
122 bool usesMSAASurface,
123 GrAppliedClip&&,
124 const GrDstProxyView&,
125 GrXferBarrierFlags renderPassXferBarriers,
126 GrLoadOp colorLoadOp) override {}
onPrePrepareDraws(GrRecordingContext *,const GrSurfaceProxyView & writeView,GrAppliedClip *,const GrDstProxyView &,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)127 void onPrePrepareDraws(GrRecordingContext*,
128 const GrSurfaceProxyView& writeView,
129 GrAppliedClip*,
130 const GrDstProxyView&,
131 GrXferBarrierFlags renderPassXferBarriers,
132 GrLoadOp colorLoadOp) override {}
onPrepareDraws(GrMeshDrawTarget *)133 void onPrepareDraws(GrMeshDrawTarget*) override { return; }
onExecute(GrOpFlushState *,const SkRect &)134 void onExecute(GrOpFlushState*, const SkRect&) override { return; }
135
136 GrProcessorSet fProcessors;
137
138 using INHERITED = GrMeshDrawOp;
139 };
140
141 /**
142 * FP used to test ref counts on owned GrGpuResources. Can also be a parent FP to test counts
143 * of resources owned by child FPs.
144 */
145 class TestFP : public GrFragmentProcessor {
146 public:
Make(std::unique_ptr<GrFragmentProcessor> child)147 static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> child) {
148 return std::unique_ptr<GrFragmentProcessor>(new TestFP(std::move(child)));
149 }
Make(const SkTArray<GrSurfaceProxyView> & views)150 static std::unique_ptr<GrFragmentProcessor> Make(const SkTArray<GrSurfaceProxyView>& views) {
151 return std::unique_ptr<GrFragmentProcessor>(new TestFP(views));
152 }
153
name() const154 const char* name() const override { return "test"; }
155
onAddToKey(const GrShaderCaps &,skgpu::KeyBuilder * b) const156 void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const override {
157 static std::atomic<int32_t> nextKey{0};
158 b->add32(nextKey++);
159 }
160
clone() const161 std::unique_ptr<GrFragmentProcessor> clone() const override {
162 return std::unique_ptr<GrFragmentProcessor>(new TestFP(*this));
163 }
164
165 private:
TestFP(const SkTArray<GrSurfaceProxyView> & views)166 TestFP(const SkTArray<GrSurfaceProxyView>& views)
167 : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) {
168 for (const GrSurfaceProxyView& view : views) {
169 this->registerChild(GrTextureEffect::Make(view, kUnknown_SkAlphaType));
170 }
171 }
172
TestFP(std::unique_ptr<GrFragmentProcessor> child)173 TestFP(std::unique_ptr<GrFragmentProcessor> child)
174 : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) {
175 this->registerChild(std::move(child));
176 }
177
TestFP(const TestFP & that)178 explicit TestFP(const TestFP& that) : INHERITED(that) {}
179
onMakeProgramImpl() const180 std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
181 class Impl : public ProgramImpl {
182 public:
183 void emitCode(EmitArgs& args) override {
184 args.fFragBuilder->codeAppendf("return half4(1);");
185 }
186
187 private:
188 };
189 return std::make_unique<Impl>();
190 }
191
onIsEqual(const GrFragmentProcessor &) const192 bool onIsEqual(const GrFragmentProcessor&) const override { return false; }
193
194 using INHERITED = GrFragmentProcessor;
195 };
196 } // namespace
197
DEF_GANESH_TEST_FOR_ALL_CONTEXTS(ProcessorRefTest,reporter,ctxInfo,CtsEnforcement::kNever)198 DEF_GANESH_TEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo, CtsEnforcement::kNever) {
199 auto dContext = ctxInfo.directContext();
200 GrProxyProvider* proxyProvider = dContext->priv().proxyProvider();
201
202 static constexpr SkISize kDims = {10, 10};
203
204 const GrBackendFormat format =
205 dContext->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888,
206 GrRenderable::kNo);
207 skgpu::Swizzle swizzle = dContext->priv().caps()->getReadSwizzle(format,
208 GrColorType::kRGBA_8888);
209
210 for (bool makeClone : {false, true}) {
211 for (int parentCnt = 0; parentCnt < 2; parentCnt++) {
212 auto sdc = skgpu::v1::SurfaceDrawContext::Make(
213 dContext, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kApprox, {1, 1},
214 SkSurfaceProps(), /*label=*/{});
215 {
216 sk_sp<GrTextureProxy> proxy =
217 proxyProvider->createProxy(format,
218 kDims,
219 GrRenderable::kNo,
220 1,
221 GrMipmapped::kNo,
222 SkBackingFit::kExact,
223 skgpu::Budgeted::kYes,
224 GrProtected::kNo,
225 /*label=*/"ProcessorRefTest");
226
227 {
228 SkTArray<GrSurfaceProxyView> views;
229 views.push_back({proxy, kTopLeft_GrSurfaceOrigin, swizzle});
230 auto fp = TestFP::Make(std::move(views));
231 for (int i = 0; i < parentCnt; ++i) {
232 fp = TestFP::Make(std::move(fp));
233 }
234 std::unique_ptr<GrFragmentProcessor> clone;
235 if (makeClone) {
236 clone = fp->clone();
237 }
238 GrOp::Owner op = TestOp::Make(dContext, std::move(fp));
239 sdc->addDrawOp(std::move(op));
240 if (clone) {
241 op = TestOp::Make(dContext, std::move(clone));
242 sdc->addDrawOp(std::move(op));
243 }
244 }
245
246 // If the fp is cloned the number of refs should increase by one (for the clone)
247 int expectedProxyRefs = makeClone ? 3 : 2;
248
249 CheckSingleThreadedProxyRefs(reporter, proxy.get(), expectedProxyRefs, -1);
250
251 dContext->flushAndSubmit();
252
253 // just one from the 'proxy' sk_sp
254 CheckSingleThreadedProxyRefs(reporter, proxy.get(), 1, 1);
255 }
256 }
257 }
258 }
259
260 static DEFINE_bool(randomProcessorTest, false,
261 "Use non-deterministic seed for random processor tests?");
262 static DEFINE_int(processorSeed, 0,
263 "Use specific seed for processor tests. Overridden by --randomProcessorTest.");
264
265 #if GR_TEST_UTILS
266
input_texel_color(int x,int y,SkScalar delta)267 static GrColor input_texel_color(int x, int y, SkScalar delta) {
268 // Delta must be less than 0.5 to prevent over/underflow issues with the input color
269 SkASSERT(delta <= 0.5);
270
271 SkColor color = SkColorSetARGB((uint8_t)(x & 0xFF),
272 (uint8_t)(y & 0xFF),
273 (uint8_t)((x + y) & 0xFF),
274 (uint8_t)((2 * y - x) & 0xFF));
275 SkColor4f color4f = SkColor4f::FromColor(color);
276 // We only apply delta to the r,g, and b channels. This is because we're using this
277 // to test the canTweakAlphaForCoverage() optimization. A processor is allowed
278 // to use the input color's alpha in its calculation and report this optimization.
279 for (int i = 0; i < 3; i++) {
280 if (color4f[i] > 0.5) {
281 color4f[i] -= delta;
282 } else {
283 color4f[i] += delta;
284 }
285 }
286 return color4f.premul().toBytes_RGBA();
287 }
288
289 // The output buffer must be the same size as the render-target context.
render_fp(GrDirectContext * dContext,skgpu::v1::SurfaceDrawContext * sdc,std::unique_ptr<GrFragmentProcessor> fp,GrColor * outBuffer)290 static void render_fp(GrDirectContext* dContext,
291 skgpu::v1::SurfaceDrawContext* sdc,
292 std::unique_ptr<GrFragmentProcessor> fp,
293 GrColor* outBuffer) {
294 sdc->fillWithFP(std::move(fp));
295 std::fill_n(outBuffer, sdc->width() * sdc->height(), 0);
296 auto ii = SkImageInfo::Make(sdc->dimensions(), kRGBA_8888_SkColorType, kPremul_SkAlphaType);
297 GrPixmap resultPM(ii, outBuffer, sdc->width()*sizeof(uint32_t));
298 sdc->readPixels(dContext, resultPM, {0, 0});
299 }
300
301 // This class is responsible for reproducibly generating a random fragment processor.
302 // An identical randomly-designed FP can be generated as many times as needed.
303 class TestFPGenerator {
304 public:
305 TestFPGenerator() = delete;
TestFPGenerator(GrDirectContext * context,GrResourceProvider * resourceProvider)306 TestFPGenerator(GrDirectContext* context, GrResourceProvider* resourceProvider)
307 : fContext(context)
308 , fResourceProvider(resourceProvider)
309 , fInitialSeed(synthesizeInitialSeed())
310 , fRandomSeed(fInitialSeed) {}
311
initialSeed()312 uint32_t initialSeed() { return fInitialSeed; }
313
init()314 bool init() {
315 // Initializes the two test texture proxies that are available to the FP test factories.
316 SkRandom random{fRandomSeed};
317 static constexpr int kTestTextureSize = 256;
318
319 {
320 // Put premul data into the RGBA texture that the test FPs can optionally use.
321 GrColor* rgbaData = new GrColor[kTestTextureSize * kTestTextureSize];
322 for (int y = 0; y < kTestTextureSize; ++y) {
323 for (int x = 0; x < kTestTextureSize; ++x) {
324 rgbaData[kTestTextureSize * y + x] = input_texel_color(
325 random.nextULessThan(256), random.nextULessThan(256), 0.0f);
326 }
327 }
328
329 SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
330 kRGBA_8888_SkColorType, kPremul_SkAlphaType);
331 SkBitmap bitmap;
332 bitmap.installPixels(
333 ii, rgbaData, ii.minRowBytes(),
334 [](void* addr, void* context) { delete[](GrColor*) addr; }, nullptr);
335 bitmap.setImmutable();
336 auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap));
337 if (!view || !view.proxy()->instantiate(fResourceProvider)) {
338 SkDebugf("Unable to instantiate RGBA8888 test texture.");
339 return false;
340 }
341 fTestViews[0] = GrProcessorTestData::ViewInfo{view, GrColorType::kRGBA_8888,
342 kPremul_SkAlphaType};
343 }
344
345 {
346 // Put random values into the alpha texture that the test FPs can optionally use.
347 uint8_t* alphaData = new uint8_t[kTestTextureSize * kTestTextureSize];
348 for (int y = 0; y < kTestTextureSize; ++y) {
349 for (int x = 0; x < kTestTextureSize; ++x) {
350 alphaData[kTestTextureSize * y + x] = random.nextULessThan(256);
351 }
352 }
353
354 SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
355 kAlpha_8_SkColorType, kPremul_SkAlphaType);
356 SkBitmap bitmap;
357 bitmap.installPixels(
358 ii, alphaData, ii.minRowBytes(),
359 [](void* addr, void* context) { delete[](uint8_t*) addr; }, nullptr);
360 bitmap.setImmutable();
361 auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap));
362 if (!view || !view.proxy()->instantiate(fResourceProvider)) {
363 SkDebugf("Unable to instantiate A8 test texture.");
364 return false;
365 }
366 fTestViews[1] = GrProcessorTestData::ViewInfo{view, GrColorType::kAlpha_8,
367 kPremul_SkAlphaType};
368 }
369
370 return true;
371 }
372
reroll()373 void reroll() {
374 // Feed our current random seed into SkRandom to generate a new seed.
375 SkRandom random{fRandomSeed};
376 fRandomSeed = random.nextU();
377 }
378
make(int type,int randomTreeDepth,std::unique_ptr<GrFragmentProcessor> inputFP)379 std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth,
380 std::unique_ptr<GrFragmentProcessor> inputFP) {
381 // This will generate the exact same randomized FP (of each requested type) each time
382 // it's called. Call `reroll` to get a different FP.
383 SkRandom random{fRandomSeed};
384 GrProcessorTestData testData{&random, fContext, randomTreeDepth,
385 static_cast<int>(std::size(fTestViews)), fTestViews,
386 std::move(inputFP)};
387 return GrFragmentProcessorTestFactory::MakeIdx(type, &testData);
388 }
389
make(int type,int randomTreeDepth,GrSurfaceProxyView view,SkAlphaType alpha=kPremul_SkAlphaType)390 std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth,
391 GrSurfaceProxyView view,
392 SkAlphaType alpha = kPremul_SkAlphaType) {
393 return make(type, randomTreeDepth, GrTextureEffect::Make(view, alpha));
394 }
395
396 private:
synthesizeInitialSeed()397 static uint32_t synthesizeInitialSeed() {
398 if (FLAGS_randomProcessorTest) {
399 std::random_device rd;
400 return rd();
401 } else {
402 return FLAGS_processorSeed;
403 }
404 }
405
406 GrDirectContext* fContext; // owned by caller
407 GrResourceProvider* fResourceProvider; // owned by caller
408 const uint32_t fInitialSeed;
409 uint32_t fRandomSeed;
410 GrProcessorTestData::ViewInfo fTestViews[2];
411 };
412
413 // Creates an array of color values from input_texel_color(), to be used as an input texture.
make_input_pixels(int width,int height,SkScalar delta)414 static std::vector<GrColor> make_input_pixels(int width, int height, SkScalar delta) {
415 std::vector<GrColor> pixel(width * height);
416 for (int y = 0; y < width; ++y) {
417 for (int x = 0; x < height; ++x) {
418 pixel[width * y + x] = input_texel_color(x, y, delta);
419 }
420 }
421
422 return pixel;
423 }
424
425 // Creates a texture of premul colors used as the output of the fragment processor that precedes
426 // the fragment processor under test. An array of W*H colors are passed in as the texture data.
make_input_texture(GrRecordingContext * context,int width,int height,GrColor * pixel)427 static GrSurfaceProxyView make_input_texture(GrRecordingContext* context,
428 int width, int height, GrColor* pixel) {
429 SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
430 SkBitmap bitmap;
431 bitmap.installPixels(ii, pixel, ii.minRowBytes());
432 bitmap.setImmutable();
433 return std::get<0>(GrMakeUncachedBitmapProxyView(context, bitmap));
434 }
435
436 // We tag logged data as unpremul to avoid conversion when encoding as PNG. The input texture
437 // actually contains unpremul data. Also, even though we made the result data by rendering into
438 // a "unpremul" SurfaceDrawContext, our input texture is unpremul and outside of the random
439 // effect configuration, we didn't do anything to ensure the output is actually premul. We just
440 // don't currently allow kUnpremul GrSurfaceDrawContexts.
441 static constexpr auto kLogAlphaType = kUnpremul_SkAlphaType;
442
log_pixels(GrColor * pixels,int widthHeight,SkString * dst)443 static bool log_pixels(GrColor* pixels, int widthHeight, SkString* dst) {
444 SkImageInfo info =
445 SkImageInfo::Make(widthHeight, widthHeight, kRGBA_8888_SkColorType, kLogAlphaType);
446 SkBitmap bmp;
447 bmp.installPixels(info, pixels, widthHeight * sizeof(GrColor));
448 return BipmapToBase64DataURI(bmp, dst);
449 }
450
log_texture_view(GrDirectContext * dContext,GrSurfaceProxyView src,SkString * dst)451 static bool log_texture_view(GrDirectContext* dContext, GrSurfaceProxyView src, SkString* dst) {
452 SkImageInfo ii = SkImageInfo::Make(src.proxy()->dimensions(), kRGBA_8888_SkColorType,
453 kLogAlphaType);
454
455 auto sContext = dContext->priv().makeSC(std::move(src), ii.colorInfo());
456 SkBitmap bm;
457 SkAssertResult(bm.tryAllocPixels(ii));
458 SkAssertResult(sContext->readPixels(dContext, bm.pixmap(), {0, 0}));
459 return BipmapToBase64DataURI(bm, dst);
460 }
461
fuzzy_color_equals(const SkPMColor4f & c1,const SkPMColor4f & c2)462 static bool fuzzy_color_equals(const SkPMColor4f& c1, const SkPMColor4f& c2) {
463 // With the loss of precision of rendering into 32-bit color, then estimating the FP's output
464 // from that, it is not uncommon for a valid output to differ from estimate by up to 0.01
465 // (really 1/128 ~ .0078, but frequently floating point issues make that tolerance a little
466 // too unforgiving).
467 static constexpr SkScalar kTolerance = 0.01f;
468 for (int i = 0; i < 4; i++) {
469 if (!SkScalarNearlyEqual(c1[i], c2[i], kTolerance)) {
470 return false;
471 }
472 }
473 return true;
474 }
475
476 // Given three input colors (color preceding the FP being tested) provided to the FP at the same
477 // local coord and the three corresponding FP outputs, this ensures that either:
478 // out[0] = fp * in[0].a, out[1] = fp * in[1].a, and out[2] = fp * in[2].a
479 // where fp is the pre-modulated color that should not be changing across frames (FP's state doesn't
480 // change), OR:
481 // out[0] = fp * in[0], out[1] = fp * in[1], and out[2] = fp * in[2]
482 // (per-channel modulation instead of modulation by just the alpha channel)
483 // It does this by estimating the pre-modulated fp color from one of the input/output pairs and
484 // confirms the conditions hold for the other two pairs.
485 // It is required that the three input colors have the same alpha as fp is allowed to be a function
486 // of the input alpha (but not r, g, or b).
legal_modulation(const GrColor inGr[3],const GrColor outGr[3])487 static bool legal_modulation(const GrColor inGr[3], const GrColor outGr[3]) {
488 // Convert to floating point, which is the number space the FP operates in (more or less)
489 SkPMColor4f inf[3], outf[3];
490 for (int i = 0; i < 3; ++i) {
491 inf[i] = SkPMColor4f::FromBytes_RGBA(inGr[i]);
492 outf[i] = SkPMColor4f::FromBytes_RGBA(outGr[i]);
493 }
494 // This test is only valid if all the input alphas are the same.
495 SkASSERT(inf[0].fA == inf[1].fA && inf[1].fA == inf[2].fA);
496
497 // Reconstruct the output of the FP before the shader modulated its color with the input value.
498 // When the original input is very small, it may cause the final output color to round
499 // to 0, in which case we estimate the pre-modulated color using one of the stepped frames that
500 // will then have a guaranteed larger channel value (since the offset will be added to it).
501 SkPMColor4f fpPreColorModulation = {0,0,0,0};
502 SkPMColor4f fpPreAlphaModulation = {0,0,0,0};
503 for (int i = 0; i < 4; i++) {
504 // Use the most stepped up frame
505 int maxInIdx = inf[0][i] > inf[1][i] ? 0 : 1;
506 maxInIdx = inf[maxInIdx][i] > inf[2][i] ? maxInIdx : 2;
507 const SkPMColor4f& in = inf[maxInIdx];
508 const SkPMColor4f& out = outf[maxInIdx];
509 if (in[i] > 0) {
510 fpPreColorModulation[i] = out[i] / in[i];
511 }
512 if (in[3] > 0) {
513 fpPreAlphaModulation[i] = out[i] / in[3];
514 }
515 }
516
517 // With reconstructed pre-modulated FP output, derive the expected value of fp * input for each
518 // of the transformed input colors.
519 SkPMColor4f expectedForAlphaModulation[3];
520 SkPMColor4f expectedForColorModulation[3];
521 for (int i = 0; i < 3; ++i) {
522 expectedForAlphaModulation[i] = fpPreAlphaModulation * inf[i].fA;
523 expectedForColorModulation[i] = fpPreColorModulation * inf[i];
524 // If the input alpha is 0 then the other channels should also be zero
525 // since the color is assumed to be premul. Modulating zeros by anything
526 // should produce zeros.
527 if (inf[i].fA == 0) {
528 SkASSERT(inf[i].fR == 0 && inf[i].fG == 0 && inf[i].fB == 0);
529 expectedForColorModulation[i] = expectedForAlphaModulation[i] = {0, 0, 0, 0};
530 }
531 }
532
533 bool isLegalColorModulation = fuzzy_color_equals(outf[0], expectedForColorModulation[0]) &&
534 fuzzy_color_equals(outf[1], expectedForColorModulation[1]) &&
535 fuzzy_color_equals(outf[2], expectedForColorModulation[2]);
536
537 bool isLegalAlphaModulation = fuzzy_color_equals(outf[0], expectedForAlphaModulation[0]) &&
538 fuzzy_color_equals(outf[1], expectedForAlphaModulation[1]) &&
539 fuzzy_color_equals(outf[2], expectedForAlphaModulation[2]);
540
541 // This can be enabled to print the values that caused this check to fail.
542 if ((false)) {
543 if (!isLegalColorModulation && !isLegalAlphaModulation) {
544 SkDebugf("Color modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n",
545 fpPreColorModulation[0],
546 fpPreColorModulation[1],
547 fpPreColorModulation[2],
548 fpPreColorModulation[3]);
549 for (int i = 0; i < 3; ++i) {
550 SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> "
551 "(%.03f, %.03f, %.03f, %.03f) | "
552 "(%.03f, %.03f, %.03f, %.03f), ok: %d\n",
553 inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA,
554 outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA,
555 expectedForColorModulation[i].fR, expectedForColorModulation[i].fG,
556 expectedForColorModulation[i].fB, expectedForColorModulation[i].fA,
557 fuzzy_color_equals(outf[i], expectedForColorModulation[i]));
558 }
559 SkDebugf("Alpha modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n",
560 fpPreAlphaModulation[0],
561 fpPreAlphaModulation[1],
562 fpPreAlphaModulation[2],
563 fpPreAlphaModulation[3]);
564 for (int i = 0; i < 3; ++i) {
565 SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> "
566 "(%.03f, %.03f, %.03f, %.03f) | "
567 "(%.03f, %.03f, %.03f, %.03f), ok: %d\n",
568 inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA,
569 outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA,
570 expectedForAlphaModulation[i].fR, expectedForAlphaModulation[i].fG,
571 expectedForAlphaModulation[i].fB, expectedForAlphaModulation[i].fA,
572 fuzzy_color_equals(outf[i], expectedForAlphaModulation[i]));
573 }
574 }
575 }
576 return isLegalColorModulation || isLegalAlphaModulation;
577 }
578
DEF_GANESH_TEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest,reporter,ctxInfo,CtsEnforcement::kNever)579 DEF_GANESH_TEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest,
580 reporter,
581 ctxInfo,
582 CtsEnforcement::kNever) {
583 GrDirectContext* context = ctxInfo.directContext();
584 GrResourceProvider* resourceProvider = context->priv().resourceProvider();
585 using FPFactory = GrFragmentProcessorTestFactory;
586
587 TestFPGenerator fpGenerator{context, resourceProvider};
588 if (!fpGenerator.init()) {
589 ERRORF(reporter, "Could not initialize TestFPGenerator");
590 return;
591 }
592
593 // Make the destination context for the test.
594 static constexpr int kRenderSize = 256;
595 auto sdc = skgpu::v1::SurfaceDrawContext::Make(
596 context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
597 {kRenderSize, kRenderSize}, SkSurfaceProps(), /*label=*/{});
598
599 // Coverage optimization uses three frames with a linearly transformed input texture. The first
600 // frame has no offset, second frames add .2 and .4, which should then be present as a fixed
601 // difference between the frame outputs if the FP is properly following the modulation
602 // requirements of the coverage optimization.
603 static constexpr SkScalar kInputDelta = 0.2f;
604 std::vector<GrColor> inputPixels1 = make_input_pixels(kRenderSize, kRenderSize, 0.0f);
605 std::vector<GrColor> inputPixels2 =
606 make_input_pixels(kRenderSize, kRenderSize, 1 * kInputDelta);
607 std::vector<GrColor> inputPixels3 =
608 make_input_pixels(kRenderSize, kRenderSize, 2 * kInputDelta);
609 GrSurfaceProxyView inputTexture1 =
610 make_input_texture(context, kRenderSize, kRenderSize, inputPixels1.data());
611 GrSurfaceProxyView inputTexture2 =
612 make_input_texture(context, kRenderSize, kRenderSize, inputPixels2.data());
613 GrSurfaceProxyView inputTexture3 =
614 make_input_texture(context, kRenderSize, kRenderSize, inputPixels3.data());
615
616 // Encoded images are very verbose and this tests many potential images, so only export the
617 // first failure (subsequent failures have a reasonable chance of being related).
618 bool loggedFirstFailure = false;
619 bool loggedFirstWarning = false;
620
621 // Storage for the three frames required for coverage compatibility optimization testing.
622 // Each frame uses the correspondingly numbered inputTextureX.
623 std::vector<GrColor> readData1(kRenderSize * kRenderSize);
624 std::vector<GrColor> readData2(kRenderSize * kRenderSize);
625 std::vector<GrColor> readData3(kRenderSize * kRenderSize);
626
627 // Because processor factories configure themselves in random ways, this is not exhaustive.
628 for (int i = 0; i < FPFactory::Count(); ++i) {
629 int optimizedForOpaqueInput = 0;
630 int optimizedForCoverageAsAlpha = 0;
631 int optimizedForConstantOutputForInput = 0;
632
633 #ifdef __MSVC_RUNTIME_CHECKS
634 // This test is infuriatingly slow with MSVC runtime checks enabled
635 static constexpr int kMinimumTrials = 1;
636 static constexpr int kMaximumTrials = 1;
637 static constexpr int kExpectedSuccesses = 1;
638 #else
639 // We start by testing each fragment-processor 100 times, watching the optimization bits
640 // that appear. If we see an optimization bit appear in those first 100 trials, we keep
641 // running tests until we see at least five successful trials that have this optimization
642 // bit enabled. If we never see a particular optimization bit after 100 trials, we assume
643 // that this FP doesn't support that optimization at all.
644 static constexpr int kMinimumTrials = 100;
645 static constexpr int kMaximumTrials = 2000;
646 static constexpr int kExpectedSuccesses = 5;
647 #endif
648
649 for (int trial = 0;; ++trial) {
650 // Create a randomly-configured FP.
651 fpGenerator.reroll();
652 std::unique_ptr<GrFragmentProcessor> fp =
653 fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1);
654
655 // If we have iterated enough times and seen a sufficient number of successes on each
656 // optimization bit that can be returned, stop running trials.
657 if (trial >= kMinimumTrials) {
658 bool moreTrialsNeeded = (optimizedForOpaqueInput > 0 &&
659 optimizedForOpaqueInput < kExpectedSuccesses) ||
660 (optimizedForCoverageAsAlpha > 0 &&
661 optimizedForCoverageAsAlpha < kExpectedSuccesses) ||
662 (optimizedForConstantOutputForInput > 0 &&
663 optimizedForConstantOutputForInput < kExpectedSuccesses);
664 if (!moreTrialsNeeded) break;
665
666 if (trial >= kMaximumTrials) {
667 SkDebugf("Abandoning ProcessorOptimizationValidationTest after %d trials. "
668 "Seed: 0x%08x, processor:\n%s",
669 kMaximumTrials, fpGenerator.initialSeed(), fp->dumpTreeInfo().c_str());
670 break;
671 }
672 }
673
674 // Skip further testing if this trial has no optimization bits enabled.
675 if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() &&
676 !fp->compatibleWithCoverageAsAlpha()) {
677 continue;
678 }
679
680 // We can make identical copies of the test FP in order to test coverage-as-alpha.
681 if (fp->compatibleWithCoverageAsAlpha()) {
682 // Create and render two identical versions of this FP, but using different input
683 // textures, to check coverage optimization. We don't need to do this step for
684 // constant-output or preserving-opacity tests.
685 render_fp(context, sdc.get(),
686 fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture2),
687 readData2.data());
688 render_fp(context, sdc.get(),
689 fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture3),
690 readData3.data());
691 ++optimizedForCoverageAsAlpha;
692 }
693
694 if (fp->hasConstantOutputForConstantInput()) {
695 ++optimizedForConstantOutputForInput;
696 }
697
698 if (fp->preservesOpaqueInput()) {
699 ++optimizedForOpaqueInput;
700 }
701
702 // Draw base frame last so that rtc holds the original FP behavior if we need to dump
703 // the image to the log.
704 render_fp(context, sdc.get(), fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1),
705 readData1.data());
706
707 // This test has a history of being flaky on a number of devices. If an FP is logically
708 // violating the optimizations, it's reasonable to expect it to violate requirements on
709 // a large number of pixels in the image. Sporadic pixel violations are more indicative
710 // of device errors and represents a separate problem.
711 static const int kMaxAcceptableFailedPixels =
712 CurrentTestHarnessIsSkQP() ? 0 : // Strict when running as SKQP
713 2 * kRenderSize; // ~0.7% of the image
714
715 // Collect first optimization failure message, to be output later as a warning or an
716 // error depending on whether the rendering "passed" or failed.
717 int failedPixelCount = 0;
718 SkString coverageMessage;
719 SkString opaqueMessage;
720 SkString constMessage;
721 for (int y = 0; y < kRenderSize; ++y) {
722 for (int x = 0; x < kRenderSize; ++x) {
723 bool passing = true;
724 GrColor input = inputPixels1[y * kRenderSize + x];
725 GrColor output = readData1[y * kRenderSize + x];
726
727 if (fp->compatibleWithCoverageAsAlpha()) {
728 GrColor ins[3];
729 ins[0] = input;
730 ins[1] = inputPixels2[y * kRenderSize + x];
731 ins[2] = inputPixels3[y * kRenderSize + x];
732
733 GrColor outs[3];
734 outs[0] = output;
735 outs[1] = readData2[y * kRenderSize + x];
736 outs[2] = readData3[y * kRenderSize + x];
737
738 if (!legal_modulation(ins, outs)) {
739 passing = false;
740 if (coverageMessage.isEmpty()) {
741 coverageMessage.printf(
742 "\"Modulating\" processor did not match alpha-modulation "
743 "nor color-modulation rules.\n"
744 "Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).",
745 input, output, x, y);
746 }
747 }
748 }
749
750 SkPMColor4f input4f = SkPMColor4f::FromBytes_RGBA(input);
751 SkPMColor4f output4f = SkPMColor4f::FromBytes_RGBA(output);
752 SkPMColor4f expected4f;
753 if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) {
754 float rDiff = fabsf(output4f.fR - expected4f.fR);
755 float gDiff = fabsf(output4f.fG - expected4f.fG);
756 float bDiff = fabsf(output4f.fB - expected4f.fB);
757 float aDiff = fabsf(output4f.fA - expected4f.fA);
758 static constexpr float kTol = 4 / 255.f;
759 if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) {
760 if (constMessage.isEmpty()) {
761 passing = false;
762
763 constMessage.printf(
764 "Processor claimed output for const input doesn't match "
765 "actual output.\n"
766 "Error: %f, Tolerance: %f, input: (%f, %f, %f, %f), "
767 "actual: (%f, %f, %f, %f), expected(%f, %f, %f, %f).",
768 std::max(rDiff, std::max(gDiff, std::max(bDiff, aDiff))),
769 kTol, input4f.fR, input4f.fG, input4f.fB, input4f.fA,
770 output4f.fR, output4f.fG, output4f.fB, output4f.fA,
771 expected4f.fR, expected4f.fG, expected4f.fB, expected4f.fA);
772 }
773 }
774 }
775 if (input4f.isOpaque() && fp->preservesOpaqueInput() && !output4f.isOpaque()) {
776 passing = false;
777
778 if (opaqueMessage.isEmpty()) {
779 opaqueMessage.printf(
780 "Processor claimed opaqueness is preserved but "
781 "it is not. Input: 0x%08x, Output: 0x%08x.",
782 input, output);
783 }
784 }
785
786 if (!passing) {
787 // Regardless of how many optimizations the pixel violates, count it as a
788 // single bad pixel.
789 failedPixelCount++;
790 }
791 }
792 }
793
794 // Finished analyzing the entire image, see if the number of pixel failures meets the
795 // threshold for an FP violating the optimization requirements.
796 if (failedPixelCount > kMaxAcceptableFailedPixels) {
797 ERRORF(reporter,
798 "Processor violated %d of %d pixels, seed: 0x%08x.\n"
799 "Processor:\n%s\nFirst failing pixel details are below:",
800 failedPixelCount, kRenderSize * kRenderSize, fpGenerator.initialSeed(),
801 fp->dumpTreeInfo().c_str());
802
803 // Print first failing pixel's details.
804 if (!coverageMessage.isEmpty()) {
805 ERRORF(reporter, "%s", coverageMessage.c_str());
806 }
807 if (!constMessage.isEmpty()) {
808 ERRORF(reporter, "%s", constMessage.c_str());
809 }
810 if (!opaqueMessage.isEmpty()) {
811 ERRORF(reporter, "%s", opaqueMessage.c_str());
812 }
813
814 if (!loggedFirstFailure) {
815 // Print with ERRORF to make sure the encoded image is output
816 SkString input;
817 log_texture_view(context, inputTexture1, &input);
818 SkString output;
819 log_pixels(readData1.data(), kRenderSize, &output);
820 ERRORF(reporter, "Input image: %s\n\n"
821 "===========================================================\n\n"
822 "Output image: %s\n", input.c_str(), output.c_str());
823 loggedFirstFailure = true;
824 }
825 } else if (failedPixelCount > 0) {
826 // Don't trigger an error, but don't just hide the failures either.
827 INFOF(reporter, "Processor violated %d of %d pixels (below error threshold), seed: "
828 "0x%08x, processor: %s", failedPixelCount, kRenderSize * kRenderSize,
829 fpGenerator.initialSeed(), fp->dumpInfo().c_str());
830 if (!coverageMessage.isEmpty()) {
831 INFOF(reporter, "%s", coverageMessage.c_str());
832 }
833 if (!constMessage.isEmpty()) {
834 INFOF(reporter, "%s", constMessage.c_str());
835 }
836 if (!opaqueMessage.isEmpty()) {
837 INFOF(reporter, "%s", opaqueMessage.c_str());
838 }
839 if (!loggedFirstWarning) {
840 SkString input;
841 log_texture_view(context, inputTexture1, &input);
842 SkString output;
843 log_pixels(readData1.data(), kRenderSize, &output);
844 INFOF(reporter, "Input image: %s\n\n"
845 "===========================================================\n\n"
846 "Output image: %s\n", input.c_str(), output.c_str());
847 loggedFirstWarning = true;
848 }
849 }
850 }
851 }
852 }
853
assert_processor_equality(skiatest::Reporter * reporter,const GrFragmentProcessor & fp,const GrFragmentProcessor & clone)854 static void assert_processor_equality(skiatest::Reporter* reporter,
855 const GrFragmentProcessor& fp,
856 const GrFragmentProcessor& clone) {
857 REPORTER_ASSERT(reporter, !strcmp(fp.name(), clone.name()),
858 "\n%s", fp.dumpTreeInfo().c_str());
859 REPORTER_ASSERT(reporter, fp.compatibleWithCoverageAsAlpha() ==
860 clone.compatibleWithCoverageAsAlpha(),
861 "\n%s", fp.dumpTreeInfo().c_str());
862 REPORTER_ASSERT(reporter, fp.isEqual(clone),
863 "\n%s", fp.dumpTreeInfo().c_str());
864 REPORTER_ASSERT(reporter, fp.preservesOpaqueInput() == clone.preservesOpaqueInput(),
865 "\n%s", fp.dumpTreeInfo().c_str());
866 REPORTER_ASSERT(reporter, fp.hasConstantOutputForConstantInput() ==
867 clone.hasConstantOutputForConstantInput(),
868 "\n%s", fp.dumpTreeInfo().c_str());
869 REPORTER_ASSERT(reporter, fp.numChildProcessors() == clone.numChildProcessors(),
870 "\n%s", fp.dumpTreeInfo().c_str());
871 REPORTER_ASSERT(reporter, fp.sampleUsage() == clone.sampleUsage(),
872 "\n%s", fp.dumpTreeInfo().c_str());
873 REPORTER_ASSERT(reporter, fp.usesSampleCoords() == clone.usesSampleCoords(),
874 "\n%s", fp.dumpTreeInfo().c_str());
875 }
876
verify_identical_render(skiatest::Reporter * reporter,int renderSize,const char * processorType,const GrColor readData1[],const GrColor readData2[])877 static bool verify_identical_render(skiatest::Reporter* reporter, int renderSize,
878 const char* processorType,
879 const GrColor readData1[], const GrColor readData2[]) {
880 // The ProcessorClone test has a history of being flaky on a number of devices. If an FP clone
881 // is logically wrong, it's reasonable to expect it produce a large number of pixel differences
882 // in the image. Sporadic pixel violations are more indicative device errors and represents a
883 // separate problem.
884 static const int maxAcceptableFailedPixels =
885 CurrentTestHarnessIsSkQP() ? 0 : // Strict when running as SKQP
886 2 * renderSize; // ~0.002% of the pixels (size 1024*1024)
887
888 int failedPixelCount = 0;
889 int firstWrongX = 0;
890 int firstWrongY = 0;
891 int idx = 0;
892 for (int y = 0; y < renderSize; ++y) {
893 for (int x = 0; x < renderSize; ++x, ++idx) {
894 if (readData1[idx] != readData2[idx]) {
895 if (!failedPixelCount) {
896 firstWrongX = x;
897 firstWrongY = y;
898 }
899 ++failedPixelCount;
900 }
901 if (failedPixelCount > maxAcceptableFailedPixels) {
902 idx = firstWrongY * renderSize + firstWrongX;
903 ERRORF(reporter,
904 "%s produced different output at (%d, %d). "
905 "Input color: 0x%08x, Original Output Color: 0x%08x, "
906 "Clone Output Color: 0x%08x.",
907 processorType, firstWrongX, firstWrongY, input_texel_color(x, y, 0.0f),
908 readData1[idx], readData2[idx]);
909
910 return false;
911 }
912 }
913 }
914
915 return true;
916 }
917
log_clone_failure(skiatest::Reporter * reporter,int renderSize,GrDirectContext * context,const GrSurfaceProxyView & inputTexture,GrColor pixelsFP[],GrColor pixelsClone[],GrColor pixelsRegen[])918 static void log_clone_failure(skiatest::Reporter* reporter, int renderSize,
919 GrDirectContext* context, const GrSurfaceProxyView& inputTexture,
920 GrColor pixelsFP[], GrColor pixelsClone[], GrColor pixelsRegen[]) {
921 // Write the images out as data URLs for inspection.
922 SkString inputURL, origURL, cloneURL, regenURL;
923 if (log_texture_view(context, inputTexture, &inputURL) &&
924 log_pixels(pixelsFP, renderSize, &origURL) &&
925 log_pixels(pixelsClone, renderSize, &cloneURL) &&
926 log_pixels(pixelsRegen, renderSize, ®enURL)) {
927 ERRORF(reporter,
928 "\nInput image:\n%s\n\n"
929 "==========================================================="
930 "\n\n"
931 "Orig output image:\n%s\n"
932 "==========================================================="
933 "\n\n"
934 "Clone output image:\n%s\n"
935 "==========================================================="
936 "\n\n"
937 "Regen output image:\n%s\n",
938 inputURL.c_str(), origURL.c_str(), cloneURL.c_str(), regenURL.c_str());
939 }
940 }
941
942 // Tests that a fragment processor returned by GrFragmentProcessor::clone() is equivalent to its
943 // progenitor.
DEF_GANESH_TEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest,reporter,ctxInfo,CtsEnforcement::kNever)944 DEF_GANESH_TEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest,
945 reporter,
946 ctxInfo,
947 CtsEnforcement::kNever) {
948 GrDirectContext* context = ctxInfo.directContext();
949 GrResourceProvider* resourceProvider = context->priv().resourceProvider();
950
951 TestFPGenerator fpGenerator{context, resourceProvider};
952 if (!fpGenerator.init()) {
953 ERRORF(reporter, "Could not initialize TestFPGenerator");
954 return;
955 }
956
957 // Make the destination context for the test.
958 static constexpr int kRenderSize = 1024;
959 auto sdc = skgpu::v1::SurfaceDrawContext::Make(
960 context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
961 {kRenderSize, kRenderSize}, SkSurfaceProps(), /*label=*/{});
962
963 std::vector<GrColor> inputPixels = make_input_pixels(kRenderSize, kRenderSize, 0.0f);
964 GrSurfaceProxyView inputTexture =
965 make_input_texture(context, kRenderSize, kRenderSize, inputPixels.data());
966
967 // On failure we write out images, but just write the first failing set as the print is very
968 // large.
969 bool loggedFirstFailure = false;
970
971 // Storage for the original frame's readback and the readback of its clone.
972 std::vector<GrColor> readDataFP(kRenderSize * kRenderSize);
973 std::vector<GrColor> readDataClone(kRenderSize * kRenderSize);
974 std::vector<GrColor> readDataRegen(kRenderSize * kRenderSize);
975
976 // Because processor factories configure themselves in random ways, this is not exhaustive.
977 for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) {
978 static constexpr int kTimesToInvokeFactory = 10;
979 for (int j = 0; j < kTimesToInvokeFactory; ++j) {
980 fpGenerator.reroll();
981 std::unique_ptr<GrFragmentProcessor> fp =
982 fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr);
983 std::unique_ptr<GrFragmentProcessor> regen =
984 fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr);
985 std::unique_ptr<GrFragmentProcessor> clone = fp->clone();
986 if (!clone) {
987 ERRORF(reporter, "Clone of processor %s failed.", fp->dumpTreeInfo().c_str());
988 continue;
989 }
990 assert_processor_equality(reporter, *fp, *clone);
991
992 // Draw with original and read back the results.
993 render_fp(context, sdc.get(), std::move(fp), readDataFP.data());
994
995 // Draw with clone and read back the results.
996 render_fp(context, sdc.get(), std::move(clone), readDataClone.data());
997
998 // Check that the results are the same.
999 if (!verify_identical_render(reporter, kRenderSize, "Processor clone",
1000 readDataFP.data(), readDataClone.data())) {
1001 // Dump a description from the regenerated processor (since the original FP has
1002 // already been consumed).
1003 ERRORF(reporter, "FP hierarchy:\n%s", regen->dumpTreeInfo().c_str());
1004
1005 // Render and readback output from the regenerated FP. If this also mismatches, the
1006 // FP itself doesn't generate consistent output. This could happen if:
1007 // - the FP's TestCreate() does not always generate the same FP from a given seed
1008 // - the FP's Make() does not always generate the same FP when given the same inputs
1009 // - the FP itself generates inconsistent pixels (shader UB?)
1010 // - the driver has a bug
1011 render_fp(context, sdc.get(), std::move(regen), readDataRegen.data());
1012
1013 if (!verify_identical_render(reporter, kRenderSize, "Regenerated processor",
1014 readDataFP.data(), readDataRegen.data())) {
1015 ERRORF(reporter, "Output from regen did not match original!\n");
1016 } else {
1017 ERRORF(reporter, "Regenerated processor output matches original results.\n");
1018 }
1019
1020 // If this is the first time we've encountered a cloning failure, log the generated
1021 // images to the reporter as data URLs.
1022 if (!loggedFirstFailure) {
1023 log_clone_failure(reporter, kRenderSize, context, inputTexture,
1024 readDataFP.data(), readDataClone.data(),
1025 readDataRegen.data());
1026 loggedFirstFailure = true;
1027 }
1028 }
1029 }
1030 }
1031 }
1032
1033 #endif // GR_TEST_UTILS
1034