• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #![cfg_attr(any(loom, not(feature = "sync")), allow(dead_code, unreachable_pub))]
2 
3 use crate::loom::cell::UnsafeCell;
4 use crate::loom::hint;
5 use crate::loom::sync::atomic::AtomicUsize;
6 
7 use std::fmt;
8 use std::panic::{resume_unwind, AssertUnwindSafe, RefUnwindSafe, UnwindSafe};
9 use std::sync::atomic::Ordering::{AcqRel, Acquire, Release};
10 use std::task::Waker;
11 
12 /// A synchronization primitive for task waking.
13 ///
14 /// `AtomicWaker` will coordinate concurrent wakes with the consumer
15 /// potentially "waking" the underlying task. This is useful in scenarios
16 /// where a computation completes in another thread and wants to wake the
17 /// consumer, but the consumer is in the process of being migrated to a new
18 /// logical task.
19 ///
20 /// Consumers should call `register` before checking the result of a computation
21 /// and producers should call `wake` after producing the computation (this
22 /// differs from the usual `thread::park` pattern). It is also permitted for
23 /// `wake` to be called **before** `register`. This results in a no-op.
24 ///
25 /// A single `AtomicWaker` may be reused for any number of calls to `register` or
26 /// `wake`.
27 pub(crate) struct AtomicWaker {
28     state: AtomicUsize,
29     waker: UnsafeCell<Option<Waker>>,
30 }
31 
32 impl RefUnwindSafe for AtomicWaker {}
33 impl UnwindSafe for AtomicWaker {}
34 
35 // `AtomicWaker` is a multi-consumer, single-producer transfer cell. The cell
36 // stores a `Waker` value produced by calls to `register` and many threads can
37 // race to take the waker by calling `wake`.
38 //
39 // If a new `Waker` instance is produced by calling `register` before an existing
40 // one is consumed, then the existing one is overwritten.
41 //
42 // While `AtomicWaker` is single-producer, the implementation ensures memory
43 // safety. In the event of concurrent calls to `register`, there will be a
44 // single winner whose waker will get stored in the cell. The losers will not
45 // have their tasks woken. As such, callers should ensure to add synchronization
46 // to calls to `register`.
47 //
48 // The implementation uses a single `AtomicUsize` value to coordinate access to
49 // the `Waker` cell. There are two bits that are operated on independently. These
50 // are represented by `REGISTERING` and `WAKING`.
51 //
52 // The `REGISTERING` bit is set when a producer enters the critical section. The
53 // `WAKING` bit is set when a consumer enters the critical section. Neither
54 // bit being set is represented by `WAITING`.
55 //
56 // A thread obtains an exclusive lock on the waker cell by transitioning the
57 // state from `WAITING` to `REGISTERING` or `WAKING`, depending on the
58 // operation the thread wishes to perform. When this transition is made, it is
59 // guaranteed that no other thread will access the waker cell.
60 //
61 // # Registering
62 //
63 // On a call to `register`, an attempt to transition the state from WAITING to
64 // REGISTERING is made. On success, the caller obtains a lock on the waker cell.
65 //
66 // If the lock is obtained, then the thread sets the waker cell to the waker
67 // provided as an argument. Then it attempts to transition the state back from
68 // `REGISTERING` -> `WAITING`.
69 //
70 // If this transition is successful, then the registering process is complete
71 // and the next call to `wake` will observe the waker.
72 //
73 // If the transition fails, then there was a concurrent call to `wake` that
74 // was unable to access the waker cell (due to the registering thread holding the
75 // lock). To handle this, the registering thread removes the waker it just set
76 // from the cell and calls `wake` on it. This call to wake represents the
77 // attempt to wake by the other thread (that set the `WAKING` bit). The
78 // state is then transitioned from `REGISTERING | WAKING` back to `WAITING`.
79 // This transition must succeed because, at this point, the state cannot be
80 // transitioned by another thread.
81 //
82 // # Waking
83 //
84 // On a call to `wake`, an attempt to transition the state from `WAITING` to
85 // `WAKING` is made. On success, the caller obtains a lock on the waker cell.
86 //
87 // If the lock is obtained, then the thread takes ownership of the current value
88 // in the waker cell, and calls `wake` on it. The state is then transitioned
89 // back to `WAITING`. This transition must succeed as, at this point, the state
90 // cannot be transitioned by another thread.
91 //
92 // If the thread is unable to obtain the lock, the `WAKING` bit is still set.
93 // This is because it has either been set by the current thread but the previous
94 // value included the `REGISTERING` bit **or** a concurrent thread is in the
95 // `WAKING` critical section. Either way, no action must be taken.
96 //
97 // If the current thread is the only concurrent call to `wake` and another
98 // thread is in the `register` critical section, when the other thread **exits**
99 // the `register` critical section, it will observe the `WAKING` bit and
100 // handle the waker itself.
101 //
102 // If another thread is in the `waker` critical section, then it will handle
103 // waking the caller task.
104 //
105 // # A potential race (is safely handled).
106 //
107 // Imagine the following situation:
108 //
109 // * Thread A obtains the `wake` lock and wakes a task.
110 //
111 // * Before thread A releases the `wake` lock, the woken task is scheduled.
112 //
113 // * Thread B attempts to wake the task. In theory this should result in the
114 //   task being woken, but it cannot because thread A still holds the wake
115 //   lock.
116 //
117 // This case is handled by requiring users of `AtomicWaker` to call `register`
118 // **before** attempting to observe the application state change that resulted
119 // in the task being woken. The wakers also change the application state
120 // before calling wake.
121 //
122 // Because of this, the task will do one of two things.
123 //
124 // 1) Observe the application state change that Thread B is waking on. In
125 //    this case, it is OK for Thread B's wake to be lost.
126 //
127 // 2) Call register before attempting to observe the application state. Since
128 //    Thread A still holds the `wake` lock, the call to `register` will result
129 //    in the task waking itself and get scheduled again.
130 
131 /// Idle state.
132 const WAITING: usize = 0;
133 
134 /// A new waker value is being registered with the `AtomicWaker` cell.
135 const REGISTERING: usize = 0b01;
136 
137 /// The task currently registered with the `AtomicWaker` cell is being woken.
138 const WAKING: usize = 0b10;
139 
140 impl AtomicWaker {
141     /// Create an `AtomicWaker`
new() -> AtomicWaker142     pub(crate) fn new() -> AtomicWaker {
143         AtomicWaker {
144             state: AtomicUsize::new(WAITING),
145             waker: UnsafeCell::new(None),
146         }
147     }
148 
149     /*
150     /// Registers the current waker to be notified on calls to `wake`.
151     pub(crate) fn register(&self, waker: Waker) {
152         self.do_register(waker);
153     }
154     */
155 
156     /// Registers the provided waker to be notified on calls to `wake`.
157     ///
158     /// The new waker will take place of any previous wakers that were registered
159     /// by previous calls to `register`. Any calls to `wake` that happen after
160     /// a call to `register` (as defined by the memory ordering rules), will
161     /// wake the `register` caller's task.
162     ///
163     /// It is safe to call `register` with multiple other threads concurrently
164     /// calling `wake`. This will result in the `register` caller's current
165     /// task being woken once.
166     ///
167     /// This function is safe to call concurrently, but this is generally a bad
168     /// idea. Concurrent calls to `register` will attempt to register different
169     /// tasks to be woken. One of the callers will win and have its task set,
170     /// but there is no guarantee as to which caller will succeed.
register_by_ref(&self, waker: &Waker)171     pub(crate) fn register_by_ref(&self, waker: &Waker) {
172         self.do_register(waker);
173     }
174 
do_register<W>(&self, waker: W) where W: WakerRef,175     fn do_register<W>(&self, waker: W)
176     where
177         W: WakerRef,
178     {
179         fn catch_unwind<F: FnOnce() -> R, R>(f: F) -> std::thread::Result<R> {
180             std::panic::catch_unwind(AssertUnwindSafe(f))
181         }
182 
183         match self
184             .state
185             .compare_exchange(WAITING, REGISTERING, Acquire, Acquire)
186             .unwrap_or_else(|x| x)
187         {
188             WAITING => {
189                 unsafe {
190                     // If `into_waker` panics (because it's code outside of
191                     // AtomicWaker) we need to prime a guard that is called on
192                     // unwind to restore the waker to a WAITING state. Otherwise
193                     // any future calls to register will incorrectly be stuck
194                     // believing it's being updated by someone else.
195                     let new_waker_or_panic = catch_unwind(move || waker.into_waker());
196 
197                     // Set the field to contain the new waker, or if
198                     // `into_waker` panicked, leave the old value.
199                     let mut maybe_panic = None;
200                     let mut old_waker = None;
201                     match new_waker_or_panic {
202                         Ok(new_waker) => {
203                             old_waker = self.waker.with_mut(|t| (*t).take());
204                             self.waker.with_mut(|t| *t = Some(new_waker));
205                         }
206                         Err(panic) => maybe_panic = Some(panic),
207                     }
208 
209                     // Release the lock. If the state transitioned to include
210                     // the `WAKING` bit, this means that a wake has been
211                     // called concurrently, so we have to remove the waker and
212                     // wake it.`
213                     //
214                     // Start by assuming that the state is `REGISTERING` as this
215                     // is what we jut set it to.
216                     let res = self
217                         .state
218                         .compare_exchange(REGISTERING, WAITING, AcqRel, Acquire);
219 
220                     match res {
221                         Ok(_) => {
222                             // We don't want to give the caller the panic if it
223                             // was someone else who put in that waker.
224                             let _ = catch_unwind(move || {
225                                 drop(old_waker);
226                             });
227                         }
228                         Err(actual) => {
229                             // This branch can only be reached if a
230                             // concurrent thread called `wake`. In this
231                             // case, `actual` **must** be `REGISTERING |
232                             // WAKING`.
233                             debug_assert_eq!(actual, REGISTERING | WAKING);
234 
235                             // Take the waker to wake once the atomic operation has
236                             // completed.
237                             let mut waker = self.waker.with_mut(|t| (*t).take());
238 
239                             // Just swap, because no one could change state
240                             // while state == `Registering | `Waking`
241                             self.state.swap(WAITING, AcqRel);
242 
243                             // If `into_waker` panicked, then the waker in the
244                             // waker slot is actually the old waker.
245                             if maybe_panic.is_some() {
246                                 old_waker = waker.take();
247                             }
248 
249                             // We don't want to give the caller the panic if it
250                             // was someone else who put in that waker.
251                             if let Some(old_waker) = old_waker {
252                                 let _ = catch_unwind(move || {
253                                     old_waker.wake();
254                                 });
255                             }
256 
257                             // The atomic swap was complete, now wake the waker
258                             // and return.
259                             //
260                             // If this panics, we end up in a consumed state and
261                             // return the panic to the caller.
262                             if let Some(waker) = waker {
263                                 debug_assert!(maybe_panic.is_none());
264                                 waker.wake();
265                             }
266                         }
267                     }
268 
269                     if let Some(panic) = maybe_panic {
270                         // If `into_waker` panicked, return the panic to the caller.
271                         resume_unwind(panic);
272                     }
273                 }
274             }
275             WAKING => {
276                 // Currently in the process of waking the task, i.e.,
277                 // `wake` is currently being called on the old waker.
278                 // So, we call wake on the new waker.
279                 //
280                 // If this panics, someone else is responsible for restoring the
281                 // state of the waker.
282                 waker.wake();
283 
284                 // This is equivalent to a spin lock, so use a spin hint.
285                 hint::spin_loop();
286             }
287             state => {
288                 // In this case, a concurrent thread is holding the
289                 // "registering" lock. This probably indicates a bug in the
290                 // caller's code as racing to call `register` doesn't make much
291                 // sense.
292                 //
293                 // We just want to maintain memory safety. It is ok to drop the
294                 // call to `register`.
295                 debug_assert!(state == REGISTERING || state == REGISTERING | WAKING);
296             }
297         }
298     }
299 
300     /// Wakes the task that last called `register`.
301     ///
302     /// If `register` has not been called yet, then this does nothing.
wake(&self)303     pub(crate) fn wake(&self) {
304         if let Some(waker) = self.take_waker() {
305             // If wake panics, we've consumed the waker which is a legitimate
306             // outcome.
307             waker.wake();
308         }
309     }
310 
311     /// Attempts to take the `Waker` value out of the `AtomicWaker` with the
312     /// intention that the caller will wake the task later.
take_waker(&self) -> Option<Waker>313     pub(crate) fn take_waker(&self) -> Option<Waker> {
314         // AcqRel ordering is used in order to acquire the value of the `waker`
315         // cell as well as to establish a `release` ordering with whatever
316         // memory the `AtomicWaker` is associated with.
317         match self.state.fetch_or(WAKING, AcqRel) {
318             WAITING => {
319                 // The waking lock has been acquired.
320                 let waker = unsafe { self.waker.with_mut(|t| (*t).take()) };
321 
322                 // Release the lock
323                 self.state.fetch_and(!WAKING, Release);
324 
325                 waker
326             }
327             state => {
328                 // There is a concurrent thread currently updating the
329                 // associated waker.
330                 //
331                 // Nothing more to do as the `WAKING` bit has been set. It
332                 // doesn't matter if there are concurrent registering threads or
333                 // not.
334                 //
335                 debug_assert!(
336                     state == REGISTERING || state == REGISTERING | WAKING || state == WAKING
337                 );
338                 None
339             }
340         }
341     }
342 }
343 
344 impl Default for AtomicWaker {
default() -> Self345     fn default() -> Self {
346         AtomicWaker::new()
347     }
348 }
349 
350 impl fmt::Debug for AtomicWaker {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result351     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
352         write!(fmt, "AtomicWaker")
353     }
354 }
355 
356 unsafe impl Send for AtomicWaker {}
357 unsafe impl Sync for AtomicWaker {}
358 
359 trait WakerRef {
wake(self)360     fn wake(self);
into_waker(self) -> Waker361     fn into_waker(self) -> Waker;
362 }
363 
364 impl WakerRef for Waker {
wake(self)365     fn wake(self) {
366         self.wake()
367     }
368 
into_waker(self) -> Waker369     fn into_waker(self) -> Waker {
370         self
371     }
372 }
373 
374 impl WakerRef for &Waker {
wake(self)375     fn wake(self) {
376         self.wake_by_ref()
377     }
378 
into_waker(self) -> Waker379     fn into_waker(self) -> Waker {
380         self.clone()
381     }
382 }
383