1 /*
2 * Copyright 2015 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #ifndef API_ARRAY_VIEW_H_
12 #define API_ARRAY_VIEW_H_
13
14 #include <algorithm>
15 #include <array>
16 #include <iterator>
17 #include <type_traits>
18
19 #include "rtc_base/checks.h"
20 #include "rtc_base/type_traits.h"
21
22 namespace rtc {
23
24 // tl;dr: rtc::ArrayView is the same thing as gsl::span from the Guideline
25 // Support Library.
26 //
27 // Many functions read from or write to arrays. The obvious way to do this is
28 // to use two arguments, a pointer to the first element and an element count:
29 //
30 // bool Contains17(const int* arr, size_t size) {
31 // for (size_t i = 0; i < size; ++i) {
32 // if (arr[i] == 17)
33 // return true;
34 // }
35 // return false;
36 // }
37 //
38 // This is flexible, since it doesn't matter how the array is stored (C array,
39 // std::vector, rtc::Buffer, ...), but it's error-prone because the caller has
40 // to correctly specify the array length:
41 //
42 // Contains17(arr, arraysize(arr)); // C array
43 // Contains17(arr.data(), arr.size()); // std::vector
44 // Contains17(arr, size); // pointer + size
45 // ...
46 //
47 // It's also kind of messy to have two separate arguments for what is
48 // conceptually a single thing.
49 //
50 // Enter rtc::ArrayView<T>. It contains a T pointer (to an array it doesn't
51 // own) and a count, and supports the basic things you'd expect, such as
52 // indexing and iteration. It allows us to write our function like this:
53 //
54 // bool Contains17(rtc::ArrayView<const int> arr) {
55 // for (auto e : arr) {
56 // if (e == 17)
57 // return true;
58 // }
59 // return false;
60 // }
61 //
62 // And even better, because a bunch of things will implicitly convert to
63 // ArrayView, we can call it like this:
64 //
65 // Contains17(arr); // C array
66 // Contains17(arr); // std::vector
67 // Contains17(rtc::ArrayView<int>(arr, size)); // pointer + size
68 // Contains17(nullptr); // nullptr -> empty ArrayView
69 // ...
70 //
71 // ArrayView<T> stores both a pointer and a size, but you may also use
72 // ArrayView<T, N>, which has a size that's fixed at compile time (which means
73 // it only has to store the pointer).
74 //
75 // One important point is that ArrayView<T> and ArrayView<const T> are
76 // different types, which allow and don't allow mutation of the array elements,
77 // respectively. The implicit conversions work just like you'd hope, so that
78 // e.g. vector<int> will convert to either ArrayView<int> or ArrayView<const
79 // int>, but const vector<int> will convert only to ArrayView<const int>.
80 // (ArrayView itself can be the source type in such conversions, so
81 // ArrayView<int> will convert to ArrayView<const int>.)
82 //
83 // Note: ArrayView is tiny (just a pointer and a count if variable-sized, just
84 // a pointer if fix-sized) and trivially copyable, so it's probably cheaper to
85 // pass it by value than by const reference.
86
87 namespace array_view_internal {
88
89 // Magic constant for indicating that the size of an ArrayView is variable
90 // instead of fixed.
91 enum : std::ptrdiff_t { kArrayViewVarSize = -4711 };
92
93 // Base class for ArrayViews of fixed nonzero size.
94 template <typename T, std::ptrdiff_t Size>
95 class ArrayViewBase {
96 static_assert(Size > 0, "ArrayView size must be variable or non-negative");
97
98 public:
ArrayViewBase(T * data,size_t size)99 ArrayViewBase(T* data, size_t size) : data_(data) {}
100
size()101 static constexpr size_t size() { return Size; }
empty()102 static constexpr bool empty() { return false; }
data()103 T* data() const { return data_; }
104
105 protected:
fixed_size()106 static constexpr bool fixed_size() { return true; }
107
108 private:
109 T* data_;
110 };
111
112 // Specialized base class for ArrayViews of fixed zero size.
113 template <typename T>
114 class ArrayViewBase<T, 0> {
115 public:
ArrayViewBase(T * data,size_t size)116 explicit ArrayViewBase(T* data, size_t size) {}
117
size()118 static constexpr size_t size() { return 0; }
empty()119 static constexpr bool empty() { return true; }
data()120 T* data() const { return nullptr; }
121
122 protected:
fixed_size()123 static constexpr bool fixed_size() { return true; }
124 };
125
126 // Specialized base class for ArrayViews of variable size.
127 template <typename T>
128 class ArrayViewBase<T, array_view_internal::kArrayViewVarSize> {
129 public:
ArrayViewBase(T * data,size_t size)130 ArrayViewBase(T* data, size_t size)
131 : data_(size == 0 ? nullptr : data), size_(size) {}
132
size()133 size_t size() const { return size_; }
empty()134 bool empty() const { return size_ == 0; }
data()135 T* data() const { return data_; }
136
137 protected:
fixed_size()138 static constexpr bool fixed_size() { return false; }
139
140 private:
141 T* data_;
142 size_t size_;
143 };
144
145 } // namespace array_view_internal
146
147 template <typename T,
148 std::ptrdiff_t Size = array_view_internal::kArrayViewVarSize>
149 class ArrayView final : public array_view_internal::ArrayViewBase<T, Size> {
150 public:
151 using value_type = T;
152 using const_iterator = const T*;
153
154 // Construct an ArrayView from a pointer and a length.
155 template <typename U>
ArrayView(U * data,size_t size)156 ArrayView(U* data, size_t size)
157 : array_view_internal::ArrayViewBase<T, Size>::ArrayViewBase(data, size) {
158 RTC_DCHECK_EQ(size == 0 ? nullptr : data, this->data());
159 RTC_DCHECK_EQ(size, this->size());
160 RTC_DCHECK_EQ(!this->data(),
161 this->size() == 0); // data is null iff size == 0.
162 }
163
164 // Construct an empty ArrayView. Note that fixed-size ArrayViews of size > 0
165 // cannot be empty.
ArrayView()166 ArrayView() : ArrayView(nullptr, 0) {}
ArrayView(std::nullptr_t)167 ArrayView(std::nullptr_t) // NOLINT
168 : ArrayView() {}
ArrayView(std::nullptr_t,size_t size)169 ArrayView(std::nullptr_t, size_t size)
170 : ArrayView(static_cast<T*>(nullptr), size) {
171 static_assert(Size == 0 || Size == array_view_internal::kArrayViewVarSize,
172 "");
173 RTC_DCHECK_EQ(0, size);
174 }
175
176 // Construct an ArrayView from a C-style array.
177 template <typename U, size_t N>
ArrayView(U (& array)[N])178 ArrayView(U (&array)[N]) // NOLINT
179 : ArrayView(array, N) {
180 static_assert(Size == N || Size == array_view_internal::kArrayViewVarSize,
181 "Array size must match ArrayView size");
182 }
183
184 // (Only if size is fixed.) Construct a fixed size ArrayView<T, N> from a
185 // non-const std::array instance. For an ArrayView with variable size, the
186 // used ctor is ArrayView(U& u) instead.
187 template <typename U,
188 size_t N,
189 typename std::enable_if<
190 Size == static_cast<std::ptrdiff_t>(N)>::type* = nullptr>
ArrayView(std::array<U,N> & u)191 ArrayView(std::array<U, N>& u) // NOLINT
192 : ArrayView(u.data(), u.size()) {}
193
194 // (Only if size is fixed.) Construct a fixed size ArrayView<T, N> where T is
195 // const from a const(expr) std::array instance. For an ArrayView with
196 // variable size, the used ctor is ArrayView(U& u) instead.
197 template <typename U,
198 size_t N,
199 typename std::enable_if<
200 Size == static_cast<std::ptrdiff_t>(N)>::type* = nullptr>
ArrayView(const std::array<U,N> & u)201 ArrayView(const std::array<U, N>& u) // NOLINT
202 : ArrayView(u.data(), u.size()) {}
203
204 // (Only if size is fixed.) Construct an ArrayView from any type U that has a
205 // static constexpr size() method whose return value is equal to Size, and a
206 // data() method whose return value converts implicitly to T*. In particular,
207 // this means we allow conversion from ArrayView<T, N> to ArrayView<const T,
208 // N>, but not the other way around. We also don't allow conversion from
209 // ArrayView<T> to ArrayView<T, N>, or from ArrayView<T, M> to ArrayView<T,
210 // N> when M != N.
211 template <
212 typename U,
213 typename std::enable_if<Size != array_view_internal::kArrayViewVarSize &&
214 HasDataAndSize<U, T>::value>::type* = nullptr>
ArrayView(U & u)215 ArrayView(U& u) // NOLINT
216 : ArrayView(u.data(), u.size()) {
217 static_assert(U::size() == Size, "Sizes must match exactly");
218 }
219 template <
220 typename U,
221 typename std::enable_if<Size != array_view_internal::kArrayViewVarSize &&
222 HasDataAndSize<U, T>::value>::type* = nullptr>
ArrayView(const U & u)223 ArrayView(const U& u) // NOLINT(runtime/explicit)
224 : ArrayView(u.data(), u.size()) {
225 static_assert(U::size() == Size, "Sizes must match exactly");
226 }
227
228 // (Only if size is variable.) Construct an ArrayView from any type U that
229 // has a size() method whose return value converts implicitly to size_t, and
230 // a data() method whose return value converts implicitly to T*. In
231 // particular, this means we allow conversion from ArrayView<T> to
232 // ArrayView<const T>, but not the other way around. Other allowed
233 // conversions include
234 // ArrayView<T, N> to ArrayView<T> or ArrayView<const T>,
235 // std::vector<T> to ArrayView<T> or ArrayView<const T>,
236 // const std::vector<T> to ArrayView<const T>,
237 // rtc::Buffer to ArrayView<uint8_t> or ArrayView<const uint8_t>, and
238 // const rtc::Buffer to ArrayView<const uint8_t>.
239 template <
240 typename U,
241 typename std::enable_if<Size == array_view_internal::kArrayViewVarSize &&
242 HasDataAndSize<U, T>::value>::type* = nullptr>
ArrayView(U & u)243 ArrayView(U& u) // NOLINT
244 : ArrayView(u.data(), u.size()) {}
245 template <
246 typename U,
247 typename std::enable_if<Size == array_view_internal::kArrayViewVarSize &&
248 HasDataAndSize<U, T>::value>::type* = nullptr>
ArrayView(const U & u)249 ArrayView(const U& u) // NOLINT(runtime/explicit)
250 : ArrayView(u.data(), u.size()) {}
251
252 // Indexing and iteration. These allow mutation even if the ArrayView is
253 // const, because the ArrayView doesn't own the array. (To prevent mutation,
254 // use a const element type.)
255 T& operator[](size_t idx) const {
256 RTC_DCHECK_LT(idx, this->size());
257 RTC_DCHECK(this->data());
258 return this->data()[idx];
259 }
begin()260 T* begin() const { return this->data(); }
end()261 T* end() const { return this->data() + this->size(); }
cbegin()262 const T* cbegin() const { return this->data(); }
cend()263 const T* cend() const { return this->data() + this->size(); }
rbegin()264 std::reverse_iterator<T*> rbegin() const {
265 return std::make_reverse_iterator(end());
266 }
rend()267 std::reverse_iterator<T*> rend() const {
268 return std::make_reverse_iterator(begin());
269 }
crbegin()270 std::reverse_iterator<const T*> crbegin() const {
271 return std::make_reverse_iterator(cend());
272 }
crend()273 std::reverse_iterator<const T*> crend() const {
274 return std::make_reverse_iterator(cbegin());
275 }
276
subview(size_t offset,size_t size)277 ArrayView<T> subview(size_t offset, size_t size) const {
278 return offset < this->size()
279 ? ArrayView<T>(this->data() + offset,
280 std::min(size, this->size() - offset))
281 : ArrayView<T>();
282 }
subview(size_t offset)283 ArrayView<T> subview(size_t offset) const {
284 return subview(offset, this->size());
285 }
286 };
287
288 // Comparing two ArrayViews compares their (pointer,size) pairs; it does *not*
289 // dereference the pointers.
290 template <typename T, std::ptrdiff_t Size1, std::ptrdiff_t Size2>
291 bool operator==(const ArrayView<T, Size1>& a, const ArrayView<T, Size2>& b) {
292 return a.data() == b.data() && a.size() == b.size();
293 }
294 template <typename T, std::ptrdiff_t Size1, std::ptrdiff_t Size2>
295 bool operator!=(const ArrayView<T, Size1>& a, const ArrayView<T, Size2>& b) {
296 return !(a == b);
297 }
298
299 // Variable-size ArrayViews are the size of two pointers; fixed-size ArrayViews
300 // are the size of one pointer. (And as a special case, fixed-size ArrayViews
301 // of size 0 require no storage.)
302 static_assert(sizeof(ArrayView<int>) == 2 * sizeof(int*), "");
303 static_assert(sizeof(ArrayView<int, 17>) == sizeof(int*), "");
304 static_assert(std::is_empty<ArrayView<int, 0>>::value, "");
305
306 template <typename T>
MakeArrayView(T * data,size_t size)307 inline ArrayView<T> MakeArrayView(T* data, size_t size) {
308 return ArrayView<T>(data, size);
309 }
310
311 // Only for primitive types that have the same size and aligment.
312 // Allow reinterpret cast of the array view to another primitive type of the
313 // same size.
314 // Template arguments order is (U, T, Size) to allow deduction of the template
315 // arguments in client calls: reinterpret_array_view<target_type>(array_view).
316 template <typename U, typename T, std::ptrdiff_t Size>
reinterpret_array_view(ArrayView<T,Size> view)317 inline ArrayView<U, Size> reinterpret_array_view(ArrayView<T, Size> view) {
318 static_assert(sizeof(U) == sizeof(T) && alignof(U) == alignof(T),
319 "ArrayView reinterpret_cast is only supported for casting "
320 "between views that represent the same chunk of memory.");
321 static_assert(
322 std::is_fundamental<T>::value && std::is_fundamental<U>::value,
323 "ArrayView reinterpret_cast is only supported for casting between "
324 "fundamental types.");
325 return ArrayView<U, Size>(reinterpret_cast<U*>(view.data()), view.size());
326 }
327
328 } // namespace rtc
329
330 #endif // API_ARRAY_VIEW_H_
331