1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/core/SkScanPriv.h"
9
10 #include "include/core/SkMatrix.h"
11 #include "include/core/SkPath.h"
12 #include "include/core/SkRegion.h"
13 #include "include/private/base/SkTo.h"
14 #include "src/core/SkAntiRun.h"
15 #include "src/core/SkBlitter.h"
16 #include "src/core/SkPathPriv.h"
17
18 #define SHIFT SK_SUPERSAMPLE_SHIFT
19 #define SCALE (1 << SHIFT)
20 #define MASK (SCALE - 1)
21
22 /** @file
23 We have two techniques for capturing the output of the supersampler:
24 - SUPERMASK, which records a large mask-bitmap
25 this is often faster for small, complex objects
26 - RLE, which records a rle-encoded scanline
27 this is often faster for large objects with big spans
28
29 These blitters use two coordinate systems:
30 - destination coordinates, scale equal to the output - often
31 abbreviated with 'i' or 'I' in variable names
32 - supersampled coordinates, scale equal to the output * SCALE
33 */
34
35 //#define FORCE_SUPERMASK
36 //#define FORCE_RLE
37
38 ///////////////////////////////////////////////////////////////////////////////
39
40 /// Base class for a single-pass supersampled blitter.
41 class BaseSuperBlitter : public SkBlitter {
42 public:
43 BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
44 const SkIRect& clipBounds, bool isInverse);
45
46 /// Must be explicitly defined on subclasses.
blitAntiH(int x,int y,const SkAlpha antialias[],const int16_t runs[])47 void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) override {
48 SkDEBUGFAIL("How did I get here?");
49 }
50 /// May not be called on BaseSuperBlitter because it blits out of order.
blitV(int x,int y,int height,SkAlpha alpha)51 void blitV(int x, int y, int height, SkAlpha alpha) override {
52 SkDEBUGFAIL("How did I get here?");
53 }
54
55 protected:
56 SkBlitter* fRealBlitter;
57 /// Current y coordinate, in destination coordinates.
58 int fCurrIY;
59 /// Widest row of region to be blitted, in destination coordinates.
60 int fWidth;
61 /// Leftmost x coordinate in any row, in destination coordinates.
62 int fLeft;
63 /// Leftmost x coordinate in any row, in supersampled coordinates.
64 int fSuperLeft;
65
66 SkDEBUGCODE(int fCurrX;)
67 /// Current y coordinate in supersampled coordinates.
68 int fCurrY;
69 /// Initial y coordinate (top of bounds).
70 int fTop;
71
72 SkIRect fSectBounds;
73 };
74
BaseSuperBlitter(SkBlitter * realBlit,const SkIRect & ir,const SkIRect & clipBounds,bool isInverse)75 BaseSuperBlitter::BaseSuperBlitter(SkBlitter* realBlit, const SkIRect& ir,
76 const SkIRect& clipBounds, bool isInverse) {
77 fRealBlitter = realBlit;
78
79 SkIRect sectBounds;
80 if (isInverse) {
81 // We use the clip bounds instead of the ir, since we may be asked to
82 //draw outside of the rect when we're a inverse filltype
83 sectBounds = clipBounds;
84 } else {
85 if (!sectBounds.intersect(ir, clipBounds)) {
86 sectBounds.setEmpty();
87 }
88 }
89
90 const int left = sectBounds.left();
91 const int right = sectBounds.right();
92
93 fLeft = left;
94 fSuperLeft = SkLeftShift(left, SHIFT);
95 fWidth = right - left;
96 fTop = sectBounds.top();
97 fCurrIY = fTop - 1;
98 fCurrY = SkLeftShift(fTop, SHIFT) - 1;
99
100 SkDEBUGCODE(fCurrX = -1;)
101 }
102
103 /// Run-length-encoded supersampling antialiased blitter.
104 class SuperBlitter : public BaseSuperBlitter {
105 public:
106 SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkIRect& clipBounds,
107 bool isInverse);
108
~SuperBlitter()109 ~SuperBlitter() override {
110 this->flush();
111 }
112
113 /// Once fRuns contains a complete supersampled row, flush() blits
114 /// it out through the wrapped blitter.
115 void flush();
116
117 /// Blits a row of pixels, with location and width specified
118 /// in supersampled coordinates.
119 void blitH(int x, int y, int width) override;
120 /// Blits a rectangle of pixels, with location and size specified
121 /// in supersampled coordinates.
122 void blitRect(int x, int y, int width, int height) override;
123
124 private:
125 // The next three variables are used to track a circular buffer that
126 // contains the values used in SkAlphaRuns. These variables should only
127 // ever be updated in advanceRuns(), and fRuns should always point to
128 // a valid SkAlphaRuns...
129 int fRunsToBuffer;
130 void* fRunsBuffer;
131 int fCurrentRun;
132 SkAlphaRuns fRuns;
133
134 // extra one to store the zero at the end
getRunsSz() const135 int getRunsSz() const { return (fWidth + 1 + (fWidth + 2)/2) * sizeof(int16_t); }
136
137 // This function updates the fRuns variable to point to the next buffer space
138 // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun
139 // and resets fRuns to point to an empty scanline.
advanceRuns()140 void advanceRuns() {
141 const size_t kRunsSz = this->getRunsSz();
142 fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer;
143 fRuns.fRuns = reinterpret_cast<int16_t*>(
144 reinterpret_cast<uint8_t*>(fRunsBuffer) + fCurrentRun * kRunsSz);
145 fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1);
146 fRuns.reset(fWidth);
147 }
148
149 int fOffsetX;
150 };
151
SuperBlitter(SkBlitter * realBlitter,const SkIRect & ir,const SkIRect & clipBounds,bool isInverse)152 SuperBlitter::SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkIRect& clipBounds,
153 bool isInverse)
154 : BaseSuperBlitter(realBlitter, ir, clipBounds, isInverse)
155 {
156 fRunsToBuffer = realBlitter->requestRowsPreserved();
157 fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz());
158 fCurrentRun = -1;
159
160 this->advanceRuns();
161
162 fOffsetX = 0;
163 }
164
flush()165 void SuperBlitter::flush() {
166 if (fCurrIY >= fTop) {
167
168 SkASSERT(fCurrentRun < fRunsToBuffer);
169 if (!fRuns.empty()) {
170 // SkDEBUGCODE(fRuns.dump();)
171 fRealBlitter->blitAntiH(fLeft, fCurrIY, fRuns.fAlpha, fRuns.fRuns);
172 this->advanceRuns();
173 fOffsetX = 0;
174 }
175
176 fCurrIY = fTop - 1;
177 SkDEBUGCODE(fCurrX = -1;)
178 }
179 }
180
181 /** coverage_to_partial_alpha() is being used by SkAlphaRuns, which
182 *accumulates* SCALE pixels worth of "alpha" in [0,(256/SCALE)]
183 to produce a final value in [0, 255] and handles clamping 256->255
184 itself, with the same (alpha - (alpha >> 8)) correction as
185 coverage_to_exact_alpha().
186 */
coverage_to_partial_alpha(int aa)187 static inline int coverage_to_partial_alpha(int aa) {
188 aa <<= 8 - 2*SHIFT;
189 return aa;
190 }
191
192 /** coverage_to_exact_alpha() is being used by our blitter, which wants
193 a final value in [0, 255].
194 */
coverage_to_exact_alpha(int aa)195 static inline int coverage_to_exact_alpha(int aa) {
196 int alpha = (256 >> SHIFT) * aa;
197 // clamp 256->255
198 return alpha - (alpha >> 8);
199 }
200
blitH(int x,int y,int width)201 void SuperBlitter::blitH(int x, int y, int width) {
202 SkASSERT(width > 0);
203
204 int iy = y >> SHIFT;
205 SkASSERT(iy >= fCurrIY);
206
207 x -= fSuperLeft;
208 // hack, until I figure out why my cubics (I think) go beyond the bounds
209 if (x < 0) {
210 width += x;
211 x = 0;
212 }
213
214 #ifdef SK_DEBUG
215 SkASSERT(y != fCurrY || x >= fCurrX);
216 #endif
217 SkASSERT(y >= fCurrY);
218 if (fCurrY != y) {
219 fOffsetX = 0;
220 fCurrY = y;
221 }
222
223 if (iy != fCurrIY) { // new scanline
224 this->flush();
225 fCurrIY = iy;
226 }
227
228 int start = x;
229 int stop = x + width;
230
231 SkASSERT(start >= 0 && stop > start);
232 // integer-pixel-aligned ends of blit, rounded out
233 int fb = start & MASK;
234 int fe = stop & MASK;
235 int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
236
237 if (n < 0) {
238 fb = fe - fb;
239 n = 0;
240 fe = 0;
241 } else {
242 if (fb == 0) {
243 n += 1;
244 } else {
245 fb = SCALE - fb;
246 }
247 }
248
249 fOffsetX = fRuns.add(x >> SHIFT, coverage_to_partial_alpha(fb),
250 n, coverage_to_partial_alpha(fe),
251 (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT),
252 fOffsetX);
253
254 #ifdef SK_DEBUG
255 fRuns.assertValid(y & MASK, (1 << (8 - SHIFT)));
256 fCurrX = x + width;
257 #endif
258 }
259
260 #if 0 // UNUSED
261 static void set_left_rite_runs(SkAlphaRuns& runs, int ileft, U8CPU leftA,
262 int n, U8CPU riteA) {
263 SkASSERT(leftA <= 0xFF);
264 SkASSERT(riteA <= 0xFF);
265
266 int16_t* run = runs.fRuns;
267 uint8_t* aa = runs.fAlpha;
268
269 if (ileft > 0) {
270 run[0] = ileft;
271 aa[0] = 0;
272 run += ileft;
273 aa += ileft;
274 }
275
276 SkASSERT(leftA < 0xFF);
277 if (leftA > 0) {
278 *run++ = 1;
279 *aa++ = leftA;
280 }
281
282 if (n > 0) {
283 run[0] = n;
284 aa[0] = 0xFF;
285 run += n;
286 aa += n;
287 }
288
289 SkASSERT(riteA < 0xFF);
290 if (riteA > 0) {
291 *run++ = 1;
292 *aa++ = riteA;
293 }
294 run[0] = 0;
295 }
296 #endif
297
blitRect(int x,int y,int width,int height)298 void SuperBlitter::blitRect(int x, int y, int width, int height) {
299 SkASSERT(width > 0);
300 SkASSERT(height > 0);
301
302 // blit leading rows
303 while ((y & MASK)) {
304 this->blitH(x, y++, width);
305 if (--height <= 0) {
306 return;
307 }
308 }
309 SkASSERT(height > 0);
310
311 // Since this is a rect, instead of blitting supersampled rows one at a
312 // time and then resolving to the destination canvas, we can blit
313 // directly to the destintion canvas one row per SCALE supersampled rows.
314 int start_y = y >> SHIFT;
315 int stop_y = (y + height) >> SHIFT;
316 int count = stop_y - start_y;
317 if (count > 0) {
318 y += count << SHIFT;
319 height -= count << SHIFT;
320
321 // save original X for our tail blitH() loop at the bottom
322 int origX = x;
323
324 x -= fSuperLeft;
325 // hack, until I figure out why my cubics (I think) go beyond the bounds
326 if (x < 0) {
327 width += x;
328 x = 0;
329 }
330
331 // There is always a left column, a middle, and a right column.
332 // ileft is the destination x of the first pixel of the entire rect.
333 // xleft is (SCALE - # of covered supersampled pixels) in that
334 // destination pixel.
335 int ileft = x >> SHIFT;
336 int xleft = x & MASK;
337 // irite is the destination x of the last pixel of the OPAQUE section.
338 // xrite is the number of supersampled pixels extending beyond irite;
339 // xrite/SCALE should give us alpha.
340 int irite = (x + width) >> SHIFT;
341 int xrite = (x + width) & MASK;
342 if (!xrite) {
343 xrite = SCALE;
344 irite--;
345 }
346
347 // Need to call flush() to clean up pending draws before we
348 // even consider blitV(), since otherwise it can look nonmonotonic.
349 SkASSERT(start_y > fCurrIY);
350 this->flush();
351
352 int n = irite - ileft - 1;
353 if (n < 0) {
354 // If n < 0, we'll only have a single partially-transparent column
355 // of pixels to render.
356 xleft = xrite - xleft;
357 SkASSERT(xleft <= SCALE);
358 SkASSERT(xleft > 0);
359 fRealBlitter->blitV(ileft + fLeft, start_y, count,
360 coverage_to_exact_alpha(xleft));
361 } else {
362 // With n = 0, we have two possibly-transparent columns of pixels
363 // to render; with n > 0, we have opaque columns between them.
364
365 xleft = SCALE - xleft;
366
367 // Using coverage_to_exact_alpha is not consistent with blitH()
368 const int coverageL = coverage_to_exact_alpha(xleft);
369 const int coverageR = coverage_to_exact_alpha(xrite);
370
371 SkASSERT(coverageL > 0 || n > 0 || coverageR > 0);
372 SkASSERT((coverageL != 0) + n + (coverageR != 0) <= fWidth);
373
374 fRealBlitter->blitAntiRect(ileft + fLeft, start_y, n, count,
375 coverageL, coverageR);
376 }
377
378 // preamble for our next call to blitH()
379 fCurrIY = stop_y - 1;
380 fOffsetX = 0;
381 fCurrY = y - 1;
382 fRuns.reset(fWidth);
383 x = origX;
384 }
385
386 // catch any remaining few rows
387 SkASSERT(height <= MASK);
388 while (--height >= 0) {
389 this->blitH(x, y++, width);
390 }
391 }
392
393 ///////////////////////////////////////////////////////////////////////////////
394
395 /// Masked supersampling antialiased blitter.
396 class MaskSuperBlitter : public BaseSuperBlitter {
397 public:
398 MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkIRect&, bool isInverse);
~MaskSuperBlitter()399 ~MaskSuperBlitter() override {
400 fRealBlitter->blitMask(fMask, fClipRect);
401 }
402
403 void blitH(int x, int y, int width) override;
404
CanHandleRect(const SkIRect & bounds)405 static bool CanHandleRect(const SkIRect& bounds) {
406 #ifdef FORCE_RLE
407 return false;
408 #endif
409 int width = bounds.width();
410 int64_t rb = SkAlign4(width);
411 // use 64bits to detect overflow
412 int64_t storage = rb * bounds.height();
413
414 return (width <= MaskSuperBlitter::kMAX_WIDTH) &&
415 (storage <= MaskSuperBlitter::kMAX_STORAGE);
416 }
417
418 private:
419 enum {
420 #ifdef FORCE_SUPERMASK
421 kMAX_WIDTH = 2048,
422 kMAX_STORAGE = 1024 * 1024 * 2
423 #else
424 kMAX_WIDTH = 32, // so we don't try to do very wide things, where the RLE blitter would be faster
425 kMAX_STORAGE = 1024
426 #endif
427 };
428
429 SkMask fMask;
430 SkIRect fClipRect;
431 // we add 1 because add_aa_span can write (unchanged) 1 extra byte at the end, rather than
432 // perform a test to see if stopAlpha != 0
433 uint32_t fStorage[(kMAX_STORAGE >> 2) + 1];
434 };
435
MaskSuperBlitter(SkBlitter * realBlitter,const SkIRect & ir,const SkIRect & clipBounds,bool isInverse)436 MaskSuperBlitter::MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
437 const SkIRect& clipBounds, bool isInverse)
438 : BaseSuperBlitter(realBlitter, ir, clipBounds, isInverse)
439 {
440 SkASSERT(CanHandleRect(ir));
441 SkASSERT(!isInverse);
442
443 fMask.fImage = (uint8_t*)fStorage;
444 fMask.fBounds = ir;
445 fMask.fRowBytes = ir.width();
446 fMask.fFormat = SkMask::kA8_Format;
447
448 fClipRect = ir;
449 if (!fClipRect.intersect(clipBounds)) {
450 SkASSERT(0);
451 fClipRect.setEmpty();
452 }
453
454 // For valgrind, write 1 extra byte at the end so we don't read
455 // uninitialized memory. See comment in add_aa_span and fStorage[].
456 memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 1);
457 }
458
add_aa_span(uint8_t * alpha,U8CPU startAlpha)459 static void add_aa_span(uint8_t* alpha, U8CPU startAlpha) {
460 /* I should be able to just add alpha[x] + startAlpha.
461 However, if the trailing edge of the previous span and the leading
462 edge of the current span round to the same super-sampled x value,
463 I might overflow to 256 with this add, hence the funny subtract.
464 */
465 unsigned tmp = *alpha + startAlpha;
466 SkASSERT(tmp <= 256);
467 *alpha = SkToU8(tmp - (tmp >> 8));
468 }
469
quadplicate_byte(U8CPU value)470 static inline uint32_t quadplicate_byte(U8CPU value) {
471 uint32_t pair = (value << 8) | value;
472 return (pair << 16) | pair;
473 }
474
475 // Perform this tricky subtract, to avoid overflowing to 256. Our caller should
476 // only ever call us with at most enough to hit 256 (never larger), so it is
477 // enough to just subtract the high-bit. Actually clamping with a branch would
478 // be slower (e.g. if (tmp > 255) tmp = 255;)
479 //
saturated_add(uint8_t * ptr,U8CPU add)480 static inline void saturated_add(uint8_t* ptr, U8CPU add) {
481 unsigned tmp = *ptr + add;
482 SkASSERT(tmp <= 256);
483 *ptr = SkToU8(tmp - (tmp >> 8));
484 }
485
486 // minimum count before we want to setup an inner loop, adding 4-at-a-time
487 #define MIN_COUNT_FOR_QUAD_LOOP 16
488
add_aa_span(uint8_t * alpha,U8CPU startAlpha,int middleCount,U8CPU stopAlpha,U8CPU maxValue)489 static void add_aa_span(uint8_t* alpha, U8CPU startAlpha, int middleCount,
490 U8CPU stopAlpha, U8CPU maxValue) {
491 SkASSERT(middleCount >= 0);
492
493 saturated_add(alpha, startAlpha);
494 alpha += 1;
495
496 if (middleCount >= MIN_COUNT_FOR_QUAD_LOOP) {
497 // loop until we're quad-byte aligned
498 while (reinterpret_cast<intptr_t>(alpha) & 0x3) {
499 alpha[0] = SkToU8(alpha[0] + maxValue);
500 alpha += 1;
501 middleCount -= 1;
502 }
503
504 int bigCount = middleCount >> 2;
505 uint32_t* qptr = reinterpret_cast<uint32_t*>(alpha);
506 uint32_t qval = quadplicate_byte(maxValue);
507 do {
508 *qptr++ += qval;
509 } while (--bigCount > 0);
510
511 middleCount &= 3;
512 alpha = reinterpret_cast<uint8_t*> (qptr);
513 // fall through to the following while-loop
514 }
515
516 while (--middleCount >= 0) {
517 alpha[0] = SkToU8(alpha[0] + maxValue);
518 alpha += 1;
519 }
520
521 // potentially this can be off the end of our "legal" alpha values, but that
522 // only happens if stopAlpha is also 0. Rather than test for stopAlpha != 0
523 // every time (slow), we just do it, and ensure that we've allocated extra space
524 // (see the + 1 comment in fStorage[]
525 saturated_add(alpha, stopAlpha);
526 }
527
blitH(int x,int y,int width)528 void MaskSuperBlitter::blitH(int x, int y, int width) {
529 int iy = (y >> SHIFT);
530
531 SkASSERT(iy >= fMask.fBounds.fTop && iy < fMask.fBounds.fBottom);
532 iy -= fMask.fBounds.fTop; // make it relative to 0
533
534 // This should never happen, but it does. Until the true cause is
535 // discovered, let's skip this span instead of crashing.
536 // See http://crbug.com/17569.
537 if (iy < 0) {
538 return;
539 }
540
541 #ifdef SK_DEBUG
542 {
543 int ix = x >> SHIFT;
544 SkASSERT(ix >= fMask.fBounds.fLeft && ix < fMask.fBounds.fRight);
545 }
546 #endif
547
548 x -= SkLeftShift(fMask.fBounds.fLeft, SHIFT);
549
550 // hack, until I figure out why my cubics (I think) go beyond the bounds
551 if (x < 0) {
552 width += x;
553 x = 0;
554 }
555
556 uint8_t* row = fMask.fImage + iy * fMask.fRowBytes + (x >> SHIFT);
557
558 int start = x;
559 int stop = x + width;
560
561 SkASSERT(start >= 0 && stop > start);
562 int fb = start & MASK;
563 int fe = stop & MASK;
564 int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
565
566
567 if (n < 0) {
568 SkASSERT(row >= fMask.fImage);
569 SkASSERT(row < fMask.fImage + kMAX_STORAGE + 1);
570 add_aa_span(row, coverage_to_partial_alpha(fe - fb));
571 } else {
572 fb = SCALE - fb;
573 SkASSERT(row >= fMask.fImage);
574 SkASSERT(row + n + 1 < fMask.fImage + kMAX_STORAGE + 1);
575 add_aa_span(row, coverage_to_partial_alpha(fb),
576 n, coverage_to_partial_alpha(fe),
577 (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT));
578 }
579
580 #ifdef SK_DEBUG
581 fCurrX = x + width;
582 #endif
583 }
584
585 ///////////////////////////////////////////////////////////////////////////////
586
safeRoundOut(const SkRect & src)587 static SkIRect safeRoundOut(const SkRect& src) {
588 // roundOut will pin huge floats to max/min int
589 SkIRect dst = src.roundOut();
590
591 // intersect with a smaller huge rect, so the rect will not be considered empty for being
592 // too large. e.g. { -SK_MaxS32 ... SK_MaxS32 } is considered empty because its width
593 // exceeds signed 32bit.
594 const int32_t limit = SK_MaxS32 >> SK_SUPERSAMPLE_SHIFT;
595 (void)dst.intersect({ -limit, -limit, limit, limit});
596
597 return dst;
598 }
599
ShouldUseAAA(const SkPath & path)600 static bool ShouldUseAAA(const SkPath& path) {
601 #if defined(SK_DISABLE_AAA)
602 return false;
603 #elif defined(SK_FORCE_AAA)
604 return true;
605 #else
606 if (gSkForceAnalyticAA) {
607 return true;
608 }
609 if (!gSkUseAnalyticAA) {
610 return false;
611 }
612 if (path.isRect(nullptr)) {
613 return true;
614 }
615
616 const SkRect& bounds = path.getBounds();
617 // When the path have so many points compared to the size of its
618 // bounds/resolution, it indicates that the path is not quite smooth in
619 // the current resolution: the expected number of turning points in
620 // every pixel row/column is significantly greater than zero. Hence
621 // Aanlytic AA is not likely to produce visible quality improvements,
622 // and Analytic AA might be slower than supersampling.
623 return path.countPoints() < std::max(bounds.width(), bounds.height()) / 2 - 10;
624 #endif
625 }
626
SAAFillPath(const SkPath & path,SkBlitter * blitter,const SkIRect & ir,const SkIRect & clipBounds,bool forceRLE)627 void SkScan::SAAFillPath(const SkPath& path, SkBlitter* blitter, const SkIRect& ir,
628 const SkIRect& clipBounds, bool forceRLE) {
629 bool containedInClip = clipBounds.contains(ir);
630 bool isInverse = path.isInverseFillType();
631
632 // MaskSuperBlitter can't handle drawing outside of ir, so we can't use it
633 // if we're an inverse filltype
634 if (!isInverse && MaskSuperBlitter::CanHandleRect(ir) && !forceRLE) {
635 MaskSuperBlitter superBlit(blitter, ir, clipBounds, isInverse);
636 SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);
637 sk_fill_path(path, clipBounds, &superBlit, ir.fTop, ir.fBottom, SHIFT, containedInClip);
638 } else {
639 SuperBlitter superBlit(blitter, ir, clipBounds, isInverse);
640 sk_fill_path(path, clipBounds, &superBlit, ir.fTop, ir.fBottom, SHIFT, containedInClip);
641 }
642 }
643
overflows_short_shift(int value,int shift)644 static int overflows_short_shift(int value, int shift) {
645 const int s = 16 + shift;
646 return (SkLeftShift(value, s) >> s) - value;
647 }
648
649 /**
650 Would any of the coordinates of this rectangle not fit in a short,
651 when left-shifted by shift?
652 */
rect_overflows_short_shift(SkIRect rect,int shift)653 static int rect_overflows_short_shift(SkIRect rect, int shift) {
654 SkASSERT(!overflows_short_shift(8191, shift));
655 SkASSERT(overflows_short_shift(8192, shift));
656 SkASSERT(!overflows_short_shift(32767, 0));
657 SkASSERT(overflows_short_shift(32768, 0));
658
659 // Since we expect these to succeed, we bit-or together
660 // for a tiny extra bit of speed.
661 return overflows_short_shift(rect.fLeft, shift) |
662 overflows_short_shift(rect.fRight, shift) |
663 overflows_short_shift(rect.fTop, shift) |
664 overflows_short_shift(rect.fBottom, shift);
665 }
666
AntiFillPath(const SkPath & path,const SkRegion & origClip,SkBlitter * blitter,bool forceRLE)667 void SkScan::AntiFillPath(const SkPath& path, const SkRegion& origClip,
668 SkBlitter* blitter, bool forceRLE) {
669 if (origClip.isEmpty()) {
670 return;
671 }
672
673 const bool isInverse = path.isInverseFillType();
674 SkIRect ir = safeRoundOut(path.getBounds());
675 if (ir.isEmpty()) {
676 if (isInverse) {
677 blitter->blitRegion(origClip);
678 }
679 return;
680 }
681
682 // If the intersection of the path bounds and the clip bounds
683 // will overflow 32767 when << by SHIFT, we can't supersample,
684 // so draw without antialiasing.
685 SkIRect clippedIR;
686 if (isInverse) {
687 // If the path is an inverse fill, it's going to fill the entire
688 // clip, and we care whether the entire clip exceeds our limits.
689 clippedIR = origClip.getBounds();
690 } else {
691 if (!clippedIR.intersect(ir, origClip.getBounds())) {
692 return;
693 }
694 }
695 if (rect_overflows_short_shift(clippedIR, SHIFT)) {
696 SkScan::FillPath(path, origClip, blitter);
697 return;
698 }
699
700 // Our antialiasing can't handle a clip larger than 32767, so we restrict
701 // the clip to that limit here. (the runs[] uses int16_t for its index).
702 //
703 // A more general solution (one that could also eliminate the need to
704 // disable aa based on ir bounds (see overflows_short_shift) would be
705 // to tile the clip/target...
706 SkRegion tmpClipStorage;
707 const SkRegion* clipRgn = &origClip;
708 {
709 static const int32_t kMaxClipCoord = 32767;
710 const SkIRect& bounds = origClip.getBounds();
711 if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) {
712 SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord };
713 tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op);
714 clipRgn = &tmpClipStorage;
715 }
716 }
717 // for here down, use clipRgn, not origClip
718
719 SkScanClipper clipper(blitter, clipRgn, ir);
720
721 if (clipper.getBlitter() == nullptr) { // clipped out
722 if (isInverse) {
723 blitter->blitRegion(*clipRgn);
724 }
725 return;
726 }
727
728 SkASSERT(clipper.getClipRect() == nullptr ||
729 *clipper.getClipRect() == clipRgn->getBounds());
730
731 // now use the (possibly wrapped) blitter
732 blitter = clipper.getBlitter();
733
734 if (isInverse) {
735 sk_blit_above(blitter, ir, *clipRgn);
736 }
737
738 if (ShouldUseAAA(path)) {
739 // Do not use AAA if path is too complicated:
740 // there won't be any speedup or significant visual improvement.
741 SkScan::AAAFillPath(path, blitter, ir, clipRgn->getBounds(), forceRLE);
742 } else {
743 SkScan::SAAFillPath(path, blitter, ir, clipRgn->getBounds(), forceRLE);
744 }
745
746 if (isInverse) {
747 sk_blit_below(blitter, ir, *clipRgn);
748 }
749 }
750
751 ///////////////////////////////////////////////////////////////////////////////
752
753 #include "src/core/SkRasterClip.h"
754
FillPath(const SkPath & path,const SkRasterClip & clip,SkBlitter * blitter)755 void SkScan::FillPath(const SkPath& path, const SkRasterClip& clip, SkBlitter* blitter) {
756 if (clip.isEmpty() || !path.isFinite()) {
757 return;
758 }
759
760 if (clip.isBW()) {
761 FillPath(path, clip.bwRgn(), blitter);
762 } else {
763 SkRegion tmp;
764 SkAAClipBlitter aaBlitter;
765
766 tmp.setRect(clip.getBounds());
767 aaBlitter.init(blitter, &clip.aaRgn());
768 SkScan::FillPath(path, tmp, &aaBlitter);
769 }
770 }
771
AntiFillPath(const SkPath & path,const SkRasterClip & clip,SkBlitter * blitter)772 void SkScan::AntiFillPath(const SkPath& path, const SkRasterClip& clip, SkBlitter* blitter) {
773 if (clip.isEmpty() || !path.isFinite()) {
774 return;
775 }
776
777 if (clip.isBW()) {
778 AntiFillPath(path, clip.bwRgn(), blitter, false);
779 } else {
780 SkRegion tmp;
781 SkAAClipBlitter aaBlitter;
782
783 tmp.setRect(clip.getBounds());
784 aaBlitter.init(blitter, &clip.aaRgn());
785 AntiFillPath(path, tmp, &aaBlitter, true); // SkAAClipBlitter can blitMask, why forceRLE?
786 }
787 }
788