1 //===- llvm/CodeGen/ScheduleDAG.h - Common Base Class -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file Implements the ScheduleDAG class, which is used as the common base 10 /// class for instruction schedulers. This encapsulates the scheduling DAG, 11 /// which is shared between SelectionDAG and MachineInstr scheduling. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_SCHEDULEDAG_H 16 #define LLVM_CODEGEN_SCHEDULEDAG_H 17 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/GraphTraits.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/iterator.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include <cassert> 27 #include <cstddef> 28 #include <iterator> 29 #include <string> 30 #include <vector> 31 32 namespace llvm { 33 34 template<class Graph> class GraphWriter; 35 class LLVMTargetMachine; 36 class MachineFunction; 37 class MachineRegisterInfo; 38 class MCInstrDesc; 39 struct MCSchedClassDesc; 40 class SDNode; 41 class SUnit; 42 class ScheduleDAG; 43 class TargetInstrInfo; 44 class TargetRegisterClass; 45 class TargetRegisterInfo; 46 47 /// Scheduling dependency. This represents one direction of an edge in the 48 /// scheduling DAG. 49 class SDep { 50 public: 51 /// These are the different kinds of scheduling dependencies. 52 enum Kind { 53 Data, ///< Regular data dependence (aka true-dependence). 54 Anti, ///< A register anti-dependence (aka WAR). 55 Output, ///< A register output-dependence (aka WAW). 56 Order ///< Any other ordering dependency. 57 }; 58 59 // Strong dependencies must be respected by the scheduler. Artificial 60 // dependencies may be removed only if they are redundant with another 61 // strong dependence. 62 // 63 // Weak dependencies may be violated by the scheduling strategy, but only if 64 // the strategy can prove it is correct to do so. 65 // 66 // Strong OrderKinds must occur before "Weak". 67 // Weak OrderKinds must occur after "Weak". 68 enum OrderKind { 69 Barrier, ///< An unknown scheduling barrier. 70 MayAliasMem, ///< Nonvolatile load/Store instructions that may alias. 71 MustAliasMem, ///< Nonvolatile load/Store instructions that must alias. 72 Artificial, ///< Arbitrary strong DAG edge (no real dependence). 73 Weak, ///< Arbitrary weak DAG edge. 74 Cluster ///< Weak DAG edge linking a chain of clustered instrs. 75 }; 76 77 private: 78 /// A pointer to the depending/depended-on SUnit, and an enum 79 /// indicating the kind of the dependency. 80 PointerIntPair<SUnit *, 2, Kind> Dep; 81 82 /// A union discriminated by the dependence kind. 83 union { 84 /// For Data, Anti, and Output dependencies, the associated register. For 85 /// Data dependencies that don't currently have a register/ assigned, this 86 /// is set to zero. 87 unsigned Reg; 88 89 /// Additional information about Order dependencies. 90 unsigned OrdKind; // enum OrderKind 91 } Contents; 92 93 /// The time associated with this edge. Often this is just the value of the 94 /// Latency field of the predecessor, however advanced models may provide 95 /// additional information about specific edges. 96 unsigned Latency; 97 98 public: 99 /// Constructs a null SDep. This is only for use by container classes which 100 /// require default constructors. SUnits may not/ have null SDep edges. SDep()101 SDep() : Dep(nullptr, Data) {} 102 103 /// Constructs an SDep with the specified values. SDep(SUnit * S,Kind kind,unsigned Reg)104 SDep(SUnit *S, Kind kind, unsigned Reg) 105 : Dep(S, kind), Contents() { 106 switch (kind) { 107 default: 108 llvm_unreachable("Reg given for non-register dependence!"); 109 case Anti: 110 case Output: 111 assert(Reg != 0 && 112 "SDep::Anti and SDep::Output must use a non-zero Reg!"); 113 Contents.Reg = Reg; 114 Latency = 0; 115 break; 116 case Data: 117 Contents.Reg = Reg; 118 Latency = 1; 119 break; 120 } 121 } 122 SDep(SUnit * S,OrderKind kind)123 SDep(SUnit *S, OrderKind kind) 124 : Dep(S, Order), Contents(), Latency(0) { 125 Contents.OrdKind = kind; 126 } 127 128 /// Returns true if the specified SDep is equivalent except for latency. 129 bool overlaps(const SDep &Other) const; 130 131 bool operator==(const SDep &Other) const { 132 return overlaps(Other) && Latency == Other.Latency; 133 } 134 135 bool operator!=(const SDep &Other) const { 136 return !operator==(Other); 137 } 138 139 /// Returns the latency value for this edge, which roughly means the 140 /// minimum number of cycles that must elapse between the predecessor and 141 /// the successor, given that they have this edge between them. getLatency()142 unsigned getLatency() const { 143 return Latency; 144 } 145 146 /// Sets the latency for this edge. setLatency(unsigned Lat)147 void setLatency(unsigned Lat) { 148 Latency = Lat; 149 } 150 151 //// Returns the SUnit to which this edge points. 152 SUnit *getSUnit() const; 153 154 //// Assigns the SUnit to which this edge points. 155 void setSUnit(SUnit *SU); 156 157 /// Returns an enum value representing the kind of the dependence. 158 Kind getKind() const; 159 160 /// Shorthand for getKind() != SDep::Data. isCtrl()161 bool isCtrl() const { 162 return getKind() != Data; 163 } 164 165 /// Tests if this is an Order dependence between two memory accesses 166 /// where both sides of the dependence access memory in non-volatile and 167 /// fully modeled ways. isNormalMemory()168 bool isNormalMemory() const { 169 return getKind() == Order && (Contents.OrdKind == MayAliasMem 170 || Contents.OrdKind == MustAliasMem); 171 } 172 173 /// Tests if this is an Order dependence that is marked as a barrier. isBarrier()174 bool isBarrier() const { 175 return getKind() == Order && Contents.OrdKind == Barrier; 176 } 177 178 /// Tests if this is could be any kind of memory dependence. isNormalMemoryOrBarrier()179 bool isNormalMemoryOrBarrier() const { 180 return (isNormalMemory() || isBarrier()); 181 } 182 183 /// Tests if this is an Order dependence that is marked as 184 /// "must alias", meaning that the SUnits at either end of the edge have a 185 /// memory dependence on a known memory location. isMustAlias()186 bool isMustAlias() const { 187 return getKind() == Order && Contents.OrdKind == MustAliasMem; 188 } 189 190 /// Tests if this a weak dependence. Weak dependencies are considered DAG 191 /// edges for height computation and other heuristics, but do not force 192 /// ordering. Breaking a weak edge may require the scheduler to compensate, 193 /// for example by inserting a copy. isWeak()194 bool isWeak() const { 195 return getKind() == Order && Contents.OrdKind >= Weak; 196 } 197 198 /// Tests if this is an Order dependence that is marked as 199 /// "artificial", meaning it isn't necessary for correctness. isArtificial()200 bool isArtificial() const { 201 return getKind() == Order && Contents.OrdKind == Artificial; 202 } 203 204 /// Tests if this is an Order dependence that is marked as "cluster", 205 /// meaning it is artificial and wants to be adjacent. isCluster()206 bool isCluster() const { 207 return getKind() == Order && Contents.OrdKind == Cluster; 208 } 209 210 /// Tests if this is a Data dependence that is associated with a register. isAssignedRegDep()211 bool isAssignedRegDep() const { 212 return getKind() == Data && Contents.Reg != 0; 213 } 214 215 /// Returns the register associated with this edge. This is only valid on 216 /// Data, Anti, and Output edges. On Data edges, this value may be zero, 217 /// meaning there is no associated register. getReg()218 unsigned getReg() const { 219 assert((getKind() == Data || getKind() == Anti || getKind() == Output) && 220 "getReg called on non-register dependence edge!"); 221 return Contents.Reg; 222 } 223 224 /// Assigns the associated register for this edge. This is only valid on 225 /// Data, Anti, and Output edges. On Anti and Output edges, this value must 226 /// not be zero. On Data edges, the value may be zero, which would mean that 227 /// no specific register is associated with this edge. setReg(unsigned Reg)228 void setReg(unsigned Reg) { 229 assert((getKind() == Data || getKind() == Anti || getKind() == Output) && 230 "setReg called on non-register dependence edge!"); 231 assert((getKind() != Anti || Reg != 0) && 232 "SDep::Anti edge cannot use the zero register!"); 233 assert((getKind() != Output || Reg != 0) && 234 "SDep::Output edge cannot use the zero register!"); 235 Contents.Reg = Reg; 236 } 237 238 void dump(const TargetRegisterInfo *TRI = nullptr) const; 239 }; 240 241 /// Scheduling unit. This is a node in the scheduling DAG. 242 class SUnit { 243 private: 244 enum : unsigned { BoundaryID = ~0u }; 245 246 SDNode *Node = nullptr; ///< Representative node. 247 MachineInstr *Instr = nullptr; ///< Alternatively, a MachineInstr. 248 249 public: 250 SUnit *OrigNode = nullptr; ///< If not this, the node from which this node 251 /// was cloned. (SD scheduling only) 252 253 const MCSchedClassDesc *SchedClass = 254 nullptr; ///< nullptr or resolved SchedClass. 255 256 SmallVector<SDep, 4> Preds; ///< All sunit predecessors. 257 SmallVector<SDep, 4> Succs; ///< All sunit successors. 258 259 typedef SmallVectorImpl<SDep>::iterator pred_iterator; 260 typedef SmallVectorImpl<SDep>::iterator succ_iterator; 261 typedef SmallVectorImpl<SDep>::const_iterator const_pred_iterator; 262 typedef SmallVectorImpl<SDep>::const_iterator const_succ_iterator; 263 264 unsigned NodeNum = BoundaryID; ///< Entry # of node in the node vector. 265 unsigned NodeQueueId = 0; ///< Queue id of node. 266 unsigned NumPreds = 0; ///< # of SDep::Data preds. 267 unsigned NumSuccs = 0; ///< # of SDep::Data sucss. 268 unsigned NumPredsLeft = 0; ///< # of preds not scheduled. 269 unsigned NumSuccsLeft = 0; ///< # of succs not scheduled. 270 unsigned WeakPredsLeft = 0; ///< # of weak preds not scheduled. 271 unsigned WeakSuccsLeft = 0; ///< # of weak succs not scheduled. 272 unsigned short NumRegDefsLeft = 0; ///< # of reg defs with no scheduled use. 273 unsigned short Latency = 0; ///< Node latency. 274 bool isVRegCycle : 1; ///< May use and def the same vreg. 275 bool isCall : 1; ///< Is a function call. 276 bool isCallOp : 1; ///< Is a function call operand. 277 bool isTwoAddress : 1; ///< Is a two-address instruction. 278 bool isCommutable : 1; ///< Is a commutable instruction. 279 bool hasPhysRegUses : 1; ///< Has physreg uses. 280 bool hasPhysRegDefs : 1; ///< Has physreg defs that are being used. 281 bool hasPhysRegClobbers : 1; ///< Has any physreg defs, used or not. 282 bool isPending : 1; ///< True once pending. 283 bool isAvailable : 1; ///< True once available. 284 bool isScheduled : 1; ///< True once scheduled. 285 bool isScheduleHigh : 1; ///< True if preferable to schedule high. 286 bool isScheduleLow : 1; ///< True if preferable to schedule low. 287 bool isCloned : 1; ///< True if this node has been cloned. 288 bool isUnbuffered : 1; ///< Uses an unbuffered resource. 289 bool hasReservedResource : 1; ///< Uses a reserved resource. 290 Sched::Preference SchedulingPref = Sched::None; ///< Scheduling preference. 291 292 private: 293 bool isDepthCurrent : 1; ///< True if Depth is current. 294 bool isHeightCurrent : 1; ///< True if Height is current. 295 unsigned Depth = 0; ///< Node depth. 296 unsigned Height = 0; ///< Node height. 297 298 public: 299 unsigned TopReadyCycle = 0; ///< Cycle relative to start when node is ready. 300 unsigned BotReadyCycle = 0; ///< Cycle relative to end when node is ready. 301 302 const TargetRegisterClass *CopyDstRC = 303 nullptr; ///< Is a special copy node if != nullptr. 304 const TargetRegisterClass *CopySrcRC = nullptr; 305 306 /// Constructs an SUnit for pre-regalloc scheduling to represent an 307 /// SDNode and any nodes flagged to it. SUnit(SDNode * node,unsigned nodenum)308 SUnit(SDNode *node, unsigned nodenum) 309 : Node(node), NodeNum(nodenum), isVRegCycle(false), isCall(false), 310 isCallOp(false), isTwoAddress(false), isCommutable(false), 311 hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false), 312 isPending(false), isAvailable(false), isScheduled(false), 313 isScheduleHigh(false), isScheduleLow(false), isCloned(false), 314 isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false), 315 isHeightCurrent(false) {} 316 317 /// Constructs an SUnit for post-regalloc scheduling to represent a 318 /// MachineInstr. SUnit(MachineInstr * instr,unsigned nodenum)319 SUnit(MachineInstr *instr, unsigned nodenum) 320 : Instr(instr), NodeNum(nodenum), isVRegCycle(false), isCall(false), 321 isCallOp(false), isTwoAddress(false), isCommutable(false), 322 hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false), 323 isPending(false), isAvailable(false), isScheduled(false), 324 isScheduleHigh(false), isScheduleLow(false), isCloned(false), 325 isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false), 326 isHeightCurrent(false) {} 327 328 /// Constructs a placeholder SUnit. SUnit()329 SUnit() 330 : isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false), 331 isCommutable(false), hasPhysRegUses(false), hasPhysRegDefs(false), 332 hasPhysRegClobbers(false), isPending(false), isAvailable(false), 333 isScheduled(false), isScheduleHigh(false), isScheduleLow(false), 334 isCloned(false), isUnbuffered(false), hasReservedResource(false), 335 isDepthCurrent(false), isHeightCurrent(false) {} 336 337 /// Boundary nodes are placeholders for the boundary of the 338 /// scheduling region. 339 /// 340 /// BoundaryNodes can have DAG edges, including Data edges, but they do not 341 /// correspond to schedulable entities (e.g. instructions) and do not have a 342 /// valid ID. Consequently, always check for boundary nodes before accessing 343 /// an associative data structure keyed on node ID. isBoundaryNode()344 bool isBoundaryNode() const { return NodeNum == BoundaryID; } 345 346 /// Assigns the representative SDNode for this SUnit. This may be used 347 /// during pre-regalloc scheduling. setNode(SDNode * N)348 void setNode(SDNode *N) { 349 assert(!Instr && "Setting SDNode of SUnit with MachineInstr!"); 350 Node = N; 351 } 352 353 /// Returns the representative SDNode for this SUnit. This may be used 354 /// during pre-regalloc scheduling. getNode()355 SDNode *getNode() const { 356 assert(!Instr && "Reading SDNode of SUnit with MachineInstr!"); 357 return Node; 358 } 359 360 /// Returns true if this SUnit refers to a machine instruction as 361 /// opposed to an SDNode. isInstr()362 bool isInstr() const { return Instr; } 363 364 /// Assigns the instruction for the SUnit. This may be used during 365 /// post-regalloc scheduling. setInstr(MachineInstr * MI)366 void setInstr(MachineInstr *MI) { 367 assert(!Node && "Setting MachineInstr of SUnit with SDNode!"); 368 Instr = MI; 369 } 370 371 /// Returns the representative MachineInstr for this SUnit. This may be used 372 /// during post-regalloc scheduling. getInstr()373 MachineInstr *getInstr() const { 374 assert(!Node && "Reading MachineInstr of SUnit with SDNode!"); 375 return Instr; 376 } 377 378 /// Adds the specified edge as a pred of the current node if not already. 379 /// It also adds the current node as a successor of the specified node. 380 bool addPred(const SDep &D, bool Required = true); 381 382 /// Adds a barrier edge to SU by calling addPred(), with latency 0 383 /// generally or latency 1 for a store followed by a load. addPredBarrier(SUnit * SU)384 bool addPredBarrier(SUnit *SU) { 385 SDep Dep(SU, SDep::Barrier); 386 unsigned TrueMemOrderLatency = 387 ((SU->getInstr()->mayStore() && this->getInstr()->mayLoad()) ? 1 : 0); 388 Dep.setLatency(TrueMemOrderLatency); 389 return addPred(Dep); 390 } 391 392 /// Removes the specified edge as a pred of the current node if it exists. 393 /// It also removes the current node as a successor of the specified node. 394 void removePred(const SDep &D); 395 396 /// Returns the depth of this node, which is the length of the maximum path 397 /// up to any node which has no predecessors. getDepth()398 unsigned getDepth() const { 399 if (!isDepthCurrent) 400 const_cast<SUnit *>(this)->ComputeDepth(); 401 return Depth; 402 } 403 404 /// Returns the height of this node, which is the length of the 405 /// maximum path down to any node which has no successors. getHeight()406 unsigned getHeight() const { 407 if (!isHeightCurrent) 408 const_cast<SUnit *>(this)->ComputeHeight(); 409 return Height; 410 } 411 412 /// If NewDepth is greater than this node's depth value, sets it to 413 /// be the new depth value. This also recursively marks successor nodes 414 /// dirty. 415 void setDepthToAtLeast(unsigned NewDepth); 416 417 /// If NewHeight is greater than this node's height value, set it to be 418 /// the new height value. This also recursively marks predecessor nodes 419 /// dirty. 420 void setHeightToAtLeast(unsigned NewHeight); 421 422 /// Sets a flag in this node to indicate that its stored Depth value 423 /// will require recomputation the next time getDepth() is called. 424 void setDepthDirty(); 425 426 /// Sets a flag in this node to indicate that its stored Height value 427 /// will require recomputation the next time getHeight() is called. 428 void setHeightDirty(); 429 430 /// Tests if node N is a predecessor of this node. isPred(const SUnit * N)431 bool isPred(const SUnit *N) const { 432 for (const SDep &Pred : Preds) 433 if (Pred.getSUnit() == N) 434 return true; 435 return false; 436 } 437 438 /// Tests if node N is a successor of this node. isSucc(const SUnit * N)439 bool isSucc(const SUnit *N) const { 440 for (const SDep &Succ : Succs) 441 if (Succ.getSUnit() == N) 442 return true; 443 return false; 444 } 445 isTopReady()446 bool isTopReady() const { 447 return NumPredsLeft == 0; 448 } isBottomReady()449 bool isBottomReady() const { 450 return NumSuccsLeft == 0; 451 } 452 453 /// Orders this node's predecessor edges such that the critical path 454 /// edge occurs first. 455 void biasCriticalPath(); 456 457 void dumpAttributes() const; 458 459 private: 460 void ComputeDepth(); 461 void ComputeHeight(); 462 }; 463 464 /// Returns true if the specified SDep is equivalent except for latency. overlaps(const SDep & Other)465 inline bool SDep::overlaps(const SDep &Other) const { 466 if (Dep != Other.Dep) 467 return false; 468 switch (Dep.getInt()) { 469 case Data: 470 case Anti: 471 case Output: 472 return Contents.Reg == Other.Contents.Reg; 473 case Order: 474 return Contents.OrdKind == Other.Contents.OrdKind; 475 } 476 llvm_unreachable("Invalid dependency kind!"); 477 } 478 479 //// Returns the SUnit to which this edge points. getSUnit()480 inline SUnit *SDep::getSUnit() const { return Dep.getPointer(); } 481 482 //// Assigns the SUnit to which this edge points. setSUnit(SUnit * SU)483 inline void SDep::setSUnit(SUnit *SU) { Dep.setPointer(SU); } 484 485 /// Returns an enum value representing the kind of the dependence. getKind()486 inline SDep::Kind SDep::getKind() const { return Dep.getInt(); } 487 488 //===--------------------------------------------------------------------===// 489 490 /// This interface is used to plug different priorities computation 491 /// algorithms into the list scheduler. It implements the interface of a 492 /// standard priority queue, where nodes are inserted in arbitrary order and 493 /// returned in priority order. The computation of the priority and the 494 /// representation of the queue are totally up to the implementation to 495 /// decide. 496 class SchedulingPriorityQueue { 497 virtual void anchor(); 498 499 unsigned CurCycle = 0; 500 bool HasReadyFilter; 501 502 public: HasReadyFilter(rf)503 SchedulingPriorityQueue(bool rf = false) : HasReadyFilter(rf) {} 504 505 virtual ~SchedulingPriorityQueue() = default; 506 507 virtual bool isBottomUp() const = 0; 508 509 virtual void initNodes(std::vector<SUnit> &SUnits) = 0; 510 virtual void addNode(const SUnit *SU) = 0; 511 virtual void updateNode(const SUnit *SU) = 0; 512 virtual void releaseState() = 0; 513 514 virtual bool empty() const = 0; 515 hasReadyFilter()516 bool hasReadyFilter() const { return HasReadyFilter; } 517 tracksRegPressure()518 virtual bool tracksRegPressure() const { return false; } 519 isReady(SUnit *)520 virtual bool isReady(SUnit *) const { 521 assert(!HasReadyFilter && "The ready filter must override isReady()"); 522 return true; 523 } 524 525 virtual void push(SUnit *U) = 0; 526 push_all(const std::vector<SUnit * > & Nodes)527 void push_all(const std::vector<SUnit *> &Nodes) { 528 for (std::vector<SUnit *>::const_iterator I = Nodes.begin(), 529 E = Nodes.end(); I != E; ++I) 530 push(*I); 531 } 532 533 virtual SUnit *pop() = 0; 534 535 virtual void remove(SUnit *SU) = 0; 536 dump(ScheduleDAG *)537 virtual void dump(ScheduleDAG *) const {} 538 539 /// As each node is scheduled, this method is invoked. This allows the 540 /// priority function to adjust the priority of related unscheduled nodes, 541 /// for example. scheduledNode(SUnit *)542 virtual void scheduledNode(SUnit *) {} 543 unscheduledNode(SUnit *)544 virtual void unscheduledNode(SUnit *) {} 545 setCurCycle(unsigned Cycle)546 void setCurCycle(unsigned Cycle) { 547 CurCycle = Cycle; 548 } 549 getCurCycle()550 unsigned getCurCycle() const { 551 return CurCycle; 552 } 553 }; 554 555 class ScheduleDAG { 556 public: 557 const LLVMTargetMachine &TM; ///< Target processor 558 const TargetInstrInfo *TII; ///< Target instruction information 559 const TargetRegisterInfo *TRI; ///< Target processor register info 560 MachineFunction &MF; ///< Machine function 561 MachineRegisterInfo &MRI; ///< Virtual/real register map 562 std::vector<SUnit> SUnits; ///< The scheduling units. 563 SUnit EntrySU; ///< Special node for the region entry. 564 SUnit ExitSU; ///< Special node for the region exit. 565 566 #ifdef NDEBUG 567 static const bool StressSched = false; 568 #else 569 bool StressSched; 570 #endif 571 572 explicit ScheduleDAG(MachineFunction &mf); 573 574 virtual ~ScheduleDAG(); 575 576 /// Clears the DAG state (between regions). 577 void clearDAG(); 578 579 /// Returns the MCInstrDesc of this SUnit. 580 /// Returns NULL for SDNodes without a machine opcode. getInstrDesc(const SUnit * SU)581 const MCInstrDesc *getInstrDesc(const SUnit *SU) const { 582 if (SU->isInstr()) return &SU->getInstr()->getDesc(); 583 return getNodeDesc(SU->getNode()); 584 } 585 586 /// Pops up a GraphViz/gv window with the ScheduleDAG rendered using 'dot'. 587 virtual void viewGraph(const Twine &Name, const Twine &Title); 588 virtual void viewGraph(); 589 590 virtual void dumpNode(const SUnit &SU) const = 0; 591 virtual void dump() const = 0; 592 void dumpNodeName(const SUnit &SU) const; 593 594 /// Returns a label for an SUnit node in a visualization of the ScheduleDAG. 595 virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0; 596 597 /// Returns a label for the region of code covered by the DAG. 598 virtual std::string getDAGName() const = 0; 599 600 /// Adds custom features for a visualization of the ScheduleDAG. addCustomGraphFeatures(GraphWriter<ScheduleDAG * > &)601 virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {} 602 603 #ifndef NDEBUG 604 /// Verifies that all SUnits were scheduled and that their state is 605 /// consistent. Returns the number of scheduled SUnits. 606 unsigned VerifyScheduledDAG(bool isBottomUp); 607 #endif 608 609 protected: 610 void dumpNodeAll(const SUnit &SU) const; 611 612 private: 613 /// Returns the MCInstrDesc of this SDNode or NULL. 614 const MCInstrDesc *getNodeDesc(const SDNode *Node) const; 615 }; 616 617 class SUnitIterator : public std::iterator<std::forward_iterator_tag, 618 SUnit, ptrdiff_t> { 619 SUnit *Node; 620 unsigned Operand; 621 SUnitIterator(SUnit * N,unsigned Op)622 SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {} 623 624 public: 625 bool operator==(const SUnitIterator& x) const { 626 return Operand == x.Operand; 627 } 628 bool operator!=(const SUnitIterator& x) const { return !operator==(x); } 629 630 pointer operator*() const { 631 return Node->Preds[Operand].getSUnit(); 632 } 633 pointer operator->() const { return operator*(); } 634 635 SUnitIterator& operator++() { // Preincrement 636 ++Operand; 637 return *this; 638 } 639 SUnitIterator operator++(int) { // Postincrement 640 SUnitIterator tmp = *this; ++*this; return tmp; 641 } 642 begin(SUnit * N)643 static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); } end(SUnit * N)644 static SUnitIterator end (SUnit *N) { 645 return SUnitIterator(N, (unsigned)N->Preds.size()); 646 } 647 getOperand()648 unsigned getOperand() const { return Operand; } getNode()649 const SUnit *getNode() const { return Node; } 650 651 /// Tests if this is not an SDep::Data dependence. isCtrlDep()652 bool isCtrlDep() const { 653 return getSDep().isCtrl(); 654 } isArtificialDep()655 bool isArtificialDep() const { 656 return getSDep().isArtificial(); 657 } getSDep()658 const SDep &getSDep() const { 659 return Node->Preds[Operand]; 660 } 661 }; 662 663 template <> struct GraphTraits<SUnit*> { 664 typedef SUnit *NodeRef; 665 typedef SUnitIterator ChildIteratorType; 666 static NodeRef getEntryNode(SUnit *N) { return N; } 667 static ChildIteratorType child_begin(NodeRef N) { 668 return SUnitIterator::begin(N); 669 } 670 static ChildIteratorType child_end(NodeRef N) { 671 return SUnitIterator::end(N); 672 } 673 }; 674 675 template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> { 676 typedef pointer_iterator<std::vector<SUnit>::iterator> nodes_iterator; 677 static nodes_iterator nodes_begin(ScheduleDAG *G) { 678 return nodes_iterator(G->SUnits.begin()); 679 } 680 static nodes_iterator nodes_end(ScheduleDAG *G) { 681 return nodes_iterator(G->SUnits.end()); 682 } 683 }; 684 685 /// This class can compute a topological ordering for SUnits and provides 686 /// methods for dynamically updating the ordering as new edges are added. 687 /// 688 /// This allows a very fast implementation of IsReachable, for example. 689 class ScheduleDAGTopologicalSort { 690 /// A reference to the ScheduleDAG's SUnits. 691 std::vector<SUnit> &SUnits; 692 SUnit *ExitSU; 693 694 // Have any new nodes been added? 695 bool Dirty = false; 696 697 // Outstanding added edges, that have not been applied to the ordering. 698 SmallVector<std::pair<SUnit *, SUnit *>, 16> Updates; 699 700 /// Maps topological index to the node number. 701 std::vector<int> Index2Node; 702 /// Maps the node number to its topological index. 703 std::vector<int> Node2Index; 704 /// a set of nodes visited during a DFS traversal. 705 BitVector Visited; 706 707 /// Makes a DFS traversal and mark all nodes affected by the edge insertion. 708 /// These nodes will later get new topological indexes by means of the Shift 709 /// method. 710 void DFS(const SUnit *SU, int UpperBound, bool& HasLoop); 711 712 /// Reassigns topological indexes for the nodes in the DAG to 713 /// preserve the topological ordering. 714 void Shift(BitVector& Visited, int LowerBound, int UpperBound); 715 716 /// Assigns the topological index to the node n. 717 void Allocate(int n, int index); 718 719 /// Fix the ordering, by either recomputing from scratch or by applying 720 /// any outstanding updates. Uses a heuristic to estimate what will be 721 /// cheaper. 722 void FixOrder(); 723 724 public: 725 ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU); 726 727 /// Creates the initial topological ordering from the DAG to be scheduled. 728 void InitDAGTopologicalSorting(); 729 730 /// Returns an array of SUs that are both in the successor 731 /// subtree of StartSU and in the predecessor subtree of TargetSU. 732 /// StartSU and TargetSU are not in the array. 733 /// Success is false if TargetSU is not in the successor subtree of 734 /// StartSU, else it is true. 735 std::vector<int> GetSubGraph(const SUnit &StartSU, const SUnit &TargetSU, 736 bool &Success); 737 738 /// Checks if \p SU is reachable from \p TargetSU. 739 bool IsReachable(const SUnit *SU, const SUnit *TargetSU); 740 741 /// Returns true if addPred(TargetSU, SU) creates a cycle. 742 bool WillCreateCycle(SUnit *TargetSU, SUnit *SU); 743 744 /// Updates the topological ordering to accommodate an edge to be 745 /// added from SUnit \p X to SUnit \p Y. 746 void AddPred(SUnit *Y, SUnit *X); 747 748 /// Queues an update to the topological ordering to accommodate an edge to 749 /// be added from SUnit \p X to SUnit \p Y. 750 void AddPredQueued(SUnit *Y, SUnit *X); 751 752 /// Updates the topological ordering to accommodate an an edge to be 753 /// removed from the specified node \p N from the predecessors of the 754 /// current node \p M. 755 void RemovePred(SUnit *M, SUnit *N); 756 757 /// Mark the ordering as temporarily broken, after a new node has been 758 /// added. 759 void MarkDirty() { Dirty = true; } 760 761 typedef std::vector<int>::iterator iterator; 762 typedef std::vector<int>::const_iterator const_iterator; 763 iterator begin() { return Index2Node.begin(); } 764 const_iterator begin() const { return Index2Node.begin(); } 765 iterator end() { return Index2Node.end(); } 766 const_iterator end() const { return Index2Node.end(); } 767 768 typedef std::vector<int>::reverse_iterator reverse_iterator; 769 typedef std::vector<int>::const_reverse_iterator const_reverse_iterator; 770 reverse_iterator rbegin() { return Index2Node.rbegin(); } 771 const_reverse_iterator rbegin() const { return Index2Node.rbegin(); } 772 reverse_iterator rend() { return Index2Node.rend(); } 773 const_reverse_iterator rend() const { return Index2Node.rend(); } 774 }; 775 776 } // end namespace llvm 777 778 #endif // LLVM_CODEGEN_SCHEDULEDAG_H 779