• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2013-2017 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  *
24  */
25 
26 #include "si_build_pm4.h"
27 #include "util/os_time.h"
28 #include "util/u_memory.h"
29 #include "util/u_queue.h"
30 #include "util/u_upload_mgr.h"
31 
32 #include <libsync.h>
33 
34 struct si_fine_fence {
35    struct si_resource *buf;
36    unsigned offset;
37 };
38 
39 struct si_multi_fence {
40    struct pipe_reference reference;
41    struct pipe_fence_handle *gfx;
42    struct pipe_fence_handle *sdma;
43    struct tc_unflushed_batch_token *tc_token;
44    struct util_queue_fence ready;
45 
46    /* If the context wasn't flushed at fence creation, this is non-NULL. */
47    struct {
48       struct si_context *ctx;
49       unsigned ib_index;
50    } gfx_unflushed;
51 
52    struct si_fine_fence fine;
53 };
54 
55 /**
56  * Write an EOP event.
57  *
58  * \param event		EVENT_TYPE_*
59  * \param event_flags	Optional cache flush flags (TC)
60  * \param dst_sel       MEM or TC_L2
61  * \param int_sel       NONE or SEND_DATA_AFTER_WR_CONFIRM
62  * \param data_sel	DISCARD, VALUE_32BIT, TIMESTAMP, or GDS
63  * \param buf		Buffer
64  * \param va		GPU address
65  * \param old_value	Previous fence value (for a bug workaround)
66  * \param new_value	Fence value to write for this event.
67  */
si_cp_release_mem(struct si_context * ctx,struct radeon_cmdbuf * cs,unsigned event,unsigned event_flags,unsigned dst_sel,unsigned int_sel,unsigned data_sel,struct si_resource * buf,uint64_t va,uint32_t new_fence,unsigned query_type)68 void si_cp_release_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, unsigned event,
69                        unsigned event_flags, unsigned dst_sel, unsigned int_sel, unsigned data_sel,
70                        struct si_resource *buf, uint64_t va, uint32_t new_fence,
71                        unsigned query_type)
72 {
73    unsigned op = EVENT_TYPE(event) |
74                  EVENT_INDEX(event == V_028A90_CS_DONE || event == V_028A90_PS_DONE ? 6 : 5) |
75                  event_flags;
76    unsigned sel = EOP_DST_SEL(dst_sel) | EOP_INT_SEL(int_sel) | EOP_DATA_SEL(data_sel);
77    bool compute_ib = !ctx->has_graphics || cs == ctx->prim_discard_compute_cs;
78 
79    if (ctx->chip_class >= GFX9 || (compute_ib && ctx->chip_class >= GFX7)) {
80       /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
81        * counters) must immediately precede every timestamp event to
82        * prevent a GPU hang on GFX9.
83        *
84        * Occlusion queries don't need to do it here, because they
85        * always do ZPASS_DONE before the timestamp.
86        */
87       if (ctx->chip_class == GFX9 && !compute_ib && query_type != PIPE_QUERY_OCCLUSION_COUNTER &&
88           query_type != PIPE_QUERY_OCCLUSION_PREDICATE &&
89           query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) {
90          struct si_resource *scratch = unlikely(ctx->ws->cs_is_secure(ctx->gfx_cs)) ?
91             ctx->eop_bug_scratch_tmz : ctx->eop_bug_scratch;
92 
93          assert(16 * ctx->screen->info.num_render_backends <= scratch->b.b.width0);
94          radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
95          radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
96          radeon_emit(cs, scratch->gpu_address);
97          radeon_emit(cs, scratch->gpu_address >> 32);
98 
99          radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, RADEON_USAGE_WRITE,
100                                    RADEON_PRIO_QUERY);
101       }
102 
103       radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, ctx->chip_class >= GFX9 ? 6 : 5, 0));
104       radeon_emit(cs, op);
105       radeon_emit(cs, sel);
106       radeon_emit(cs, va);        /* address lo */
107       radeon_emit(cs, va >> 32);  /* address hi */
108       radeon_emit(cs, new_fence); /* immediate data lo */
109       radeon_emit(cs, 0);         /* immediate data hi */
110       if (ctx->chip_class >= GFX9)
111          radeon_emit(cs, 0); /* unused */
112    } else {
113       if (ctx->chip_class == GFX7 || ctx->chip_class == GFX8) {
114          struct si_resource *scratch = ctx->eop_bug_scratch;
115          uint64_t va = scratch->gpu_address;
116 
117          /* Two EOP events are required to make all engines go idle
118           * (and optional cache flushes executed) before the timestamp
119           * is written.
120           */
121          radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
122          radeon_emit(cs, op);
123          radeon_emit(cs, va);
124          radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
125          radeon_emit(cs, 0); /* immediate data */
126          radeon_emit(cs, 0); /* unused */
127 
128          radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, RADEON_USAGE_WRITE,
129                                    RADEON_PRIO_QUERY);
130       }
131 
132       radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
133       radeon_emit(cs, op);
134       radeon_emit(cs, va);
135       radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
136       radeon_emit(cs, new_fence); /* immediate data */
137       radeon_emit(cs, 0);         /* unused */
138    }
139 
140    if (buf) {
141       radeon_add_to_buffer_list(ctx, ctx->gfx_cs, buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
142    }
143 }
144 
si_cp_write_fence_dwords(struct si_screen * screen)145 unsigned si_cp_write_fence_dwords(struct si_screen *screen)
146 {
147    unsigned dwords = 6;
148 
149    if (screen->info.chip_class == GFX7 || screen->info.chip_class == GFX8)
150       dwords *= 2;
151 
152    return dwords;
153 }
154 
si_cp_wait_mem(struct si_context * ctx,struct radeon_cmdbuf * cs,uint64_t va,uint32_t ref,uint32_t mask,unsigned flags)155 void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, uint64_t va, uint32_t ref,
156                     uint32_t mask, unsigned flags)
157 {
158    radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
159    radeon_emit(cs, WAIT_REG_MEM_MEM_SPACE(1) | flags);
160    radeon_emit(cs, va);
161    radeon_emit(cs, va >> 32);
162    radeon_emit(cs, ref);  /* reference value */
163    radeon_emit(cs, mask); /* mask */
164    radeon_emit(cs, 4);    /* poll interval */
165 }
166 
si_add_fence_dependency(struct si_context * sctx,struct pipe_fence_handle * fence)167 static void si_add_fence_dependency(struct si_context *sctx, struct pipe_fence_handle *fence)
168 {
169    struct radeon_winsys *ws = sctx->ws;
170 
171    if (sctx->sdma_cs)
172       ws->cs_add_fence_dependency(sctx->sdma_cs, fence, 0);
173    ws->cs_add_fence_dependency(sctx->gfx_cs, fence, 0);
174 }
175 
si_add_syncobj_signal(struct si_context * sctx,struct pipe_fence_handle * fence)176 static void si_add_syncobj_signal(struct si_context *sctx, struct pipe_fence_handle *fence)
177 {
178    sctx->ws->cs_add_syncobj_signal(sctx->gfx_cs, fence);
179 }
180 
si_fence_reference(struct pipe_screen * screen,struct pipe_fence_handle ** dst,struct pipe_fence_handle * src)181 static void si_fence_reference(struct pipe_screen *screen, struct pipe_fence_handle **dst,
182                                struct pipe_fence_handle *src)
183 {
184    struct radeon_winsys *ws = ((struct si_screen *)screen)->ws;
185    struct si_multi_fence **sdst = (struct si_multi_fence **)dst;
186    struct si_multi_fence *ssrc = (struct si_multi_fence *)src;
187 
188    if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) {
189       ws->fence_reference(&(*sdst)->gfx, NULL);
190       ws->fence_reference(&(*sdst)->sdma, NULL);
191       tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL);
192       si_resource_reference(&(*sdst)->fine.buf, NULL);
193       FREE(*sdst);
194    }
195    *sdst = ssrc;
196 }
197 
si_create_multi_fence()198 static struct si_multi_fence *si_create_multi_fence()
199 {
200    struct si_multi_fence *fence = CALLOC_STRUCT(si_multi_fence);
201    if (!fence)
202       return NULL;
203 
204    pipe_reference_init(&fence->reference, 1);
205    util_queue_fence_init(&fence->ready);
206 
207    return fence;
208 }
209 
si_create_fence(struct pipe_context * ctx,struct tc_unflushed_batch_token * tc_token)210 struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx,
211                                           struct tc_unflushed_batch_token *tc_token)
212 {
213    struct si_multi_fence *fence = si_create_multi_fence();
214    if (!fence)
215       return NULL;
216 
217    util_queue_fence_reset(&fence->ready);
218    tc_unflushed_batch_token_reference(&fence->tc_token, tc_token);
219 
220    return (struct pipe_fence_handle *)fence;
221 }
222 
si_fine_fence_signaled(struct radeon_winsys * rws,const struct si_fine_fence * fine)223 static bool si_fine_fence_signaled(struct radeon_winsys *rws, const struct si_fine_fence *fine)
224 {
225    char *map =
226       rws->buffer_map(fine->buf->buf, NULL, PIPE_MAP_READ | PIPE_MAP_UNSYNCHRONIZED);
227    if (!map)
228       return false;
229 
230    uint32_t *fence = (uint32_t *)(map + fine->offset);
231    return *fence != 0;
232 }
233 
si_fine_fence_set(struct si_context * ctx,struct si_fine_fence * fine,unsigned flags)234 static void si_fine_fence_set(struct si_context *ctx, struct si_fine_fence *fine, unsigned flags)
235 {
236    uint32_t *fence_ptr;
237 
238    assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1);
239 
240    /* Use cached system memory for the fence. */
241    u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, &fine->offset,
242                   (struct pipe_resource **)&fine->buf, (void **)&fence_ptr);
243    if (!fine->buf)
244       return;
245 
246    *fence_ptr = 0;
247 
248    if (flags & PIPE_FLUSH_TOP_OF_PIPE) {
249       uint32_t value = 0x80000000;
250 
251       si_cp_write_data(ctx, fine->buf, fine->offset, 4, V_370_MEM, V_370_PFP, &value);
252    } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) {
253       uint64_t fence_va = fine->buf->gpu_address + fine->offset;
254 
255       radeon_add_to_buffer_list(ctx, ctx->gfx_cs, fine->buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
256       si_cp_release_mem(ctx, ctx->gfx_cs, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM,
257                         EOP_INT_SEL_NONE, EOP_DATA_SEL_VALUE_32BIT, NULL, fence_va, 0x80000000,
258                         PIPE_QUERY_GPU_FINISHED);
259    } else {
260       assert(false);
261    }
262 }
263 
si_fence_finish(struct pipe_screen * screen,struct pipe_context * ctx,struct pipe_fence_handle * fence,uint64_t timeout)264 static bool si_fence_finish(struct pipe_screen *screen, struct pipe_context *ctx,
265                             struct pipe_fence_handle *fence, uint64_t timeout)
266 {
267    struct radeon_winsys *rws = ((struct si_screen *)screen)->ws;
268    struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
269    struct si_context *sctx;
270    int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
271 
272    ctx = threaded_context_unwrap_sync(ctx);
273    sctx = (struct si_context *)(ctx ? ctx : NULL);
274 
275    if (!util_queue_fence_is_signalled(&sfence->ready)) {
276       if (sfence->tc_token) {
277          /* Ensure that si_flush_from_st will be called for
278           * this fence, but only if we're in the API thread
279           * where the context is current.
280           *
281           * Note that the batch containing the flush may already
282           * be in flight in the driver thread, so the fence
283           * may not be ready yet when this call returns.
284           */
285          threaded_context_flush(ctx, sfence->tc_token, timeout == 0);
286       }
287 
288       if (!timeout)
289          return false;
290 
291       if (timeout == PIPE_TIMEOUT_INFINITE) {
292          util_queue_fence_wait(&sfence->ready);
293       } else {
294          if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout))
295             return false;
296       }
297 
298       if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
299          int64_t time = os_time_get_nano();
300          timeout = abs_timeout > time ? abs_timeout - time : 0;
301       }
302    }
303 
304    if (sfence->sdma) {
305       if (!rws->fence_wait(rws, sfence->sdma, timeout))
306          return false;
307 
308       /* Recompute the timeout after waiting. */
309       if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
310          int64_t time = os_time_get_nano();
311          timeout = abs_timeout > time ? abs_timeout - time : 0;
312       }
313    }
314 
315    if (!sfence->gfx)
316       return true;
317 
318    if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) {
319       rws->fence_reference(&sfence->gfx, NULL);
320       si_resource_reference(&sfence->fine.buf, NULL);
321       return true;
322    }
323 
324    /* Flush the gfx IB if it hasn't been flushed yet. */
325    if (sctx && sfence->gfx_unflushed.ctx == sctx &&
326        sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) {
327       /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
328        * spec says:
329        *
330        *    "If the sync object being blocked upon will not be
331        *     signaled in finite time (for example, by an associated
332        *     fence command issued previously, but not yet flushed to
333        *     the graphics pipeline), then ClientWaitSync may hang
334        *     forever. To help prevent this behavior, if
335        *     ClientWaitSync is called and all of the following are
336        *     true:
337        *
338        *     * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
339        *     * sync is unsignaled when ClientWaitSync is called,
340        *     * and the calls to ClientWaitSync and FenceSync were
341        *       issued from the same context,
342        *
343        *     then the GL will behave as if the equivalent of Flush
344        *     were inserted immediately after the creation of sync."
345        *
346        * This means we need to flush for such fences even when we're
347        * not going to wait.
348        */
349       si_flush_gfx_cs(sctx, (timeout ? 0 : PIPE_FLUSH_ASYNC) | RADEON_FLUSH_START_NEXT_GFX_IB_NOW,
350                       NULL);
351       sfence->gfx_unflushed.ctx = NULL;
352 
353       if (!timeout)
354          return false;
355 
356       /* Recompute the timeout after all that. */
357       if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
358          int64_t time = os_time_get_nano();
359          timeout = abs_timeout > time ? abs_timeout - time : 0;
360       }
361    }
362 
363    if (rws->fence_wait(rws, sfence->gfx, timeout))
364       return true;
365 
366    /* Re-check in case the GPU is slow or hangs, but the commands before
367     * the fine-grained fence have completed. */
368    if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine))
369       return true;
370 
371    return false;
372 }
373 
si_create_fence_fd(struct pipe_context * ctx,struct pipe_fence_handle ** pfence,int fd,enum pipe_fd_type type)374 static void si_create_fence_fd(struct pipe_context *ctx, struct pipe_fence_handle **pfence, int fd,
375                                enum pipe_fd_type type)
376 {
377    struct si_screen *sscreen = (struct si_screen *)ctx->screen;
378    struct radeon_winsys *ws = sscreen->ws;
379    struct si_multi_fence *sfence;
380 
381    *pfence = NULL;
382 
383    sfence = si_create_multi_fence();
384    if (!sfence)
385       return;
386 
387    switch (type) {
388    case PIPE_FD_TYPE_NATIVE_SYNC:
389       if (!sscreen->info.has_fence_to_handle)
390          goto finish;
391 
392       sfence->gfx = ws->fence_import_sync_file(ws, fd);
393       break;
394 
395    case PIPE_FD_TYPE_SYNCOBJ:
396       if (!sscreen->info.has_syncobj)
397          goto finish;
398 
399       sfence->gfx = ws->fence_import_syncobj(ws, fd);
400       break;
401 
402    default:
403       unreachable("bad fence fd type when importing");
404    }
405 
406 finish:
407    if (!sfence->gfx) {
408       FREE(sfence);
409       return;
410    }
411 
412    *pfence = (struct pipe_fence_handle *)sfence;
413 }
414 
si_fence_get_fd(struct pipe_screen * screen,struct pipe_fence_handle * fence)415 static int si_fence_get_fd(struct pipe_screen *screen, struct pipe_fence_handle *fence)
416 {
417    struct si_screen *sscreen = (struct si_screen *)screen;
418    struct radeon_winsys *ws = sscreen->ws;
419    struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
420    int gfx_fd = -1, sdma_fd = -1;
421 
422    if (!sscreen->info.has_fence_to_handle)
423       return -1;
424 
425    util_queue_fence_wait(&sfence->ready);
426 
427    /* Deferred fences aren't supported. */
428    assert(!sfence->gfx_unflushed.ctx);
429    if (sfence->gfx_unflushed.ctx)
430       return -1;
431 
432    if (sfence->sdma) {
433       sdma_fd = ws->fence_export_sync_file(ws, sfence->sdma);
434       if (sdma_fd == -1)
435          return -1;
436    }
437    if (sfence->gfx) {
438       gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx);
439       if (gfx_fd == -1) {
440          if (sdma_fd != -1)
441             close(sdma_fd);
442          return -1;
443       }
444    }
445 
446    /* If we don't have FDs at this point, it means we don't have fences
447     * either. */
448    if (sdma_fd == -1 && gfx_fd == -1)
449       return ws->export_signalled_sync_file(ws);
450    if (sdma_fd == -1)
451       return gfx_fd;
452    if (gfx_fd == -1)
453       return sdma_fd;
454 
455    /* Get a fence that will be a combination of both fences. */
456    sync_accumulate("radeonsi", &gfx_fd, sdma_fd);
457    close(sdma_fd);
458    return gfx_fd;
459 }
460 
si_flush_from_st(struct pipe_context * ctx,struct pipe_fence_handle ** fence,unsigned flags)461 static void si_flush_from_st(struct pipe_context *ctx, struct pipe_fence_handle **fence,
462                              unsigned flags)
463 {
464    struct pipe_screen *screen = ctx->screen;
465    struct si_context *sctx = (struct si_context *)ctx;
466    struct radeon_winsys *ws = sctx->ws;
467    struct pipe_fence_handle *gfx_fence = NULL;
468    struct pipe_fence_handle *sdma_fence = NULL;
469    bool deferred_fence = false;
470    struct si_fine_fence fine = {};
471    unsigned rflags = PIPE_FLUSH_ASYNC;
472 
473    if (flags & PIPE_FLUSH_END_OF_FRAME)
474       rflags |= PIPE_FLUSH_END_OF_FRAME;
475 
476    if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) {
477       assert(flags & PIPE_FLUSH_DEFERRED);
478       assert(fence);
479 
480       si_fine_fence_set(sctx, &fine, flags);
481    }
482 
483    /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
484    if (sctx->sdma_cs)
485       si_flush_dma_cs(sctx, rflags, fence ? &sdma_fence : NULL);
486 
487    if (!radeon_emitted(sctx->gfx_cs, sctx->initial_gfx_cs_size)) {
488       if (fence)
489          ws->fence_reference(&gfx_fence, sctx->last_gfx_fence);
490       if (!(flags & PIPE_FLUSH_DEFERRED))
491          ws->cs_sync_flush(sctx->gfx_cs);
492    } else {
493       /* Instead of flushing, create a deferred fence. Constraints:
494 		 * - the gallium frontend must allow a deferred flush.
495 		 * - the gallium frontend must request a fence.
496        * - fence_get_fd is not allowed.
497 		 * Thread safety in fence_finish must be ensured by the gallium frontend.
498        */
499       if (flags & PIPE_FLUSH_DEFERRED && !(flags & PIPE_FLUSH_FENCE_FD) && fence) {
500          gfx_fence = sctx->ws->cs_get_next_fence(sctx->gfx_cs);
501          deferred_fence = true;
502       } else {
503          si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL);
504       }
505    }
506 
507    /* Both engines can signal out of order, so we need to keep both fences. */
508    if (fence) {
509       struct si_multi_fence *multi_fence;
510 
511       if (flags & TC_FLUSH_ASYNC) {
512          multi_fence = (struct si_multi_fence *)*fence;
513          assert(multi_fence);
514       } else {
515          multi_fence = si_create_multi_fence();
516          if (!multi_fence) {
517             ws->fence_reference(&sdma_fence, NULL);
518             ws->fence_reference(&gfx_fence, NULL);
519             goto finish;
520          }
521 
522          screen->fence_reference(screen, fence, NULL);
523          *fence = (struct pipe_fence_handle *)multi_fence;
524       }
525 
526       /* If both fences are NULL, fence_finish will always return true. */
527       multi_fence->gfx = gfx_fence;
528       multi_fence->sdma = sdma_fence;
529 
530       if (deferred_fence) {
531          multi_fence->gfx_unflushed.ctx = sctx;
532          multi_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes;
533       }
534 
535       multi_fence->fine = fine;
536       fine.buf = NULL;
537 
538       if (flags & TC_FLUSH_ASYNC) {
539          util_queue_fence_signal(&multi_fence->ready);
540          tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL);
541       }
542    }
543    assert(!fine.buf);
544 finish:
545    if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) {
546       if (sctx->sdma_cs)
547          ws->cs_sync_flush(sctx->sdma_cs);
548       ws->cs_sync_flush(sctx->gfx_cs);
549    }
550 }
551 
si_fence_server_signal(struct pipe_context * ctx,struct pipe_fence_handle * fence)552 static void si_fence_server_signal(struct pipe_context *ctx, struct pipe_fence_handle *fence)
553 {
554    struct si_context *sctx = (struct si_context *)ctx;
555    struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
556 
557    /* We should have at least one syncobj to signal */
558    assert(sfence->sdma || sfence->gfx);
559 
560    if (sfence->sdma)
561       si_add_syncobj_signal(sctx, sfence->sdma);
562    if (sfence->gfx)
563       si_add_syncobj_signal(sctx, sfence->gfx);
564 
565    /**
566     * The spec does not require a flush here. We insert a flush
567     * because syncobj based signals are not directly placed into
568     * the command stream. Instead the signal happens when the
569     * submission associated with the syncobj finishes execution.
570     *
571     * Therefore, we must make sure that we flush the pipe to avoid
572     * new work being emitted and getting executed before the signal
573     * operation.
574     *
575     * Set sctx->initial_gfx_cs_size to force IB submission even if
576     * it is empty.
577     */
578    sctx->initial_gfx_cs_size = 0;
579    si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC);
580 }
581 
si_fence_server_sync(struct pipe_context * ctx,struct pipe_fence_handle * fence)582 static void si_fence_server_sync(struct pipe_context *ctx, struct pipe_fence_handle *fence)
583 {
584    struct si_context *sctx = (struct si_context *)ctx;
585    struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
586 
587    util_queue_fence_wait(&sfence->ready);
588 
589    /* Unflushed fences from the same context are no-ops. */
590    if (sfence->gfx_unflushed.ctx && sfence->gfx_unflushed.ctx == sctx)
591       return;
592 
593    /* All unflushed commands will not start execution before this fence
594     * dependency is signalled. That's fine. Flushing is very expensive
595     * if we get fence_server_sync after every draw call. (which happens
596     * with Android/SurfaceFlinger)
597     *
598     * In a nutshell, when CPU overhead is greater than GPU overhead,
599     * or when the time it takes to execute an IB on the GPU is less than
600     * the time it takes to create and submit that IB, flushing decreases
601     * performance. Therefore, DO NOT FLUSH.
602     */
603    if (sfence->sdma)
604       si_add_fence_dependency(sctx, sfence->sdma);
605    if (sfence->gfx)
606       si_add_fence_dependency(sctx, sfence->gfx);
607 }
608 
si_init_fence_functions(struct si_context * ctx)609 void si_init_fence_functions(struct si_context *ctx)
610 {
611    ctx->b.flush = si_flush_from_st;
612    ctx->b.create_fence_fd = si_create_fence_fd;
613    ctx->b.fence_server_sync = si_fence_server_sync;
614    ctx->b.fence_server_signal = si_fence_server_signal;
615 }
616 
si_init_screen_fence_functions(struct si_screen * screen)617 void si_init_screen_fence_functions(struct si_screen *screen)
618 {
619    screen->b.fence_finish = si_fence_finish;
620    screen->b.fence_reference = si_fence_reference;
621    screen->b.fence_get_fd = si_fence_get_fd;
622 }
623