• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-
2  * Copyright (c) 2017 Steven G. Kargl
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /**
28  * sinpi(x) computes sin(pi*x) without multiplication by pi (almost).  First,
29  * note that sinpi(-x) = -sinpi(x), so the algorithm considers only |x| and
30  * includes reflection symmetry by considering the sign of x on output.  The
31  * method used depends on the magnitude of x.
32  *
33  * 1. For small |x|, sinpi(x) = pi * x where a sloppy threshold is used.  The
34  *    threshold is |x| < 0x1pN with N = -(P/2+M).  P is the precision of the
35  *    floating-point type and M = 2 to 4.  To achieve high accuracy, pi is
36  *    decomposed into high and low parts with the high part containing a
37  *    number of trailing zero bits.  x is also split into high and low parts.
38  *
39  * 2. For |x| < 1, argument reduction is not required and sinpi(x) is
40  *    computed by calling a kernel that leverages the kernels for sin(x)
41  *    ans cos(x).  See k_sinpi.c and k_cospi.c for details.
42  *
43  * 3. For 1 <= |x| < 0x1p(P-1), argument reduction is required where
44  *    |x| = j0 + r with j0 an integer and the remainder r satisfies
45  *    0 <= r < 1.  With the given domain, a simplified inline floor(x)
46  *    is used.  Also, note the following identity
47  *
48  *    sinpi(x) = sin(pi*(j0+r))
49  *             = sin(pi*j0) * cos(pi*r) + cos(pi*j0) * sin(pi*r)
50  *             = cos(pi*j0) * sin(pi*r)
51  *             = +-sinpi(r)
52  *
53  *    If j0 is even, then cos(pi*j0) = 1. If j0 is odd, then cos(pi*j0) = -1.
54  *    sinpi(r) is then computed via an appropriate kernel.
55  *
56  * 4. For |x| >= 0x1p(P-1), |x| is integral and sinpi(x) = copysign(0,x).
57  *
58  * 5. Special cases:
59  *
60  *    sinpi(+-0) = +-0
61  *    sinpi(+-n) = +-0, for positive integers n.
62  *    sinpi(+-inf) = nan.  Raises the "invalid" floating-point exception.
63  *    sinpi(nan) = nan.  Raises the "invalid" floating-point exception.
64  */
65 
66 #include <float.h>
67 #include "math.h"
68 #include "math_private.h"
69 
70 static const double
71 pi_hi = 3.1415926814079285e+00,	/* 0x400921fb 0x58000000 */
72 pi_lo =-2.7818135228334233e-08;	/* 0xbe5dde97 0x3dcb3b3a */
73 
74 #include "k_cospi.h"
75 #include "k_sinpi.h"
76 
77 volatile static const double vzero = 0;
78 
79 double
sinpi(double x)80 sinpi(double x)
81 {
82 	double ax, hi, lo, s;
83 	uint32_t hx, ix, j0, lx;
84 
85 	EXTRACT_WORDS(hx, lx, x);
86 	ix = hx & 0x7fffffff;
87 	INSERT_WORDS(ax, ix, lx);
88 
89 	if (ix < 0x3ff00000) {			/* |x| < 1 */
90 		if (ix < 0x3fd00000) {		/* |x| < 0.25 */
91 			if (ix < 0x3e200000) {	/* |x| < 0x1p-29 */
92 				if (x == 0)
93 					return (x);
94 				/*
95 				 * To avoid issues with subnormal values,
96 				 * scale the computation and rescale on
97 				 * return.
98 				 */
99 				INSERT_WORDS(hi, hx, 0);
100 				hi *= 0x1p53;
101 				lo = x * 0x1p53 - hi;
102 				s = (pi_lo + pi_hi) * lo + pi_lo * hi +
103 				    pi_hi * hi;
104 				return (s * 0x1p-53);
105 			}
106 
107 			s = __kernel_sinpi(ax);
108 			return ((hx & 0x80000000) ? -s : s);
109 		}
110 
111 		if (ix < 0x3fe00000)		/* |x| < 0.5 */
112 			s = __kernel_cospi(0.5 - ax);
113 		else if (ix < 0x3fe80000)	/* |x| < 0.75 */
114 			s = __kernel_cospi(ax - 0.5);
115 		else
116 			s = __kernel_sinpi(1 - ax);
117 		return ((hx & 0x80000000) ? -s : s);
118 	}
119 
120 	if (ix < 0x43300000) {			/* 1 <= |x| < 0x1p52 */
121 		/* Determine integer part of ax. */
122 		j0 = ((ix >> 20) & 0x7ff) - 0x3ff;
123 		if (j0 < 20) {
124 			ix &= ~(0x000fffff >> j0);
125 			lx = 0;
126 		} else {
127 			lx &= ~((uint32_t)0xffffffff >> (j0 - 20));
128 		}
129 		INSERT_WORDS(x, ix, lx);
130 
131 		ax -= x;
132 		EXTRACT_WORDS(ix, lx, ax);
133 
134 		if (ix == 0)
135 			s = 0;
136 		else {
137 			if (ix < 0x3fe00000) {		/* |x| < 0.5 */
138 				if (ix < 0x3fd00000)	/* |x| < 0.25 */
139 					s = __kernel_sinpi(ax);
140 				else
141 					s = __kernel_cospi(0.5 - ax);
142 			} else {
143 				if (ix < 0x3fe80000)	/* |x| < 0.75 */
144 					s = __kernel_cospi(ax - 0.5);
145 				else
146 					s = __kernel_sinpi(1 - ax);
147 			}
148 
149 			if (j0 > 30)
150 				x -= 0x1p30;
151 			j0 = (uint32_t)x;
152 			if (j0 & 1) s = -s;
153 		}
154 
155 		return ((hx & 0x80000000) ? -s : s);
156 	}
157 
158 	if (ix >= 0x7f800000)
159 		return (vzero / vzero);
160 
161 	/*
162 	 * |x| >= 0x1p52 is always an integer, so return +-0.
163 	 */
164 	return (copysign(0, x));
165 }
166 
167 #if LDBL_MANT_DIG == 53
168 __weak_reference(sinpi, sinpil);
169 #endif
170