1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/core/SkString.h"
9
10 #include "include/private/base/SkTPin.h"
11 #include "include/private/base/SkMalloc.h"
12 #include "include/private/base/SkDebug.h"
13 #include "include/private/base/SkTo.h"
14 #include "src/base/SkSafeMath.h"
15 #include "src/base/SkUTF.h"
16 #include "src/base/SkUtils.h"
17
18 #include <algorithm>
19 #include <cstdio>
20 #include <cstring>
21 #include <new>
22 #include <string_view>
23 #include <utility>
24
25 // number of bytes (on the stack) to receive the printf result
26 static const size_t kBufferSize = 1024;
27
28 struct StringBuffer {
29 char* fText;
30 int fLength;
31 };
32
33 template <int SIZE>
34 static StringBuffer apply_format_string(const char* format, va_list args, char (&stackBuffer)[SIZE],
35 SkString* heapBuffer) SK_PRINTF_LIKE(1, 0);
36
37 template <int SIZE>
apply_format_string(const char * format,va_list args,char (& stackBuffer)[SIZE],SkString * heapBuffer)38 static StringBuffer apply_format_string(const char* format, va_list args, char (&stackBuffer)[SIZE],
39 SkString* heapBuffer) {
40 // First, attempt to print directly to the stack buffer.
41 va_list argsCopy;
42 va_copy(argsCopy, args);
43 int outLength = std::vsnprintf(stackBuffer, SIZE, format, args);
44 if (outLength < 0) {
45 SkDebugf("SkString: vsnprintf reported error.");
46 va_end(argsCopy);
47 return {stackBuffer, 0};
48 }
49 if (outLength < SIZE) {
50 va_end(argsCopy);
51 return {stackBuffer, outLength};
52 }
53
54 // Our text was too long to fit on the stack! However, we now know how much space we need to
55 // format it. Format the string into our heap buffer. `set` automatically reserves an extra
56 // byte at the end of the buffer for a null terminator, so we don't need to add one here.
57 heapBuffer->set(nullptr, outLength);
58 char* heapBufferDest = heapBuffer->data();
59 SkDEBUGCODE(int checkLength =) std::vsnprintf(heapBufferDest, outLength + 1, format, argsCopy);
60 SkASSERT(checkLength == outLength);
61 va_end(argsCopy);
62 return {heapBufferDest, outLength};
63 }
64
65 ///////////////////////////////////////////////////////////////////////////////
66
SkStrEndsWith(const char string[],const char suffixStr[])67 bool SkStrEndsWith(const char string[], const char suffixStr[]) {
68 SkASSERT(string);
69 SkASSERT(suffixStr);
70 size_t strLen = strlen(string);
71 size_t suffixLen = strlen(suffixStr);
72 return strLen >= suffixLen &&
73 !strncmp(string + strLen - suffixLen, suffixStr, suffixLen);
74 }
75
SkStrEndsWith(const char string[],const char suffixChar)76 bool SkStrEndsWith(const char string[], const char suffixChar) {
77 SkASSERT(string);
78 size_t strLen = strlen(string);
79 if (0 == strLen) {
80 return false;
81 } else {
82 return (suffixChar == string[strLen-1]);
83 }
84 }
85
SkStrStartsWithOneOf(const char string[],const char prefixes[])86 int SkStrStartsWithOneOf(const char string[], const char prefixes[]) {
87 int index = 0;
88 do {
89 const char* limit = strchr(prefixes, '\0');
90 if (!strncmp(string, prefixes, limit - prefixes)) {
91 return index;
92 }
93 prefixes = limit + 1;
94 index++;
95 } while (prefixes[0]);
96 return -1;
97 }
98
SkStrAppendU32(char string[],uint32_t dec)99 char* SkStrAppendU32(char string[], uint32_t dec) {
100 SkDEBUGCODE(char* start = string;)
101
102 char buffer[kSkStrAppendU32_MaxSize];
103 char* p = buffer + sizeof(buffer);
104
105 do {
106 *--p = SkToU8('0' + dec % 10);
107 dec /= 10;
108 } while (dec != 0);
109
110 SkASSERT(p >= buffer);
111 size_t cp_len = buffer + sizeof(buffer) - p;
112 memcpy(string, p, cp_len);
113 string += cp_len;
114
115 SkASSERT(string - start <= kSkStrAppendU32_MaxSize);
116 return string;
117 }
118
SkStrAppendS32(char string[],int32_t dec)119 char* SkStrAppendS32(char string[], int32_t dec) {
120 uint32_t udec = dec;
121 if (dec < 0) {
122 *string++ = '-';
123 udec = ~udec + 1; // udec = -udec, but silences some warnings that are trying to be helpful
124 }
125 return SkStrAppendU32(string, udec);
126 }
127
SkStrAppendU64(char string[],uint64_t dec,int minDigits)128 char* SkStrAppendU64(char string[], uint64_t dec, int minDigits) {
129 SkDEBUGCODE(char* start = string;)
130
131 char buffer[kSkStrAppendU64_MaxSize];
132 char* p = buffer + sizeof(buffer);
133
134 do {
135 *--p = SkToU8('0' + (int32_t) (dec % 10));
136 dec /= 10;
137 minDigits--;
138 } while (dec != 0);
139
140 while (minDigits > 0) {
141 *--p = '0';
142 minDigits--;
143 }
144
145 SkASSERT(p >= buffer);
146 size_t cp_len = buffer + sizeof(buffer) - p;
147 memcpy(string, p, cp_len);
148 string += cp_len;
149
150 SkASSERT(string - start <= kSkStrAppendU64_MaxSize);
151 return string;
152 }
153
SkStrAppendS64(char string[],int64_t dec,int minDigits)154 char* SkStrAppendS64(char string[], int64_t dec, int minDigits) {
155 uint64_t udec = dec;
156 if (dec < 0) {
157 *string++ = '-';
158 udec = ~udec + 1; // udec = -udec, but silences some warnings that are trying to be helpful
159 }
160 return SkStrAppendU64(string, udec, minDigits);
161 }
162
SkStrAppendScalar(char string[],SkScalar value)163 char* SkStrAppendScalar(char string[], SkScalar value) {
164 // Handle infinity and NaN ourselves to ensure consistent cross-platform results.
165 // (e.g.: `inf` versus `1.#INF00`, `nan` versus `-nan` for high-bit-set NaNs)
166 if (SkScalarIsNaN(value)) {
167 strcpy(string, "nan");
168 return string + 3;
169 }
170 if (!SkScalarIsFinite(value)) {
171 if (value > 0) {
172 strcpy(string, "inf");
173 return string + 3;
174 } else {
175 strcpy(string, "-inf");
176 return string + 4;
177 }
178 }
179
180 // since floats have at most 8 significant digits, we limit our %g to that.
181 static const char gFormat[] = "%.8g";
182 // make it 1 larger for the terminating 0
183 char buffer[kSkStrAppendScalar_MaxSize + 1];
184 int len = snprintf(buffer, sizeof(buffer), gFormat, value);
185 memcpy(string, buffer, len);
186 SkASSERT(len <= kSkStrAppendScalar_MaxSize);
187 return string + len;
188 }
189
190 ///////////////////////////////////////////////////////////////////////////////
191
192 const SkString::Rec SkString::gEmptyRec(0, 0);
193
194 #define SizeOfRec() (gEmptyRec.data() - (const char*)&gEmptyRec)
195
trim_size_t_to_u32(size_t value)196 static uint32_t trim_size_t_to_u32(size_t value) {
197 if (sizeof(size_t) > sizeof(uint32_t)) {
198 if (value > UINT32_MAX) {
199 value = UINT32_MAX;
200 }
201 }
202 return (uint32_t)value;
203 }
204
check_add32(size_t base,size_t extra)205 static size_t check_add32(size_t base, size_t extra) {
206 SkASSERT(base <= UINT32_MAX);
207 if (sizeof(size_t) > sizeof(uint32_t)) {
208 if (base + extra > UINT32_MAX) {
209 extra = UINT32_MAX - base;
210 }
211 }
212 return extra;
213 }
214
Make(const char text[],size_t len)215 sk_sp<SkString::Rec> SkString::Rec::Make(const char text[], size_t len) {
216 if (0 == len) {
217 return sk_sp<SkString::Rec>(const_cast<Rec*>(&gEmptyRec));
218 }
219
220 SkSafeMath safe;
221 // We store a 32bit version of the length
222 uint32_t stringLen = safe.castTo<uint32_t>(len);
223 // Add SizeOfRec() for our overhead and 1 for null-termination
224 size_t allocationSize = safe.add(len, SizeOfRec() + sizeof(char));
225 // Align up to a multiple of 4
226 allocationSize = safe.alignUp(allocationSize, 4);
227
228 SkASSERT_RELEASE(safe.ok());
229
230 void* storage = ::operator new (allocationSize);
231 sk_sp<Rec> rec(new (storage) Rec(stringLen, 1));
232 if (text) {
233 memcpy(rec->data(), text, len);
234 }
235 rec->data()[len] = 0;
236 return rec;
237 }
238
ref() const239 void SkString::Rec::ref() const {
240 if (this == &SkString::gEmptyRec) {
241 return;
242 }
243 SkAssertResult(this->fRefCnt.fetch_add(+1, std::memory_order_relaxed));
244 }
245
unref() const246 void SkString::Rec::unref() const {
247 if (this == &SkString::gEmptyRec) {
248 return;
249 }
250 int32_t oldRefCnt = this->fRefCnt.fetch_add(-1, std::memory_order_acq_rel);
251 SkASSERT(oldRefCnt);
252 if (1 == oldRefCnt) {
253 delete this;
254 }
255 }
256
unique() const257 bool SkString::Rec::unique() const {
258 return fRefCnt.load(std::memory_order_acquire) == 1;
259 }
260
261 #ifdef SK_DEBUG
getRefCnt() const262 int32_t SkString::Rec::getRefCnt() const {
263 return fRefCnt.load(std::memory_order_relaxed);
264 }
265
validate() const266 const SkString& SkString::validate() const {
267 // make sure no one has written over our global
268 SkASSERT(0 == gEmptyRec.fLength);
269 SkASSERT(0 == gEmptyRec.getRefCnt());
270 SkASSERT(0 == gEmptyRec.data()[0]);
271
272 if (fRec.get() != &gEmptyRec) {
273 SkASSERT(fRec->fLength > 0);
274 SkASSERT(fRec->getRefCnt() > 0);
275 SkASSERT(0 == fRec->data()[fRec->fLength]);
276 }
277 return *this;
278 }
279 #endif
280
281 ///////////////////////////////////////////////////////////////////////////////
282
SkString()283 SkString::SkString() : fRec(const_cast<Rec*>(&gEmptyRec)) {
284 }
285
SkString(size_t len)286 SkString::SkString(size_t len) {
287 fRec = Rec::Make(nullptr, len);
288 }
289
SkString(const char text[])290 SkString::SkString(const char text[]) {
291 size_t len = text ? strlen(text) : 0;
292
293 fRec = Rec::Make(text, len);
294 }
295
SkString(const char text[],size_t len)296 SkString::SkString(const char text[], size_t len) {
297 fRec = Rec::Make(text, len);
298 }
299
SkString(const SkString & src)300 SkString::SkString(const SkString& src) : fRec(src.validate().fRec) {}
301
SkString(SkString && src)302 SkString::SkString(SkString&& src) : fRec(std::move(src.validate().fRec)) {
303 src.fRec.reset(const_cast<Rec*>(&gEmptyRec));
304 }
305
SkString(const std::string & src)306 SkString::SkString(const std::string& src) {
307 fRec = Rec::Make(src.c_str(), src.size());
308 }
309
SkString(std::string_view src)310 SkString::SkString(std::string_view src) {
311 fRec = Rec::Make(src.data(), src.length());
312 }
313
~SkString()314 SkString::~SkString() {
315 this->validate();
316 }
317
equals(const SkString & src) const318 bool SkString::equals(const SkString& src) const {
319 return fRec == src.fRec || this->equals(src.c_str(), src.size());
320 }
321
equals(const char text[]) const322 bool SkString::equals(const char text[]) const {
323 return this->equals(text, text ? strlen(text) : 0);
324 }
325
equals(const char text[],size_t len) const326 bool SkString::equals(const char text[], size_t len) const {
327 SkASSERT(len == 0 || text != nullptr);
328
329 return fRec->fLength == len && !sk_careful_memcmp(fRec->data(), text, len);
330 }
331
operator =(const SkString & src)332 SkString& SkString::operator=(const SkString& src) {
333 this->validate();
334 fRec = src.fRec; // sk_sp<Rec>::operator=(const sk_sp<Ref>&) checks for self-assignment.
335 return *this;
336 }
337
operator =(SkString && src)338 SkString& SkString::operator=(SkString&& src) {
339 this->validate();
340
341 if (fRec != src.fRec) {
342 this->swap(src);
343 }
344 return *this;
345 }
346
operator =(const char text[])347 SkString& SkString::operator=(const char text[]) {
348 this->validate();
349 return *this = SkString(text);
350 }
351
reset()352 void SkString::reset() {
353 this->validate();
354 fRec.reset(const_cast<Rec*>(&gEmptyRec));
355 }
356
data()357 char* SkString::data() {
358 this->validate();
359
360 if (fRec->fLength) {
361 if (!fRec->unique()) {
362 fRec = Rec::Make(fRec->data(), fRec->fLength);
363 }
364 }
365 return fRec->data();
366 }
367
resize(size_t len)368 void SkString::resize(size_t len) {
369 len = trim_size_t_to_u32(len);
370 if (0 == len) {
371 this->reset();
372 } else if (fRec->unique() && ((len >> 2) <= (fRec->fLength >> 2))) {
373 // Use less of the buffer we have without allocating a smaller one.
374 char* p = this->data();
375 p[len] = '\0';
376 fRec->fLength = SkToU32(len);
377 } else {
378 SkString newString(len);
379 char* dest = newString.data();
380 int copyLen = std::min<uint32_t>(len, this->size());
381 memcpy(dest, this->c_str(), copyLen);
382 dest[copyLen] = '\0';
383 this->swap(newString);
384 }
385 }
386
set(const char text[])387 void SkString::set(const char text[]) {
388 this->set(text, text ? strlen(text) : 0);
389 }
390
set(const char text[],size_t len)391 void SkString::set(const char text[], size_t len) {
392 len = trim_size_t_to_u32(len);
393 if (0 == len) {
394 this->reset();
395 } else if (fRec->unique() && ((len >> 2) <= (fRec->fLength >> 2))) {
396 // Use less of the buffer we have without allocating a smaller one.
397 char* p = this->data();
398 if (text) {
399 memcpy(p, text, len);
400 }
401 p[len] = '\0';
402 fRec->fLength = SkToU32(len);
403 } else {
404 SkString tmp(text, len);
405 this->swap(tmp);
406 }
407 }
408
insert(size_t offset,const char text[])409 void SkString::insert(size_t offset, const char text[]) {
410 this->insert(offset, text, text ? strlen(text) : 0);
411 }
412
insert(size_t offset,const char text[],size_t len)413 void SkString::insert(size_t offset, const char text[], size_t len) {
414 if (len) {
415 size_t length = fRec->fLength;
416 if (offset > length) {
417 offset = length;
418 }
419
420 // Check if length + len exceeds 32bits, we trim len
421 len = check_add32(length, len);
422 if (0 == len) {
423 return;
424 }
425
426 /* If we're the only owner, and we have room in our allocation for the insert,
427 do it in place, rather than allocating a new buffer.
428
429 To know we have room, compare the allocated sizes
430 beforeAlloc = SkAlign4(length + 1)
431 afterAlloc = SkAligh4(length + 1 + len)
432 but SkAlign4(x) is (x + 3) >> 2 << 2
433 which is equivalent for testing to (length + 1 + 3) >> 2 == (length + 1 + 3 + len) >> 2
434 and we can then eliminate the +1+3 since that doesn't affec the answer
435 */
436 if (fRec->unique() && (length >> 2) == ((length + len) >> 2)) {
437 char* dst = this->data();
438
439 if (offset < length) {
440 memmove(dst + offset + len, dst + offset, length - offset);
441 }
442 memcpy(dst + offset, text, len);
443
444 dst[length + len] = 0;
445 fRec->fLength = SkToU32(length + len);
446 } else {
447 /* Seems we should use realloc here, since that is safe if it fails
448 (we have the original data), and might be faster than alloc/copy/free.
449 */
450 SkString tmp(fRec->fLength + len);
451 char* dst = tmp.data();
452
453 if (offset > 0) {
454 memcpy(dst, fRec->data(), offset);
455 }
456 memcpy(dst + offset, text, len);
457 if (offset < fRec->fLength) {
458 memcpy(dst + offset + len, fRec->data() + offset,
459 fRec->fLength - offset);
460 }
461
462 this->swap(tmp);
463 }
464 }
465 }
466
insertUnichar(size_t offset,SkUnichar uni)467 void SkString::insertUnichar(size_t offset, SkUnichar uni) {
468 char buffer[SkUTF::kMaxBytesInUTF8Sequence];
469 size_t len = SkUTF::ToUTF8(uni, buffer);
470
471 if (len) {
472 this->insert(offset, buffer, len);
473 }
474 }
475
insertS32(size_t offset,int32_t dec)476 void SkString::insertS32(size_t offset, int32_t dec) {
477 char buffer[kSkStrAppendS32_MaxSize];
478 char* stop = SkStrAppendS32(buffer, dec);
479 this->insert(offset, buffer, stop - buffer);
480 }
481
insertS64(size_t offset,int64_t dec,int minDigits)482 void SkString::insertS64(size_t offset, int64_t dec, int minDigits) {
483 char buffer[kSkStrAppendS64_MaxSize];
484 char* stop = SkStrAppendS64(buffer, dec, minDigits);
485 this->insert(offset, buffer, stop - buffer);
486 }
487
insertU32(size_t offset,uint32_t dec)488 void SkString::insertU32(size_t offset, uint32_t dec) {
489 char buffer[kSkStrAppendU32_MaxSize];
490 char* stop = SkStrAppendU32(buffer, dec);
491 this->insert(offset, buffer, stop - buffer);
492 }
493
insertU64(size_t offset,uint64_t dec,int minDigits)494 void SkString::insertU64(size_t offset, uint64_t dec, int minDigits) {
495 char buffer[kSkStrAppendU64_MaxSize];
496 char* stop = SkStrAppendU64(buffer, dec, minDigits);
497 this->insert(offset, buffer, stop - buffer);
498 }
499
insertHex(size_t offset,uint32_t hex,int minDigits)500 void SkString::insertHex(size_t offset, uint32_t hex, int minDigits) {
501 minDigits = SkTPin(minDigits, 0, 8);
502
503 char buffer[8];
504 char* p = buffer + sizeof(buffer);
505
506 do {
507 *--p = SkHexadecimalDigits::gUpper[hex & 0xF];
508 hex >>= 4;
509 minDigits -= 1;
510 } while (hex != 0);
511
512 while (--minDigits >= 0) {
513 *--p = '0';
514 }
515
516 SkASSERT(p >= buffer);
517 this->insert(offset, p, buffer + sizeof(buffer) - p);
518 }
519
insertScalar(size_t offset,SkScalar value)520 void SkString::insertScalar(size_t offset, SkScalar value) {
521 char buffer[kSkStrAppendScalar_MaxSize];
522 char* stop = SkStrAppendScalar(buffer, value);
523 this->insert(offset, buffer, stop - buffer);
524 }
525
526 ///////////////////////////////////////////////////////////////////////////////
527
printf(const char format[],...)528 void SkString::printf(const char format[], ...) {
529 va_list args;
530 va_start(args, format);
531 this->printVAList(format, args);
532 va_end(args);
533 }
534
printVAList(const char format[],va_list args)535 void SkString::printVAList(const char format[], va_list args) {
536 char stackBuffer[kBufferSize];
537 StringBuffer result = apply_format_string(format, args, stackBuffer, this);
538
539 if (result.fText == stackBuffer) {
540 this->set(result.fText, result.fLength);
541 }
542 }
543
appendf(const char format[],...)544 void SkString::appendf(const char format[], ...) {
545 va_list args;
546 va_start(args, format);
547 this->appendVAList(format, args);
548 va_end(args);
549 }
550
appendVAList(const char format[],va_list args)551 void SkString::appendVAList(const char format[], va_list args) {
552 if (this->isEmpty()) {
553 this->printVAList(format, args);
554 return;
555 }
556
557 SkString overflow;
558 char stackBuffer[kBufferSize];
559 StringBuffer result = apply_format_string(format, args, stackBuffer, &overflow);
560
561 this->append(result.fText, result.fLength);
562 }
563
prependf(const char format[],...)564 void SkString::prependf(const char format[], ...) {
565 va_list args;
566 va_start(args, format);
567 this->prependVAList(format, args);
568 va_end(args);
569 }
570
prependVAList(const char format[],va_list args)571 void SkString::prependVAList(const char format[], va_list args) {
572 if (this->isEmpty()) {
573 this->printVAList(format, args);
574 return;
575 }
576
577 SkString overflow;
578 char stackBuffer[kBufferSize];
579 StringBuffer result = apply_format_string(format, args, stackBuffer, &overflow);
580
581 this->prepend(result.fText, result.fLength);
582 }
583
584 ///////////////////////////////////////////////////////////////////////////////
585
remove(size_t offset,size_t length)586 void SkString::remove(size_t offset, size_t length) {
587 size_t size = this->size();
588
589 if (offset < size) {
590 if (length > size - offset) {
591 length = size - offset;
592 }
593 SkASSERT(length <= size);
594 SkASSERT(offset <= size - length);
595 if (length > 0) {
596 SkString tmp(size - length);
597 char* dst = tmp.data();
598 const char* src = this->c_str();
599
600 if (offset) {
601 memcpy(dst, src, offset);
602 }
603 size_t tail = size - (offset + length);
604 if (tail) {
605 memcpy(dst + offset, src + (offset + length), tail);
606 }
607 SkASSERT(dst[tmp.size()] == 0);
608 this->swap(tmp);
609 }
610 }
611 }
612
swap(SkString & other)613 void SkString::swap(SkString& other) {
614 this->validate();
615 other.validate();
616
617 using std::swap;
618 swap(fRec, other.fRec);
619 }
620
621 ///////////////////////////////////////////////////////////////////////////////
622
SkStringPrintf(const char * format,...)623 SkString SkStringPrintf(const char* format, ...) {
624 SkString formattedOutput;
625 va_list args;
626 va_start(args, format);
627 formattedOutput.printVAList(format, args);
628 va_end(args);
629 return formattedOutput;
630 }
631
SkStrSplit(const char * str,const char * delimiters,SkStrSplitMode splitMode,SkTArray<SkString> * out)632 void SkStrSplit(const char* str, const char* delimiters, SkStrSplitMode splitMode,
633 SkTArray<SkString>* out) {
634 if (splitMode == kCoalesce_SkStrSplitMode) {
635 // Skip any delimiters.
636 str += strspn(str, delimiters);
637 }
638 if (!*str) {
639 return;
640 }
641
642 while (true) {
643 // Find a token.
644 const size_t len = strcspn(str, delimiters);
645 if (splitMode == kStrict_SkStrSplitMode || len > 0) {
646 out->push_back().set(str, len);
647 str += len;
648 }
649
650 if (!*str) {
651 return;
652 }
653 if (splitMode == kCoalesce_SkStrSplitMode) {
654 // Skip any delimiters.
655 str += strspn(str, delimiters);
656 } else {
657 // Skip one delimiter.
658 str += 1;
659 }
660 }
661 }
662