1 /*
2 * wpa_supplicant/hostapd / common helper functions, etc.
3 * Copyright (c) 2002-2019, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10 #include <limits.h>
11
12 #include "common/ieee802_11_defs.h"
13 #include "common.h"
14
15
hex2num(char c)16 int hex2num(char c)
17 {
18 if (c >= '0' && c <= '9')
19 return c - '0';
20 if (c >= 'a' && c <= 'f')
21 return c - 'a' + 10;
22 if (c >= 'A' && c <= 'F')
23 return c - 'A' + 10;
24 return -1;
25 }
26
27
hex2byte(const char * hex)28 int hex2byte(const char *hex)
29 {
30 int a, b;
31 a = hex2num(*hex++);
32 if (a < 0)
33 return -1;
34 b = hex2num(*hex++);
35 if (b < 0)
36 return -1;
37 return (a << 4) | b;
38 }
39
40
hwaddr_parse(const char * txt,u8 * addr)41 static const char * hwaddr_parse(const char *txt, u8 *addr)
42 {
43 size_t i;
44
45 for (i = 0; i < ETH_ALEN; i++) {
46 int a;
47
48 a = hex2byte(txt);
49 if (a < 0)
50 return NULL;
51 txt += 2;
52 addr[i] = a;
53 if (i < ETH_ALEN - 1 && *txt++ != ':')
54 return NULL;
55 }
56 return txt;
57 }
58
59
60 /**
61 * hwaddr_aton - Convert ASCII string to MAC address (colon-delimited format)
62 * @txt: MAC address as a string (e.g., "00:11:22:33:44:55")
63 * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
64 * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
65 */
hwaddr_aton(const char * txt,u8 * addr)66 int hwaddr_aton(const char *txt, u8 *addr)
67 {
68 return hwaddr_parse(txt, addr) ? 0 : -1;
69 }
70
71
72 /**
73 * hwaddr_masked_aton - Convert ASCII string with optional mask to MAC address (colon-delimited format)
74 * @txt: MAC address with optional mask as a string (e.g., "00:11:22:33:44:55/ff:ff:ff:ff:00:00")
75 * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
76 * @mask: Buffer for the MAC address mask (ETH_ALEN = 6 bytes)
77 * @maskable: Flag to indicate whether a mask is allowed
78 * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
79 */
hwaddr_masked_aton(const char * txt,u8 * addr,u8 * mask,u8 maskable)80 int hwaddr_masked_aton(const char *txt, u8 *addr, u8 *mask, u8 maskable)
81 {
82 const char *r;
83
84 /* parse address part */
85 r = hwaddr_parse(txt, addr);
86 if (!r)
87 return -1;
88
89 /* check for optional mask */
90 if (*r == '\0' || isspace((unsigned char) *r)) {
91 /* no mask specified, assume default */
92 os_memset(mask, 0xff, ETH_ALEN);
93 } else if (maskable && *r == '/') {
94 /* mask specified and allowed */
95 r = hwaddr_parse(r + 1, mask);
96 /* parser error? */
97 if (!r)
98 return -1;
99 } else {
100 /* mask specified but not allowed or trailing garbage */
101 return -1;
102 }
103
104 return 0;
105 }
106
107
108 /**
109 * hwaddr_compact_aton - Convert ASCII string to MAC address (no colon delimitors format)
110 * @txt: MAC address as a string (e.g., "001122334455")
111 * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
112 * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
113 */
hwaddr_compact_aton(const char * txt,u8 * addr)114 int hwaddr_compact_aton(const char *txt, u8 *addr)
115 {
116 int i;
117
118 for (i = 0; i < 6; i++) {
119 int a, b;
120
121 a = hex2num(*txt++);
122 if (a < 0)
123 return -1;
124 b = hex2num(*txt++);
125 if (b < 0)
126 return -1;
127 *addr++ = (a << 4) | b;
128 }
129
130 return 0;
131 }
132
133 /**
134 * hwaddr_aton2 - Convert ASCII string to MAC address (in any known format)
135 * @txt: MAC address as a string (e.g., 00:11:22:33:44:55 or 0011.2233.4455)
136 * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
137 * Returns: Characters used (> 0) on success, -1 on failure
138 */
hwaddr_aton2(const char * txt,u8 * addr)139 int hwaddr_aton2(const char *txt, u8 *addr)
140 {
141 int i;
142 const char *pos = txt;
143
144 for (i = 0; i < 6; i++) {
145 int a, b;
146
147 while (*pos == ':' || *pos == '.' || *pos == '-')
148 pos++;
149
150 a = hex2num(*pos++);
151 if (a < 0)
152 return -1;
153 b = hex2num(*pos++);
154 if (b < 0)
155 return -1;
156 *addr++ = (a << 4) | b;
157 }
158
159 return pos - txt;
160 }
161
162
163 /**
164 * hexstr2bin - Convert ASCII hex string into binary data
165 * @hex: ASCII hex string (e.g., "01ab")
166 * @buf: Buffer for the binary data
167 * @len: Length of the text to convert in bytes (of buf); hex will be double
168 * this size
169 * Returns: 0 on success, -1 on failure (invalid hex string)
170 */
hexstr2bin(const char * hex,u8 * buf,size_t len)171 int hexstr2bin(const char *hex, u8 *buf, size_t len)
172 {
173 size_t i;
174 int a;
175 const char *ipos = hex;
176 u8 *opos = buf;
177
178 for (i = 0; i < len; i++) {
179 a = hex2byte(ipos);
180 if (a < 0)
181 return -1;
182 *opos++ = a;
183 ipos += 2;
184 }
185 return 0;
186 }
187
188
hwaddr_mask_txt(char * buf,size_t len,const u8 * addr,const u8 * mask)189 int hwaddr_mask_txt(char *buf, size_t len, const u8 *addr, const u8 *mask)
190 {
191 size_t i;
192 int print_mask = 0;
193 int res;
194
195 for (i = 0; i < ETH_ALEN; i++) {
196 if (mask[i] != 0xff) {
197 print_mask = 1;
198 break;
199 }
200 }
201
202 if (print_mask)
203 res = os_snprintf(buf, len, MACSTR "/" MACSTR,
204 MAC2STR(addr), MAC2STR(mask));
205 else
206 res = os_snprintf(buf, len, MACSTR, MAC2STR(addr));
207 if (os_snprintf_error(len, res))
208 return -1;
209 return res;
210 }
211
212
213 /**
214 * inc_byte_array - Increment arbitrary length byte array by one
215 * @counter: Pointer to byte array
216 * @len: Length of the counter in bytes
217 *
218 * This function increments the last byte of the counter by one and continues
219 * rolling over to more significant bytes if the byte was incremented from
220 * 0xff to 0x00.
221 */
inc_byte_array(u8 * counter,size_t len)222 void inc_byte_array(u8 *counter, size_t len)
223 {
224 int pos = len - 1;
225 while (pos >= 0) {
226 counter[pos]++;
227 if (counter[pos] != 0)
228 break;
229 pos--;
230 }
231 }
232
233
buf_shift_right(u8 * buf,size_t len,size_t bits)234 void buf_shift_right(u8 *buf, size_t len, size_t bits)
235 {
236 size_t i;
237
238 for (i = len - 1; i > 0; i--)
239 buf[i] = (buf[i - 1] << (8 - bits)) | (buf[i] >> bits);
240 buf[0] >>= bits;
241 }
242
243
wpa_get_ntp_timestamp(u8 * buf)244 void wpa_get_ntp_timestamp(u8 *buf)
245 {
246 struct os_time now;
247 u32 sec, usec;
248 be32 tmp;
249
250 /* 64-bit NTP timestamp (time from 1900-01-01 00:00:00) */
251 os_get_time(&now);
252 sec = now.sec + 2208988800U; /* Epoch to 1900 */
253 /* Estimate 2^32/10^6 = 4295 - 1/32 - 1/512 */
254 usec = now.usec;
255 usec = 4295 * usec - (usec >> 5) - (usec >> 9);
256 tmp = host_to_be32(sec);
257 os_memcpy(buf, (u8 *) &tmp, 4);
258 tmp = host_to_be32(usec);
259 os_memcpy(buf + 4, (u8 *) &tmp, 4);
260 }
261
262 /**
263 * wpa_scnprintf - Simpler-to-use snprintf function
264 * @buf: Output buffer
265 * @size: Buffer size
266 * @fmt: format
267 *
268 * Simpler snprintf version that doesn't require further error checks - the
269 * return value only indicates how many bytes were actually written, excluding
270 * the NULL byte (i.e., 0 on error, size-1 if buffer is not big enough).
271 */
wpa_scnprintf(char * buf,size_t size,const char * fmt,...)272 int wpa_scnprintf(char *buf, size_t size, const char *fmt, ...)
273 {
274 va_list ap;
275 int ret;
276
277 if (!size)
278 return 0;
279
280 va_start(ap, fmt);
281 ret = vsnprintf(buf, size, fmt, ap);
282 va_end(ap);
283
284 if (ret < 0)
285 return 0;
286 if ((size_t) ret >= size)
287 return size - 1;
288
289 return ret;
290 }
291
292
wpa_snprintf_hex_sep(char * buf,size_t buf_size,const u8 * data,size_t len,char sep)293 int wpa_snprintf_hex_sep(char *buf, size_t buf_size, const u8 *data, size_t len,
294 char sep)
295 {
296 size_t i;
297 char *pos = buf, *end = buf + buf_size;
298 int ret;
299
300 if (buf_size == 0)
301 return 0;
302
303 for (i = 0; i < len; i++) {
304 ret = os_snprintf(pos, end - pos, "%02x%c",
305 data[i], sep);
306 if (os_snprintf_error(end - pos, ret)) {
307 end[-1] = '\0';
308 return pos - buf;
309 }
310 pos += ret;
311 }
312 pos[-1] = '\0';
313 return pos - buf;
314 }
315
316
_wpa_snprintf_hex(char * buf,size_t buf_size,const u8 * data,size_t len,int uppercase)317 static inline int _wpa_snprintf_hex(char *buf, size_t buf_size, const u8 *data,
318 size_t len, int uppercase)
319 {
320 size_t i;
321 char *pos = buf, *end = buf + buf_size;
322 int ret;
323 if (buf_size == 0)
324 return 0;
325 for (i = 0; i < len; i++) {
326 ret = os_snprintf(pos, end - pos, uppercase ? "%02X" : "%02x",
327 data[i]);
328 if (os_snprintf_error(end - pos, ret)) {
329 end[-1] = '\0';
330 return pos - buf;
331 }
332 pos += ret;
333 }
334 end[-1] = '\0';
335 return pos - buf;
336 }
337
338 /**
339 * wpa_snprintf_hex - Print data as a hex string into a buffer
340 * @buf: Memory area to use as the output buffer
341 * @buf_size: Maximum buffer size in bytes (should be at least 2 * len + 1)
342 * @data: Data to be printed
343 * @len: Length of data in bytes
344 * Returns: Number of bytes written
345 */
wpa_snprintf_hex(char * buf,size_t buf_size,const u8 * data,size_t len)346 int wpa_snprintf_hex(char *buf, size_t buf_size, const u8 *data, size_t len)
347 {
348 return _wpa_snprintf_hex(buf, buf_size, data, len, 0);
349 }
350
351
352 /**
353 * wpa_snprintf_hex_uppercase - Print data as a upper case hex string into buf
354 * @buf: Memory area to use as the output buffer
355 * @buf_size: Maximum buffer size in bytes (should be at least 2 * len + 1)
356 * @data: Data to be printed
357 * @len: Length of data in bytes
358 * Returns: Number of bytes written
359 */
wpa_snprintf_hex_uppercase(char * buf,size_t buf_size,const u8 * data,size_t len)360 int wpa_snprintf_hex_uppercase(char *buf, size_t buf_size, const u8 *data,
361 size_t len)
362 {
363 return _wpa_snprintf_hex(buf, buf_size, data, len, 1);
364 }
365
366
367 #ifdef CONFIG_ANSI_C_EXTRA
368
369 #ifdef _WIN32_WCE
perror(const char * s)370 void perror(const char *s)
371 {
372 wpa_printf(MSG_ERROR, "%s: GetLastError: %d",
373 s, (int) GetLastError());
374 }
375 #endif /* _WIN32_WCE */
376
377
378 int optind = 1;
379 int optopt;
380 char *optarg;
381
getopt(int argc,char * const argv[],const char * optstring)382 int getopt(int argc, char *const argv[], const char *optstring)
383 {
384 static int optchr = 1;
385 char *cp;
386
387 if (optchr == 1) {
388 if (optind >= argc) {
389 /* all arguments processed */
390 return EOF;
391 }
392
393 if (argv[optind][0] != '-' || argv[optind][1] == '\0') {
394 /* no option characters */
395 return EOF;
396 }
397 }
398
399 if (os_strcmp(argv[optind], "--") == 0) {
400 /* no more options */
401 optind++;
402 return EOF;
403 }
404
405 optopt = argv[optind][optchr];
406 cp = os_strchr(optstring, optopt);
407 if (cp == NULL || optopt == ':') {
408 if (argv[optind][++optchr] == '\0') {
409 optchr = 1;
410 optind++;
411 }
412 return '?';
413 }
414
415 if (cp[1] == ':') {
416 /* Argument required */
417 optchr = 1;
418 if (argv[optind][optchr + 1]) {
419 /* No space between option and argument */
420 optarg = &argv[optind++][optchr + 1];
421 } else if (++optind >= argc) {
422 /* option requires an argument */
423 return '?';
424 } else {
425 /* Argument in the next argv */
426 optarg = argv[optind++];
427 }
428 } else {
429 /* No argument */
430 if (argv[optind][++optchr] == '\0') {
431 optchr = 1;
432 optind++;
433 }
434 optarg = NULL;
435 }
436 return *cp;
437 }
438 #endif /* CONFIG_ANSI_C_EXTRA */
439
440
441 #ifdef CONFIG_NATIVE_WINDOWS
442 /**
443 * wpa_unicode2ascii_inplace - Convert unicode string into ASCII
444 * @str: Pointer to string to convert
445 *
446 * This function converts a unicode string to ASCII using the same
447 * buffer for output. If UNICODE is not set, the buffer is not
448 * modified.
449 */
wpa_unicode2ascii_inplace(TCHAR * str)450 void wpa_unicode2ascii_inplace(TCHAR *str)
451 {
452 #ifdef UNICODE
453 char *dst = (char *) str;
454 while (*str)
455 *dst++ = (char) *str++;
456 *dst = '\0';
457 #endif /* UNICODE */
458 }
459
460
wpa_strdup_tchar(const char * str)461 TCHAR * wpa_strdup_tchar(const char *str)
462 {
463 #ifdef UNICODE
464 TCHAR *buf;
465 buf = os_malloc((strlen(str) + 1) * sizeof(TCHAR));
466 if (buf == NULL)
467 return NULL;
468 wsprintf(buf, L"%S", str);
469 return buf;
470 #else /* UNICODE */
471 return os_strdup(str);
472 #endif /* UNICODE */
473 }
474 #endif /* CONFIG_NATIVE_WINDOWS */
475
476
printf_encode(char * txt,size_t maxlen,const u8 * data,size_t len)477 void printf_encode(char *txt, size_t maxlen, const u8 *data, size_t len)
478 {
479 char *end = txt + maxlen;
480 size_t i;
481
482 for (i = 0; i < len; i++) {
483 if (txt + 4 >= end)
484 break;
485
486 switch (data[i]) {
487 case '\"':
488 *txt++ = '\\';
489 *txt++ = '\"';
490 break;
491 case '\\':
492 *txt++ = '\\';
493 *txt++ = '\\';
494 break;
495 case '\033':
496 *txt++ = '\\';
497 *txt++ = 'e';
498 break;
499 case '\n':
500 *txt++ = '\\';
501 *txt++ = 'n';
502 break;
503 case '\r':
504 *txt++ = '\\';
505 *txt++ = 'r';
506 break;
507 case '\t':
508 *txt++ = '\\';
509 *txt++ = 't';
510 break;
511 default:
512 if (data[i] >= 32 && data[i] <= 126) {
513 *txt++ = data[i];
514 } else {
515 txt += os_snprintf(txt, end - txt, "\\x%02x",
516 data[i]);
517 }
518 break;
519 }
520 }
521
522 *txt = '\0';
523 }
524
525
printf_decode(u8 * buf,size_t maxlen,const char * str)526 size_t printf_decode(u8 *buf, size_t maxlen, const char *str)
527 {
528 const char *pos = str;
529 size_t len = 0;
530 int val;
531
532 while (*pos) {
533 if (len + 1 >= maxlen)
534 break;
535 switch (*pos) {
536 case '\\':
537 pos++;
538 switch (*pos) {
539 case '\\':
540 buf[len++] = '\\';
541 pos++;
542 break;
543 case '"':
544 buf[len++] = '"';
545 pos++;
546 break;
547 case 'n':
548 buf[len++] = '\n';
549 pos++;
550 break;
551 case 'r':
552 buf[len++] = '\r';
553 pos++;
554 break;
555 case 't':
556 buf[len++] = '\t';
557 pos++;
558 break;
559 case 'e':
560 buf[len++] = '\033';
561 pos++;
562 break;
563 case 'x':
564 pos++;
565 val = hex2byte(pos);
566 if (val < 0) {
567 val = hex2num(*pos);
568 if (val < 0)
569 break;
570 buf[len++] = val;
571 pos++;
572 } else {
573 buf[len++] = val;
574 pos += 2;
575 }
576 break;
577 case '0':
578 case '1':
579 case '2':
580 case '3':
581 case '4':
582 case '5':
583 case '6':
584 case '7':
585 val = *pos++ - '0';
586 if (*pos >= '0' && *pos <= '7')
587 val = val * 8 + (*pos++ - '0');
588 if (*pos >= '0' && *pos <= '7')
589 val = val * 8 + (*pos++ - '0');
590 buf[len++] = val;
591 break;
592 default:
593 break;
594 }
595 break;
596 default:
597 buf[len++] = *pos++;
598 break;
599 }
600 }
601 if (maxlen > len)
602 buf[len] = '\0';
603
604 return len;
605 }
606
607
608 /**
609 * wpa_ssid_txt - Convert SSID to a printable string
610 * @ssid: SSID (32-octet string)
611 * @ssid_len: Length of ssid in octets
612 * Returns: Pointer to a printable string
613 *
614 * This function can be used to convert SSIDs into printable form. In most
615 * cases, SSIDs do not use unprintable characters, but IEEE 802.11 standard
616 * does not limit the used character set, so anything could be used in an SSID.
617 *
618 * This function uses a static buffer, so only one call can be used at the
619 * time, i.e., this is not re-entrant and the returned buffer must be used
620 * before calling this again.
621 */
wpa_ssid_txt(const u8 * ssid,size_t ssid_len)622 const char * wpa_ssid_txt(const u8 *ssid, size_t ssid_len)
623 {
624 static char ssid_txt[SSID_MAX_LEN * 4 + 1];
625
626 if (ssid == NULL) {
627 ssid_txt[0] = '\0';
628 return ssid_txt;
629 }
630
631 printf_encode(ssid_txt, sizeof(ssid_txt), ssid, ssid_len);
632 return ssid_txt;
633 }
634
635
__hide_aliasing_typecast(void * foo)636 void * __hide_aliasing_typecast(void *foo)
637 {
638 return foo;
639 }
640
641
wpa_config_parse_string(const char * value,size_t * len)642 char * wpa_config_parse_string(const char *value, size_t *len)
643 {
644 if (*value == '"') {
645 const char *pos;
646 char *str;
647 value++;
648 pos = os_strrchr(value, '"');
649 if (pos == NULL || pos[1] != '\0')
650 return NULL;
651 *len = pos - value;
652 str = dup_binstr(value, *len);
653 if (str == NULL)
654 return NULL;
655 return str;
656 } else if (*value == 'P' && value[1] == '"') {
657 const char *pos;
658 char *tstr, *str;
659 size_t tlen;
660 value += 2;
661 pos = os_strrchr(value, '"');
662 if (pos == NULL || pos[1] != '\0')
663 return NULL;
664 tlen = pos - value;
665 tstr = dup_binstr(value, tlen);
666 if (tstr == NULL)
667 return NULL;
668
669 str = os_malloc(tlen + 1);
670 if (str == NULL) {
671 os_free(tstr);
672 return NULL;
673 }
674
675 *len = printf_decode((u8 *) str, tlen + 1, tstr);
676 os_free(tstr);
677
678 return str;
679 } else {
680 u8 *str;
681 size_t tlen, hlen = os_strlen(value);
682 if (hlen & 1)
683 return NULL;
684 tlen = hlen / 2;
685 str = os_malloc(tlen + 1);
686 if (str == NULL)
687 return NULL;
688 if (hexstr2bin(value, str, tlen)) {
689 os_free(str);
690 return NULL;
691 }
692 str[tlen] = '\0';
693 *len = tlen;
694 return (char *) str;
695 }
696 }
697
698
is_hex(const u8 * data,size_t len)699 int is_hex(const u8 *data, size_t len)
700 {
701 size_t i;
702
703 for (i = 0; i < len; i++) {
704 if (data[i] < 32 || data[i] >= 127)
705 return 1;
706 }
707 return 0;
708 }
709
710
has_ctrl_char(const u8 * data,size_t len)711 int has_ctrl_char(const u8 *data, size_t len)
712 {
713 size_t i;
714
715 for (i = 0; i < len; i++) {
716 if (data[i] < 32 || data[i] == 127)
717 return 1;
718 }
719 return 0;
720 }
721
722
has_newline(const char * str)723 int has_newline(const char *str)
724 {
725 while (*str) {
726 if (*str == '\n' || *str == '\r')
727 return 1;
728 str++;
729 }
730 return 0;
731 }
732
733
merge_byte_arrays(u8 * res,size_t res_len,const u8 * src1,size_t src1_len,const u8 * src2,size_t src2_len)734 size_t merge_byte_arrays(u8 *res, size_t res_len,
735 const u8 *src1, size_t src1_len,
736 const u8 *src2, size_t src2_len)
737 {
738 size_t len = 0;
739
740 os_memset(res, 0, res_len);
741
742 if (src1) {
743 if (src1_len >= res_len) {
744 os_memcpy(res, src1, res_len);
745 return res_len;
746 }
747
748 os_memcpy(res, src1, src1_len);
749 len += src1_len;
750 }
751
752 if (src2) {
753 if (len + src2_len >= res_len) {
754 os_memcpy(res + len, src2, res_len - len);
755 return res_len;
756 }
757
758 os_memcpy(res + len, src2, src2_len);
759 len += src2_len;
760 }
761
762 return len;
763 }
764
765
dup_binstr(const void * src,size_t len)766 char * dup_binstr(const void *src, size_t len)
767 {
768 char *res;
769
770 if (src == NULL)
771 return NULL;
772 res = os_malloc(len + 1);
773 if (res == NULL)
774 return NULL;
775 os_memcpy(res, src, len);
776 res[len] = '\0';
777
778 return res;
779 }
780
781
freq_range_list_parse(struct wpa_freq_range_list * res,const char * value)782 int freq_range_list_parse(struct wpa_freq_range_list *res, const char *value)
783 {
784 struct wpa_freq_range *freq = NULL, *n;
785 unsigned int count = 0;
786 const char *pos, *pos2, *pos3;
787
788 /*
789 * Comma separated list of frequency ranges.
790 * For example: 2412-2432,2462,5000-6000
791 */
792 pos = value;
793 while (pos && pos[0]) {
794 if (count == UINT_MAX) {
795 os_free(freq);
796 return -1;
797 }
798 n = os_realloc_array(freq, count + 1,
799 sizeof(struct wpa_freq_range));
800 if (n == NULL) {
801 os_free(freq);
802 return -1;
803 }
804 freq = n;
805 freq[count].min = atoi(pos);
806 pos2 = os_strchr(pos, '-');
807 pos3 = os_strchr(pos, ',');
808 if (pos2 && (!pos3 || pos2 < pos3)) {
809 pos2++;
810 freq[count].max = atoi(pos2);
811 } else
812 freq[count].max = freq[count].min;
813 pos = pos3;
814 if (pos)
815 pos++;
816 count++;
817 }
818
819 os_free(res->range);
820 res->range = freq;
821 res->num = count;
822
823 return 0;
824 }
825
826
freq_range_list_includes(const struct wpa_freq_range_list * list,unsigned int freq)827 int freq_range_list_includes(const struct wpa_freq_range_list *list,
828 unsigned int freq)
829 {
830 unsigned int i;
831
832 if (list == NULL)
833 return 0;
834
835 for (i = 0; i < list->num; i++) {
836 if (freq >= list->range[i].min && freq <= list->range[i].max)
837 return 1;
838 }
839
840 return 0;
841 }
842
843
freq_range_list_str(const struct wpa_freq_range_list * list)844 char * freq_range_list_str(const struct wpa_freq_range_list *list)
845 {
846 char *buf, *pos, *end;
847 size_t maxlen;
848 unsigned int i;
849 int res;
850
851 if (list->num == 0)
852 return NULL;
853
854 maxlen = list->num * 30;
855 buf = os_malloc(maxlen);
856 if (buf == NULL)
857 return NULL;
858 pos = buf;
859 end = buf + maxlen;
860
861 for (i = 0; i < list->num; i++) {
862 struct wpa_freq_range *range = &list->range[i];
863
864 if (range->min == range->max)
865 res = os_snprintf(pos, end - pos, "%s%u",
866 i == 0 ? "" : ",", range->min);
867 else
868 res = os_snprintf(pos, end - pos, "%s%u-%u",
869 i == 0 ? "" : ",",
870 range->min, range->max);
871 if (os_snprintf_error(end - pos, res)) {
872 os_free(buf);
873 return NULL;
874 }
875 pos += res;
876 }
877
878 return buf;
879 }
880
881
int_array_len(const int * a)882 size_t int_array_len(const int *a)
883 {
884 size_t i;
885
886 for (i = 0; a && a[i]; i++)
887 ;
888 return i;
889 }
890
891
int_array_concat(int ** res,const int * a)892 void int_array_concat(int **res, const int *a)
893 {
894 size_t reslen, alen, i, max_size;
895 int *n;
896
897 reslen = int_array_len(*res);
898 alen = int_array_len(a);
899 max_size = (size_t) -1;
900 if (alen >= max_size - reslen) {
901 /* This should not really happen, but if it did, something
902 * would overflow. Do not try to merge the arrays; instead, make
903 * this behave like memory allocation failure to avoid messing
904 * up memory. */
905 os_free(*res);
906 *res = NULL;
907 return;
908 }
909 n = os_realloc_array(*res, reslen + alen + 1, sizeof(int));
910 if (n == NULL) {
911 os_free(*res);
912 *res = NULL;
913 return;
914 }
915 for (i = 0; i <= alen; i++)
916 n[reslen + i] = a[i];
917 *res = n;
918 }
919
920
freq_cmp(const void * a,const void * b)921 static int freq_cmp(const void *a, const void *b)
922 {
923 int _a = *(int *) a;
924 int _b = *(int *) b;
925
926 if (_a == 0)
927 return 1;
928 if (_b == 0)
929 return -1;
930 return _a - _b;
931 }
932
933
int_array_sort_unique(int * a)934 void int_array_sort_unique(int *a)
935 {
936 size_t alen, i, j;
937
938 if (a == NULL)
939 return;
940
941 alen = int_array_len(a);
942 qsort(a, alen, sizeof(int), freq_cmp);
943
944 i = 0;
945 j = 1;
946 while (a[i] && a[j]) {
947 if (a[i] == a[j]) {
948 j++;
949 continue;
950 }
951 a[++i] = a[j++];
952 }
953 if (a[i])
954 i++;
955 a[i] = 0;
956 }
957
958
int_array_add_unique(int ** res,int a)959 void int_array_add_unique(int **res, int a)
960 {
961 size_t reslen, max_size;
962 int *n;
963
964 for (reslen = 0; *res && (*res)[reslen]; reslen++) {
965 if ((*res)[reslen] == a)
966 return; /* already in the list */
967 }
968
969 max_size = (size_t) -1;
970 if (reslen > max_size - 2) {
971 /* This should not really happen in practice, but if it did,
972 * something would overflow. Do not try to add the new value;
973 * instead, make this behave like memory allocation failure to
974 * avoid messing up memory. */
975 os_free(*res);
976 *res = NULL;
977 return;
978 }
979 n = os_realloc_array(*res, reslen + 2, sizeof(int));
980 if (n == NULL) {
981 os_free(*res);
982 *res = NULL;
983 return;
984 }
985
986 n[reslen] = a;
987 n[reslen + 1] = 0;
988
989 *res = n;
990 }
991
992
str_clear_free(char * str)993 void str_clear_free(char *str)
994 {
995 if (str) {
996 size_t len = os_strlen(str);
997 forced_memzero(str, len);
998 os_free(str);
999 }
1000 }
1001
1002
bin_clear_free(void * bin,size_t len)1003 void bin_clear_free(void *bin, size_t len)
1004 {
1005 if (bin) {
1006 forced_memzero(bin, len);
1007 os_free(bin);
1008 }
1009 }
1010
1011
random_mac_addr(u8 * addr)1012 int random_mac_addr(u8 *addr)
1013 {
1014 if (os_get_random(addr, ETH_ALEN) < 0)
1015 return -1;
1016 addr[0] &= 0xfe; /* unicast */
1017 addr[0] |= 0x02; /* locally administered */
1018 return 0;
1019 }
1020
1021
random_mac_addr_keep_oui(u8 * addr)1022 int random_mac_addr_keep_oui(u8 *addr)
1023 {
1024 if (os_get_random(addr + 3, 3) < 0)
1025 return -1;
1026 addr[0] &= 0xfe; /* unicast */
1027 addr[0] |= 0x02; /* locally administered */
1028 return 0;
1029 }
1030
1031
1032 /**
1033 * cstr_token - Get next token from const char string
1034 * @str: a constant string to tokenize
1035 * @delim: a string of delimiters
1036 * @last: a pointer to a character following the returned token
1037 * It has to be set to NULL for the first call and passed for any
1038 * further call.
1039 * Returns: a pointer to token position in str or NULL
1040 *
1041 * This function is similar to str_token, but it can be used with both
1042 * char and const char strings. Differences:
1043 * - The str buffer remains unmodified
1044 * - The returned token is not a NULL terminated string, but a token
1045 * position in str buffer. If a return value is not NULL a size
1046 * of the returned token could be calculated as (last - token).
1047 */
cstr_token(const char * str,const char * delim,const char ** last)1048 const char * cstr_token(const char *str, const char *delim, const char **last)
1049 {
1050 const char *end, *token = str;
1051
1052 if (!str || !delim || !last)
1053 return NULL;
1054
1055 if (*last)
1056 token = *last;
1057
1058 while (*token && os_strchr(delim, *token))
1059 token++;
1060
1061 if (!*token)
1062 return NULL;
1063
1064 end = token + 1;
1065
1066 while (*end && !os_strchr(delim, *end))
1067 end++;
1068
1069 *last = end;
1070 return token;
1071 }
1072
1073
1074 /**
1075 * str_token - Get next token from a string
1076 * @buf: String to tokenize. Note that the string might be modified.
1077 * @delim: String of delimiters
1078 * @context: Pointer to save our context. Should be initialized with
1079 * NULL on the first call, and passed for any further call.
1080 * Returns: The next token, NULL if there are no more valid tokens.
1081 */
str_token(char * str,const char * delim,char ** context)1082 char * str_token(char *str, const char *delim, char **context)
1083 {
1084 char *token = (char *) cstr_token(str, delim, (const char **) context);
1085
1086 if (token && **context)
1087 *(*context)++ = '\0';
1088
1089 return token;
1090 }
1091
1092
utf8_unescape(const char * inp,size_t in_size,char * outp,size_t out_size)1093 size_t utf8_unescape(const char *inp, size_t in_size,
1094 char *outp, size_t out_size)
1095 {
1096 size_t res_size = 0;
1097
1098 if (!inp || !outp)
1099 return 0;
1100
1101 if (!in_size)
1102 in_size = os_strlen(inp);
1103
1104 /* Advance past leading single quote */
1105 if (*inp == '\'' && in_size) {
1106 inp++;
1107 in_size--;
1108 }
1109
1110 while (in_size) {
1111 in_size--;
1112 if (res_size >= out_size)
1113 return 0;
1114
1115 switch (*inp) {
1116 case '\'':
1117 /* Terminate on bare single quote */
1118 *outp = '\0';
1119 return res_size;
1120
1121 case '\\':
1122 if (!in_size)
1123 return 0;
1124 in_size--;
1125 inp++;
1126 /* fall through */
1127
1128 default:
1129 *outp++ = *inp++;
1130 res_size++;
1131 }
1132 }
1133
1134 /* NUL terminate if space allows */
1135 if (res_size < out_size)
1136 *outp = '\0';
1137
1138 return res_size;
1139 }
1140
1141
utf8_escape(const char * inp,size_t in_size,char * outp,size_t out_size)1142 size_t utf8_escape(const char *inp, size_t in_size,
1143 char *outp, size_t out_size)
1144 {
1145 size_t res_size = 0;
1146
1147 if (!inp || !outp)
1148 return 0;
1149
1150 /* inp may or may not be NUL terminated, but must be if 0 size
1151 * is specified */
1152 if (!in_size)
1153 in_size = os_strlen(inp);
1154
1155 while (in_size) {
1156 in_size--;
1157 if (res_size++ >= out_size)
1158 return 0;
1159
1160 switch (*inp) {
1161 case '\\':
1162 case '\'':
1163 if (res_size++ >= out_size)
1164 return 0;
1165 *outp++ = '\\';
1166 /* fall through */
1167
1168 default:
1169 *outp++ = *inp++;
1170 break;
1171 }
1172 }
1173
1174 /* NUL terminate if space allows */
1175 if (res_size < out_size)
1176 *outp = '\0';
1177
1178 return res_size;
1179 }
1180
1181
is_ctrl_char(char c)1182 int is_ctrl_char(char c)
1183 {
1184 return c > 0 && c < 32;
1185 }
1186
1187
1188 /**
1189 * ssid_parse - Parse a string that contains SSID in hex or text format
1190 * @buf: Input NULL terminated string that contains the SSID
1191 * @ssid: Output SSID
1192 * Returns: 0 on success, -1 otherwise
1193 *
1194 * The SSID has to be enclosed in double quotes for the text format or space
1195 * or NULL terminated string of hex digits for the hex format. buf can include
1196 * additional arguments after the SSID.
1197 */
ssid_parse(const char * buf,struct wpa_ssid_value * ssid)1198 int ssid_parse(const char *buf, struct wpa_ssid_value *ssid)
1199 {
1200 char *tmp, *res, *end;
1201 size_t len;
1202
1203 ssid->ssid_len = 0;
1204
1205 tmp = os_strdup(buf);
1206 if (!tmp)
1207 return -1;
1208
1209 if (*tmp != '"') {
1210 end = os_strchr(tmp, ' ');
1211 if (end)
1212 *end = '\0';
1213 } else {
1214 end = os_strchr(tmp + 1, '"');
1215 if (!end) {
1216 os_free(tmp);
1217 return -1;
1218 }
1219
1220 end[1] = '\0';
1221 }
1222
1223 res = wpa_config_parse_string(tmp, &len);
1224 if (res && len <= SSID_MAX_LEN) {
1225 ssid->ssid_len = len;
1226 os_memcpy(ssid->ssid, res, len);
1227 }
1228
1229 os_free(tmp);
1230 os_free(res);
1231
1232 return ssid->ssid_len ? 0 : -1;
1233 }
1234
1235
str_starts(const char * str,const char * start)1236 int str_starts(const char *str, const char *start)
1237 {
1238 return os_strncmp(str, start, os_strlen(start)) == 0;
1239 }
1240
1241
1242 /**
1243 * rssi_to_rcpi - Convert RSSI to RCPI
1244 * @rssi: RSSI to convert
1245 * Returns: RCPI corresponding to the given RSSI value, or 255 if not available.
1246 *
1247 * It's possible to estimate RCPI based on RSSI in dBm. This calculation will
1248 * not reflect the correct value for high rates, but it's good enough for Action
1249 * frames which are transmitted with up to 24 Mbps rates.
1250 */
rssi_to_rcpi(int rssi)1251 u8 rssi_to_rcpi(int rssi)
1252 {
1253 if (!rssi)
1254 return 255; /* not available */
1255 if (rssi < -110)
1256 return 0;
1257 if (rssi > 0)
1258 return 220;
1259 return (rssi + 110) * 2;
1260 }
1261
1262
get_param(const char * cmd,const char * param)1263 char * get_param(const char *cmd, const char *param)
1264 {
1265 const char *pos, *end;
1266 char *val;
1267 size_t len;
1268
1269 pos = os_strstr(cmd, param);
1270 if (!pos)
1271 return NULL;
1272
1273 pos += os_strlen(param);
1274 end = os_strchr(pos, ' ');
1275 if (end)
1276 len = end - pos;
1277 else
1278 len = os_strlen(pos);
1279 val = os_malloc(len + 1);
1280 if (!val)
1281 return NULL;
1282 os_memcpy(val, pos, len);
1283 val[len] = '\0';
1284 return val;
1285 }
1286
1287
1288 /* Try to prevent most compilers from optimizing out clearing of memory that
1289 * becomes unaccessible after this function is called. This is mostly the case
1290 * for clearing local stack variables at the end of a function. This is not
1291 * exactly perfect, i.e., someone could come up with a compiler that figures out
1292 * the pointer is pointing to memset and then end up optimizing the call out, so
1293 * try go a bit further by storing the first octet (now zero) to make this even
1294 * a bit more difficult to optimize out. Once memset_s() is available, that
1295 * could be used here instead. */
1296 static void * (* const volatile memset_func)(void *, int, size_t) = memset;
1297 static u8 forced_memzero_val;
1298
forced_memzero(void * ptr,size_t len)1299 void forced_memzero(void *ptr, size_t len)
1300 {
1301 memset_func(ptr, 0, len);
1302 if (len)
1303 forced_memzero_val = ((u8 *) ptr)[0];
1304 }
1305