1 /*
2 * Copyright (c) 2018-2020 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "arm_compute/core/utils/helpers/tensor_transform.h"
25
26 #include "bit_ops.h"
27
28 namespace arm_compute
29 {
30 namespace helpers
31 {
32 namespace tensor_transform
33 {
calculate_stride_on_index(int index,Coordinates strides)34 int calculate_stride_on_index(int index, Coordinates strides)
35 {
36 return index >= static_cast<int>(strides.num_dimensions()) ? 1 : strides[index];
37 }
38
calculate_start_on_index(TensorShape input_shape,int index,Coordinates starts,Coordinates strides,int32_t begin_mask)39 int calculate_start_on_index(TensorShape input_shape, int index, Coordinates starts, Coordinates strides, int32_t begin_mask)
40 {
41 // Early exit
42 if(index >= static_cast<int>(starts.num_dimensions()))
43 {
44 return 0;
45 }
46
47 // Get stride
48 const int stride = calculate_stride_on_index(index, strides);
49
50 // Calculate start
51 int start = starts[index];
52
53 // Reset in case of begin mask present
54 if(arm_compute::helpers::bit_ops::is_bit_set(begin_mask, index))
55 {
56 start = stride > 0 ? std::numeric_limits<int>::lowest() : std::numeric_limits<int>::max();
57 }
58
59 // Account negative start points
60 const int dim_size = input_shape[index];
61 if(start < 0)
62 {
63 start += dim_size;
64 }
65
66 // Final clamp
67 start = utility::clamp(start, 0, dim_size - 1);
68
69 return start;
70 }
71
calculate_end_on_index(TensorShape input_shape,int index,int start_on_index,Coordinates ends,Coordinates strides,int32_t end_mask,int32_t shrink_axis_mask)72 int calculate_end_on_index(TensorShape input_shape, int index, int start_on_index,
73 Coordinates ends, Coordinates strides,
74 int32_t end_mask, int32_t shrink_axis_mask)
75 {
76 // Early exit
77 if(index >= static_cast<int>(ends.num_dimensions()))
78 {
79 return input_shape[index];
80 }
81
82 const int stride = calculate_stride_on_index(index, strides);
83 const bool shrink_axis = arm_compute::helpers::bit_ops::is_bit_set(shrink_axis_mask, index);
84
85 // Calculate start
86 int stop = ends[index];
87
88 // Shrink dimension
89 if(shrink_axis)
90 {
91 if(start_on_index == std::numeric_limits<int>::max())
92 {
93 stop = start_on_index;
94 }
95 else
96 {
97 stop = start_on_index + 1;
98 }
99 }
100
101 // Reset in case of begin mask present
102 if(arm_compute::helpers::bit_ops::is_bit_set(end_mask, index) && !shrink_axis)
103 {
104 stop = (stride > 0) ? std::numeric_limits<int>::max() : std::numeric_limits<int>::lowest();
105 }
106
107 // Account negative end points
108 const int dim_size = input_shape[index];
109 if(stop < 0)
110 {
111 stop += dim_size;
112 }
113
114 // Final clamp
115 stop = (stride > 0) ? utility::clamp(stop, 0, dim_size) : utility::clamp(stop, -1, dim_size - 1);
116
117 return stop;
118 }
119
calculate_strided_slice_coords(TensorShape input_shape,Coordinates starts,Coordinates ends,Coordinates strides,int32_t begin_mask,int32_t end_mask,int32_t shrink_axis_mask)120 std::tuple<Coordinates, Coordinates, Coordinates> calculate_strided_slice_coords(TensorShape input_shape,
121 Coordinates starts, Coordinates ends, Coordinates strides,
122 int32_t begin_mask, int32_t end_mask, int32_t shrink_axis_mask)
123 {
124 Coordinates starts_abs{};
125 Coordinates ends_abs{};
126 Coordinates final_strides{};
127
128 for(unsigned int i = 0; i < input_shape.num_dimensions(); ++i)
129 {
130 const int start_i = calculate_start_on_index(input_shape, i, starts, strides, begin_mask);
131 starts_abs.set(i, start_i);
132 ends_abs.set(i, calculate_end_on_index(input_shape, i, start_i, ends, strides, end_mask, shrink_axis_mask));
133 final_strides.set(i, calculate_stride_on_index(i, strides));
134 }
135
136 return std::make_tuple(starts_abs, ends_abs, final_strides);
137 }
138
compute_strided_slice_output_shape(TensorShape input_shape,Coordinates starts,Coordinates ends,Coordinates strides,int32_t begin_mask,int32_t end_mask,int32_t shrink_axis_mask,bool return_unshrinked)139 TensorShape compute_strided_slice_output_shape(TensorShape input_shape, Coordinates starts, Coordinates ends, Coordinates strides,
140 int32_t begin_mask, int32_t end_mask, int32_t shrink_axis_mask, bool return_unshrinked)
141 {
142 unsigned int index = 0;
143
144 TensorShape output_shape;
145 for(unsigned int i = 0; i < input_shape.num_dimensions(); ++i)
146 {
147 const int stride = calculate_stride_on_index(index, strides);
148 const int start = calculate_start_on_index(input_shape, i, starts, strides, begin_mask);
149 const int end = calculate_end_on_index(input_shape, i, start, ends, strides, end_mask, shrink_axis_mask);
150 const int range = end - start;
151
152 const bool is_shrink = arm_compute::helpers::bit_ops::is_bit_set(shrink_axis_mask, i);
153 if(return_unshrinked || !is_shrink)
154 {
155 if((range == 0) || // Zero range
156 (range < 0 && stride >= 0) || // Negative range with positive stride
157 (range > 0 && stride <= 0)) // Positive range with negative stride
158 {
159 output_shape.set(index, 0);
160 return output_shape;
161 }
162 else
163 {
164 int dim = range / stride + (range % stride != 0 ? 1 : 0);
165 output_shape.set(index++, dim);
166 }
167 }
168 }
169 return output_shape;
170 }
171
construct_slice_end_mask(Coordinates ends)172 int32_t construct_slice_end_mask(Coordinates ends)
173 {
174 // Create end mask
175 int32_t end_mask = 0;
176 for(unsigned int i = 0; i < ends.num_dimensions(); ++i)
177 {
178 if(ends[i] < 0)
179 {
180 end_mask |= 1 << i;
181 }
182 }
183
184 return end_mask;
185 }
186 } // namespace tensor_transform
187 } // namespace helpers
188 } // namespace arm_compute
189