1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved. 2 3 Licensed under the Apache License, Version 2.0 (the "License"); 4 you may not use this file except in compliance with the License. 5 You may obtain a copy of the License at 6 7 http://www.apache.org/licenses/LICENSE-2.0 8 9 Unless required by applicable law or agreed to in writing, software 10 distributed under the License is distributed on an "AS IS" BASIS, 11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 See the License for the specific language governing permissions and 13 limitations under the License. 14 ==============================================================================*/ 15 16 #ifndef TENSORFLOW_COMPILER_JIT_FLAGS_H_ 17 #define TENSORFLOW_COMPILER_JIT_FLAGS_H_ 18 19 #include <string> 20 #include <vector> 21 22 #include "absl/types/optional.h" 23 #include "tensorflow/core/platform/types.h" 24 #include "tensorflow/core/protobuf/config.pb.h" 25 #include "tensorflow/core/util/command_line_flags.h" 26 27 namespace tensorflow { 28 29 struct XlaAutoJitFlag { 30 // Control compilation of operators into XLA computations on CPU and GPU 31 // devices. 0 = use ConfigProto setting; -1 = off; 1 = on for things very 32 // likely to be improved; 2 = on for everything. 33 // 34 // If all non-CPU ops in the graph being optimized are placed on a single GPU 35 // and there is at least one node placed on that GPU then 36 // `optimization_level_single_gpu` applies. Otherwise 37 // `optimization_level_general` applies. 38 // 39 // Experimental. 40 int32 optimization_level_single_gpu; 41 int32 optimization_level_general; 42 }; 43 44 // Sets the xla_auto_jit_flag based on the given flag string. Supported syntax 45 // is: 46 // <number>: sets general and single_gpu setting to the provided number. 47 // single-gpu(<number>): sets the single_gpu setting to the provided number. 48 bool SetXlaAutoJitFlagFromFlagString(const string& value); 49 50 // Flags associated with the XLA bridge's mark_for_compilation_pass module. 51 struct MarkForCompilationPassFlags { 52 XlaAutoJitFlag xla_auto_jit_flag; 53 54 // Minimum number of operators in an XLA compilation. Ignored for operators 55 // placed on an XLA device or operators explicitly marked for compilation. 56 int32 tf_xla_min_cluster_size; 57 58 // Maximum number of operators in an XLA compilation. 59 int32 tf_xla_max_cluster_size; 60 61 // If non-empty, limit XLA clustering to the following TF operations. 62 string tf_xla_ops_to_cluster; 63 64 // If non-empty, remove following operations from XLA clustering excludelist. 65 string tf_xla_cluster_exclude_ops; 66 67 // Dump graphs during XLA compilation. 68 bool tf_xla_clustering_debug; 69 70 // Enables global JIT compilation for CPU via SessionOptions. 71 bool tf_xla_cpu_global_jit; 72 73 // "Compiler fuel" for clustering. Only this many ops will be marked as 74 // eligible for clustering. 75 int64_t tf_xla_clustering_fuel; 76 77 // If tf_xla_disable_deadness_safety_checks_for_debugging is set to true then 78 // we do not do deadness related safety checks. This is unsound in general, 79 // but can be used as a debugging aid. 80 bool tf_xla_disable_deadness_safety_checks_for_debugging; 81 82 // If tf_xla_disable_resource_variable_safety_checks_for_debugging is set to 83 // true then we do not do safety checks to preserve TensorFlow's resource 84 // variable concurrency semantics. This is unsound in general, but can be 85 // used as a debugging aid. 86 bool tf_xla_disable_resource_variable_safety_checks_for_debugging; 87 88 // If true names of clustered operations will be computed deterministically 89 // so that they remain stable from run to run of auto clusteing. 90 bool tf_xla_deterministic_cluster_names; 91 92 // If non-empty, JIT-compiled executables are saved to and loaded from the 93 // specified file system directory path. 94 std::string tf_xla_persistent_cache_directory; 95 96 // If true, entries loaded into the XLA compile cache will not have their 97 // signatures checked strictly. This should generally not be disabled except 98 // for debugging. Defaults to false. 99 bool tf_xla_disable_strict_signature_checks; 100 101 // Specifies the persistance cache prefix. Default is "xla_compile_cache" 102 string tf_xla_persistent_cache_prefix; 103 }; 104 105 // Flags associated with the XLA bridge's xla_device module. 106 struct XlaDeviceFlags { 107 // Switch the CPU device into "on-demand" mode, where instead of 108 // autoclustering ops are compiled one by one just-in-time. 109 // Enabling this mode by a legacy flag is a temporary mechanism. When this 110 // feature is battle-tested, we will switch this to be a session option. 111 bool tf_xla_compile_on_demand; 112 113 // Enables "XLA" devices if this flag is set. 114 bool tf_xla_enable_xla_devices; 115 }; 116 117 // Flags common to the _Xla* ops and their kernels. 118 struct XlaOpsCommonFlags { 119 // If true, _XlaCompile always refuses to compile the cluster, which means the 120 // XLA clusters always run in the TF executor. Defaults to false. 121 bool tf_xla_always_defer_compilation; 122 // If true, _XlaCompile compiles the cluster asynchronously with respect to 123 // the main execution. The fallback path is taken while compilation happens. 124 bool tf_xla_async_compilation; 125 }; 126 127 // Flags for the build_xla_ops pass. 128 struct BuildXlaOpsPassFlags { 129 // Enables lazy compilation for TF/XLA (only when auto-clustering) if true. 130 // Defaults to true. 131 bool tf_xla_enable_lazy_compilation; 132 133 // If true then insert Print nodes to print out values produced by XLA 134 // clusters. Useful for debugging. 135 bool tf_xla_print_cluster_outputs; 136 137 // If true, insert CheckNumerics nodes for every floating point typed input to 138 // an XLA cluster. 139 bool tf_xla_check_cluster_input_numerics; 140 141 // If true, insert CheckNumerics nodes for every floating point typed output 142 // from an XLA cluster. 143 bool tf_xla_check_cluster_output_numerics; 144 145 // Disables all constant folding. The primary use for this is for testing to 146 // guarantee that tests are run on XLA and not on TF's CPU implementation. 147 bool tf_xla_disable_constant_folding; 148 }; 149 150 // Flags for the IntroduceFloatingPointJitter pass. 151 struct IntroduceFloatingPointJitterPassFlags { 152 // The amount of jitter to introduce. This amount is added to each element in 153 // the tensors named in `tensor_names. 154 float jitter_amount; 155 156 // The Tensors to add the jitter to. The tensors are named in the TensorId 157 // format of <node name>:<output idx>. 158 std::vector<string> tensor_names; 159 }; 160 161 // Flags for common MLIR configurations. 162 struct MlirCommonFlags { 163 ConfigProto::Experimental::MlirBridgeRollout tf_mlir_enable_mlir_bridge; 164 165 bool tf_mlir_enable_merge_control_flow_pass; 166 bool tf_mlir_enable_convert_control_to_data_outputs_pass; 167 }; 168 169 // Flags for the JitRt pipeline -- see tf_jitrt_pipeline.h for details. 170 struct JitRtFlags { 171 bool always_specialize; 172 bool cost_driven_async_parallel_for; 173 174 // Enables tracking of the "live" JitRt queries to, on a crash, identify the 175 // "query of death". See TfJitRtQueryOfDeathLogger. 176 bool log_query_of_death; 177 178 bool vectorize; 179 180 // Enables crash reproducer for JitRt MLIR pass manager. 181 bool enable_crash_reproducer; 182 }; 183 184 // Return a pointer to the DumpGraphFlags struct; 185 // repeated calls return the same pointer. 186 // This should be called only after Flags::Parse() has returned. 187 188 // Getters for flags structs defined above. The first call to any of these 189 // parses TF_XLA_FLAGS for all of them. Those functions which return a pointer 190 // always return the same pointer. 191 MarkForCompilationPassFlags* GetMarkForCompilationPassFlags(); 192 BuildXlaOpsPassFlags* GetBuildXlaOpsPassFlags(); 193 XlaDeviceFlags* GetXlaDeviceFlags(); 194 const XlaOpsCommonFlags& GetXlaOpsCommonFlags(); 195 196 const IntroduceFloatingPointJitterPassFlags& 197 GetIntroduceFloatingPointJitterPassFlags(); 198 199 MlirCommonFlags* GetMlirCommonFlags(); 200 201 void ResetJitCompilerFlags(); 202 203 const JitRtFlags& GetJitRtFlags(); 204 205 // Returns the effective MLIR bridge rollout state based on the flags and the 206 // optional configuration. 207 ConfigProto::Experimental::MlirBridgeRollout GetMlirBridgeRolloutState( 208 std::optional<const ConfigProto> config_proto); 209 210 // Appends the flag definitions associated with 211 // MarkForCompilationPassFlags/DumpGraphFlags to `flag_list`. 212 // 213 // Has the side-effect of parsing TF_XLA_FLAGS if that hasn't happened yet. 214 void AppendMarkForCompilationPassFlags( 215 std::vector<tensorflow::Flag>* flag_list); 216 217 // Disables XLA compilation, forces it to return an error message instead. Can 218 // be used by a server to ensure that JIT compilation is opt-in. 219 void DisableXlaCompilation(); 220 221 // Returns `false` unless `DisableXlaCompilation` was called. 222 bool FailOnXlaCompilation(); 223 224 } // namespace tensorflow 225 226 #endif // TENSORFLOW_COMPILER_JIT_FLAGS_H_ 227