• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020, The Android Open Source Project
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 //! This crate implements the `IKeystoreOperation` AIDL interface, which represents
16 //! an ongoing key operation, as well as the operation database, which is mainly
17 //! required for tracking operations for the purpose of pruning.
18 //! This crate also implements an operation pruning strategy.
19 //!
20 //! Operations implement the API calls update, finish, and abort.
21 //! Additionally, an operation can be dropped and pruned. The former
22 //! happens if the client deletes a binder to the operation object.
23 //! An existing operation may get pruned when running out of operation
24 //! slots and a new operation takes precedence.
25 //!
26 //! ## Operation Lifecycle
27 //! An operation gets created when the client calls `IKeystoreSecurityLevel::create`.
28 //! It may receive zero or more update request. The lifecycle ends when:
29 //!  * `update` yields an error.
30 //!  * `finish` is called.
31 //!  * `abort` is called.
32 //!  * The operation gets dropped.
33 //!  * The operation gets pruned.
34 //! `Operation` has an `Outcome` member. While the outcome is `Outcome::Unknown`,
35 //! the operation is active and in a good state. Any of the above conditions may
36 //! change the outcome to one of the defined outcomes Success, Abort, Dropped,
37 //! Pruned, or ErrorCode. The latter is chosen in the case of an unexpected error, during
38 //! `update` or `finish`. `Success` is chosen iff `finish` completes without error.
39 //! Note that all operations get dropped eventually in the sense that they lose
40 //! their last reference and get destroyed. At that point, the fate of the operation
41 //! gets logged. However, an operation will transition to `Outcome::Dropped` iff
42 //! the operation was still active (`Outcome::Unknown`) at that time.
43 //!
44 //! ## Operation Dropping
45 //! To observe the dropping of an operation, we have to make sure that there
46 //! are no strong references to the IBinder representing this operation.
47 //! This would be simple enough if the operation object would need to be accessed
48 //! only by transactions. But to perform pruning, we have to retain a reference to the
49 //! original operation object.
50 //!
51 //! ## Operation Pruning
52 //! Pruning an operation happens during the creation of a new operation.
53 //! We have to iterate through the operation database to find a suitable
54 //! candidate. Then we abort and finalize this operation setting its outcome to
55 //! `Outcome::Pruned`. The corresponding KeyMint operation slot will have been freed
56 //! up at this point, but the `Operation` object lingers. When the client
57 //! attempts to use the operation again they will receive
58 //! ErrorCode::INVALID_OPERATION_HANDLE indicating that the operation no longer
59 //! exits. This should be the cue for the client to destroy its binder.
60 //! At that point the operation gets dropped.
61 //!
62 //! ## Architecture
63 //! The `IKeystoreOperation` trait is implemented by `KeystoreOperation`.
64 //! This acts as a proxy object holding a strong reference to actual operation
65 //! implementation `Operation`.
66 //!
67 //! ```
68 //! struct KeystoreOperation {
69 //!     operation: Mutex<Option<Arc<Operation>>>,
70 //! }
71 //! ```
72 //!
73 //! The `Mutex` serves two purposes. It provides interior mutability allowing
74 //! us to set the Option to None. We do this when the life cycle ends during
75 //! a call to `update`, `finish`, or `abort`. As a result most of the Operation
76 //! related resources are freed. The `KeystoreOperation` proxy object still
77 //! lingers until dropped by the client.
78 //! The second purpose is to protect operations against concurrent usage.
79 //! Failing to lock this mutex yields `ResponseCode::OPERATION_BUSY` and indicates
80 //! a programming error in the client.
81 //!
82 //! Note that the Mutex only protects the operation against concurrent client calls.
83 //! We still retain weak references to the operation in the operation database:
84 //!
85 //! ```
86 //! struct OperationDb {
87 //!     operations: Mutex<Vec<Weak<Operation>>>
88 //! }
89 //! ```
90 //!
91 //! This allows us to access the operations for the purpose of pruning.
92 //! We do this in three phases.
93 //!  1. We gather the pruning information. Besides non mutable information,
94 //!     we access `last_usage` which is protected by a mutex.
95 //!     We only lock this mutex for single statements at a time. During
96 //!     this phase we hold the operation db lock.
97 //!  2. We choose a pruning candidate by computing the pruning resistance
98 //!     of each operation. We do this entirely with information we now
99 //!     have on the stack without holding any locks.
100 //!     (See `OperationDb::prune` for more details on the pruning strategy.)
101 //!  3. During pruning we briefly lock the operation database again to get the
102 //!     the pruning candidate by index. We then attempt to abort the candidate.
103 //!     If the candidate was touched in the meantime or is currently fulfilling
104 //!     a request (i.e., the client calls update, finish, or abort),
105 //!     we go back to 1 and try again.
106 //!
107 //! So the outer Mutex in `KeystoreOperation::operation` only protects
108 //! operations against concurrent client calls but not against concurrent
109 //! pruning attempts. This is what the `Operation::outcome` mutex is used for.
110 //!
111 //! ```
112 //! struct Operation {
113 //!     ...
114 //!     outcome: Mutex<Outcome>,
115 //!     ...
116 //! }
117 //! ```
118 //!
119 //! Any request that can change the outcome, i.e., `update`, `finish`, `abort`,
120 //! `drop`, and `prune` has to take the outcome lock and check if the outcome
121 //! is still `Outcome::Unknown` before entering. `prune` is special in that
122 //! it will `try_lock`, because we don't want to be blocked on a potentially
123 //! long running request at another operation. If it fails to get the lock
124 //! the operation is either being touched, which changes its pruning resistance,
125 //! or it transitions to its end-of-life, which means we may get a free slot.
126 //! Either way, we have to revaluate the pruning scores.
127 
128 use crate::enforcements::AuthInfo;
129 use crate::error::{map_err_with, map_km_error, map_or_log_err, Error, ErrorCode, ResponseCode};
130 use crate::ks_err;
131 use crate::metrics_store::log_key_operation_event_stats;
132 use crate::utils::watchdog as wd;
133 use android_hardware_security_keymint::aidl::android::hardware::security::keymint::{
134     IKeyMintOperation::IKeyMintOperation, KeyParameter::KeyParameter, KeyPurpose::KeyPurpose,
135     SecurityLevel::SecurityLevel,
136 };
137 use android_hardware_security_keymint::binder::{BinderFeatures, Strong};
138 use android_system_keystore2::aidl::android::system::keystore2::{
139     IKeystoreOperation::BnKeystoreOperation, IKeystoreOperation::IKeystoreOperation,
140 };
141 use anyhow::{anyhow, Context, Result};
142 use std::{
143     collections::HashMap,
144     sync::{Arc, Mutex, MutexGuard, Weak},
145     time::Duration,
146     time::Instant,
147 };
148 
149 /// Operations have `Outcome::Unknown` as long as they are active. They transition
150 /// to one of the other variants exactly once. The distinction in outcome is mainly
151 /// for the statistic.
152 #[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
153 pub enum Outcome {
154     /// Operations have `Outcome::Unknown` as long as they are active.
155     Unknown,
156     /// Operation is successful.
157     Success,
158     /// Operation is aborted.
159     Abort,
160     /// Operation is dropped.
161     Dropped,
162     /// Operation is pruned.
163     Pruned,
164     /// Operation is failed with the error code.
165     ErrorCode(ErrorCode),
166 }
167 
168 /// Operation bundles all of the operation related resources and tracks the operation's
169 /// outcome.
170 #[derive(Debug)]
171 pub struct Operation {
172     // The index of this operation in the OperationDb.
173     index: usize,
174     km_op: Strong<dyn IKeyMintOperation>,
175     last_usage: Mutex<Instant>,
176     outcome: Mutex<Outcome>,
177     owner: u32, // Uid of the operation's owner.
178     auth_info: Mutex<AuthInfo>,
179     forced: bool,
180     logging_info: LoggingInfo,
181 }
182 
183 /// Keeps track of the information required for logging operations.
184 #[derive(Debug)]
185 pub struct LoggingInfo {
186     sec_level: SecurityLevel,
187     purpose: KeyPurpose,
188     op_params: Vec<KeyParameter>,
189     key_upgraded: bool,
190 }
191 
192 impl LoggingInfo {
193     /// Constructor
new( sec_level: SecurityLevel, purpose: KeyPurpose, op_params: Vec<KeyParameter>, key_upgraded: bool, ) -> LoggingInfo194     pub fn new(
195         sec_level: SecurityLevel,
196         purpose: KeyPurpose,
197         op_params: Vec<KeyParameter>,
198         key_upgraded: bool,
199     ) -> LoggingInfo {
200         Self { sec_level, purpose, op_params, key_upgraded }
201     }
202 }
203 
204 struct PruningInfo {
205     last_usage: Instant,
206     owner: u32,
207     index: usize,
208     forced: bool,
209 }
210 
211 // We don't except more than 32KiB of data in `update`, `updateAad`, and `finish`.
212 const MAX_RECEIVE_DATA: usize = 0x8000;
213 
214 impl Operation {
215     /// Constructor
new( index: usize, km_op: binder::Strong<dyn IKeyMintOperation>, owner: u32, auth_info: AuthInfo, forced: bool, logging_info: LoggingInfo, ) -> Self216     pub fn new(
217         index: usize,
218         km_op: binder::Strong<dyn IKeyMintOperation>,
219         owner: u32,
220         auth_info: AuthInfo,
221         forced: bool,
222         logging_info: LoggingInfo,
223     ) -> Self {
224         Self {
225             index,
226             km_op,
227             last_usage: Mutex::new(Instant::now()),
228             outcome: Mutex::new(Outcome::Unknown),
229             owner,
230             auth_info: Mutex::new(auth_info),
231             forced,
232             logging_info,
233         }
234     }
235 
get_pruning_info(&self) -> Option<PruningInfo>236     fn get_pruning_info(&self) -> Option<PruningInfo> {
237         // An operation may be finalized.
238         if let Ok(guard) = self.outcome.try_lock() {
239             match *guard {
240                 Outcome::Unknown => {}
241                 // If the outcome is any other than unknown, it has been finalized,
242                 // and we can no longer consider it for pruning.
243                 _ => return None,
244             }
245         }
246         // Else: If we could not grab the lock, this means that the operation is currently
247         //       being used and it may be transitioning to finalized or it was simply updated.
248         //       In any case it is fair game to consider it for pruning. If the operation
249         //       transitioned to a final state, we will notice when we attempt to prune, and
250         //       a subsequent attempt to create a new operation will succeed.
251         Some(PruningInfo {
252             // Expect safety:
253             // `last_usage` is locked only for primitive single line statements.
254             // There is no chance to panic and poison the mutex.
255             last_usage: *self.last_usage.lock().expect("In get_pruning_info."),
256             owner: self.owner,
257             index: self.index,
258             forced: self.forced,
259         })
260     }
261 
prune(&self, last_usage: Instant) -> Result<(), Error>262     fn prune(&self, last_usage: Instant) -> Result<(), Error> {
263         let mut locked_outcome = match self.outcome.try_lock() {
264             Ok(guard) => match *guard {
265                 Outcome::Unknown => guard,
266                 _ => return Err(Error::Km(ErrorCode::INVALID_OPERATION_HANDLE)),
267             },
268             Err(_) => return Err(Error::Rc(ResponseCode::OPERATION_BUSY)),
269         };
270 
271         // In `OperationDb::prune`, which is our caller, we first gather the pruning
272         // information including the last usage. When we select a candidate
273         // we call `prune` on that candidate passing the last_usage
274         // that we gathered earlier. If the actual last usage
275         // has changed since than, it means the operation was busy in the
276         // meantime, which means that we have to reevaluate the pruning score.
277         //
278         // Expect safety:
279         // `last_usage` is locked only for primitive single line statements.
280         // There is no chance to panic and poison the mutex.
281         if *self.last_usage.lock().expect("In Operation::prune()") != last_usage {
282             return Err(Error::Rc(ResponseCode::OPERATION_BUSY));
283         }
284         *locked_outcome = Outcome::Pruned;
285 
286         let _wp = wd::watch_millis("In Operation::prune: calling abort()", 500);
287 
288         // We abort the operation. If there was an error we log it but ignore it.
289         if let Err(e) = map_km_error(self.km_op.abort()) {
290             log::error!("In prune: KeyMint::abort failed with {:?}.", e);
291         }
292 
293         Ok(())
294     }
295 
296     // This function takes a Result from a KeyMint call and inspects it for errors.
297     // If an error was found it updates the given `locked_outcome` accordingly.
298     // It forwards the Result unmodified.
299     // The precondition to this call must be *locked_outcome == Outcome::Unknown.
300     // Ideally the `locked_outcome` came from a successful call to `check_active`
301     // see below.
update_outcome<T>( &self, locked_outcome: &mut Outcome, err: Result<T, Error>, ) -> Result<T, Error>302     fn update_outcome<T>(
303         &self,
304         locked_outcome: &mut Outcome,
305         err: Result<T, Error>,
306     ) -> Result<T, Error> {
307         match &err {
308             Err(Error::Km(e)) => *locked_outcome = Outcome::ErrorCode(*e),
309             Err(_) => *locked_outcome = Outcome::ErrorCode(ErrorCode::UNKNOWN_ERROR),
310             Ok(_) => (),
311         }
312         err
313     }
314 
315     // This function grabs the outcome lock and checks the current outcome state.
316     // If the outcome is still `Outcome::Unknown`, this function returns
317     // the locked outcome for further updates. In any other case it returns
318     // ErrorCode::INVALID_OPERATION_HANDLE indicating that this operation has
319     // been finalized and is no longer active.
check_active(&self) -> Result<MutexGuard<Outcome>>320     fn check_active(&self) -> Result<MutexGuard<Outcome>> {
321         let guard = self.outcome.lock().expect("In check_active.");
322         match *guard {
323             Outcome::Unknown => Ok(guard),
324             _ => Err(Error::Km(ErrorCode::INVALID_OPERATION_HANDLE))
325                 .context(ks_err!("Call on finalized operation with outcome: {:?}.", *guard)),
326         }
327     }
328 
329     // This function checks the amount of input data sent to us. We reject any buffer
330     // exceeding MAX_RECEIVE_DATA bytes as input to `update`, `update_aad`, and `finish`
331     // in order to force clients into using reasonable limits.
check_input_length(data: &[u8]) -> Result<()>332     fn check_input_length(data: &[u8]) -> Result<()> {
333         if data.len() > MAX_RECEIVE_DATA {
334             // This error code is unique, no context required here.
335             return Err(anyhow!(Error::Rc(ResponseCode::TOO_MUCH_DATA)));
336         }
337         Ok(())
338     }
339 
340     // Update the last usage to now.
touch(&self)341     fn touch(&self) {
342         // Expect safety:
343         // `last_usage` is locked only for primitive single line statements.
344         // There is no chance to panic and poison the mutex.
345         *self.last_usage.lock().expect("In touch.") = Instant::now();
346     }
347 
348     /// Implementation of `IKeystoreOperation::updateAad`.
349     /// Refer to the AIDL spec at system/hardware/interfaces/keystore2 for details.
update_aad(&self, aad_input: &[u8]) -> Result<()>350     fn update_aad(&self, aad_input: &[u8]) -> Result<()> {
351         let mut outcome = self.check_active().context("In update_aad")?;
352         Self::check_input_length(aad_input).context("In update_aad")?;
353         self.touch();
354 
355         let (hat, tst) = self
356             .auth_info
357             .lock()
358             .unwrap()
359             .before_update()
360             .context(ks_err!("Trying to get auth tokens."))?;
361 
362         self.update_outcome(&mut outcome, {
363             let _wp = wd::watch_millis("Operation::update_aad: calling updateAad", 500);
364             map_km_error(self.km_op.updateAad(aad_input, hat.as_ref(), tst.as_ref()))
365         })
366         .context(ks_err!("Update failed."))?;
367 
368         Ok(())
369     }
370 
371     /// Implementation of `IKeystoreOperation::update`.
372     /// Refer to the AIDL spec at system/hardware/interfaces/keystore2 for details.
update(&self, input: &[u8]) -> Result<Option<Vec<u8>>>373     fn update(&self, input: &[u8]) -> Result<Option<Vec<u8>>> {
374         let mut outcome = self.check_active().context("In update")?;
375         Self::check_input_length(input).context("In update")?;
376         self.touch();
377 
378         let (hat, tst) = self
379             .auth_info
380             .lock()
381             .unwrap()
382             .before_update()
383             .context(ks_err!("Trying to get auth tokens."))?;
384 
385         let output = self
386             .update_outcome(&mut outcome, {
387                 let _wp = wd::watch_millis("Operation::update: calling update", 500);
388                 map_km_error(self.km_op.update(input, hat.as_ref(), tst.as_ref()))
389             })
390             .context(ks_err!("Update failed."))?;
391 
392         if output.is_empty() {
393             Ok(None)
394         } else {
395             Ok(Some(output))
396         }
397     }
398 
399     /// Implementation of `IKeystoreOperation::finish`.
400     /// Refer to the AIDL spec at system/hardware/interfaces/keystore2 for details.
finish(&self, input: Option<&[u8]>, signature: Option<&[u8]>) -> Result<Option<Vec<u8>>>401     fn finish(&self, input: Option<&[u8]>, signature: Option<&[u8]>) -> Result<Option<Vec<u8>>> {
402         let mut outcome = self.check_active().context("In finish")?;
403         if let Some(input) = input {
404             Self::check_input_length(input).context("In finish")?;
405         }
406         self.touch();
407 
408         let (hat, tst, confirmation_token) = self
409             .auth_info
410             .lock()
411             .unwrap()
412             .before_finish()
413             .context(ks_err!("Trying to get auth tokens."))?;
414 
415         let output = self
416             .update_outcome(&mut outcome, {
417                 let _wp = wd::watch_millis("Operation::finish: calling finish", 500);
418                 map_km_error(self.km_op.finish(
419                     input,
420                     signature,
421                     hat.as_ref(),
422                     tst.as_ref(),
423                     confirmation_token.as_deref(),
424                 ))
425             })
426             .context(ks_err!("Finish failed."))?;
427 
428         self.auth_info.lock().unwrap().after_finish().context("In finish.")?;
429 
430         // At this point the operation concluded successfully.
431         *outcome = Outcome::Success;
432 
433         if output.is_empty() {
434             Ok(None)
435         } else {
436             Ok(Some(output))
437         }
438     }
439 
440     /// Aborts the operation if it is active. IFF the operation is aborted the outcome is
441     /// set to `outcome`. `outcome` must reflect the reason for the abort. Since the operation
442     /// gets aborted `outcome` must not be `Operation::Success` or `Operation::Unknown`.
abort(&self, outcome: Outcome) -> Result<()>443     fn abort(&self, outcome: Outcome) -> Result<()> {
444         let mut locked_outcome = self.check_active().context("In abort")?;
445         *locked_outcome = outcome;
446 
447         {
448             let _wp = wd::watch_millis("Operation::abort: calling abort", 500);
449             map_km_error(self.km_op.abort()).context(ks_err!("KeyMint::abort failed."))
450         }
451     }
452 }
453 
454 impl Drop for Operation {
drop(&mut self)455     fn drop(&mut self) {
456         let guard = self.outcome.lock().expect("In drop.");
457         log_key_operation_event_stats(
458             self.logging_info.sec_level,
459             self.logging_info.purpose,
460             &(self.logging_info.op_params),
461             &guard,
462             self.logging_info.key_upgraded,
463         );
464         if let Outcome::Unknown = *guard {
465             drop(guard);
466             // If the operation was still active we call abort, setting
467             // the outcome to `Outcome::Dropped`
468             if let Err(e) = self.abort(Outcome::Dropped) {
469                 log::error!("While dropping Operation: abort failed:\n    {:?}", e);
470             }
471         }
472     }
473 }
474 
475 /// The OperationDb holds weak references to all ongoing operations.
476 /// Its main purpose is to facilitate operation pruning.
477 #[derive(Debug, Default)]
478 pub struct OperationDb {
479     // TODO replace Vec with WeakTable when the weak_table crate becomes
480     // available.
481     operations: Mutex<Vec<Weak<Operation>>>,
482 }
483 
484 impl OperationDb {
485     /// Creates a new OperationDb.
new() -> Self486     pub fn new() -> Self {
487         Self { operations: Mutex::new(Vec::new()) }
488     }
489 
490     /// Creates a new operation.
491     /// This function takes a KeyMint operation and an associated
492     /// owner uid and returns a new Operation wrapped in a `std::sync::Arc`.
create_operation( &self, km_op: binder::Strong<dyn IKeyMintOperation>, owner: u32, auth_info: AuthInfo, forced: bool, logging_info: LoggingInfo, ) -> Arc<Operation>493     pub fn create_operation(
494         &self,
495         km_op: binder::Strong<dyn IKeyMintOperation>,
496         owner: u32,
497         auth_info: AuthInfo,
498         forced: bool,
499         logging_info: LoggingInfo,
500     ) -> Arc<Operation> {
501         // We use unwrap because we don't allow code that can panic while locked.
502         let mut operations = self.operations.lock().expect("In create_operation.");
503 
504         let mut index: usize = 0;
505         // First we iterate through the operation slots to try and find an unused
506         // slot. If we don't find one, we append the new entry instead.
507         match (*operations).iter_mut().find(|s| {
508             index += 1;
509             s.upgrade().is_none()
510         }) {
511             Some(free_slot) => {
512                 let new_op = Arc::new(Operation::new(
513                     index - 1,
514                     km_op,
515                     owner,
516                     auth_info,
517                     forced,
518                     logging_info,
519                 ));
520                 *free_slot = Arc::downgrade(&new_op);
521                 new_op
522             }
523             None => {
524                 let new_op = Arc::new(Operation::new(
525                     operations.len(),
526                     km_op,
527                     owner,
528                     auth_info,
529                     forced,
530                     logging_info,
531                 ));
532                 operations.push(Arc::downgrade(&new_op));
533                 new_op
534             }
535         }
536     }
537 
get(&self, index: usize) -> Option<Arc<Operation>>538     fn get(&self, index: usize) -> Option<Arc<Operation>> {
539         self.operations.lock().expect("In OperationDb::get.").get(index).and_then(|op| op.upgrade())
540     }
541 
542     /// Attempts to prune an operation.
543     ///
544     /// This function is used during operation creation, i.e., by
545     /// `KeystoreSecurityLevel::create_operation`, to try and free up an operation slot
546     /// if it got `ErrorCode::TOO_MANY_OPERATIONS` from the KeyMint backend. It is not
547     /// guaranteed that an operation slot is available after this call successfully
548     /// returned for various reasons. E.g., another thread may have snatched up the newly
549     /// available slot. Callers may have to call prune multiple times before they get a
550     /// free operation slot. Prune may also return `Err(Error::Rc(ResponseCode::BACKEND_BUSY))`
551     /// which indicates that no prunable operation was found.
552     ///
553     /// To find a suitable candidate we compute the malus for the caller and each existing
554     /// operation. The malus is the inverse of the pruning power (caller) or pruning
555     /// resistance (existing operation).
556     ///
557     /// The malus is based on the number of sibling operations and age. Sibling
558     /// operations are operations that have the same owner (UID).
559     ///
560     /// Every operation, existing or new, starts with a malus of 1. Every sibling
561     /// increases the malus by one. The age is the time since an operation was last touched.
562     /// It increases the malus by log6(<age in seconds> + 1) rounded down to the next
563     /// integer. So the malus increases stepwise after 5s, 35s, 215s, ...
564     /// Of two operations with the same malus the least recently used one is considered
565     /// weaker.
566     ///
567     /// For the caller to be able to prune an operation it must find an operation
568     /// with a malus higher than its own.
569     ///
570     /// The malus can be expressed as
571     /// ```
572     /// malus = 1 + no_of_siblings + floor(log6(age_in_seconds + 1))
573     /// ```
574     /// where the constant `1` accounts for the operation under consideration.
575     /// In reality we compute it as
576     /// ```
577     /// caller_malus = 1 + running_siblings
578     /// ```
579     /// because the new operation has no age and is not included in the `running_siblings`,
580     /// and
581     /// ```
582     /// running_malus = running_siblings + floor(log6(age_in_seconds + 1))
583     /// ```
584     /// because a running operation is included in the `running_siblings` and it has
585     /// an age.
586     ///
587     /// ## Example
588     /// A caller with no running operations has a malus of 1. Young (age < 5s) operations
589     /// also with no siblings have a malus of one and cannot be pruned by the caller.
590     /// We have to find an operation that has at least one sibling or is older than 5s.
591     ///
592     /// A caller with one running operation has a malus of 2. Now even young siblings
593     /// or single child aging (5s <= age < 35s) operations are off limit. An aging
594     /// sibling of two, however, would have a malus of 3 and would be fair game.
595     ///
596     /// ## Rationale
597     /// Due to the limitation of KeyMint operation slots, we cannot get around pruning or
598     /// a single app could easily DoS KeyMint.
599     /// Keystore 1.0 used to always prune the least recently used operation. This at least
600     /// guaranteed that new operations can always be started. With the increased usage
601     /// of Keystore we saw increased pruning activity which can lead to a livelock
602     /// situation in the worst case.
603     ///
604     /// With the new pruning strategy we want to provide well behaved clients with
605     /// progress assurances while punishing DoS attempts. As a result of this
606     /// strategy we can be in the situation where no operation can be pruned and the
607     /// creation of a new operation fails. This allows single child operations which
608     /// are frequently updated to complete, thereby breaking up livelock situations
609     /// and facilitating system wide progress.
610     ///
611     /// ## Update
612     /// We also allow callers to cannibalize their own sibling operations if no other
613     /// slot can be found. In this case the least recently used sibling is pruned.
prune(&self, caller: u32, forced: bool) -> Result<(), Error>614     pub fn prune(&self, caller: u32, forced: bool) -> Result<(), Error> {
615         loop {
616             // Maps the uid of the owner to the number of operations that owner has
617             // (running_siblings). More operations per owner lowers the pruning
618             // resistance of the operations of that owner. Whereas the number of
619             // ongoing operations of the caller lowers the pruning power of the caller.
620             let mut owners: HashMap<u32, u64> = HashMap::new();
621             let mut pruning_info: Vec<PruningInfo> = Vec::new();
622 
623             let now = Instant::now();
624             self.operations
625                 .lock()
626                 .expect("In OperationDb::prune: Trying to lock self.operations.")
627                 .iter()
628                 .for_each(|op| {
629                     if let Some(op) = op.upgrade() {
630                         if let Some(p_info) = op.get_pruning_info() {
631                             let owner = p_info.owner;
632                             pruning_info.push(p_info);
633                             // Count operations per owner.
634                             *owners.entry(owner).or_insert(0) += 1;
635                         }
636                     }
637                 });
638 
639             // If the operation is forced, the caller has a malus of 0.
640             let caller_malus = if forced { 0 } else { 1u64 + *owners.entry(caller).or_default() };
641 
642             // We iterate through all operations computing the malus and finding
643             // the candidate with the highest malus which must also be higher
644             // than the caller_malus.
645             struct CandidateInfo {
646                 index: usize,
647                 malus: u64,
648                 last_usage: Instant,
649                 age: Duration,
650             }
651             let mut oldest_caller_op: Option<CandidateInfo> = None;
652             let candidate = pruning_info.iter().fold(
653                 None,
654                 |acc: Option<CandidateInfo>, &PruningInfo { last_usage, owner, index, forced }| {
655                     // Compute the age of the current operation.
656                     let age = now
657                         .checked_duration_since(last_usage)
658                         .unwrap_or_else(|| Duration::new(0, 0));
659 
660                     // Find the least recently used sibling as an alternative pruning candidate.
661                     if owner == caller {
662                         if let Some(CandidateInfo { age: a, .. }) = oldest_caller_op {
663                             if age > a {
664                                 oldest_caller_op =
665                                     Some(CandidateInfo { index, malus: 0, last_usage, age });
666                             }
667                         } else {
668                             oldest_caller_op =
669                                 Some(CandidateInfo { index, malus: 0, last_usage, age });
670                         }
671                     }
672 
673                     // Compute the malus of the current operation.
674                     let malus = if forced {
675                         // Forced operations have a malus of 0. And cannot even be pruned
676                         // by other forced operations.
677                         0
678                     } else {
679                         // Expect safety: Every owner in pruning_info was counted in
680                         // the owners map. So this unwrap cannot panic.
681                         *owners.get(&owner).expect(
682                             "This is odd. We should have counted every owner in pruning_info.",
683                         ) + ((age.as_secs() + 1) as f64).log(6.0).floor() as u64
684                     };
685 
686                     // Now check if the current operation is a viable/better candidate
687                     // the one currently stored in the accumulator.
688                     match acc {
689                         // First we have to find any operation that is prunable by the caller.
690                         None => {
691                             if caller_malus < malus {
692                                 Some(CandidateInfo { index, malus, last_usage, age })
693                             } else {
694                                 None
695                             }
696                         }
697                         // If we have found one we look for the operation with the worst score.
698                         // If there is a tie, the older operation is considered weaker.
699                         Some(CandidateInfo { index: i, malus: m, last_usage: l, age: a }) => {
700                             if malus > m || (malus == m && age > a) {
701                                 Some(CandidateInfo { index, malus, last_usage, age })
702                             } else {
703                                 Some(CandidateInfo { index: i, malus: m, last_usage: l, age: a })
704                             }
705                         }
706                     }
707                 },
708             );
709 
710             // If we did not find a suitable candidate we may cannibalize our oldest sibling.
711             let candidate = candidate.or(oldest_caller_op);
712 
713             match candidate {
714                 Some(CandidateInfo { index, malus: _, last_usage, age: _ }) => {
715                     match self.get(index) {
716                         Some(op) => {
717                             match op.prune(last_usage) {
718                                 // We successfully freed up a slot.
719                                 Ok(()) => break Ok(()),
720                                 // This means the operation we tried to prune was on its way
721                                 // out. It also means that the slot it had occupied was freed up.
722                                 Err(Error::Km(ErrorCode::INVALID_OPERATION_HANDLE)) => break Ok(()),
723                                 // This means the operation we tried to prune was currently
724                                 // servicing a request. There are two options.
725                                 // * Assume that it was touched, which means that its
726                                 //   pruning resistance increased. In that case we have
727                                 //   to start over and find another candidate.
728                                 // * Assume that the operation is transitioning to end-of-life.
729                                 //   which means that we got a free slot for free.
730                                 // If we assume the first but the second is true, we prune
731                                 // a good operation without need (aggressive approach).
732                                 // If we assume the second but the first is true, our
733                                 // caller will attempt to create a new KeyMint operation,
734                                 // fail with `ErrorCode::TOO_MANY_OPERATIONS`, and call
735                                 // us again (conservative approach).
736                                 Err(Error::Rc(ResponseCode::OPERATION_BUSY)) => {
737                                     // We choose the conservative approach, because
738                                     // every needlessly pruned operation can impact
739                                     // the user experience.
740                                     // To switch to the aggressive approach replace
741                                     // the following line with `continue`.
742                                     break Ok(());
743                                 }
744 
745                                 // The candidate may have been touched so the score
746                                 // has changed since our evaluation.
747                                 _ => continue,
748                             }
749                         }
750                         // This index does not exist any more. The operation
751                         // in this slot was dropped. Good news, a slot
752                         // has freed up.
753                         None => break Ok(()),
754                     }
755                 }
756                 // We did not get a pruning candidate.
757                 None => break Err(Error::Rc(ResponseCode::BACKEND_BUSY)),
758             }
759         }
760     }
761 }
762 
763 /// Implementation of IKeystoreOperation.
764 pub struct KeystoreOperation {
765     operation: Mutex<Option<Arc<Operation>>>,
766 }
767 
768 impl KeystoreOperation {
769     /// Creates a new operation instance wrapped in a
770     /// BnKeystoreOperation proxy object. It also enables
771     /// `BinderFeatures::set_requesting_sid` on the new interface, because
772     /// we need it for checking Keystore permissions.
new_native_binder(operation: Arc<Operation>) -> binder::Strong<dyn IKeystoreOperation>773     pub fn new_native_binder(operation: Arc<Operation>) -> binder::Strong<dyn IKeystoreOperation> {
774         BnKeystoreOperation::new_binder(
775             Self { operation: Mutex::new(Some(operation)) },
776             BinderFeatures { set_requesting_sid: true, ..BinderFeatures::default() },
777         )
778     }
779 
780     /// Grabs the outer operation mutex and calls `f` on the locked operation.
781     /// The function also deletes the operation if it returns with an error or if
782     /// `delete_op` is true.
with_locked_operation<T, F>(&self, f: F, delete_op: bool) -> Result<T> where for<'a> F: FnOnce(&'a Operation) -> Result<T>,783     fn with_locked_operation<T, F>(&self, f: F, delete_op: bool) -> Result<T>
784     where
785         for<'a> F: FnOnce(&'a Operation) -> Result<T>,
786     {
787         let mut delete_op: bool = delete_op;
788         match self.operation.try_lock() {
789             Ok(mut mutex_guard) => {
790                 let result = match &*mutex_guard {
791                     Some(op) => {
792                         let result = f(op);
793                         // Any error here means we can discard the operation.
794                         if result.is_err() {
795                             delete_op = true;
796                         }
797                         result
798                     }
799                     None => Err(Error::Km(ErrorCode::INVALID_OPERATION_HANDLE))
800                         .context(ks_err!("KeystoreOperation::with_locked_operation")),
801                 };
802 
803                 if delete_op {
804                     // We give up our reference to the Operation, thereby freeing up our
805                     // internal resources and ending the wrapped KeyMint operation.
806                     // This KeystoreOperation object will still be owned by an SpIBinder
807                     // until the client drops its remote reference.
808                     *mutex_guard = None;
809                 }
810                 result
811             }
812             Err(_) => Err(Error::Rc(ResponseCode::OPERATION_BUSY))
813                 .context(ks_err!("KeystoreOperation::with_locked_operation")),
814         }
815     }
816 }
817 
818 impl binder::Interface for KeystoreOperation {}
819 
820 impl IKeystoreOperation for KeystoreOperation {
updateAad(&self, aad_input: &[u8]) -> binder::Result<()>821     fn updateAad(&self, aad_input: &[u8]) -> binder::Result<()> {
822         let _wp = wd::watch_millis("IKeystoreOperation::updateAad", 500);
823         map_or_log_err(
824             self.with_locked_operation(
825                 |op| op.update_aad(aad_input).context(ks_err!("KeystoreOperation::updateAad")),
826                 false,
827             ),
828             Ok,
829         )
830     }
831 
update(&self, input: &[u8]) -> binder::Result<Option<Vec<u8>>>832     fn update(&self, input: &[u8]) -> binder::Result<Option<Vec<u8>>> {
833         let _wp = wd::watch_millis("IKeystoreOperation::update", 500);
834         map_or_log_err(
835             self.with_locked_operation(
836                 |op| op.update(input).context(ks_err!("KeystoreOperation::update")),
837                 false,
838             ),
839             Ok,
840         )
841     }
finish( &self, input: Option<&[u8]>, signature: Option<&[u8]>, ) -> binder::Result<Option<Vec<u8>>>842     fn finish(
843         &self,
844         input: Option<&[u8]>,
845         signature: Option<&[u8]>,
846     ) -> binder::Result<Option<Vec<u8>>> {
847         let _wp = wd::watch_millis("IKeystoreOperation::finish", 500);
848         map_or_log_err(
849             self.with_locked_operation(
850                 |op| op.finish(input, signature).context(ks_err!("KeystoreOperation::finish")),
851                 true,
852             ),
853             Ok,
854         )
855     }
856 
abort(&self) -> binder::Result<()>857     fn abort(&self) -> binder::Result<()> {
858         let _wp = wd::watch_millis("IKeystoreOperation::abort", 500);
859         map_err_with(
860             self.with_locked_operation(
861                 |op| op.abort(Outcome::Abort).context(ks_err!("KeystoreOperation::abort")),
862                 true,
863             ),
864             |e| {
865                 match e.root_cause().downcast_ref::<Error>() {
866                     // Calling abort on expired operations is something very common.
867                     // There is no reason to clutter the log with it. It is never the cause
868                     // for a true problem.
869                     Some(Error::Km(ErrorCode::INVALID_OPERATION_HANDLE)) => {}
870                     _ => log::error!("{:?}", e),
871                 };
872                 e
873             },
874             Ok,
875         )
876     }
877 }
878