1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Hexagon uses to lower LLVM code
10 // into a selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "HexagonISelLowering.h"
15 #include "Hexagon.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "HexagonTargetMachine.h"
20 #include "HexagonTargetObjectFile.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/TargetCallingConv.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/IntrinsicsHexagon.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CodeGen.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstddef>
60 #include <cstdint>
61 #include <limits>
62 #include <utility>
63
64 using namespace llvm;
65
66 #define DEBUG_TYPE "hexagon-lowering"
67
68 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
69 cl::init(true), cl::Hidden,
70 cl::desc("Control jump table emission on Hexagon target"));
71
72 static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
73 cl::Hidden, cl::ZeroOrMore, cl::init(false),
74 cl::desc("Enable Hexagon SDNode scheduling"));
75
76 static cl::opt<bool> EnableFastMath("ffast-math",
77 cl::Hidden, cl::ZeroOrMore, cl::init(false),
78 cl::desc("Enable Fast Math processing"));
79
80 static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
81 cl::Hidden, cl::ZeroOrMore, cl::init(5),
82 cl::desc("Set minimum jump tables"));
83
84 static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
85 cl::Hidden, cl::ZeroOrMore, cl::init(6),
86 cl::desc("Max #stores to inline memcpy"));
87
88 static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
89 cl::Hidden, cl::ZeroOrMore, cl::init(4),
90 cl::desc("Max #stores to inline memcpy"));
91
92 static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
93 cl::Hidden, cl::ZeroOrMore, cl::init(6),
94 cl::desc("Max #stores to inline memmove"));
95
96 static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
97 cl::Hidden, cl::ZeroOrMore, cl::init(4),
98 cl::desc("Max #stores to inline memmove"));
99
100 static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
101 cl::Hidden, cl::ZeroOrMore, cl::init(8),
102 cl::desc("Max #stores to inline memset"));
103
104 static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
105 cl::Hidden, cl::ZeroOrMore, cl::init(4),
106 cl::desc("Max #stores to inline memset"));
107
108 static cl::opt<bool> AlignLoads("hexagon-align-loads",
109 cl::Hidden, cl::init(false),
110 cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
111
112
113 namespace {
114
115 class HexagonCCState : public CCState {
116 unsigned NumNamedVarArgParams = 0;
117
118 public:
HexagonCCState(CallingConv::ID CC,bool IsVarArg,MachineFunction & MF,SmallVectorImpl<CCValAssign> & locs,LLVMContext & C,unsigned NumNamedArgs)119 HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
120 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
121 unsigned NumNamedArgs)
122 : CCState(CC, IsVarArg, MF, locs, C),
123 NumNamedVarArgParams(NumNamedArgs) {}
getNumNamedVarArgParams() const124 unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
125 };
126
127 } // end anonymous namespace
128
129
130 // Implement calling convention for Hexagon.
131
CC_SkipOdd(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)132 static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
133 CCValAssign::LocInfo &LocInfo,
134 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
135 static const MCPhysReg ArgRegs[] = {
136 Hexagon::R0, Hexagon::R1, Hexagon::R2,
137 Hexagon::R3, Hexagon::R4, Hexagon::R5
138 };
139 const unsigned NumArgRegs = array_lengthof(ArgRegs);
140 unsigned RegNum = State.getFirstUnallocated(ArgRegs);
141
142 // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
143 if (RegNum != NumArgRegs && RegNum % 2 == 1)
144 State.AllocateReg(ArgRegs[RegNum]);
145
146 // Always return false here, as this function only makes sure that the first
147 // unallocated register has an even register number and does not actually
148 // allocate a register for the current argument.
149 return false;
150 }
151
152 #include "HexagonGenCallingConv.inc"
153
154
155 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const156 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
157 const {
158 return SDValue();
159 }
160
161 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
162 /// by "Src" to address "Dst" of size "Size". Alignment information is
163 /// specified by the specific parameter attribute. The copy will be passed as
164 /// a byval function parameter. Sometimes what we are copying is the end of a
165 /// larger object, the part that does not fit in registers.
CreateCopyOfByValArgument(SDValue Src,SDValue Dst,SDValue Chain,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & dl)166 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
167 SDValue Chain, ISD::ArgFlagsTy Flags,
168 SelectionDAG &DAG, const SDLoc &dl) {
169 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
170 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
171 /*isVolatile=*/false, /*AlwaysInline=*/false,
172 /*isTailCall=*/false,
173 MachinePointerInfo(), MachinePointerInfo());
174 }
175
176 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const177 HexagonTargetLowering::CanLowerReturn(
178 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
179 const SmallVectorImpl<ISD::OutputArg> &Outs,
180 LLVMContext &Context) const {
181 SmallVector<CCValAssign, 16> RVLocs;
182 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
183
184 if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
185 return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
186 return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
187 }
188
189 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
190 // passed by value, the function prototype is modified to return void and
191 // the value is stored in memory pointed by a pointer passed by caller.
192 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const193 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
194 bool IsVarArg,
195 const SmallVectorImpl<ISD::OutputArg> &Outs,
196 const SmallVectorImpl<SDValue> &OutVals,
197 const SDLoc &dl, SelectionDAG &DAG) const {
198 // CCValAssign - represent the assignment of the return value to locations.
199 SmallVector<CCValAssign, 16> RVLocs;
200
201 // CCState - Info about the registers and stack slot.
202 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
203 *DAG.getContext());
204
205 // Analyze return values of ISD::RET
206 if (Subtarget.useHVXOps())
207 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
208 else
209 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
210
211 SDValue Flag;
212 SmallVector<SDValue, 4> RetOps(1, Chain);
213
214 // Copy the result values into the output registers.
215 for (unsigned i = 0; i != RVLocs.size(); ++i) {
216 CCValAssign &VA = RVLocs[i];
217
218 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
219
220 // Guarantee that all emitted copies are stuck together with flags.
221 Flag = Chain.getValue(1);
222 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
223 }
224
225 RetOps[0] = Chain; // Update chain.
226
227 // Add the flag if we have it.
228 if (Flag.getNode())
229 RetOps.push_back(Flag);
230
231 return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
232 }
233
mayBeEmittedAsTailCall(const CallInst * CI) const234 bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
235 // If either no tail call or told not to tail call at all, don't.
236 return CI->isTailCall();
237 }
238
getRegisterByName(const char * RegName,LLT VT,const MachineFunction &) const239 Register HexagonTargetLowering::getRegisterByName(
240 const char* RegName, LLT VT, const MachineFunction &) const {
241 // Just support r19, the linux kernel uses it.
242 Register Reg = StringSwitch<Register>(RegName)
243 .Case("r0", Hexagon::R0)
244 .Case("r1", Hexagon::R1)
245 .Case("r2", Hexagon::R2)
246 .Case("r3", Hexagon::R3)
247 .Case("r4", Hexagon::R4)
248 .Case("r5", Hexagon::R5)
249 .Case("r6", Hexagon::R6)
250 .Case("r7", Hexagon::R7)
251 .Case("r8", Hexagon::R8)
252 .Case("r9", Hexagon::R9)
253 .Case("r10", Hexagon::R10)
254 .Case("r11", Hexagon::R11)
255 .Case("r12", Hexagon::R12)
256 .Case("r13", Hexagon::R13)
257 .Case("r14", Hexagon::R14)
258 .Case("r15", Hexagon::R15)
259 .Case("r16", Hexagon::R16)
260 .Case("r17", Hexagon::R17)
261 .Case("r18", Hexagon::R18)
262 .Case("r19", Hexagon::R19)
263 .Case("r20", Hexagon::R20)
264 .Case("r21", Hexagon::R21)
265 .Case("r22", Hexagon::R22)
266 .Case("r23", Hexagon::R23)
267 .Case("r24", Hexagon::R24)
268 .Case("r25", Hexagon::R25)
269 .Case("r26", Hexagon::R26)
270 .Case("r27", Hexagon::R27)
271 .Case("r28", Hexagon::R28)
272 .Case("r29", Hexagon::R29)
273 .Case("r30", Hexagon::R30)
274 .Case("r31", Hexagon::R31)
275 .Case("r1:0", Hexagon::D0)
276 .Case("r3:2", Hexagon::D1)
277 .Case("r5:4", Hexagon::D2)
278 .Case("r7:6", Hexagon::D3)
279 .Case("r9:8", Hexagon::D4)
280 .Case("r11:10", Hexagon::D5)
281 .Case("r13:12", Hexagon::D6)
282 .Case("r15:14", Hexagon::D7)
283 .Case("r17:16", Hexagon::D8)
284 .Case("r19:18", Hexagon::D9)
285 .Case("r21:20", Hexagon::D10)
286 .Case("r23:22", Hexagon::D11)
287 .Case("r25:24", Hexagon::D12)
288 .Case("r27:26", Hexagon::D13)
289 .Case("r29:28", Hexagon::D14)
290 .Case("r31:30", Hexagon::D15)
291 .Case("sp", Hexagon::R29)
292 .Case("fp", Hexagon::R30)
293 .Case("lr", Hexagon::R31)
294 .Case("p0", Hexagon::P0)
295 .Case("p1", Hexagon::P1)
296 .Case("p2", Hexagon::P2)
297 .Case("p3", Hexagon::P3)
298 .Case("sa0", Hexagon::SA0)
299 .Case("lc0", Hexagon::LC0)
300 .Case("sa1", Hexagon::SA1)
301 .Case("lc1", Hexagon::LC1)
302 .Case("m0", Hexagon::M0)
303 .Case("m1", Hexagon::M1)
304 .Case("usr", Hexagon::USR)
305 .Case("ugp", Hexagon::UGP)
306 .Default(Register());
307 if (Reg)
308 return Reg;
309
310 report_fatal_error("Invalid register name global variable");
311 }
312
313 /// LowerCallResult - Lower the result values of an ISD::CALL into the
314 /// appropriate copies out of appropriate physical registers. This assumes that
315 /// Chain/Glue are the input chain/glue to use, and that TheCall is the call
316 /// being lowered. Returns a SDNode with the same number of values as the
317 /// ISD::CALL.
LowerCallResult(SDValue Chain,SDValue Glue,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,const SmallVectorImpl<SDValue> & OutVals,SDValue Callee) const318 SDValue HexagonTargetLowering::LowerCallResult(
319 SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
320 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
321 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
322 const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
323 // Assign locations to each value returned by this call.
324 SmallVector<CCValAssign, 16> RVLocs;
325
326 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
327 *DAG.getContext());
328
329 if (Subtarget.useHVXOps())
330 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
331 else
332 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
333
334 // Copy all of the result registers out of their specified physreg.
335 for (unsigned i = 0; i != RVLocs.size(); ++i) {
336 SDValue RetVal;
337 if (RVLocs[i].getValVT() == MVT::i1) {
338 // Return values of type MVT::i1 require special handling. The reason
339 // is that MVT::i1 is associated with the PredRegs register class, but
340 // values of that type are still returned in R0. Generate an explicit
341 // copy into a predicate register from R0, and treat the value of the
342 // predicate register as the call result.
343 auto &MRI = DAG.getMachineFunction().getRegInfo();
344 SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
345 MVT::i32, Glue);
346 // FR0 = (Value, Chain, Glue)
347 Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
348 SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
349 FR0.getValue(0), FR0.getValue(2));
350 // TPR = (Chain, Glue)
351 // Don't glue this CopyFromReg, because it copies from a virtual
352 // register. If it is glued to the call, InstrEmitter will add it
353 // as an implicit def to the call (EmitMachineNode).
354 RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
355 Glue = TPR.getValue(1);
356 Chain = TPR.getValue(0);
357 } else {
358 RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
359 RVLocs[i].getValVT(), Glue);
360 Glue = RetVal.getValue(2);
361 Chain = RetVal.getValue(1);
362 }
363 InVals.push_back(RetVal.getValue(0));
364 }
365
366 return Chain;
367 }
368
369 /// LowerCall - Functions arguments are copied from virtual regs to
370 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
371 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const372 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
373 SmallVectorImpl<SDValue> &InVals) const {
374 SelectionDAG &DAG = CLI.DAG;
375 SDLoc &dl = CLI.DL;
376 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
377 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
378 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
379 SDValue Chain = CLI.Chain;
380 SDValue Callee = CLI.Callee;
381 CallingConv::ID CallConv = CLI.CallConv;
382 bool IsVarArg = CLI.IsVarArg;
383 bool DoesNotReturn = CLI.DoesNotReturn;
384
385 bool IsStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
386 MachineFunction &MF = DAG.getMachineFunction();
387 MachineFrameInfo &MFI = MF.getFrameInfo();
388 auto PtrVT = getPointerTy(MF.getDataLayout());
389
390 unsigned NumParams = CLI.CS.getInstruction()
391 ? CLI.CS.getFunctionType()->getNumParams()
392 : 0;
393 if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
394 Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
395
396 // Analyze operands of the call, assigning locations to each operand.
397 SmallVector<CCValAssign, 16> ArgLocs;
398 HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
399 NumParams);
400
401 if (Subtarget.useHVXOps())
402 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
403 else
404 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
405
406 if (CLI.IsTailCall) {
407 bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
408 CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
409 IsVarArg, IsStructRet, StructAttrFlag, Outs,
410 OutVals, Ins, DAG);
411 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
412 CCValAssign &VA = ArgLocs[i];
413 if (VA.isMemLoc()) {
414 CLI.IsTailCall = false;
415 break;
416 }
417 }
418 LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
419 : "Argument must be passed on stack. "
420 "Not eligible for Tail Call\n"));
421 }
422 // Get a count of how many bytes are to be pushed on the stack.
423 unsigned NumBytes = CCInfo.getNextStackOffset();
424 SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
425 SmallVector<SDValue, 8> MemOpChains;
426
427 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
428 SDValue StackPtr =
429 DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
430
431 bool NeedsArgAlign = false;
432 unsigned LargestAlignSeen = 0;
433 // Walk the register/memloc assignments, inserting copies/loads.
434 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
435 CCValAssign &VA = ArgLocs[i];
436 SDValue Arg = OutVals[i];
437 ISD::ArgFlagsTy Flags = Outs[i].Flags;
438 // Record if we need > 8 byte alignment on an argument.
439 bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
440 NeedsArgAlign |= ArgAlign;
441
442 // Promote the value if needed.
443 switch (VA.getLocInfo()) {
444 default:
445 // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
446 llvm_unreachable("Unknown loc info!");
447 case CCValAssign::Full:
448 break;
449 case CCValAssign::BCvt:
450 Arg = DAG.getBitcast(VA.getLocVT(), Arg);
451 break;
452 case CCValAssign::SExt:
453 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
454 break;
455 case CCValAssign::ZExt:
456 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
457 break;
458 case CCValAssign::AExt:
459 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
460 break;
461 }
462
463 if (VA.isMemLoc()) {
464 unsigned LocMemOffset = VA.getLocMemOffset();
465 SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
466 StackPtr.getValueType());
467 MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
468 if (ArgAlign)
469 LargestAlignSeen = std::max(LargestAlignSeen,
470 (unsigned)VA.getLocVT().getStoreSizeInBits() >> 3);
471 if (Flags.isByVal()) {
472 // The argument is a struct passed by value. According to LLVM, "Arg"
473 // is a pointer.
474 MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
475 Flags, DAG, dl));
476 } else {
477 MachinePointerInfo LocPI = MachinePointerInfo::getStack(
478 DAG.getMachineFunction(), LocMemOffset);
479 SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
480 MemOpChains.push_back(S);
481 }
482 continue;
483 }
484
485 // Arguments that can be passed on register must be kept at RegsToPass
486 // vector.
487 if (VA.isRegLoc())
488 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
489 }
490
491 if (NeedsArgAlign && Subtarget.hasV60Ops()) {
492 LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
493 unsigned VecAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
494 LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
495 MFI.ensureMaxAlignment(LargestAlignSeen);
496 }
497 // Transform all store nodes into one single node because all store
498 // nodes are independent of each other.
499 if (!MemOpChains.empty())
500 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
501
502 SDValue Glue;
503 if (!CLI.IsTailCall) {
504 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
505 Glue = Chain.getValue(1);
506 }
507
508 // Build a sequence of copy-to-reg nodes chained together with token
509 // chain and flag operands which copy the outgoing args into registers.
510 // The Glue is necessary since all emitted instructions must be
511 // stuck together.
512 if (!CLI.IsTailCall) {
513 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
514 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
515 RegsToPass[i].second, Glue);
516 Glue = Chain.getValue(1);
517 }
518 } else {
519 // For tail calls lower the arguments to the 'real' stack slot.
520 //
521 // Force all the incoming stack arguments to be loaded from the stack
522 // before any new outgoing arguments are stored to the stack, because the
523 // outgoing stack slots may alias the incoming argument stack slots, and
524 // the alias isn't otherwise explicit. This is slightly more conservative
525 // than necessary, because it means that each store effectively depends
526 // on every argument instead of just those arguments it would clobber.
527 //
528 // Do not flag preceding copytoreg stuff together with the following stuff.
529 Glue = SDValue();
530 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
531 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
532 RegsToPass[i].second, Glue);
533 Glue = Chain.getValue(1);
534 }
535 Glue = SDValue();
536 }
537
538 bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
539 unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
540
541 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
542 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
543 // node so that legalize doesn't hack it.
544 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
545 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
546 } else if (ExternalSymbolSDNode *S =
547 dyn_cast<ExternalSymbolSDNode>(Callee)) {
548 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
549 }
550
551 // Returns a chain & a flag for retval copy to use.
552 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
553 SmallVector<SDValue, 8> Ops;
554 Ops.push_back(Chain);
555 Ops.push_back(Callee);
556
557 // Add argument registers to the end of the list so that they are
558 // known live into the call.
559 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
560 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
561 RegsToPass[i].second.getValueType()));
562 }
563
564 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
565 assert(Mask && "Missing call preserved mask for calling convention");
566 Ops.push_back(DAG.getRegisterMask(Mask));
567
568 if (Glue.getNode())
569 Ops.push_back(Glue);
570
571 if (CLI.IsTailCall) {
572 MFI.setHasTailCall();
573 return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
574 }
575
576 // Set this here because we need to know this for "hasFP" in frame lowering.
577 // The target-independent code calls getFrameRegister before setting it, and
578 // getFrameRegister uses hasFP to determine whether the function has FP.
579 MFI.setHasCalls(true);
580
581 unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
582 Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
583 Glue = Chain.getValue(1);
584
585 // Create the CALLSEQ_END node.
586 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
587 DAG.getIntPtrConstant(0, dl, true), Glue, dl);
588 Glue = Chain.getValue(1);
589
590 // Handle result values, copying them out of physregs into vregs that we
591 // return.
592 return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
593 InVals, OutVals, Callee);
594 }
595
596 /// Returns true by value, base pointer and offset pointer and addressing
597 /// mode by reference if this node can be combined with a load / store to
598 /// form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const599 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
600 SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
601 SelectionDAG &DAG) const {
602 LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
603 if (!LSN)
604 return false;
605 EVT VT = LSN->getMemoryVT();
606 if (!VT.isSimple())
607 return false;
608 bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
609 VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
610 VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
611 VT == MVT::v4i16 || VT == MVT::v8i8 ||
612 Subtarget.isHVXVectorType(VT.getSimpleVT());
613 if (!IsLegalType)
614 return false;
615
616 if (Op->getOpcode() != ISD::ADD)
617 return false;
618 Base = Op->getOperand(0);
619 Offset = Op->getOperand(1);
620 if (!isa<ConstantSDNode>(Offset.getNode()))
621 return false;
622 AM = ISD::POST_INC;
623
624 int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
625 return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
626 }
627
628 SDValue
LowerINLINEASM(SDValue Op,SelectionDAG & DAG) const629 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
630 MachineFunction &MF = DAG.getMachineFunction();
631 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
632 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
633 unsigned LR = HRI.getRARegister();
634
635 if ((Op.getOpcode() != ISD::INLINEASM &&
636 Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
637 return Op;
638
639 unsigned NumOps = Op.getNumOperands();
640 if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
641 --NumOps; // Ignore the flag operand.
642
643 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
644 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
645 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
646 ++i; // Skip the ID value.
647
648 switch (InlineAsm::getKind(Flags)) {
649 default:
650 llvm_unreachable("Bad flags!");
651 case InlineAsm::Kind_RegUse:
652 case InlineAsm::Kind_Imm:
653 case InlineAsm::Kind_Mem:
654 i += NumVals;
655 break;
656 case InlineAsm::Kind_Clobber:
657 case InlineAsm::Kind_RegDef:
658 case InlineAsm::Kind_RegDefEarlyClobber: {
659 for (; NumVals; --NumVals, ++i) {
660 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
661 if (Reg != LR)
662 continue;
663 HMFI.setHasClobberLR(true);
664 return Op;
665 }
666 break;
667 }
668 }
669 }
670
671 return Op;
672 }
673
674 // Need to transform ISD::PREFETCH into something that doesn't inherit
675 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
676 // SDNPMayStore.
LowerPREFETCH(SDValue Op,SelectionDAG & DAG) const677 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
678 SelectionDAG &DAG) const {
679 SDValue Chain = Op.getOperand(0);
680 SDValue Addr = Op.getOperand(1);
681 // Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in,
682 // if the "reg" is fed by an "add".
683 SDLoc DL(Op);
684 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
685 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
686 }
687
688 // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
689 // is marked as having side-effects, while the register read on Hexagon does
690 // not have any. TableGen refuses to accept the direct pattern from that node
691 // to the A4_tfrcpp.
LowerREADCYCLECOUNTER(SDValue Op,SelectionDAG & DAG) const692 SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
693 SelectionDAG &DAG) const {
694 SDValue Chain = Op.getOperand(0);
695 SDLoc dl(Op);
696 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
697 return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
698 }
699
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const700 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
701 SelectionDAG &DAG) const {
702 SDValue Chain = Op.getOperand(0);
703 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
704 // Lower the hexagon_prefetch builtin to DCFETCH, as above.
705 if (IntNo == Intrinsic::hexagon_prefetch) {
706 SDValue Addr = Op.getOperand(2);
707 SDLoc DL(Op);
708 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
709 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
710 }
711 return SDValue();
712 }
713
714 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const715 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
716 SelectionDAG &DAG) const {
717 SDValue Chain = Op.getOperand(0);
718 SDValue Size = Op.getOperand(1);
719 SDValue Align = Op.getOperand(2);
720 SDLoc dl(Op);
721
722 ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
723 assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
724
725 unsigned A = AlignConst->getSExtValue();
726 auto &HFI = *Subtarget.getFrameLowering();
727 // "Zero" means natural stack alignment.
728 if (A == 0)
729 A = HFI.getStackAlignment();
730
731 LLVM_DEBUG({
732 dbgs () << __func__ << " Align: " << A << " Size: ";
733 Size.getNode()->dump(&DAG);
734 dbgs() << "\n";
735 });
736
737 SDValue AC = DAG.getConstant(A, dl, MVT::i32);
738 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
739 SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
740
741 DAG.ReplaceAllUsesOfValueWith(Op, AA);
742 return AA;
743 }
744
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const745 SDValue HexagonTargetLowering::LowerFormalArguments(
746 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
747 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
748 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
749 MachineFunction &MF = DAG.getMachineFunction();
750 MachineFrameInfo &MFI = MF.getFrameInfo();
751 MachineRegisterInfo &MRI = MF.getRegInfo();
752
753 // Assign locations to all of the incoming arguments.
754 SmallVector<CCValAssign, 16> ArgLocs;
755 HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
756 MF.getFunction().getFunctionType()->getNumParams());
757
758 if (Subtarget.useHVXOps())
759 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
760 else
761 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
762
763 // For LLVM, in the case when returning a struct by value (>8byte),
764 // the first argument is a pointer that points to the location on caller's
765 // stack where the return value will be stored. For Hexagon, the location on
766 // caller's stack is passed only when the struct size is smaller than (and
767 // equal to) 8 bytes. If not, no address will be passed into callee and
768 // callee return the result direclty through R0/R1.
769
770 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
771
772 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
773 CCValAssign &VA = ArgLocs[i];
774 ISD::ArgFlagsTy Flags = Ins[i].Flags;
775 bool ByVal = Flags.isByVal();
776
777 // Arguments passed in registers:
778 // 1. 32- and 64-bit values and HVX vectors are passed directly,
779 // 2. Large structs are passed via an address, and the address is
780 // passed in a register.
781 if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
782 llvm_unreachable("ByValSize must be bigger than 8 bytes");
783
784 bool InReg = VA.isRegLoc() &&
785 (!ByVal || (ByVal && Flags.getByValSize() > 8));
786
787 if (InReg) {
788 MVT RegVT = VA.getLocVT();
789 if (VA.getLocInfo() == CCValAssign::BCvt)
790 RegVT = VA.getValVT();
791
792 const TargetRegisterClass *RC = getRegClassFor(RegVT);
793 Register VReg = MRI.createVirtualRegister(RC);
794 SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
795
796 // Treat values of type MVT::i1 specially: they are passed in
797 // registers of type i32, but they need to remain as values of
798 // type i1 for consistency of the argument lowering.
799 if (VA.getValVT() == MVT::i1) {
800 assert(RegVT.getSizeInBits() <= 32);
801 SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
802 Copy, DAG.getConstant(1, dl, RegVT));
803 Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
804 ISD::SETNE);
805 } else {
806 #ifndef NDEBUG
807 unsigned RegSize = RegVT.getSizeInBits();
808 assert(RegSize == 32 || RegSize == 64 ||
809 Subtarget.isHVXVectorType(RegVT));
810 #endif
811 }
812 InVals.push_back(Copy);
813 MRI.addLiveIn(VA.getLocReg(), VReg);
814 } else {
815 assert(VA.isMemLoc() && "Argument should be passed in memory");
816
817 // If it's a byval parameter, then we need to compute the
818 // "real" size, not the size of the pointer.
819 unsigned ObjSize = Flags.isByVal()
820 ? Flags.getByValSize()
821 : VA.getLocVT().getStoreSizeInBits() / 8;
822
823 // Create the frame index object for this incoming parameter.
824 int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
825 int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
826 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
827
828 if (Flags.isByVal()) {
829 // If it's a pass-by-value aggregate, then do not dereference the stack
830 // location. Instead, we should generate a reference to the stack
831 // location.
832 InVals.push_back(FIN);
833 } else {
834 SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
835 MachinePointerInfo::getFixedStack(MF, FI, 0));
836 InVals.push_back(L);
837 }
838 }
839 }
840
841
842 if (IsVarArg) {
843 // This will point to the next argument passed via stack.
844 int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
845 int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
846 HMFI.setVarArgsFrameIndex(FI);
847 }
848
849 return Chain;
850 }
851
852 SDValue
LowerVASTART(SDValue Op,SelectionDAG & DAG) const853 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
854 // VASTART stores the address of the VarArgsFrameIndex slot into the
855 // memory location argument.
856 MachineFunction &MF = DAG.getMachineFunction();
857 HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
858 SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
859 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
860 return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
861 MachinePointerInfo(SV));
862 }
863
LowerSETCC(SDValue Op,SelectionDAG & DAG) const864 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
865 const SDLoc &dl(Op);
866 SDValue LHS = Op.getOperand(0);
867 SDValue RHS = Op.getOperand(1);
868 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
869 MVT ResTy = ty(Op);
870 MVT OpTy = ty(LHS);
871
872 if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
873 MVT ElemTy = OpTy.getVectorElementType();
874 assert(ElemTy.isScalarInteger());
875 MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
876 OpTy.getVectorNumElements());
877 return DAG.getSetCC(dl, ResTy,
878 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
879 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
880 }
881
882 // Treat all other vector types as legal.
883 if (ResTy.isVector())
884 return Op;
885
886 // Comparisons of short integers should use sign-extend, not zero-extend,
887 // since we can represent small negative values in the compare instructions.
888 // The LLVM default is to use zero-extend arbitrarily in these cases.
889 auto isSExtFree = [this](SDValue N) {
890 switch (N.getOpcode()) {
891 case ISD::TRUNCATE: {
892 // A sign-extend of a truncate of a sign-extend is free.
893 SDValue Op = N.getOperand(0);
894 if (Op.getOpcode() != ISD::AssertSext)
895 return false;
896 EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
897 unsigned ThisBW = ty(N).getSizeInBits();
898 unsigned OrigBW = OrigTy.getSizeInBits();
899 // The type that was sign-extended to get the AssertSext must be
900 // narrower than the type of N (so that N has still the same value
901 // as the original).
902 return ThisBW >= OrigBW;
903 }
904 case ISD::LOAD:
905 // We have sign-extended loads.
906 return true;
907 }
908 return false;
909 };
910
911 if (OpTy == MVT::i8 || OpTy == MVT::i16) {
912 ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
913 bool IsNegative = C && C->getAPIntValue().isNegative();
914 if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
915 return DAG.getSetCC(dl, ResTy,
916 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
917 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
918 }
919
920 return SDValue();
921 }
922
923 SDValue
LowerVSELECT(SDValue Op,SelectionDAG & DAG) const924 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
925 SDValue PredOp = Op.getOperand(0);
926 SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
927 MVT OpTy = ty(Op1);
928 const SDLoc &dl(Op);
929
930 if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
931 MVT ElemTy = OpTy.getVectorElementType();
932 assert(ElemTy.isScalarInteger());
933 MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
934 OpTy.getVectorNumElements());
935 // Generate (trunc (select (_, sext, sext))).
936 return DAG.getSExtOrTrunc(
937 DAG.getSelect(dl, WideTy, PredOp,
938 DAG.getSExtOrTrunc(Op1, dl, WideTy),
939 DAG.getSExtOrTrunc(Op2, dl, WideTy)),
940 dl, OpTy);
941 }
942
943 return SDValue();
944 }
945
convert_i1_to_i8(const Constant * ConstVal)946 static Constant *convert_i1_to_i8(const Constant *ConstVal) {
947 SmallVector<Constant *, 128> NewConst;
948 const ConstantVector *CV = dyn_cast<ConstantVector>(ConstVal);
949 if (!CV)
950 return nullptr;
951
952 LLVMContext &Ctx = ConstVal->getContext();
953 IRBuilder<> IRB(Ctx);
954 unsigned NumVectorElements = CV->getNumOperands();
955 assert(isPowerOf2_32(NumVectorElements) &&
956 "conversion only supported for pow2 VectorSize!");
957
958 for (unsigned i = 0; i < NumVectorElements / 8; ++i) {
959 uint8_t x = 0;
960 for (unsigned j = 0; j < 8; ++j) {
961 uint8_t y = CV->getOperand(i * 8 + j)->getUniqueInteger().getZExtValue();
962 x |= y << (7 - j);
963 }
964 assert((x == 0 || x == 255) && "Either all 0's or all 1's expected!");
965 NewConst.push_back(IRB.getInt8(x));
966 }
967 return ConstantVector::get(NewConst);
968 }
969
970 SDValue
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const971 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
972 EVT ValTy = Op.getValueType();
973 ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
974 Constant *CVal = nullptr;
975 bool isVTi1Type = false;
976 if (const Constant *ConstVal = dyn_cast<Constant>(CPN->getConstVal())) {
977 Type *CValTy = ConstVal->getType();
978 if (CValTy->isVectorTy() &&
979 CValTy->getVectorElementType()->isIntegerTy(1)) {
980 CVal = convert_i1_to_i8(ConstVal);
981 isVTi1Type = (CVal != nullptr);
982 }
983 }
984 unsigned Align = CPN->getAlignment();
985 bool IsPositionIndependent = isPositionIndependent();
986 unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
987
988 unsigned Offset = 0;
989 SDValue T;
990 if (CPN->isMachineConstantPoolEntry())
991 T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset,
992 TF);
993 else if (isVTi1Type)
994 T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF);
995 else
996 T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF);
997
998 assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
999 "Inconsistent target flag encountered");
1000
1001 if (IsPositionIndependent)
1002 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
1003 return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
1004 }
1005
1006 SDValue
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const1007 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1008 EVT VT = Op.getValueType();
1009 int Idx = cast<JumpTableSDNode>(Op)->getIndex();
1010 if (isPositionIndependent()) {
1011 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
1012 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
1013 }
1014
1015 SDValue T = DAG.getTargetJumpTable(Idx, VT);
1016 return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
1017 }
1018
1019 SDValue
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const1020 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
1021 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1022 MachineFunction &MF = DAG.getMachineFunction();
1023 MachineFrameInfo &MFI = MF.getFrameInfo();
1024 MFI.setReturnAddressIsTaken(true);
1025
1026 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1027 return SDValue();
1028
1029 EVT VT = Op.getValueType();
1030 SDLoc dl(Op);
1031 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1032 if (Depth) {
1033 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1034 SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
1035 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
1036 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
1037 MachinePointerInfo());
1038 }
1039
1040 // Return LR, which contains the return address. Mark it an implicit live-in.
1041 unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
1042 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
1043 }
1044
1045 SDValue
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const1046 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1047 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1048 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1049 MFI.setFrameAddressIsTaken(true);
1050
1051 EVT VT = Op.getValueType();
1052 SDLoc dl(Op);
1053 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1054 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1055 HRI.getFrameRegister(), VT);
1056 while (Depth--)
1057 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1058 MachinePointerInfo());
1059 return FrameAddr;
1060 }
1061
1062 SDValue
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const1063 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1064 SDLoc dl(Op);
1065 return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1066 }
1067
1068 SDValue
LowerGLOBALADDRESS(SDValue Op,SelectionDAG & DAG) const1069 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1070 SDLoc dl(Op);
1071 auto *GAN = cast<GlobalAddressSDNode>(Op);
1072 auto PtrVT = getPointerTy(DAG.getDataLayout());
1073 auto *GV = GAN->getGlobal();
1074 int64_t Offset = GAN->getOffset();
1075
1076 auto &HLOF = *HTM.getObjFileLowering();
1077 Reloc::Model RM = HTM.getRelocationModel();
1078
1079 if (RM == Reloc::Static) {
1080 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1081 const GlobalObject *GO = GV->getBaseObject();
1082 if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
1083 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1084 return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1085 }
1086
1087 bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1088 if (UsePCRel) {
1089 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1090 HexagonII::MO_PCREL);
1091 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1092 }
1093
1094 // Use GOT index.
1095 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1096 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1097 SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1098 return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1099 }
1100
1101 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1102 SDValue
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const1103 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1104 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1105 SDLoc dl(Op);
1106 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1107
1108 Reloc::Model RM = HTM.getRelocationModel();
1109 if (RM == Reloc::Static) {
1110 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1111 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1112 }
1113
1114 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1115 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1116 }
1117
1118 SDValue
LowerGLOBAL_OFFSET_TABLE(SDValue Op,SelectionDAG & DAG) const1119 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1120 const {
1121 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1122 SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1123 HexagonII::MO_PCREL);
1124 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1125 }
1126
1127 SDValue
GetDynamicTLSAddr(SelectionDAG & DAG,SDValue Chain,GlobalAddressSDNode * GA,SDValue Glue,EVT PtrVT,unsigned ReturnReg,unsigned char OperandFlags) const1128 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1129 GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
1130 unsigned char OperandFlags) const {
1131 MachineFunction &MF = DAG.getMachineFunction();
1132 MachineFrameInfo &MFI = MF.getFrameInfo();
1133 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1134 SDLoc dl(GA);
1135 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1136 GA->getValueType(0),
1137 GA->getOffset(),
1138 OperandFlags);
1139 // Create Operands for the call.The Operands should have the following:
1140 // 1. Chain SDValue
1141 // 2. Callee which in this case is the Global address value.
1142 // 3. Registers live into the call.In this case its R0, as we
1143 // have just one argument to be passed.
1144 // 4. Glue.
1145 // Note: The order is important.
1146
1147 const auto &HRI = *Subtarget.getRegisterInfo();
1148 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
1149 assert(Mask && "Missing call preserved mask for calling convention");
1150 SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
1151 DAG.getRegisterMask(Mask), Glue };
1152 Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
1153
1154 // Inform MFI that function has calls.
1155 MFI.setAdjustsStack(true);
1156
1157 Glue = Chain.getValue(1);
1158 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
1159 }
1160
1161 //
1162 // Lower using the intial executable model for TLS addresses
1163 //
1164 SDValue
LowerToTLSInitialExecModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const1165 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1166 SelectionDAG &DAG) const {
1167 SDLoc dl(GA);
1168 int64_t Offset = GA->getOffset();
1169 auto PtrVT = getPointerTy(DAG.getDataLayout());
1170
1171 // Get the thread pointer.
1172 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1173
1174 bool IsPositionIndependent = isPositionIndependent();
1175 unsigned char TF =
1176 IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1177
1178 // First generate the TLS symbol address
1179 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1180 Offset, TF);
1181
1182 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1183
1184 if (IsPositionIndependent) {
1185 // Generate the GOT pointer in case of position independent code
1186 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1187
1188 // Add the TLS Symbol address to GOT pointer.This gives
1189 // GOT relative relocation for the symbol.
1190 Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1191 }
1192
1193 // Load the offset value for TLS symbol.This offset is relative to
1194 // thread pointer.
1195 SDValue LoadOffset =
1196 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
1197
1198 // Address of the thread local variable is the add of thread
1199 // pointer and the offset of the variable.
1200 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1201 }
1202
1203 //
1204 // Lower using the local executable model for TLS addresses
1205 //
1206 SDValue
LowerToTLSLocalExecModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const1207 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1208 SelectionDAG &DAG) const {
1209 SDLoc dl(GA);
1210 int64_t Offset = GA->getOffset();
1211 auto PtrVT = getPointerTy(DAG.getDataLayout());
1212
1213 // Get the thread pointer.
1214 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1215 // Generate the TLS symbol address
1216 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1217 HexagonII::MO_TPREL);
1218 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1219
1220 // Address of the thread local variable is the add of thread
1221 // pointer and the offset of the variable.
1222 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1223 }
1224
1225 //
1226 // Lower using the general dynamic model for TLS addresses
1227 //
1228 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const1229 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1230 SelectionDAG &DAG) const {
1231 SDLoc dl(GA);
1232 int64_t Offset = GA->getOffset();
1233 auto PtrVT = getPointerTy(DAG.getDataLayout());
1234
1235 // First generate the TLS symbol address
1236 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1237 HexagonII::MO_GDGOT);
1238
1239 // Then, generate the GOT pointer
1240 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1241
1242 // Add the TLS symbol and the GOT pointer
1243 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1244 SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1245
1246 // Copy over the argument to R0
1247 SDValue InFlag;
1248 Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
1249 InFlag = Chain.getValue(1);
1250
1251 unsigned Flags =
1252 static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls()
1253 ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
1254 : HexagonII::MO_GDPLT;
1255
1256 return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT,
1257 Hexagon::R0, Flags);
1258 }
1259
1260 //
1261 // Lower TLS addresses.
1262 //
1263 // For now for dynamic models, we only support the general dynamic model.
1264 //
1265 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const1266 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1267 SelectionDAG &DAG) const {
1268 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1269
1270 switch (HTM.getTLSModel(GA->getGlobal())) {
1271 case TLSModel::GeneralDynamic:
1272 case TLSModel::LocalDynamic:
1273 return LowerToTLSGeneralDynamicModel(GA, DAG);
1274 case TLSModel::InitialExec:
1275 return LowerToTLSInitialExecModel(GA, DAG);
1276 case TLSModel::LocalExec:
1277 return LowerToTLSLocalExecModel(GA, DAG);
1278 }
1279 llvm_unreachable("Bogus TLS model");
1280 }
1281
1282 //===----------------------------------------------------------------------===//
1283 // TargetLowering Implementation
1284 //===----------------------------------------------------------------------===//
1285
HexagonTargetLowering(const TargetMachine & TM,const HexagonSubtarget & ST)1286 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1287 const HexagonSubtarget &ST)
1288 : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1289 Subtarget(ST) {
1290 auto &HRI = *Subtarget.getRegisterInfo();
1291
1292 setPrefLoopAlignment(Align(16));
1293 setMinFunctionAlignment(Align(4));
1294 setPrefFunctionAlignment(Align(16));
1295 setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1296 setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
1297 setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
1298
1299 setMaxAtomicSizeInBitsSupported(64);
1300 setMinCmpXchgSizeInBits(32);
1301
1302 if (EnableHexSDNodeSched)
1303 setSchedulingPreference(Sched::VLIW);
1304 else
1305 setSchedulingPreference(Sched::Source);
1306
1307 // Limits for inline expansion of memcpy/memmove
1308 MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1309 MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1310 MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1311 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1312 MaxStoresPerMemset = MaxStoresPerMemsetCL;
1313 MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1314
1315 //
1316 // Set up register classes.
1317 //
1318
1319 addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
1320 addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa
1321 addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa
1322 addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba
1323 addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
1324 addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1325 addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass);
1326 addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
1327 addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass);
1328 addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1329 addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1330
1331 addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1332 addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1333
1334 //
1335 // Handling of scalar operations.
1336 //
1337 // All operations default to "legal", except:
1338 // - indexed loads and stores (pre-/post-incremented),
1339 // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1340 // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1341 // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1342 // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1343 // which default to "expand" for at least one type.
1344
1345 // Misc operations.
1346 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
1347 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
1348 setOperationAction(ISD::TRAP, MVT::Other, Legal);
1349 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
1350 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
1351 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
1352 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1353 setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
1354 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
1355 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1356 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1357 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1358 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
1359 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
1360 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1361 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1362
1363 // Custom legalize GlobalAddress nodes into CONST32.
1364 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1365 setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
1366 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1367
1368 // Hexagon needs to optimize cases with negative constants.
1369 setOperationAction(ISD::SETCC, MVT::i8, Custom);
1370 setOperationAction(ISD::SETCC, MVT::i16, Custom);
1371 setOperationAction(ISD::SETCC, MVT::v4i8, Custom);
1372 setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1373
1374 // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1375 setOperationAction(ISD::VASTART, MVT::Other, Custom);
1376 setOperationAction(ISD::VAEND, MVT::Other, Expand);
1377 setOperationAction(ISD::VAARG, MVT::Other, Expand);
1378 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1379
1380 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1381 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1382 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1383
1384 if (EmitJumpTables)
1385 setMinimumJumpTableEntries(MinimumJumpTables);
1386 else
1387 setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
1388 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1389
1390 setOperationAction(ISD::ABS, MVT::i32, Legal);
1391 setOperationAction(ISD::ABS, MVT::i64, Legal);
1392
1393 // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
1394 // but they only operate on i64.
1395 for (MVT VT : MVT::integer_valuetypes()) {
1396 setOperationAction(ISD::UADDO, VT, Custom);
1397 setOperationAction(ISD::USUBO, VT, Custom);
1398 setOperationAction(ISD::SADDO, VT, Expand);
1399 setOperationAction(ISD::SSUBO, VT, Expand);
1400 setOperationAction(ISD::ADDCARRY, VT, Expand);
1401 setOperationAction(ISD::SUBCARRY, VT, Expand);
1402 }
1403 setOperationAction(ISD::ADDCARRY, MVT::i64, Custom);
1404 setOperationAction(ISD::SUBCARRY, MVT::i64, Custom);
1405
1406 setOperationAction(ISD::CTLZ, MVT::i8, Promote);
1407 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1408 setOperationAction(ISD::CTTZ, MVT::i8, Promote);
1409 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1410
1411 // Popcount can count # of 1s in i64 but returns i32.
1412 setOperationAction(ISD::CTPOP, MVT::i8, Promote);
1413 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1414 setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1415 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
1416
1417 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1418 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
1419 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
1420 setOperationAction(ISD::BSWAP, MVT::i64, Legal);
1421
1422 setOperationAction(ISD::FSHL, MVT::i32, Legal);
1423 setOperationAction(ISD::FSHL, MVT::i64, Legal);
1424 setOperationAction(ISD::FSHR, MVT::i32, Legal);
1425 setOperationAction(ISD::FSHR, MVT::i64, Legal);
1426
1427 for (unsigned IntExpOp :
1428 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM,
1429 ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR,
1430 ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1431 ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
1432 for (MVT VT : MVT::integer_valuetypes())
1433 setOperationAction(IntExpOp, VT, Expand);
1434 }
1435
1436 for (unsigned FPExpOp :
1437 {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1438 ISD::FPOW, ISD::FCOPYSIGN}) {
1439 for (MVT VT : MVT::fp_valuetypes())
1440 setOperationAction(FPExpOp, VT, Expand);
1441 }
1442
1443 // No extending loads from i32.
1444 for (MVT VT : MVT::integer_valuetypes()) {
1445 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1446 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1447 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
1448 }
1449 // Turn FP truncstore into trunc + store.
1450 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1451 // Turn FP extload into load/fpextend.
1452 for (MVT VT : MVT::fp_valuetypes())
1453 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1454
1455 // Expand BR_CC and SELECT_CC for all integer and fp types.
1456 for (MVT VT : MVT::integer_valuetypes()) {
1457 setOperationAction(ISD::BR_CC, VT, Expand);
1458 setOperationAction(ISD::SELECT_CC, VT, Expand);
1459 }
1460 for (MVT VT : MVT::fp_valuetypes()) {
1461 setOperationAction(ISD::BR_CC, VT, Expand);
1462 setOperationAction(ISD::SELECT_CC, VT, Expand);
1463 }
1464 setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1465
1466 //
1467 // Handling of vector operations.
1468 //
1469
1470 // Set the action for vector operations to "expand", then override it with
1471 // either "custom" or "legal" for specific cases.
1472 static const unsigned VectExpOps[] = {
1473 // Integer arithmetic:
1474 ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV,
1475 ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::SADDO,
1476 ISD::UADDO, ISD::SSUBO, ISD::USUBO, ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1477 // Logical/bit:
1478 ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR,
1479 ISD::CTPOP, ISD::CTLZ, ISD::CTTZ,
1480 // Floating point arithmetic/math functions:
1481 ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV,
1482 ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN,
1483 ISD::FCOS, ISD::FPOW, ISD::FLOG, ISD::FLOG2,
1484 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC,
1485 ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR,
1486 ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
1487 // Misc:
1488 ISD::BR_CC, ISD::SELECT_CC, ISD::ConstantPool,
1489 // Vector:
1490 ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR,
1491 ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT,
1492 ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR,
1493 ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE
1494 };
1495
1496 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1497 for (unsigned VectExpOp : VectExpOps)
1498 setOperationAction(VectExpOp, VT, Expand);
1499
1500 // Expand all extending loads and truncating stores:
1501 for (MVT TargetVT : MVT::fixedlen_vector_valuetypes()) {
1502 if (TargetVT == VT)
1503 continue;
1504 setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1505 setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
1506 setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
1507 setTruncStoreAction(VT, TargetVT, Expand);
1508 }
1509
1510 // Normalize all inputs to SELECT to be vectors of i32.
1511 if (VT.getVectorElementType() != MVT::i32) {
1512 MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
1513 setOperationAction(ISD::SELECT, VT, Promote);
1514 AddPromotedToType(ISD::SELECT, VT, VT32);
1515 }
1516 setOperationAction(ISD::SRA, VT, Custom);
1517 setOperationAction(ISD::SHL, VT, Custom);
1518 setOperationAction(ISD::SRL, VT, Custom);
1519 }
1520
1521 // Extending loads from (native) vectors of i8 into (native) vectors of i16
1522 // are legal.
1523 setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1524 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1525 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1526 setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1527 setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1528 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1529
1530 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal);
1531 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1532 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1533
1534 // Types natively supported:
1535 for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
1536 MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1537 setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom);
1538 setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1539 setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom);
1540 setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom);
1541 setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom);
1542 setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom);
1543
1544 setOperationAction(ISD::ADD, NativeVT, Legal);
1545 setOperationAction(ISD::SUB, NativeVT, Legal);
1546 setOperationAction(ISD::MUL, NativeVT, Legal);
1547 setOperationAction(ISD::AND, NativeVT, Legal);
1548 setOperationAction(ISD::OR, NativeVT, Legal);
1549 setOperationAction(ISD::XOR, NativeVT, Legal);
1550 }
1551
1552 // Custom lower unaligned loads.
1553 // Also, for both loads and stores, verify the alignment of the address
1554 // in case it is a compile-time constant. This is a usability feature to
1555 // provide a meaningful error message to users.
1556 for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
1557 MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1558 setOperationAction(ISD::LOAD, VT, Custom);
1559 setOperationAction(ISD::STORE, VT, Custom);
1560 }
1561
1562 for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
1563 MVT::v2i32}) {
1564 setCondCodeAction(ISD::SETNE, VT, Expand);
1565 setCondCodeAction(ISD::SETLE, VT, Expand);
1566 setCondCodeAction(ISD::SETGE, VT, Expand);
1567 setCondCodeAction(ISD::SETLT, VT, Expand);
1568 setCondCodeAction(ISD::SETULE, VT, Expand);
1569 setCondCodeAction(ISD::SETUGE, VT, Expand);
1570 setCondCodeAction(ISD::SETULT, VT, Expand);
1571 }
1572
1573 // Custom-lower bitcasts from i8 to v8i1.
1574 setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1575 setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1576 setOperationAction(ISD::VSELECT, MVT::v4i8, Custom);
1577 setOperationAction(ISD::VSELECT, MVT::v2i16, Custom);
1578 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom);
1579 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1580 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
1581
1582 // V5+.
1583 setOperationAction(ISD::FMA, MVT::f64, Expand);
1584 setOperationAction(ISD::FADD, MVT::f64, Expand);
1585 setOperationAction(ISD::FSUB, MVT::f64, Expand);
1586 setOperationAction(ISD::FMUL, MVT::f64, Expand);
1587
1588 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1589 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1590
1591 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
1592 setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
1593 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1594 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
1595 setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
1596 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1597 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
1598 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
1599 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1600 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
1601 setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
1602 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1603
1604 // Handling of indexed loads/stores: default is "expand".
1605 //
1606 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
1607 MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
1608 setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1609 setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1610 }
1611
1612 // Subtarget-specific operation actions.
1613 //
1614 if (Subtarget.hasV60Ops()) {
1615 setOperationAction(ISD::ROTL, MVT::i32, Legal);
1616 setOperationAction(ISD::ROTL, MVT::i64, Legal);
1617 setOperationAction(ISD::ROTR, MVT::i32, Legal);
1618 setOperationAction(ISD::ROTR, MVT::i64, Legal);
1619 }
1620 if (Subtarget.hasV66Ops()) {
1621 setOperationAction(ISD::FADD, MVT::f64, Legal);
1622 setOperationAction(ISD::FSUB, MVT::f64, Legal);
1623 }
1624
1625 setTargetDAGCombine(ISD::VSELECT);
1626
1627 if (Subtarget.useHVXOps())
1628 initializeHVXLowering();
1629
1630 computeRegisterProperties(&HRI);
1631
1632 //
1633 // Library calls for unsupported operations
1634 //
1635 bool FastMath = EnableFastMath;
1636
1637 setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1638 setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1639 setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1640 setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1641 setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1642 setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1643 setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1644 setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1645
1646 setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1647 setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1648 setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1649 setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1650 setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1651 setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1652
1653 // This is the only fast library function for sqrtd.
1654 if (FastMath)
1655 setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1656
1657 // Prefix is: nothing for "slow-math",
1658 // "fast2_" for V5+ fast-math double-precision
1659 // (actually, keep fast-math and fast-math2 separate for now)
1660 if (FastMath) {
1661 setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1662 setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1663 setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1664 setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1665 setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1666 } else {
1667 setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1668 setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1669 setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1670 setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1671 setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1672 }
1673
1674 if (FastMath)
1675 setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1676 else
1677 setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1678
1679 // These cause problems when the shift amount is non-constant.
1680 setLibcallName(RTLIB::SHL_I128, nullptr);
1681 setLibcallName(RTLIB::SRL_I128, nullptr);
1682 setLibcallName(RTLIB::SRA_I128, nullptr);
1683 }
1684
getTargetNodeName(unsigned Opcode) const1685 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1686 switch ((HexagonISD::NodeType)Opcode) {
1687 case HexagonISD::ADDC: return "HexagonISD::ADDC";
1688 case HexagonISD::SUBC: return "HexagonISD::SUBC";
1689 case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA";
1690 case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT";
1691 case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL";
1692 case HexagonISD::BARRIER: return "HexagonISD::BARRIER";
1693 case HexagonISD::CALL: return "HexagonISD::CALL";
1694 case HexagonISD::CALLnr: return "HexagonISD::CALLnr";
1695 case HexagonISD::CALLR: return "HexagonISD::CALLR";
1696 case HexagonISD::COMBINE: return "HexagonISD::COMBINE";
1697 case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
1698 case HexagonISD::CONST32: return "HexagonISD::CONST32";
1699 case HexagonISD::CP: return "HexagonISD::CP";
1700 case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH";
1701 case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
1702 case HexagonISD::TSTBIT: return "HexagonISD::TSTBIT";
1703 case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU";
1704 case HexagonISD::INSERT: return "HexagonISD::INSERT";
1705 case HexagonISD::JT: return "HexagonISD::JT";
1706 case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG";
1707 case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN";
1708 case HexagonISD::VASL: return "HexagonISD::VASL";
1709 case HexagonISD::VASR: return "HexagonISD::VASR";
1710 case HexagonISD::VLSR: return "HexagonISD::VLSR";
1711 case HexagonISD::VSPLAT: return "HexagonISD::VSPLAT";
1712 case HexagonISD::VEXTRACTW: return "HexagonISD::VEXTRACTW";
1713 case HexagonISD::VINSERTW0: return "HexagonISD::VINSERTW0";
1714 case HexagonISD::VROR: return "HexagonISD::VROR";
1715 case HexagonISD::READCYCLE: return "HexagonISD::READCYCLE";
1716 case HexagonISD::PTRUE: return "HexagonISD::PTRUE";
1717 case HexagonISD::PFALSE: return "HexagonISD::PFALSE";
1718 case HexagonISD::VZERO: return "HexagonISD::VZERO";
1719 case HexagonISD::VSPLATW: return "HexagonISD::VSPLATW";
1720 case HexagonISD::D2P: return "HexagonISD::D2P";
1721 case HexagonISD::P2D: return "HexagonISD::P2D";
1722 case HexagonISD::V2Q: return "HexagonISD::V2Q";
1723 case HexagonISD::Q2V: return "HexagonISD::Q2V";
1724 case HexagonISD::QCAT: return "HexagonISD::QCAT";
1725 case HexagonISD::QTRUE: return "HexagonISD::QTRUE";
1726 case HexagonISD::QFALSE: return "HexagonISD::QFALSE";
1727 case HexagonISD::TYPECAST: return "HexagonISD::TYPECAST";
1728 case HexagonISD::VALIGN: return "HexagonISD::VALIGN";
1729 case HexagonISD::VALIGNADDR: return "HexagonISD::VALIGNADDR";
1730 case HexagonISD::OP_END: break;
1731 }
1732 return nullptr;
1733 }
1734
1735 void
validateConstPtrAlignment(SDValue Ptr,const SDLoc & dl,unsigned NeedAlign) const1736 HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl,
1737 unsigned NeedAlign) const {
1738 auto *CA = dyn_cast<ConstantSDNode>(Ptr);
1739 if (!CA)
1740 return;
1741 unsigned Addr = CA->getZExtValue();
1742 unsigned HaveAlign = Addr != 0 ? 1u << countTrailingZeros(Addr) : NeedAlign;
1743 if (HaveAlign < NeedAlign) {
1744 std::string ErrMsg;
1745 raw_string_ostream O(ErrMsg);
1746 O << "Misaligned constant address: " << format_hex(Addr, 10)
1747 << " has alignment " << HaveAlign
1748 << ", but the memory access requires " << NeedAlign;
1749 if (DebugLoc DL = dl.getDebugLoc())
1750 DL.print(O << ", at ");
1751 report_fatal_error(O.str());
1752 }
1753 }
1754
1755 // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
1756 // intrinsic.
isBrevLdIntrinsic(const Value * Inst)1757 static bool isBrevLdIntrinsic(const Value *Inst) {
1758 unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
1759 return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
1760 ID == Intrinsic::hexagon_L2_loadri_pbr ||
1761 ID == Intrinsic::hexagon_L2_loadrh_pbr ||
1762 ID == Intrinsic::hexagon_L2_loadruh_pbr ||
1763 ID == Intrinsic::hexagon_L2_loadrb_pbr ||
1764 ID == Intrinsic::hexagon_L2_loadrub_pbr);
1765 }
1766
1767 // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
1768 // instruction. So far we only handle bitcast, extract value and bit reverse
1769 // load intrinsic instructions. Should we handle CGEP ?
getBrevLdObject(Value * V)1770 static Value *getBrevLdObject(Value *V) {
1771 if (Operator::getOpcode(V) == Instruction::ExtractValue ||
1772 Operator::getOpcode(V) == Instruction::BitCast)
1773 V = cast<Operator>(V)->getOperand(0);
1774 else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
1775 V = cast<Instruction>(V)->getOperand(0);
1776 return V;
1777 }
1778
1779 // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
1780 // a back edge. If the back edge comes from the intrinsic itself, the incoming
1781 // edge is returned.
returnEdge(const PHINode * PN,Value * IntrBaseVal)1782 static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
1783 const BasicBlock *Parent = PN->getParent();
1784 int Idx = -1;
1785 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1786 BasicBlock *Blk = PN->getIncomingBlock(i);
1787 // Determine if the back edge is originated from intrinsic.
1788 if (Blk == Parent) {
1789 Value *BackEdgeVal = PN->getIncomingValue(i);
1790 Value *BaseVal;
1791 // Loop over till we return the same Value or we hit the IntrBaseVal.
1792 do {
1793 BaseVal = BackEdgeVal;
1794 BackEdgeVal = getBrevLdObject(BackEdgeVal);
1795 } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
1796 // If the getBrevLdObject returns IntrBaseVal, we should return the
1797 // incoming edge.
1798 if (IntrBaseVal == BackEdgeVal)
1799 continue;
1800 Idx = i;
1801 break;
1802 } else // Set the node to incoming edge.
1803 Idx = i;
1804 }
1805 assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
1806 return PN->getIncomingValue(Idx);
1807 }
1808
1809 // Bit-reverse Load Intrinsic: Figure out the underlying object the base
1810 // pointer points to, for the bit-reverse load intrinsic. Setting this to
1811 // memoperand might help alias analysis to figure out the dependencies.
getUnderLyingObjectForBrevLdIntr(Value * V)1812 static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
1813 Value *IntrBaseVal = V;
1814 Value *BaseVal;
1815 // Loop over till we return the same Value, implies we either figure out
1816 // the object or we hit a PHI
1817 do {
1818 BaseVal = V;
1819 V = getBrevLdObject(V);
1820 } while (BaseVal != V);
1821
1822 // Identify the object from PHINode.
1823 if (const PHINode *PN = dyn_cast<PHINode>(V))
1824 return returnEdge(PN, IntrBaseVal);
1825 // For non PHI nodes, the object is the last value returned by getBrevLdObject
1826 else
1827 return V;
1828 }
1829
1830 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1831 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1832 /// true and store the intrinsic information into the IntrinsicInfo that was
1833 /// passed to the function.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const1834 bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1835 const CallInst &I,
1836 MachineFunction &MF,
1837 unsigned Intrinsic) const {
1838 switch (Intrinsic) {
1839 case Intrinsic::hexagon_L2_loadrd_pbr:
1840 case Intrinsic::hexagon_L2_loadri_pbr:
1841 case Intrinsic::hexagon_L2_loadrh_pbr:
1842 case Intrinsic::hexagon_L2_loadruh_pbr:
1843 case Intrinsic::hexagon_L2_loadrb_pbr:
1844 case Intrinsic::hexagon_L2_loadrub_pbr: {
1845 Info.opc = ISD::INTRINSIC_W_CHAIN;
1846 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
1847 auto &Cont = I.getCalledFunction()->getParent()->getContext();
1848 // The intrinsic function call is of the form { ElTy, i8* }
1849 // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
1850 // should be derived from ElTy.
1851 Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
1852 Info.memVT = MVT::getVT(ElTy);
1853 llvm::Value *BasePtrVal = I.getOperand(0);
1854 Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
1855 // The offset value comes through Modifier register. For now, assume the
1856 // offset is 0.
1857 Info.offset = 0;
1858 Info.align =
1859 MaybeAlign(DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont)));
1860 Info.flags = MachineMemOperand::MOLoad;
1861 return true;
1862 }
1863 case Intrinsic::hexagon_V6_vgathermw:
1864 case Intrinsic::hexagon_V6_vgathermw_128B:
1865 case Intrinsic::hexagon_V6_vgathermh:
1866 case Intrinsic::hexagon_V6_vgathermh_128B:
1867 case Intrinsic::hexagon_V6_vgathermhw:
1868 case Intrinsic::hexagon_V6_vgathermhw_128B:
1869 case Intrinsic::hexagon_V6_vgathermwq:
1870 case Intrinsic::hexagon_V6_vgathermwq_128B:
1871 case Intrinsic::hexagon_V6_vgathermhq:
1872 case Intrinsic::hexagon_V6_vgathermhq_128B:
1873 case Intrinsic::hexagon_V6_vgathermhwq:
1874 case Intrinsic::hexagon_V6_vgathermhwq_128B: {
1875 const Module &M = *I.getParent()->getParent()->getParent();
1876 Info.opc = ISD::INTRINSIC_W_CHAIN;
1877 Type *VecTy = I.getArgOperand(1)->getType();
1878 Info.memVT = MVT::getVT(VecTy);
1879 Info.ptrVal = I.getArgOperand(0);
1880 Info.offset = 0;
1881 Info.align =
1882 MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8);
1883 Info.flags = MachineMemOperand::MOLoad |
1884 MachineMemOperand::MOStore |
1885 MachineMemOperand::MOVolatile;
1886 return true;
1887 }
1888 default:
1889 break;
1890 }
1891 return false;
1892 }
1893
hasBitTest(SDValue X,SDValue Y) const1894 bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1895 return X.getValueType().isScalarInteger(); // 'tstbit'
1896 }
1897
isTruncateFree(Type * Ty1,Type * Ty2) const1898 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
1899 return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
1900 }
1901
isTruncateFree(EVT VT1,EVT VT2) const1902 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1903 if (!VT1.isSimple() || !VT2.isSimple())
1904 return false;
1905 return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
1906 }
1907
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const1908 bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(
1909 const MachineFunction &MF, EVT VT) const {
1910 return isOperationLegalOrCustom(ISD::FMA, VT);
1911 }
1912
1913 // Should we expand the build vector with shuffles?
shouldExpandBuildVectorWithShuffles(EVT VT,unsigned DefinedValues) const1914 bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
1915 unsigned DefinedValues) const {
1916 return false;
1917 }
1918
isShuffleMaskLegal(ArrayRef<int> Mask,EVT VT) const1919 bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
1920 EVT VT) const {
1921 return true;
1922 }
1923
1924 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const1925 HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
1926 unsigned VecLen = VT.getVectorNumElements();
1927 MVT ElemTy = VT.getVectorElementType();
1928
1929 if (VecLen == 1 || VT.isScalableVector())
1930 return TargetLoweringBase::TypeScalarizeVector;
1931
1932 if (Subtarget.useHVXOps()) {
1933 unsigned HwLen = Subtarget.getVectorLength();
1934 // If the size of VT is at least half of the vector length,
1935 // widen the vector. Note: the threshold was not selected in
1936 // any scientific way.
1937 ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
1938 if (llvm::find(Tys, ElemTy) != Tys.end()) {
1939 unsigned HwWidth = 8*HwLen;
1940 unsigned VecWidth = VT.getSizeInBits();
1941 if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
1942 return TargetLoweringBase::TypeWidenVector;
1943 }
1944 // Split vectors of i1 that correspond to (byte) vector pairs.
1945 if (ElemTy == MVT::i1 && VecLen == 2*HwLen)
1946 return TargetLoweringBase::TypeSplitVector;
1947 }
1948
1949 // Always widen (remaining) vectors of i1.
1950 if (ElemTy == MVT::i1)
1951 return TargetLoweringBase::TypeWidenVector;
1952
1953 return TargetLoweringBase::TypeSplitVector;
1954 }
1955
1956 std::pair<SDValue, int>
getBaseAndOffset(SDValue Addr) const1957 HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
1958 if (Addr.getOpcode() == ISD::ADD) {
1959 SDValue Op1 = Addr.getOperand(1);
1960 if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
1961 return { Addr.getOperand(0), CN->getSExtValue() };
1962 }
1963 return { Addr, 0 };
1964 }
1965
1966 // Lower a vector shuffle (V1, V2, V3). V1 and V2 are the two vectors
1967 // to select data from, V3 is the permutation.
1968 SDValue
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const1969 HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
1970 const {
1971 const auto *SVN = cast<ShuffleVectorSDNode>(Op);
1972 ArrayRef<int> AM = SVN->getMask();
1973 assert(AM.size() <= 8 && "Unexpected shuffle mask");
1974 unsigned VecLen = AM.size();
1975
1976 MVT VecTy = ty(Op);
1977 assert(!Subtarget.isHVXVectorType(VecTy, true) &&
1978 "HVX shuffles should be legal");
1979 assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
1980
1981 SDValue Op0 = Op.getOperand(0);
1982 SDValue Op1 = Op.getOperand(1);
1983 const SDLoc &dl(Op);
1984
1985 // If the inputs are not the same as the output, bail. This is not an
1986 // error situation, but complicates the handling and the default expansion
1987 // (into BUILD_VECTOR) should be adequate.
1988 if (ty(Op0) != VecTy || ty(Op1) != VecTy)
1989 return SDValue();
1990
1991 // Normalize the mask so that the first non-negative index comes from
1992 // the first operand.
1993 SmallVector<int,8> Mask(AM.begin(), AM.end());
1994 unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
1995 if (F == AM.size())
1996 return DAG.getUNDEF(VecTy);
1997 if (AM[F] >= int(VecLen)) {
1998 ShuffleVectorSDNode::commuteMask(Mask);
1999 std::swap(Op0, Op1);
2000 }
2001
2002 // Express the shuffle mask in terms of bytes.
2003 SmallVector<int,8> ByteMask;
2004 unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
2005 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2006 int M = Mask[i];
2007 if (M < 0) {
2008 for (unsigned j = 0; j != ElemBytes; ++j)
2009 ByteMask.push_back(-1);
2010 } else {
2011 for (unsigned j = 0; j != ElemBytes; ++j)
2012 ByteMask.push_back(M*ElemBytes + j);
2013 }
2014 }
2015 assert(ByteMask.size() <= 8);
2016
2017 // All non-undef (non-negative) indexes are well within [0..127], so they
2018 // fit in a single byte. Build two 64-bit words:
2019 // - MaskIdx where each byte is the corresponding index (for non-negative
2020 // indexes), and 0xFF for negative indexes, and
2021 // - MaskUnd that has 0xFF for each negative index.
2022 uint64_t MaskIdx = 0;
2023 uint64_t MaskUnd = 0;
2024 for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
2025 unsigned S = 8*i;
2026 uint64_t M = ByteMask[i] & 0xFF;
2027 if (M == 0xFF)
2028 MaskUnd |= M << S;
2029 MaskIdx |= M << S;
2030 }
2031
2032 if (ByteMask.size() == 4) {
2033 // Identity.
2034 if (MaskIdx == (0x03020100 | MaskUnd))
2035 return Op0;
2036 // Byte swap.
2037 if (MaskIdx == (0x00010203 | MaskUnd)) {
2038 SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
2039 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
2040 return DAG.getBitcast(VecTy, T1);
2041 }
2042
2043 // Byte packs.
2044 SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl,
2045 typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0});
2046 if (MaskIdx == (0x06040200 | MaskUnd))
2047 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
2048 if (MaskIdx == (0x07050301 | MaskUnd))
2049 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
2050
2051 SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl,
2052 typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1});
2053 if (MaskIdx == (0x02000604 | MaskUnd))
2054 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
2055 if (MaskIdx == (0x03010705 | MaskUnd))
2056 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
2057 }
2058
2059 if (ByteMask.size() == 8) {
2060 // Identity.
2061 if (MaskIdx == (0x0706050403020100ull | MaskUnd))
2062 return Op0;
2063 // Byte swap.
2064 if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
2065 SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
2066 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
2067 return DAG.getBitcast(VecTy, T1);
2068 }
2069
2070 // Halfword picks.
2071 if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
2072 return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
2073 if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
2074 return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
2075 if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
2076 return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
2077 if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
2078 return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
2079 if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
2080 VectorPair P = opSplit(Op0, dl, DAG);
2081 return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
2082 }
2083
2084 // Byte packs.
2085 if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
2086 return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
2087 if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
2088 return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
2089 }
2090
2091 return SDValue();
2092 }
2093
2094 // Create a Hexagon-specific node for shifting a vector by an integer.
2095 SDValue
getVectorShiftByInt(SDValue Op,SelectionDAG & DAG) const2096 HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
2097 const {
2098 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) {
2099 if (SDValue S = BVN->getSplatValue()) {
2100 unsigned NewOpc;
2101 switch (Op.getOpcode()) {
2102 case ISD::SHL:
2103 NewOpc = HexagonISD::VASL;
2104 break;
2105 case ISD::SRA:
2106 NewOpc = HexagonISD::VASR;
2107 break;
2108 case ISD::SRL:
2109 NewOpc = HexagonISD::VLSR;
2110 break;
2111 default:
2112 llvm_unreachable("Unexpected shift opcode");
2113 }
2114 return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S);
2115 }
2116 }
2117
2118 return SDValue();
2119 }
2120
2121 SDValue
LowerVECTOR_SHIFT(SDValue Op,SelectionDAG & DAG) const2122 HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
2123 return getVectorShiftByInt(Op, DAG);
2124 }
2125
2126 SDValue
LowerROTL(SDValue Op,SelectionDAG & DAG) const2127 HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
2128 if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
2129 return Op;
2130 return SDValue();
2131 }
2132
2133 SDValue
LowerBITCAST(SDValue Op,SelectionDAG & DAG) const2134 HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2135 MVT ResTy = ty(Op);
2136 SDValue InpV = Op.getOperand(0);
2137 MVT InpTy = ty(InpV);
2138 assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
2139 const SDLoc &dl(Op);
2140
2141 // Handle conversion from i8 to v8i1.
2142 if (ResTy == MVT::v8i1) {
2143 SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
2144 SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
2145 return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
2146 }
2147
2148 return SDValue();
2149 }
2150
2151 bool
getBuildVectorConstInts(ArrayRef<SDValue> Values,MVT VecTy,SelectionDAG & DAG,MutableArrayRef<ConstantInt * > Consts) const2152 HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
2153 MVT VecTy, SelectionDAG &DAG,
2154 MutableArrayRef<ConstantInt*> Consts) const {
2155 MVT ElemTy = VecTy.getVectorElementType();
2156 unsigned ElemWidth = ElemTy.getSizeInBits();
2157 IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
2158 bool AllConst = true;
2159
2160 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2161 SDValue V = Values[i];
2162 if (V.isUndef()) {
2163 Consts[i] = ConstantInt::get(IntTy, 0);
2164 continue;
2165 }
2166 // Make sure to always cast to IntTy.
2167 if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
2168 const ConstantInt *CI = CN->getConstantIntValue();
2169 Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
2170 } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
2171 const ConstantFP *CF = CN->getConstantFPValue();
2172 APInt A = CF->getValueAPF().bitcastToAPInt();
2173 Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
2174 } else {
2175 AllConst = false;
2176 }
2177 }
2178 return AllConst;
2179 }
2180
2181 SDValue
buildVector32(ArrayRef<SDValue> Elem,const SDLoc & dl,MVT VecTy,SelectionDAG & DAG) const2182 HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
2183 MVT VecTy, SelectionDAG &DAG) const {
2184 MVT ElemTy = VecTy.getVectorElementType();
2185 assert(VecTy.getVectorNumElements() == Elem.size());
2186
2187 SmallVector<ConstantInt*,4> Consts(Elem.size());
2188 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2189
2190 unsigned First, Num = Elem.size();
2191 for (First = 0; First != Num; ++First)
2192 if (!isUndef(Elem[First]))
2193 break;
2194 if (First == Num)
2195 return DAG.getUNDEF(VecTy);
2196
2197 if (AllConst &&
2198 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2199 return getZero(dl, VecTy, DAG);
2200
2201 if (ElemTy == MVT::i16) {
2202 assert(Elem.size() == 2);
2203 if (AllConst) {
2204 uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
2205 Consts[1]->getZExtValue() << 16;
2206 return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32));
2207 }
2208 SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32,
2209 {Elem[1], Elem[0]}, DAG);
2210 return DAG.getBitcast(MVT::v2i16, N);
2211 }
2212
2213 if (ElemTy == MVT::i8) {
2214 // First try generating a constant.
2215 if (AllConst) {
2216 int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
2217 (Consts[1]->getZExtValue() & 0xFF) << 8 |
2218 (Consts[1]->getZExtValue() & 0xFF) << 16 |
2219 Consts[2]->getZExtValue() << 24;
2220 return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
2221 }
2222
2223 // Then try splat.
2224 bool IsSplat = true;
2225 for (unsigned i = 0; i != Num; ++i) {
2226 if (i == First)
2227 continue;
2228 if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2229 continue;
2230 IsSplat = false;
2231 break;
2232 }
2233 if (IsSplat) {
2234 // Legalize the operand to VSPLAT.
2235 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2236 return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
2237 }
2238
2239 // Generate
2240 // (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
2241 // (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
2242 assert(Elem.size() == 4);
2243 SDValue Vs[4];
2244 for (unsigned i = 0; i != 4; ++i) {
2245 Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
2246 Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
2247 }
2248 SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
2249 SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
2250 SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
2251 SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
2252 SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
2253
2254 SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
2255 return DAG.getBitcast(MVT::v4i8, R);
2256 }
2257
2258 #ifndef NDEBUG
2259 dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n';
2260 #endif
2261 llvm_unreachable("Unexpected vector element type");
2262 }
2263
2264 SDValue
buildVector64(ArrayRef<SDValue> Elem,const SDLoc & dl,MVT VecTy,SelectionDAG & DAG) const2265 HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
2266 MVT VecTy, SelectionDAG &DAG) const {
2267 MVT ElemTy = VecTy.getVectorElementType();
2268 assert(VecTy.getVectorNumElements() == Elem.size());
2269
2270 SmallVector<ConstantInt*,8> Consts(Elem.size());
2271 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2272
2273 unsigned First, Num = Elem.size();
2274 for (First = 0; First != Num; ++First)
2275 if (!isUndef(Elem[First]))
2276 break;
2277 if (First == Num)
2278 return DAG.getUNDEF(VecTy);
2279
2280 if (AllConst &&
2281 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2282 return getZero(dl, VecTy, DAG);
2283
2284 // First try splat if possible.
2285 if (ElemTy == MVT::i16) {
2286 bool IsSplat = true;
2287 for (unsigned i = 0; i != Num; ++i) {
2288 if (i == First)
2289 continue;
2290 if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2291 continue;
2292 IsSplat = false;
2293 break;
2294 }
2295 if (IsSplat) {
2296 // Legalize the operand to VSPLAT.
2297 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2298 return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
2299 }
2300 }
2301
2302 // Then try constant.
2303 if (AllConst) {
2304 uint64_t Val = 0;
2305 unsigned W = ElemTy.getSizeInBits();
2306 uint64_t Mask = (ElemTy == MVT::i8) ? 0xFFull
2307 : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull;
2308 for (unsigned i = 0; i != Num; ++i)
2309 Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
2310 SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
2311 return DAG.getBitcast(VecTy, V0);
2312 }
2313
2314 // Build two 32-bit vectors and concatenate.
2315 MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
2316 SDValue L = (ElemTy == MVT::i32)
2317 ? Elem[0]
2318 : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
2319 SDValue H = (ElemTy == MVT::i32)
2320 ? Elem[1]
2321 : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
2322 return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L});
2323 }
2324
2325 SDValue
extractVector(SDValue VecV,SDValue IdxV,const SDLoc & dl,MVT ValTy,MVT ResTy,SelectionDAG & DAG) const2326 HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
2327 const SDLoc &dl, MVT ValTy, MVT ResTy,
2328 SelectionDAG &DAG) const {
2329 MVT VecTy = ty(VecV);
2330 assert(!ValTy.isVector() ||
2331 VecTy.getVectorElementType() == ValTy.getVectorElementType());
2332 unsigned VecWidth = VecTy.getSizeInBits();
2333 unsigned ValWidth = ValTy.getSizeInBits();
2334 unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
2335 assert((VecWidth % ElemWidth) == 0);
2336 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV);
2337
2338 // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
2339 // without any coprocessors).
2340 if (ElemWidth == 1) {
2341 assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure");
2342 assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
2343 // Check if this is an extract of the lowest bit.
2344 if (IdxN) {
2345 // Extracting the lowest bit is a no-op, but it changes the type,
2346 // so it must be kept as an operation to avoid errors related to
2347 // type mismatches.
2348 if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1)
2349 return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
2350 }
2351
2352 // If the value extracted is a single bit, use tstbit.
2353 if (ValWidth == 1) {
2354 SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2355 SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
2356 SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
2357 return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
2358 }
2359
2360 // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
2361 // a predicate register. The elements of the vector are repeated
2362 // in the register (if necessary) so that the total number is 8.
2363 // The extracted subvector will need to be expanded in such a way.
2364 unsigned Scale = VecWidth / ValWidth;
2365
2366 // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
2367 // position 0.
2368 assert(ty(IdxV) == MVT::i32);
2369 unsigned VecRep = 8 / VecWidth;
2370 SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2371 DAG.getConstant(8*VecRep, dl, MVT::i32));
2372 SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2373 SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
2374 while (Scale > 1) {
2375 // The longest possible subvector is at most 32 bits, so it is always
2376 // contained in the low subregister.
2377 T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1);
2378 T1 = expandPredicate(T1, dl, DAG);
2379 Scale /= 2;
2380 }
2381
2382 return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
2383 }
2384
2385 assert(VecWidth == 32 || VecWidth == 64);
2386
2387 // Cast everything to scalar integer types.
2388 MVT ScalarTy = tyScalar(VecTy);
2389 VecV = DAG.getBitcast(ScalarTy, VecV);
2390
2391 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2392 SDValue ExtV;
2393
2394 if (IdxN) {
2395 unsigned Off = IdxN->getZExtValue() * ElemWidth;
2396 if (VecWidth == 64 && ValWidth == 32) {
2397 assert(Off == 0 || Off == 32);
2398 unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
2399 ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV);
2400 } else if (Off == 0 && (ValWidth % 8) == 0) {
2401 ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
2402 } else {
2403 SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
2404 // The return type of EXTRACTU must be the same as the type of the
2405 // input vector.
2406 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2407 {VecV, WidthV, OffV});
2408 }
2409 } else {
2410 if (ty(IdxV) != MVT::i32)
2411 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2412 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2413 DAG.getConstant(ElemWidth, dl, MVT::i32));
2414 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2415 {VecV, WidthV, OffV});
2416 }
2417
2418 // Cast ExtV to the requested result type.
2419 ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
2420 ExtV = DAG.getBitcast(ResTy, ExtV);
2421 return ExtV;
2422 }
2423
2424 SDValue
insertVector(SDValue VecV,SDValue ValV,SDValue IdxV,const SDLoc & dl,MVT ValTy,SelectionDAG & DAG) const2425 HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
2426 const SDLoc &dl, MVT ValTy,
2427 SelectionDAG &DAG) const {
2428 MVT VecTy = ty(VecV);
2429 if (VecTy.getVectorElementType() == MVT::i1) {
2430 MVT ValTy = ty(ValV);
2431 assert(ValTy.getVectorElementType() == MVT::i1);
2432 SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV);
2433 unsigned VecLen = VecTy.getVectorNumElements();
2434 unsigned Scale = VecLen / ValTy.getVectorNumElements();
2435 assert(Scale > 1);
2436
2437 for (unsigned R = Scale; R > 1; R /= 2) {
2438 ValR = contractPredicate(ValR, dl, DAG);
2439 ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2440 DAG.getUNDEF(MVT::i32), ValR);
2441 }
2442 // The longest possible subvector is at most 32 bits, so it is always
2443 // contained in the low subregister.
2444 ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR);
2445
2446 unsigned ValBytes = 64 / Scale;
2447 SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32);
2448 SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2449 DAG.getConstant(8, dl, MVT::i32));
2450 SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2451 SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2452 {VecR, ValR, Width, Idx});
2453 return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
2454 }
2455
2456 unsigned VecWidth = VecTy.getSizeInBits();
2457 unsigned ValWidth = ValTy.getSizeInBits();
2458 assert(VecWidth == 32 || VecWidth == 64);
2459 assert((VecWidth % ValWidth) == 0);
2460
2461 // Cast everything to scalar integer types.
2462 MVT ScalarTy = MVT::getIntegerVT(VecWidth);
2463 // The actual type of ValV may be different than ValTy (which is related
2464 // to the vector type).
2465 unsigned VW = ty(ValV).getSizeInBits();
2466 ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
2467 VecV = DAG.getBitcast(ScalarTy, VecV);
2468 if (VW != VecWidth)
2469 ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
2470
2471 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2472 SDValue InsV;
2473
2474 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
2475 unsigned W = C->getZExtValue() * ValWidth;
2476 SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
2477 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2478 {VecV, ValV, WidthV, OffV});
2479 } else {
2480 if (ty(IdxV) != MVT::i32)
2481 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2482 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
2483 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2484 {VecV, ValV, WidthV, OffV});
2485 }
2486
2487 return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
2488 }
2489
2490 SDValue
expandPredicate(SDValue Vec32,const SDLoc & dl,SelectionDAG & DAG) const2491 HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
2492 SelectionDAG &DAG) const {
2493 assert(ty(Vec32).getSizeInBits() == 32);
2494 if (isUndef(Vec32))
2495 return DAG.getUNDEF(MVT::i64);
2496 return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG);
2497 }
2498
2499 SDValue
contractPredicate(SDValue Vec64,const SDLoc & dl,SelectionDAG & DAG) const2500 HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
2501 SelectionDAG &DAG) const {
2502 assert(ty(Vec64).getSizeInBits() == 64);
2503 if (isUndef(Vec64))
2504 return DAG.getUNDEF(MVT::i32);
2505 return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG);
2506 }
2507
2508 SDValue
getZero(const SDLoc & dl,MVT Ty,SelectionDAG & DAG) const2509 HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
2510 const {
2511 if (Ty.isVector()) {
2512 assert(Ty.isInteger() && "Only integer vectors are supported here");
2513 unsigned W = Ty.getSizeInBits();
2514 if (W <= 64)
2515 return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
2516 return DAG.getNode(HexagonISD::VZERO, dl, Ty);
2517 }
2518
2519 if (Ty.isInteger())
2520 return DAG.getConstant(0, dl, Ty);
2521 if (Ty.isFloatingPoint())
2522 return DAG.getConstantFP(0.0, dl, Ty);
2523 llvm_unreachable("Invalid type for zero");
2524 }
2525
2526 SDValue
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const2527 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2528 MVT VecTy = ty(Op);
2529 unsigned BW = VecTy.getSizeInBits();
2530 const SDLoc &dl(Op);
2531 SmallVector<SDValue,8> Ops;
2532 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
2533 Ops.push_back(Op.getOperand(i));
2534
2535 if (BW == 32)
2536 return buildVector32(Ops, dl, VecTy, DAG);
2537 if (BW == 64)
2538 return buildVector64(Ops, dl, VecTy, DAG);
2539
2540 if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
2541 // Check if this is a special case or all-0 or all-1.
2542 bool All0 = true, All1 = true;
2543 for (SDValue P : Ops) {
2544 auto *CN = dyn_cast<ConstantSDNode>(P.getNode());
2545 if (CN == nullptr) {
2546 All0 = All1 = false;
2547 break;
2548 }
2549 uint32_t C = CN->getZExtValue();
2550 All0 &= (C == 0);
2551 All1 &= (C == 1);
2552 }
2553 if (All0)
2554 return DAG.getNode(HexagonISD::PFALSE, dl, VecTy);
2555 if (All1)
2556 return DAG.getNode(HexagonISD::PTRUE, dl, VecTy);
2557
2558 // For each i1 element in the resulting predicate register, put 1
2559 // shifted by the index of the element into a general-purpose register,
2560 // then or them together and transfer it back into a predicate register.
2561 SDValue Rs[8];
2562 SDValue Z = getZero(dl, MVT::i32, DAG);
2563 // Always produce 8 bits, repeat inputs if necessary.
2564 unsigned Rep = 8 / VecTy.getVectorNumElements();
2565 for (unsigned i = 0; i != 8; ++i) {
2566 SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
2567 Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
2568 }
2569 for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
2570 for (unsigned i = 0, e = A.size()/2; i != e; ++i)
2571 Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
2572 }
2573 // Move the value directly to a predicate register.
2574 return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
2575 }
2576
2577 return SDValue();
2578 }
2579
2580 SDValue
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const2581 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2582 SelectionDAG &DAG) const {
2583 MVT VecTy = ty(Op);
2584 const SDLoc &dl(Op);
2585 if (VecTy.getSizeInBits() == 64) {
2586 assert(Op.getNumOperands() == 2);
2587 return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1),
2588 Op.getOperand(0));
2589 }
2590
2591 MVT ElemTy = VecTy.getVectorElementType();
2592 if (ElemTy == MVT::i1) {
2593 assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
2594 MVT OpTy = ty(Op.getOperand(0));
2595 // Scale is how many times the operands need to be contracted to match
2596 // the representation in the target register.
2597 unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
2598 assert(Scale == Op.getNumOperands() && Scale > 1);
2599
2600 // First, convert all bool vectors to integers, then generate pairwise
2601 // inserts to form values of doubled length. Up until there are only
2602 // two values left to concatenate, all of these values will fit in a
2603 // 32-bit integer, so keep them as i32 to use 32-bit inserts.
2604 SmallVector<SDValue,4> Words[2];
2605 unsigned IdxW = 0;
2606
2607 for (SDValue P : Op.getNode()->op_values()) {
2608 SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
2609 for (unsigned R = Scale; R > 1; R /= 2) {
2610 W = contractPredicate(W, dl, DAG);
2611 W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2612 DAG.getUNDEF(MVT::i32), W);
2613 }
2614 W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W);
2615 Words[IdxW].push_back(W);
2616 }
2617
2618 while (Scale > 2) {
2619 SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
2620 Words[IdxW ^ 1].clear();
2621
2622 for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
2623 SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
2624 // Insert W1 into W0 right next to the significant bits of W0.
2625 SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2626 {W0, W1, WidthV, WidthV});
2627 Words[IdxW ^ 1].push_back(T);
2628 }
2629 IdxW ^= 1;
2630 Scale /= 2;
2631 }
2632
2633 // Another sanity check. At this point there should only be two words
2634 // left, and Scale should be 2.
2635 assert(Scale == 2 && Words[IdxW].size() == 2);
2636
2637 SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2638 Words[IdxW][1], Words[IdxW][0]);
2639 return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
2640 }
2641
2642 return SDValue();
2643 }
2644
2645 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const2646 HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
2647 SelectionDAG &DAG) const {
2648 SDValue Vec = Op.getOperand(0);
2649 MVT ElemTy = ty(Vec).getVectorElementType();
2650 return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
2651 }
2652
2653 SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const2654 HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
2655 SelectionDAG &DAG) const {
2656 return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
2657 ty(Op), ty(Op), DAG);
2658 }
2659
2660 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const2661 HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
2662 SelectionDAG &DAG) const {
2663 return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
2664 SDLoc(Op), ty(Op).getVectorElementType(), DAG);
2665 }
2666
2667 SDValue
LowerINSERT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const2668 HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
2669 SelectionDAG &DAG) const {
2670 SDValue ValV = Op.getOperand(1);
2671 return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
2672 SDLoc(Op), ty(ValV), DAG);
2673 }
2674
2675 bool
allowTruncateForTailCall(Type * Ty1,Type * Ty2) const2676 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
2677 // Assuming the caller does not have either a signext or zeroext modifier, and
2678 // only one value is accepted, any reasonable truncation is allowed.
2679 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
2680 return false;
2681
2682 // FIXME: in principle up to 64-bit could be made safe, but it would be very
2683 // fragile at the moment: any support for multiple value returns would be
2684 // liable to disallow tail calls involving i64 -> iN truncation in many cases.
2685 return Ty1->getPrimitiveSizeInBits() <= 32;
2686 }
2687
2688 SDValue
LowerLoad(SDValue Op,SelectionDAG & DAG) const2689 HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
2690 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2691 unsigned ClaimAlign = LN->getAlignment();
2692 validateConstPtrAlignment(LN->getBasePtr(), SDLoc(Op), ClaimAlign);
2693 // Call LowerUnalignedLoad for all loads, it recognizes loads that
2694 // don't need extra aligning.
2695 return LowerUnalignedLoad(Op, DAG);
2696 }
2697
2698 SDValue
LowerStore(SDValue Op,SelectionDAG & DAG) const2699 HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
2700 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
2701 unsigned ClaimAlign = SN->getAlignment();
2702 SDValue Ptr = SN->getBasePtr();
2703 const SDLoc &dl(Op);
2704 validateConstPtrAlignment(Ptr, dl, ClaimAlign);
2705
2706 MVT StoreTy = SN->getMemoryVT().getSimpleVT();
2707 unsigned NeedAlign = Subtarget.getTypeAlignment(StoreTy);
2708 if (ClaimAlign < NeedAlign)
2709 return expandUnalignedStore(SN, DAG);
2710 return Op;
2711 }
2712
2713 SDValue
LowerUnalignedLoad(SDValue Op,SelectionDAG & DAG) const2714 HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
2715 const {
2716 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2717 MVT LoadTy = ty(Op);
2718 unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy);
2719 unsigned HaveAlign = LN->getAlignment();
2720 if (HaveAlign >= NeedAlign)
2721 return Op;
2722
2723 const SDLoc &dl(Op);
2724 const DataLayout &DL = DAG.getDataLayout();
2725 LLVMContext &Ctx = *DAG.getContext();
2726
2727 // If the load aligning is disabled or the load can be broken up into two
2728 // smaller legal loads, do the default (target-independent) expansion.
2729 bool DoDefault = false;
2730 // Handle it in the default way if this is an indexed load.
2731 if (!LN->isUnindexed())
2732 DoDefault = true;
2733
2734 if (!AlignLoads) {
2735 if (allowsMemoryAccessForAlignment(Ctx, DL, LN->getMemoryVT(),
2736 *LN->getMemOperand()))
2737 return Op;
2738 DoDefault = true;
2739 }
2740 if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
2741 // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
2742 MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
2743 : MVT::getVectorVT(MVT::i8, HaveAlign);
2744 DoDefault =
2745 allowsMemoryAccessForAlignment(Ctx, DL, PartTy, *LN->getMemOperand());
2746 }
2747 if (DoDefault) {
2748 std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
2749 return DAG.getMergeValues({P.first, P.second}, dl);
2750 }
2751
2752 // The code below generates two loads, both aligned as NeedAlign, and
2753 // with the distance of NeedAlign between them. For that to cover the
2754 // bits that need to be loaded (and without overlapping), the size of
2755 // the loads should be equal to NeedAlign. This is true for all loadable
2756 // types, but add an assertion in case something changes in the future.
2757 assert(LoadTy.getSizeInBits() == 8*NeedAlign);
2758
2759 unsigned LoadLen = NeedAlign;
2760 SDValue Base = LN->getBasePtr();
2761 SDValue Chain = LN->getChain();
2762 auto BO = getBaseAndOffset(Base);
2763 unsigned BaseOpc = BO.first.getOpcode();
2764 if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
2765 return Op;
2766
2767 if (BO.second % LoadLen != 0) {
2768 BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
2769 DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
2770 BO.second -= BO.second % LoadLen;
2771 }
2772 SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
2773 ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
2774 DAG.getConstant(NeedAlign, dl, MVT::i32))
2775 : BO.first;
2776 SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl);
2777 SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl);
2778
2779 MachineMemOperand *WideMMO = nullptr;
2780 if (MachineMemOperand *MMO = LN->getMemOperand()) {
2781 MachineFunction &MF = DAG.getMachineFunction();
2782 WideMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), MMO->getFlags(),
2783 2*LoadLen, LoadLen, MMO->getAAInfo(), MMO->getRanges(),
2784 MMO->getSyncScopeID(), MMO->getOrdering(),
2785 MMO->getFailureOrdering());
2786 }
2787
2788 SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
2789 SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
2790
2791 SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
2792 {Load1, Load0, BaseNoOff.getOperand(0)});
2793 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2794 Load0.getValue(1), Load1.getValue(1));
2795 SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
2796 return M;
2797 }
2798
2799 SDValue
LowerUAddSubO(SDValue Op,SelectionDAG & DAG) const2800 HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
2801 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
2802 auto *CY = dyn_cast<ConstantSDNode>(Y);
2803 if (!CY)
2804 return SDValue();
2805
2806 const SDLoc &dl(Op);
2807 SDVTList VTs = Op.getNode()->getVTList();
2808 assert(VTs.NumVTs == 2);
2809 assert(VTs.VTs[1] == MVT::i1);
2810 unsigned Opc = Op.getOpcode();
2811
2812 if (CY) {
2813 uint32_t VY = CY->getZExtValue();
2814 assert(VY != 0 && "This should have been folded");
2815 // X +/- 1
2816 if (VY != 1)
2817 return SDValue();
2818
2819 if (Opc == ISD::UADDO) {
2820 SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
2821 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
2822 ISD::SETEQ);
2823 return DAG.getMergeValues({Op, Ov}, dl);
2824 }
2825 if (Opc == ISD::USUBO) {
2826 SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
2827 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
2828 DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
2829 return DAG.getMergeValues({Op, Ov}, dl);
2830 }
2831 }
2832
2833 return SDValue();
2834 }
2835
2836 SDValue
LowerAddSubCarry(SDValue Op,SelectionDAG & DAG) const2837 HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const {
2838 const SDLoc &dl(Op);
2839 unsigned Opc = Op.getOpcode();
2840 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
2841
2842 if (Opc == ISD::ADDCARRY)
2843 return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
2844 { X, Y, C });
2845
2846 EVT CarryTy = C.getValueType();
2847 SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
2848 { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
2849 SDValue Out[] = { SubC.getValue(0),
2850 DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
2851 return DAG.getMergeValues(Out, dl);
2852 }
2853
2854 SDValue
LowerEH_RETURN(SDValue Op,SelectionDAG & DAG) const2855 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
2856 SDValue Chain = Op.getOperand(0);
2857 SDValue Offset = Op.getOperand(1);
2858 SDValue Handler = Op.getOperand(2);
2859 SDLoc dl(Op);
2860 auto PtrVT = getPointerTy(DAG.getDataLayout());
2861
2862 // Mark function as containing a call to EH_RETURN.
2863 HexagonMachineFunctionInfo *FuncInfo =
2864 DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
2865 FuncInfo->setHasEHReturn();
2866
2867 unsigned OffsetReg = Hexagon::R28;
2868
2869 SDValue StoreAddr =
2870 DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
2871 DAG.getIntPtrConstant(4, dl));
2872 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
2873 Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
2874
2875 // Not needed we already use it as explict input to EH_RETURN.
2876 // MF.getRegInfo().addLiveOut(OffsetReg);
2877
2878 return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
2879 }
2880
2881 SDValue
LowerOperation(SDValue Op,SelectionDAG & DAG) const2882 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2883 unsigned Opc = Op.getOpcode();
2884
2885 // Handle INLINEASM first.
2886 if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
2887 return LowerINLINEASM(Op, DAG);
2888
2889 if (isHvxOperation(Op)) {
2890 // If HVX lowering returns nothing, try the default lowering.
2891 if (SDValue V = LowerHvxOperation(Op, DAG))
2892 return V;
2893 }
2894
2895 switch (Opc) {
2896 default:
2897 #ifndef NDEBUG
2898 Op.getNode()->dumpr(&DAG);
2899 if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
2900 errs() << "Error: check for a non-legal type in this operation\n";
2901 #endif
2902 llvm_unreachable("Should not custom lower this!");
2903 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
2904 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
2905 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
2906 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
2907 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2908 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
2909 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2910 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
2911 case ISD::LOAD: return LowerLoad(Op, DAG);
2912 case ISD::STORE: return LowerStore(Op, DAG);
2913 case ISD::UADDO:
2914 case ISD::USUBO: return LowerUAddSubO(Op, DAG);
2915 case ISD::ADDCARRY:
2916 case ISD::SUBCARRY: return LowerAddSubCarry(Op, DAG);
2917 case ISD::SRA:
2918 case ISD::SHL:
2919 case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG);
2920 case ISD::ROTL: return LowerROTL(Op, DAG);
2921 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
2922 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2923 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
2924 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
2925 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
2926 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2927 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
2928 case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG);
2929 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
2930 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2931 case ISD::VASTART: return LowerVASTART(Op, DAG);
2932 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
2933 case ISD::SETCC: return LowerSETCC(Op, DAG);
2934 case ISD::VSELECT: return LowerVSELECT(Op, DAG);
2935 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2936 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
2937 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG);
2938 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
2939 break;
2940 }
2941
2942 return SDValue();
2943 }
2944
2945 void
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const2946 HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
2947 SmallVectorImpl<SDValue> &Results,
2948 SelectionDAG &DAG) const {
2949 // We are only custom-lowering stores to verify the alignment of the
2950 // address if it is a compile-time constant. Since a store can be modified
2951 // during type-legalization (the value being stored may need legalization),
2952 // return empty Results here to indicate that we don't really make any
2953 // changes in the custom lowering.
2954 if (N->getOpcode() != ISD::STORE)
2955 return TargetLowering::LowerOperationWrapper(N, Results, DAG);
2956 }
2957
2958 void
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const2959 HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
2960 SmallVectorImpl<SDValue> &Results,
2961 SelectionDAG &DAG) const {
2962 const SDLoc &dl(N);
2963 switch (N->getOpcode()) {
2964 case ISD::SRL:
2965 case ISD::SRA:
2966 case ISD::SHL:
2967 return;
2968 case ISD::BITCAST:
2969 // Handle a bitcast from v8i1 to i8.
2970 if (N->getValueType(0) == MVT::i8) {
2971 SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
2972 N->getOperand(0), DAG);
2973 SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8);
2974 Results.push_back(T);
2975 }
2976 break;
2977 }
2978 }
2979
2980 SDValue
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2981 HexagonTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
2982 const {
2983 SDValue Op(N, 0);
2984 if (isHvxOperation(Op)) {
2985 if (SDValue V = PerformHvxDAGCombine(N, DCI))
2986 return V;
2987 return SDValue();
2988 }
2989
2990 const SDLoc &dl(Op);
2991 unsigned Opc = Op.getOpcode();
2992
2993 if (Opc == HexagonISD::P2D) {
2994 SDValue P = Op.getOperand(0);
2995 switch (P.getOpcode()) {
2996 case HexagonISD::PTRUE:
2997 return DCI.DAG.getConstant(-1, dl, ty(Op));
2998 case HexagonISD::PFALSE:
2999 return getZero(dl, ty(Op), DCI.DAG);
3000 default:
3001 break;
3002 }
3003 } else if (Opc == ISD::VSELECT) {
3004 // This is pretty much duplicated in HexagonISelLoweringHVX...
3005 //
3006 // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0)
3007 SDValue Cond = Op.getOperand(0);
3008 if (Cond->getOpcode() == ISD::XOR) {
3009 SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
3010 if (C1->getOpcode() == HexagonISD::PTRUE) {
3011 SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
3012 Op.getOperand(2), Op.getOperand(1));
3013 return VSel;
3014 }
3015 }
3016 }
3017
3018 return SDValue();
3019 }
3020
3021 /// Returns relocation base for the given PIC jumptable.
3022 SDValue
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const3023 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3024 SelectionDAG &DAG) const {
3025 int Idx = cast<JumpTableSDNode>(Table)->getIndex();
3026 EVT VT = Table.getValueType();
3027 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
3028 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
3029 }
3030
3031 //===----------------------------------------------------------------------===//
3032 // Inline Assembly Support
3033 //===----------------------------------------------------------------------===//
3034
3035 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const3036 HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
3037 if (Constraint.size() == 1) {
3038 switch (Constraint[0]) {
3039 case 'q':
3040 case 'v':
3041 if (Subtarget.useHVXOps())
3042 return C_RegisterClass;
3043 break;
3044 case 'a':
3045 return C_RegisterClass;
3046 default:
3047 break;
3048 }
3049 }
3050 return TargetLowering::getConstraintType(Constraint);
3051 }
3052
3053 std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const3054 HexagonTargetLowering::getRegForInlineAsmConstraint(
3055 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
3056
3057 if (Constraint.size() == 1) {
3058 switch (Constraint[0]) {
3059 case 'r': // R0-R31
3060 switch (VT.SimpleTy) {
3061 default:
3062 return {0u, nullptr};
3063 case MVT::i1:
3064 case MVT::i8:
3065 case MVT::i16:
3066 case MVT::i32:
3067 case MVT::f32:
3068 return {0u, &Hexagon::IntRegsRegClass};
3069 case MVT::i64:
3070 case MVT::f64:
3071 return {0u, &Hexagon::DoubleRegsRegClass};
3072 }
3073 break;
3074 case 'a': // M0-M1
3075 if (VT != MVT::i32)
3076 return {0u, nullptr};
3077 return {0u, &Hexagon::ModRegsRegClass};
3078 case 'q': // q0-q3
3079 switch (VT.getSizeInBits()) {
3080 default:
3081 return {0u, nullptr};
3082 case 512:
3083 case 1024:
3084 return {0u, &Hexagon::HvxQRRegClass};
3085 }
3086 break;
3087 case 'v': // V0-V31
3088 switch (VT.getSizeInBits()) {
3089 default:
3090 return {0u, nullptr};
3091 case 512:
3092 return {0u, &Hexagon::HvxVRRegClass};
3093 case 1024:
3094 if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
3095 return {0u, &Hexagon::HvxVRRegClass};
3096 return {0u, &Hexagon::HvxWRRegClass};
3097 case 2048:
3098 return {0u, &Hexagon::HvxWRRegClass};
3099 }
3100 break;
3101 default:
3102 return {0u, nullptr};
3103 }
3104 }
3105
3106 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3107 }
3108
3109 /// isFPImmLegal - Returns true if the target can instruction select the
3110 /// specified FP immediate natively. If false, the legalizer will
3111 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const3112 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
3113 bool ForCodeSize) const {
3114 return true;
3115 }
3116
3117 /// isLegalAddressingMode - Return true if the addressing mode represented by
3118 /// AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const3119 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3120 const AddrMode &AM, Type *Ty,
3121 unsigned AS, Instruction *I) const {
3122 if (Ty->isSized()) {
3123 // When LSR detects uses of the same base address to access different
3124 // types (e.g. unions), it will assume a conservative type for these
3125 // uses:
3126 // LSR Use: Kind=Address of void in addrspace(4294967295), ...
3127 // The type Ty passed here would then be "void". Skip the alignment
3128 // checks, but do not return false right away, since that confuses
3129 // LSR into crashing.
3130 unsigned A = DL.getABITypeAlignment(Ty);
3131 // The base offset must be a multiple of the alignment.
3132 if ((AM.BaseOffs % A) != 0)
3133 return false;
3134 // The shifted offset must fit in 11 bits.
3135 if (!isInt<11>(AM.BaseOffs >> Log2_32(A)))
3136 return false;
3137 }
3138
3139 // No global is ever allowed as a base.
3140 if (AM.BaseGV)
3141 return false;
3142
3143 int Scale = AM.Scale;
3144 if (Scale < 0)
3145 Scale = -Scale;
3146 switch (Scale) {
3147 case 0: // No scale reg, "r+i", "r", or just "i".
3148 break;
3149 default: // No scaled addressing mode.
3150 return false;
3151 }
3152 return true;
3153 }
3154
3155 /// Return true if folding a constant offset with the given GlobalAddress is
3156 /// legal. It is frequently not legal in PIC relocation models.
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const3157 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
3158 const {
3159 return HTM.getRelocationModel() == Reloc::Static;
3160 }
3161
3162 /// isLegalICmpImmediate - Return true if the specified immediate is legal
3163 /// icmp immediate, that is the target has icmp instructions which can compare
3164 /// a register against the immediate without having to materialize the
3165 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const3166 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3167 return Imm >= -512 && Imm <= 511;
3168 }
3169
3170 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3171 /// for tail call optimization. Targets which want to do tail call
3172 /// optimization should implement this function.
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool IsVarArg,bool IsCalleeStructRet,bool IsCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const3173 bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
3174 SDValue Callee,
3175 CallingConv::ID CalleeCC,
3176 bool IsVarArg,
3177 bool IsCalleeStructRet,
3178 bool IsCallerStructRet,
3179 const SmallVectorImpl<ISD::OutputArg> &Outs,
3180 const SmallVectorImpl<SDValue> &OutVals,
3181 const SmallVectorImpl<ISD::InputArg> &Ins,
3182 SelectionDAG& DAG) const {
3183 const Function &CallerF = DAG.getMachineFunction().getFunction();
3184 CallingConv::ID CallerCC = CallerF.getCallingConv();
3185 bool CCMatch = CallerCC == CalleeCC;
3186
3187 // ***************************************************************************
3188 // Look for obvious safe cases to perform tail call optimization that do not
3189 // require ABI changes.
3190 // ***************************************************************************
3191
3192 // If this is a tail call via a function pointer, then don't do it!
3193 if (!isa<GlobalAddressSDNode>(Callee) &&
3194 !isa<ExternalSymbolSDNode>(Callee)) {
3195 return false;
3196 }
3197
3198 // Do not optimize if the calling conventions do not match and the conventions
3199 // used are not C or Fast.
3200 if (!CCMatch) {
3201 bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
3202 bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
3203 // If R & E, then ok.
3204 if (!R || !E)
3205 return false;
3206 }
3207
3208 // Do not tail call optimize vararg calls.
3209 if (IsVarArg)
3210 return false;
3211
3212 // Also avoid tail call optimization if either caller or callee uses struct
3213 // return semantics.
3214 if (IsCalleeStructRet || IsCallerStructRet)
3215 return false;
3216
3217 // In addition to the cases above, we also disable Tail Call Optimization if
3218 // the calling convention code that at least one outgoing argument needs to
3219 // go on the stack. We cannot check that here because at this point that
3220 // information is not available.
3221 return true;
3222 }
3223
3224 /// Returns the target specific optimal type for load and store operations as
3225 /// a result of memset, memcpy, and memmove lowering.
3226 ///
3227 /// If DstAlign is zero that means it's safe to destination alignment can
3228 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
3229 /// a need to check it against alignment requirement, probably because the
3230 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
3231 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
3232 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
3233 /// does not need to be loaded. It returns EVT::Other if the type should be
3234 /// determined using generic target-independent logic.
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,const AttributeList & FuncAttributes) const3235 EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size,
3236 unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset,
3237 bool MemcpyStrSrc, const AttributeList &FuncAttributes) const {
3238
3239 auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool {
3240 return (GivenA % MinA) == 0;
3241 };
3242
3243 if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8)))
3244 return MVT::i64;
3245 if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4)))
3246 return MVT::i32;
3247 if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2)))
3248 return MVT::i16;
3249
3250 return MVT::Other;
3251 }
3252
allowsMisalignedMemoryAccesses(EVT VT,unsigned AS,unsigned Align,MachineMemOperand::Flags Flags,bool * Fast) const3253 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
3254 EVT VT, unsigned AS, unsigned Align, MachineMemOperand::Flags Flags,
3255 bool *Fast) const {
3256 if (Fast)
3257 *Fast = false;
3258 return Subtarget.isHVXVectorType(VT.getSimpleVT());
3259 }
3260
3261 std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const3262 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3263 MVT VT) const {
3264 if (Subtarget.isHVXVectorType(VT, true)) {
3265 unsigned BitWidth = VT.getSizeInBits();
3266 unsigned VecWidth = Subtarget.getVectorLength() * 8;
3267
3268 if (VT.getVectorElementType() == MVT::i1)
3269 return std::make_pair(&Hexagon::HvxQRRegClass, 1);
3270 if (BitWidth == VecWidth)
3271 return std::make_pair(&Hexagon::HvxVRRegClass, 1);
3272 assert(BitWidth == 2 * VecWidth);
3273 return std::make_pair(&Hexagon::HvxWRRegClass, 1);
3274 }
3275
3276 return TargetLowering::findRepresentativeClass(TRI, VT);
3277 }
3278
shouldReduceLoadWidth(SDNode * Load,ISD::LoadExtType ExtTy,EVT NewVT) const3279 bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
3280 ISD::LoadExtType ExtTy, EVT NewVT) const {
3281 // TODO: This may be worth removing. Check regression tests for diffs.
3282 if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
3283 return false;
3284
3285 auto *L = cast<LoadSDNode>(Load);
3286 std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
3287 // Small-data object, do not shrink.
3288 if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
3289 return false;
3290 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
3291 auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
3292 const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
3293 return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
3294 }
3295 return true;
3296 }
3297
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const3298 Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
3299 AtomicOrdering Ord) const {
3300 BasicBlock *BB = Builder.GetInsertBlock();
3301 Module *M = BB->getParent()->getParent();
3302 auto PT = cast<PointerType>(Addr->getType());
3303 Type *Ty = PT->getElementType();
3304 unsigned SZ = Ty->getPrimitiveSizeInBits();
3305 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3306 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3307 : Intrinsic::hexagon_L4_loadd_locked;
3308 Function *Fn = Intrinsic::getDeclaration(M, IntID);
3309
3310 PointerType *NewPtrTy
3311 = Builder.getIntNTy(SZ)->getPointerTo(PT->getAddressSpace());
3312 Addr = Builder.CreateBitCast(Addr, NewPtrTy);
3313
3314 Value *Call = Builder.CreateCall(Fn, Addr, "larx");
3315
3316 return Builder.CreateBitCast(Call, Ty);
3317 }
3318
3319 /// Perform a store-conditional operation to Addr. Return the status of the
3320 /// store. This should be 0 if the store succeeded, non-zero otherwise.
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const3321 Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
3322 Value *Val, Value *Addr, AtomicOrdering Ord) const {
3323 BasicBlock *BB = Builder.GetInsertBlock();
3324 Module *M = BB->getParent()->getParent();
3325 Type *Ty = Val->getType();
3326 unsigned SZ = Ty->getPrimitiveSizeInBits();
3327
3328 Type *CastTy = Builder.getIntNTy(SZ);
3329 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3330 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3331 : Intrinsic::hexagon_S4_stored_locked;
3332 Function *Fn = Intrinsic::getDeclaration(M, IntID);
3333
3334 unsigned AS = Addr->getType()->getPointerAddressSpace();
3335 Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS));
3336 Val = Builder.CreateBitCast(Val, CastTy);
3337
3338 Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
3339 Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3340 Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3341 return Ext;
3342 }
3343
3344 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const3345 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3346 // Do not expand loads and stores that don't exceed 64 bits.
3347 return LI->getType()->getPrimitiveSizeInBits() > 64
3348 ? AtomicExpansionKind::LLOnly
3349 : AtomicExpansionKind::None;
3350 }
3351
shouldExpandAtomicStoreInIR(StoreInst * SI) const3352 bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3353 // Do not expand loads and stores that don't exceed 64 bits.
3354 return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
3355 }
3356
3357 TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const3358 HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3359 AtomicCmpXchgInst *AI) const {
3360 const DataLayout &DL = AI->getModule()->getDataLayout();
3361 unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
3362 if (Size >= 4 && Size <= 8)
3363 return AtomicExpansionKind::LLSC;
3364 return AtomicExpansionKind::None;
3365 }
3366