• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /////////////////////////////////////////////////////////////////////////
18 /*
19  * This module contains vector math utilities for the following datatypes:
20  * -) Vec3 structures for 3-dimensional vectors
21  * -) Vec4 structures for 4-dimensional vectors
22  * -) floating point arrays for N-dimensional vectors.
23  *
24  * Note that the Vec3 and Vec4 utilties were ported from the Android
25  * repository and maintain dependenices in that separate codebase. As a
26  * result, the function signatures were left untouched for compatibility with
27  * this legacy code, despite certain style violations. In particular, for this
28  * module the function argument ordering is outputs before inputs. This style
29  * violation will be addressed once the full set of dependencies in Android
30  * have been brought into this repository.
31  */
32 #ifndef LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_VEC_H_
33 #define LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_VEC_H_
34 
35 #ifdef NANOHUB_NON_CHRE_API
36 #include <nanohub_math.h>
37 #else
38 #include <math.h>
39 #endif  // NANOHUB_NON_CHRE_API
40 
41 #include <stddef.h>
42 
43 #include "chre/util/nanoapp/assert.h"
44 
45 #ifdef __cplusplus
46 extern "C" {
47 #endif
48 
49 struct Vec3 {
50   float x, y, z;
51 };
52 
53 struct Vec4 {
54   float x, y, z, w;
55 };
56 
57 // 3-DIMENSIONAL VECTOR MATH ///////////////////////////////////////////
initVec3(struct Vec3 * v,float x,float y,float z)58 static inline void initVec3(struct Vec3 *v, float x, float y, float z) {
59   CHRE_ASSERT_NOT_NULL(v);
60   v->x = x;
61   v->y = y;
62   v->z = z;
63 }
64 
65 // Updates v as the sum of v and w.
vec3Add(struct Vec3 * v,const struct Vec3 * w)66 static inline void vec3Add(struct Vec3 *v, const struct Vec3 *w) {
67   CHRE_ASSERT_NOT_NULL(v);
68   CHRE_ASSERT_NOT_NULL(w);
69   v->x += w->x;
70   v->y += w->y;
71   v->z += w->z;
72 }
73 
74 // Sets u as the sum of v and w.
vec3AddVecs(struct Vec3 * u,const struct Vec3 * v,const struct Vec3 * w)75 static inline void vec3AddVecs(struct Vec3 *u, const struct Vec3 *v,
76                                const struct Vec3 *w) {
77   CHRE_ASSERT_NOT_NULL(u);
78   CHRE_ASSERT_NOT_NULL(v);
79   CHRE_ASSERT_NOT_NULL(w);
80   u->x = v->x + w->x;
81   u->y = v->y + w->y;
82   u->z = v->z + w->z;
83 }
84 
85 // Updates v as the subtraction of w from v.
vec3Sub(struct Vec3 * v,const struct Vec3 * w)86 static inline void vec3Sub(struct Vec3 *v, const struct Vec3 *w) {
87   CHRE_ASSERT_NOT_NULL(v);
88   CHRE_ASSERT_NOT_NULL(w);
89   v->x -= w->x;
90   v->y -= w->y;
91   v->z -= w->z;
92 }
93 
94 // Sets u as the difference of v and w.
vec3SubVecs(struct Vec3 * u,const struct Vec3 * v,const struct Vec3 * w)95 static inline void vec3SubVecs(struct Vec3 *u, const struct Vec3 *v,
96                                const struct Vec3 *w) {
97   CHRE_ASSERT_NOT_NULL(u);
98   CHRE_ASSERT_NOT_NULL(v);
99   CHRE_ASSERT_NOT_NULL(w);
100   u->x = v->x - w->x;
101   u->y = v->y - w->y;
102   u->z = v->z - w->z;
103 }
104 
105 // Scales v by the scalar c, i.e. v = c * v.
vec3ScalarMul(struct Vec3 * v,float c)106 static inline void vec3ScalarMul(struct Vec3 *v, float c) {
107   CHRE_ASSERT_NOT_NULL(v);
108   v->x *= c;
109   v->y *= c;
110   v->z *= c;
111 }
112 
113 // Returns the dot product of v and w.
vec3Dot(const struct Vec3 * v,const struct Vec3 * w)114 static inline float vec3Dot(const struct Vec3 *v, const struct Vec3 *w) {
115   CHRE_ASSERT_NOT_NULL(v);
116   CHRE_ASSERT_NOT_NULL(w);
117   return v->x * w->x + v->y * w->y + v->z * w->z;
118 }
119 
120 // Returns the square of the L2-norm of the given vector.
vec3NormSquared(const struct Vec3 * v)121 static inline float vec3NormSquared(const struct Vec3 *v) {
122   CHRE_ASSERT_NOT_NULL(v);
123   return vec3Dot(v, v);
124 }
125 
126 // Returns the L2-norm of the given vector.
vec3Norm(const struct Vec3 * v)127 static inline float vec3Norm(const struct Vec3 *v) {
128   CHRE_ASSERT_NOT_NULL(v);
129   return sqrtf(vec3NormSquared(v));
130 }
131 
132 // Normalizes the provided vector to unit norm. If the provided vector has a
133 // norm of zero, the vector will be unchanged.
vec3Normalize(struct Vec3 * v)134 static inline void vec3Normalize(struct Vec3 *v) {
135   CHRE_ASSERT_NOT_NULL(v);
136   float norm = vec3Norm(v);
137   CHRE_ASSERT(norm > 0);
138   // Only normalize if norm is non-zero.
139   if (norm > 0) {
140     float invNorm = 1.0f / norm;
141     v->x *= invNorm;
142     v->y *= invNorm;
143     v->z *= invNorm;
144   }
145 }
146 
147 // Updates u as the cross product of v and w.
vec3Cross(struct Vec3 * u,const struct Vec3 * v,const struct Vec3 * w)148 static inline void vec3Cross(struct Vec3 *u, const struct Vec3 *v,
149                              const struct Vec3 *w) {
150   CHRE_ASSERT_NOT_NULL(u);
151   CHRE_ASSERT_NOT_NULL(v);
152   CHRE_ASSERT_NOT_NULL(w);
153   u->x = v->y * w->z - v->z * w->y;
154   u->y = v->z * w->x - v->x * w->z;
155   u->z = v->x * w->y - v->y * w->x;
156 }
157 
158 // Finds a vector orthogonal to the vector [inX, inY, inZ] and returns
159 // this in the components [outX, outY, outZ].  The vector is chosen such
160 // that the smallest component of [inX, inY, inZ] is set to zero in the
161 // output vector. For example, for the in vector [0.01, 4.0, 5.0], this
162 // function will return [0, 5.0, -4.0].
163 void findOrthogonalVector(float inX, float inY, float inZ, float *outX,
164                           float *outY, float *outZ);
165 
166 
167 // 4-DIMENSIONAL VECTOR MATH ///////////////////////////////////////////
168 // Initialize the Vec4 structure with the provided component values.
initVec4(struct Vec4 * v,float x,float y,float z,float w)169 static inline void initVec4(struct Vec4 *v, float x, float y, float z,
170                             float w) {
171   CHRE_ASSERT_NOT_NULL(v);
172   v->x = x;
173   v->y = y;
174   v->z = z;
175   v->w = w;
176 }
177 
178 // N-DIMENSIONAL VECTOR MATH ///////////////////////////////////////////
179 // Dimension specified by the last argument in all functions below.
180 
181 // Adds two vectors and returns the sum in the provided vector, i.e.
182 // u = v + w.
183 void vecAdd(float *u, const float *v, const float *w, size_t dim);
184 
185 // Adds two vectors and returns the sum in the first vector, i.e.
186 // v = v + w.
187 void vecAddInPlace(float *v, const float *w, size_t dim);
188 
189 // Subtracts two vectors and returns in the provided vector, i.e.
190 // u = v - w.
191 void vecSub(float *u, const float *v, const float *w, size_t dim);
192 
193 // Scales vector by a scalar and returns in the provided vector, i.e.
194 // u = c * v.
195 void vecScalarMul(float *u, const float *v, float c, size_t dim);
196 
197 // Scales vector by a scalar and returns in the same vector, i.e.
198 // v = c * v.
199 void vecScalarMulInPlace(float *v, float c, size_t dim);
200 
201 // Returns the L2-norm of the given vector.
202 float vecNorm(const float *v, size_t dim);
203 
204 // Returns the square of the L2-norm of the given vector.
205 float vecNormSquared(const float *v, size_t dim);
206 
207 // Returns the dot product of v and w.
208 float vecDot(const float *v, const float *w, size_t dim);
209 
210 // Returns the maximum absolute value in vector.
211 float vecMaxAbsoluteValue(const float *v, size_t dim);
212 
213 #ifdef __cplusplus
214 }
215 #endif
216 
217 #endif  // LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_VEC_H_
218