• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "src/cpu/kernels/directconv2d/nhwc/neon/impl.h"
26 
27 #include "src/core/NEON/kernels/detail/NEDirectConvolutionDetail.h"
28 #include "src/core/NEON/wrapper/wrapper.h"
29 
30 #include "arm_compute/core/Error.h"
31 #include "arm_compute/core/Helpers.h"
32 #include "arm_compute/core/IAccessWindow.h"
33 #include "arm_compute/core/ITensor.h"
34 #include "arm_compute/core/Types.h"
35 #include "arm_compute/core/Utils.h"
36 #include "src/core/helpers/WindowHelpers.h"
37 
38 #include <algorithm>
39 
40 using namespace arm_compute::detail;
41 
42 namespace arm_compute
43 {
44 namespace cpu
45 {
46 namespace kernels
47 {
48 namespace
49 {
have_zero_x_internal_padding(ITensorInfo * src,const ITensorInfo * weights)50 bool have_zero_x_internal_padding(ITensorInfo *src, const ITensorInfo *weights)
51 {
52     return (src->padding().left == 0 && weights->padding().left == 0 && src->padding().right == 0 && weights->padding().right == 0);
53 }
54 }
55 
56 template <typename T>
convolve_nhwc(const Window & window,const ITensor * src,const ITensor * weights,ITensor * dst,const PadStrideInfo & conv_info)57 void convolve_nhwc(const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst, const PadStrideInfo &conv_info)
58 {
59     // Declare useful types
60     using vtype       = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
61     using vector_type = typename vtype::type;
62     using tag_type    = typename vtype::tag_type;
63 
64     // Scalar quantities
65     const int element_size   = src->info()->element_size();
66     const int input_stride_w = src->info()->strides_in_bytes().y() / element_size;
67     const int input_stride_h = src->info()->strides_in_bytes().z() / element_size;
68     const int input_stride_n = src->info()->strides_in_bytes()[3] / element_size;
69     const int input_dim_w    = src->info()->dimension(1);
70     const int input_dim_h    = src->info()->dimension(2);
71 
72     const int output_stride_c = dst->info()->strides_in_bytes().x();
73 
74     const unsigned int kernel_stride_w = weights->info()->strides_in_bytes().y() / element_size;
75     const unsigned int kernel_stride_h = weights->info()->strides_in_bytes().z() / element_size;
76     const int          kernel_dim_w    = weights->info()->dimension(1);
77     const int          kernel_dim_h    = weights->info()->dimension(2);
78 
79     const int conv_pad_top  = conv_info.pad_top();
80     const int conv_pad_left = conv_info.pad_left();
81     const int conv_stride_w = std::get<0>(conv_info.stride());
82     const int conv_stride_h = std::get<1>(conv_info.stride());
83 
84     // Setup input window for the output iterator
85     Window window_out = window;
86     window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
87 
88     // Setup input window for the weights iterator
89     Window window_w = calculate_max_window(*weights->info(), Steps());
90     window_w.set(Window::DimX, Window::Dimension(0, 1, 1));
91     window_w.set(Window::DimY, Window::Dimension(0, 1, 1));
92     window_w.set(Window::DimZ, Window::Dimension(0, 1, 1));
93 
94     Iterator out(dst, window_out);
95     Iterator wei(weights, window_w);
96 
97     constexpr int num_elems_read_per_iteration = 16 / sizeof(T);
98 
99     // nhwc optimized
100     if(have_zero_x_internal_padding(src->info(), weights->info()))
101     {
102         // This function assumes that input and weights have not padding in channel
103 
104         /*
105         * This implementation parallelize the full WC plane of input and weights by
106         * treating them as series of elements. So for example, a 3x3 weights and
107         * floating point vector operations of 4 elements per time, the first 3
108         * channel elements of the first row would be taken and additionally the first
109         * element of the second row. The 9 elements in each single WC weight plane
110         * would require 2 4-element vector operations and a last single element operation.
111         *
112         * This works since when we create the input vector to multiply with the weights,
113         * the exact required elements are loaded in the same order. Therefore the
114         * multiplication works on the correct input/weight elements.
115         */
116         execute_window_loop(
117             window_out, [&](const Coordinates & id)
118         {
119             /*
120             * In here we create theoretical indexes which then we validate for both
121             * inputs and weights.
122             * As a reminder, this loop take each output point in NHW, C is treated
123             * in the weights loop.
124             */
125             // We are computing the theoretical starting input starting points
126             const int in_w_start_t = static_cast<int>(id.y()) * conv_stride_w - conv_pad_left;
127             const int in_h_start_t = static_cast<int>(id.z()) * conv_stride_h - conv_pad_top;
128             const int in_w_end_t   = in_w_start_t + kernel_dim_w;
129             const int in_h_end_t   = in_h_start_t + kernel_dim_h;
130 
131             // We are computing the valid initial and ending input points by checking the borders
132             const int in_w_start = std::max(in_w_start_t, 0);
133             const int in_h_start = std::max(in_h_start_t, 0);
134             const int in_w_end   = std::min(in_w_end_t, input_dim_w);
135             const int in_h_end   = std::min(in_h_end_t, input_dim_h);
136 
137             // We use the input points to select the valid weight points to use
138             const int index_wc_start = (in_w_start - in_w_start_t) * kernel_stride_w;
139             const int index_h_start  = in_h_start - in_h_start_t;
140             const int index_wc_end   = (kernel_dim_w - (in_w_end_t - in_w_end)) * kernel_stride_w;
141             const int index_h_end    = kernel_dim_h - (in_h_end_t - in_h_end);
142 
143             execute_window_loop(
144                 window_w, [&](const Coordinates & id_w)
145             {
146                 /*
147                 * This is the loop in the weights, and it goes along N (the batches)
148                 * As a reminder, the batches of the weights are translated into the
149                 * channels of the output
150                 */
151                 const T *in_ptr_row = reinterpret_cast<const T *>(src->buffer() + src->info()->offset_first_element_in_bytes())
152                                       + id[3] * input_stride_n + in_w_start * input_stride_w + in_h_start * input_stride_h;
153                 const T *weights_ptr_row = reinterpret_cast<const T *>(wei.ptr()) + index_h_start * kernel_stride_h;
154                 uint8_t *out_ptr         = out.ptr() + id_w[3] * output_stride_c;
155 
156                 T out_temp = static_cast<T>(0);
157                 for(int index_h = index_h_start; index_h < index_h_end; ++index_h, in_ptr_row += input_stride_h, weights_ptr_row += kernel_stride_h)
158                 {
159                     const T    *in_ptr_mover = in_ptr_row;
160                     int         index_wc     = index_wc_start;
161                     vector_type out_temp_vec = wrapper::vdup_n(static_cast<T>(0), tag_type());
162                     for(; index_wc <= index_wc_end - num_elems_read_per_iteration; index_wc += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration)
163                     {
164                         const auto src_vec = wrapper::vloadq(in_ptr_mover);
165                         const auto w_vec   = wrapper::vloadq(weights_ptr_row + index_wc);
166                         out_temp_vec       = wrapper::vmla(out_temp_vec, w_vec, src_vec);
167                     }
168                     out_temp += vreduce(out_temp_vec);
169                     for(; index_wc < index_wc_end; ++index_wc, ++in_ptr_mover)
170                     {
171                         const auto src_val = *(in_ptr_mover);
172                         const auto w_val   = *(weights_ptr_row + index_wc);
173                         out_temp += src_val * w_val;
174                     }
175                 }
176                 *(reinterpret_cast<T *>(out_ptr)) = out_temp;
177             },
178             wei);
179         },
180         out);
181     }
182     else // nhwc non optimized
183     {
184         execute_window_loop(
185             window_out, [&](const Coordinates & id)
186         {
187             // We are computing the theoretical starting input starting points
188             const int in_w_start_t = static_cast<int>(id.y()) * conv_stride_w - conv_pad_left;
189             const int in_h_start_t = static_cast<int>(id.z()) * conv_stride_h - conv_pad_top;
190             const int in_w_end_t   = in_w_start_t + kernel_dim_w;
191             const int in_h_end_t   = in_h_start_t + kernel_dim_h;
192 
193             // We are computing the valid initial and ending input points by checking the borders
194             const int in_w_start = std::max(in_w_start_t, 0);
195             const int in_h_start = std::max(in_h_start_t, 0);
196             const int in_w_end   = std::min(in_w_end_t, input_dim_w);
197             const int in_h_end   = std::min(in_h_end_t, input_dim_h);
198 
199             // We use the input points to select the valid weight points to use
200             const int wei_w_start = in_w_start - in_w_start_t;
201             const int wei_h_start = in_h_start - in_h_start_t;
202             const int wei_w_end   = kernel_dim_w - (in_w_end_t - in_w_end);
203             const int wei_h_end   = kernel_dim_h - (in_h_end_t - in_h_end);
204 
205             const int      index_c_end  = weights->info()->dimension(0);
206             const T *const in_ptr_start = reinterpret_cast<const T *>(src->buffer() + src->info()->offset_first_element_in_bytes()) + id[3] * input_stride_n;
207 
208             execute_window_loop(
209                 window_w, [&](const Coordinates & id_w)
210             {
211                 const T *const weights_ptr_start = reinterpret_cast<const T *>(wei.ptr());
212                 uint8_t       *out_ptr           = out.ptr() + id_w[3] * output_stride_c;
213 
214                 T out_temp = static_cast<T>(0);
215                 for(int index_wei_h = wei_h_start, index_in_h = in_h_start; index_wei_h < wei_h_end; ++index_wei_h, ++index_in_h)
216                 {
217                     const T *const in_ptr_row      = in_ptr_start + index_in_h * input_stride_h;
218                     const T *const weights_ptr_row = weights_ptr_start + index_wei_h * kernel_stride_h;
219                     for(int index_wei_w = wei_w_start, index_in_w = in_w_start; index_wei_w < wei_w_end; ++index_wei_w, ++index_in_w)
220                     {
221                         const T    *in_ptr_mover      = in_ptr_row + index_in_w * input_stride_w;
222                         const T    *weights_ptr_mover = weights_ptr_row + index_wei_w * kernel_stride_w;
223                         int         index_c           = 0;
224                         vector_type out_temp_vec      = wrapper::vdup_n(static_cast<T>(0), tag_type());
225                         for(; index_c <= index_c_end - num_elems_read_per_iteration; index_c += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration, weights_ptr_mover += num_elems_read_per_iteration)
226                         {
227                             const auto src_vec = wrapper::vloadq(in_ptr_mover);
228                             const auto w_vec   = wrapper::vloadq(weights_ptr_mover);
229                             out_temp_vec       = wrapper::vmla(out_temp_vec, w_vec, src_vec);
230                         }
231                         out_temp += vreduce(out_temp_vec);
232                         for(; index_c < index_c_end; ++index_c, ++in_ptr_mover, ++weights_ptr_mover)
233                         {
234                             const auto src_val = *(in_ptr_mover);
235                             const auto w_val   = *(weights_ptr_mover);
236                             out_temp += src_val * w_val;
237                         }
238                     }
239                 }
240                 *(reinterpret_cast<T *>(out_ptr)) = out_temp;
241             },
242             wei);
243         },
244         out);
245     }
246 }
247 
248 template void convolve_nhwc<float>(const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst, const PadStrideInfo &conv_info);
249 
250 } // namespace kernels
251 } // namespace cpu
252 } // namespace arm_compute
253