• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/c4-neondot.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/gemm.h>
15 #include <xnnpack/intrinsics-polyfill.h>
16 #include <xnnpack/math.h>
17 
18 
xnn_qc8_gemm_minmax_fp32_ukernel_1x8c4__neondot(size_t mr,size_t nc,size_t kc,const int8_t * restrict a,size_t a_stride,const void * restrict w,int8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qc8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])19 void xnn_qc8_gemm_minmax_fp32_ukernel_1x8c4__neondot(
20     size_t mr,
21     size_t nc,
22     size_t kc,
23     const int8_t* restrict a,
24     size_t a_stride,
25     const void* restrict w,
26     int8_t* restrict c,
27     size_t cm_stride,
28     size_t cn_stride,
29     const union xnn_qc8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
30 {
31   assert(mr != 0);
32   assert(mr <= 1);
33   assert(nc != 0);
34   assert(kc != 0);
35   assert(kc % sizeof(int8_t) == 0);
36   assert(a != NULL);
37   assert(w != NULL);
38   assert(c != NULL);
39 
40   kc = round_up_po2(kc, 4 * sizeof(int8_t));
41   const int8_t* a0 = a;
42   int8_t* c0 = c;
43 
44   // Loop over groups of 8 columns.
45   do {
46     // Initialize accumulators with bias. 8 bias values are loaded from the
47     // weight matrix, at the start of the group of 8 columns.
48     int32x4_t vacc0x0123 = vld1q_s32(w); w = (const void*) ((const int32_t*) w + 4);
49     int32x4_t vacc0x4567 = vld1q_s32(w); w = (const void*) ((const int32_t*) w + 4);
50 
51     // Inner accumulation loop along the 8 columns.
52     size_t k = kc;
53     // 2x partial unrolled loop to load 8 bytes at a time.
54     while (k >= 8 * sizeof(int8_t)) {
55       // Load a 1x8 block of activations.
56       const int8x8_t va0x01234567 = vld1_s8(a0); a0 += 8;
57 
58       // Load a 8x8 block of weights.
59       const int8x16_t vb0123x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
60       const int8x16_t vb0123x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
61       const int8x16_t vb4567x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
62       const int8x16_t vb4567x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
63 
64       // Multiply-accumulate: 1x8 * 8x8 --> 1x8.
65       vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb0123x0123, va0x01234567, 0);
66       vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb0123x4567, va0x01234567, 0);
67       vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb4567x0123, va0x01234567, 1);
68       vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb4567x4567, va0x01234567, 1);
69 
70       k -= 8 * sizeof(int8_t);
71     }
72     // Handle up to 4 final positions of `k`
73     if XNN_UNLIKELY(k != 0) {
74       // Load a 1x4 block of activations.
75       const int8x8_t va0x01234567 = vld1_s8(a0); a0 += 4;
76 
77       // Load a 4x8 block of weights.
78       const int8x16_t vb0123x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
79       const int8x16_t vb0123x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
80 
81       // Multiply-accumulate: 1x4 * 4x8 --> 1x8.
82       vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb0123x0123, va0x01234567, 0);
83       vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb0123x4567, va0x01234567, 0);
84     }
85 
86     float32x4_t vfpacc0x0123 = vcvtq_f32_s32(vacc0x0123);
87     float32x4_t vfpacc0x4567 = vcvtq_f32_s32(vacc0x4567);
88 
89     const float32x4_t vscale0123 = vld1q_f32((const float*) w); w = (const void*) ((const float*) w + 4);
90     vfpacc0x0123 = vmulq_f32(vfpacc0x0123, vscale0123);
91     const float32x4_t vscale4567 = vld1q_f32((const float*) w); w = (const void*) ((const float*) w + 4);
92     vfpacc0x4567 = vmulq_f32(vfpacc0x4567, vscale4567);
93 
94     vacc0x0123 = vcvtnq_s32_f32(vfpacc0x0123);
95     vacc0x4567 = vcvtnq_s32_f32(vfpacc0x4567);
96 
97     const int16x8_t voutput_zero_point = vld1q_dup_s16(&params->fp32_neonv8.output_zero_point);
98 #if XNN_ARCH_ARM64
99     const int16x8_t vacc0x01234567 = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc0x0123), vacc0x4567), voutput_zero_point);
100 
101     int8x8_t vout0x01234567 = vqmovn_s16(vacc0x01234567);
102 #else
103     const int16x8_t vacc0x01234567 = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc0x0123), vqmovn_s32(vacc0x4567)), voutput_zero_point);
104 
105     int8x8_t vout0x01234567 = vqmovn_s16(vacc0x01234567);
106 #endif
107     const int8x8_t voutput_min = vld1_dup_s8(&params->fp32_neonv8.output_min);
108     const int8x8_t voutput_max = vld1_dup_s8(&params->fp32_neonv8.output_max);
109 
110     vout0x01234567 = vmax_s8(vout0x01234567, voutput_min);
111 
112     vout0x01234567 = vmin_s8(vout0x01234567, voutput_max);
113 
114     if (nc >= 8) {
115       // Main case where there the 8 columns fit in the destination.
116       vst1_s8(c0 + 0, vout0x01234567);
117 
118       // Advance to the next 8 columns.
119       c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
120 
121       a0 = (const int8_t*) ((uintptr_t) a0 - kc);
122 
123       nc -= 8;
124     } else {
125       // Final case where not all of the 8 columns fit in the destination.
126       if (nc & 4) {
127         vst1_lane_u32((void*) c0, vreinterpret_u32_s8(vout0x01234567), 0); c0 += 4;
128         vout0x01234567 = vext_s8(vout0x01234567, vout0x01234567, 4);
129       }
130       if (nc & 2) {
131         vst1_lane_u16((void*) c0, vreinterpret_u16_s8(vout0x01234567), 0); c0 += 2;
132         vout0x01234567 = vext_s8(vout0x01234567, vout0x01234567, 2);
133       }
134       if (nc & 1) {
135         vst1_lane_s8(c0, vout0x01234567, 0);
136       }
137 
138       nc = 0;
139     }
140   } while (nc != 0);
141 }
142