• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/c4-neondot.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/gemm.h>
15 #include <xnnpack/math.h>
16 
17 
xnn_qs8_gemm_minmax_rndnu_ukernel_1x8c4__neondot(size_t mr,size_t nc,size_t kc,const int8_t * restrict a,size_t a_stride,const void * restrict w,int8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_qs8_gemm_minmax_rndnu_ukernel_1x8c4__neondot(
19     size_t mr,
20     size_t nc,
21     size_t kc,
22     const int8_t* restrict a,
23     size_t a_stride,
24     const void* restrict w,
25     int8_t* restrict c,
26     size_t cm_stride,
27     size_t cn_stride,
28     const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
29 {
30   assert(mr != 0);
31   assert(mr <= 1);
32   assert(nc != 0);
33   assert(kc != 0);
34   assert(kc % sizeof(int8_t) == 0);
35   assert(a != NULL);
36   assert(w != NULL);
37   assert(c != NULL);
38 
39   kc = round_up_po2(kc, 4 * sizeof(int8_t));
40   const int8_t* a0 = a;
41   int8_t* c0 = c;
42 
43   // Loop over groups of 8 columns.
44   do {
45     // Initialize accumulators with bias. 8 bias values are loaded from the
46     // weight matrix, at the start of the group of 8 columns.
47     int32x4_t vacc0x0123 = vld1q_s32(w); w = (const void*) ((const int32_t*) w + 4);
48     int32x4_t vacc0x4567 = vld1q_s32(w); w = (const void*) ((const int32_t*) w + 4);
49 
50     // Inner accumulation loop along the 8 columns.
51     size_t k = kc;
52     // 2x partial unrolled loop to load 8 bytes at a time.
53     while (k >= 8 * sizeof(int8_t)) {
54       // Load a 1x8 block of activations.
55       const int8x8_t va0x01234567 = vld1_s8(a0); a0 += 8;
56 
57       // Load a 8x8 block of weights.
58       const int8x16_t vb0123x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
59       const int8x16_t vb0123x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
60       const int8x16_t vb4567x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
61       const int8x16_t vb4567x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
62 
63       // Multiply-accumulate: 1x8 * 8x8 --> 1x8.
64       vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb0123x0123, va0x01234567, 0);
65       vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb0123x4567, va0x01234567, 0);
66       vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb4567x0123, va0x01234567, 1);
67       vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb4567x4567, va0x01234567, 1);
68 
69       k -= 8 * sizeof(int8_t);
70     }
71     // Handle up to 4 final positions of `k`
72     if XNN_UNLIKELY(k != 0) {
73       // Load a 1x4 block of activations.
74       const int8x8_t va0x01234567 = vld1_s8(a0); a0 += 4;
75 
76       // Load a 4x8 block of weights.
77       const int8x16_t vb0123x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
78       const int8x16_t vb0123x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
79 
80       // Multiply-accumulate: 1x4 * 4x8 --> 1x8.
81       vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb0123x0123, va0x01234567, 0);
82       vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb0123x4567, va0x01234567, 0);
83     }
84 
85     const int32x4_t vright_pre_shift = vld1q_dup_s32(&params->rndnu_neon.right_pre_shift);
86     const int32x4_t vmultiplier = vld1q_dup_s32(&params->rndnu_neon.multiplier);
87     const int32x4_t vright_post_shift = vld1q_dup_s32(&params->rndnu_neon.right_post_shift);
88 
89     vacc0x0123 = vqshlq_s32(vacc0x0123, vright_pre_shift);
90     vacc0x4567 = vqshlq_s32(vacc0x4567, vright_pre_shift);
91 
92     vacc0x0123 = vqdmulhq_s32(vacc0x0123, vmultiplier);
93     vacc0x4567 = vqdmulhq_s32(vacc0x4567, vmultiplier);
94 
95     vacc0x0123 = vrshlq_s32(vacc0x0123, vright_post_shift);
96     vacc0x4567 = vrshlq_s32(vacc0x4567, vright_post_shift);
97 
98     const int16x8_t voutput_zero_point = vld1q_dup_s16(&params->rndnu_neon.output_zero_point);
99 #if XNN_ARCH_ARM64
100     const int16x8_t vacc0x01234567 = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc0x0123), vacc0x4567), voutput_zero_point);
101 
102     int8x8_t vout0x01234567 = vqmovn_s16(vacc0x01234567);
103 #else
104     const int16x8_t vacc0x01234567 = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc0x0123), vqmovn_s32(vacc0x4567)), voutput_zero_point);
105 
106     int8x8_t vout0x01234567 = vqmovn_s16(vacc0x01234567);
107 #endif
108     const int8x8_t voutput_min = vld1_dup_s8(&params->rndnu_neon.output_min);
109     const int8x8_t voutput_max = vld1_dup_s8(&params->rndnu_neon.output_max);
110 
111     vout0x01234567 = vmax_s8(vout0x01234567, voutput_min);
112 
113     vout0x01234567 = vmin_s8(vout0x01234567, voutput_max);
114 
115     if (nc >= 8) {
116       // Main case where there the 8 columns fit in the destination.
117       vst1_s8(c0 + 0, vout0x01234567);
118 
119       // Advance to the next 8 columns.
120       c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
121 
122       a0 = (const int8_t*) ((uintptr_t) a0 - kc);
123 
124       nc -= 8;
125     } else {
126       // Final case where not all of the 8 columns fit in the destination.
127       if (nc & 4) {
128         vst1_lane_u32((void*) c0, vreinterpret_u32_s8(vout0x01234567), 0); c0 += 4;
129         vout0x01234567 = vext_s8(vout0x01234567, vout0x01234567, 4);
130       }
131       if (nc & 2) {
132         vst1_lane_u16((void*) c0, vreinterpret_u16_s8(vout0x01234567), 0); c0 += 2;
133         vout0x01234567 = vext_s8(vout0x01234567, vout0x01234567, 2);
134       }
135       if (nc & 1) {
136         vst1_lane_s8(c0, vout0x01234567, 0);
137       }
138 
139       nc = 0;
140     }
141   } while (nc != 0);
142 }
143