1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <assert.h>
7 #include <math.h>
8 #include <stddef.h>
9 #include <stdint.h>
10 #include <stdlib.h>
11
12 #include <xnnpack.h>
13 #include <xnnpack/allocator.h>
14 #include <xnnpack/log.h>
15 #include <xnnpack/operator.h>
16 #include <xnnpack/microparams-init.h>
17 #include <xnnpack/params.h>
18
19
create_constant_pad_nd(uint32_t padding_value,uint32_t flags,enum xnn_operator_type operator_type,xnn_operator_t * constant_pad_op_out)20 static enum xnn_status create_constant_pad_nd(
21 uint32_t padding_value,
22 uint32_t flags,
23 enum xnn_operator_type operator_type,
24 xnn_operator_t* constant_pad_op_out)
25 {
26 xnn_operator_t constant_pad_op = NULL;
27 enum xnn_status status = xnn_status_uninitialized;
28
29 if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
30 xnn_log_error(
31 "failed to create %s operator: XNNPACK is not initialized",
32 xnn_operator_type_to_string(xnn_operator_type_constant_pad_nd_x32));
33 goto error;
34 }
35
36 status = xnn_status_out_of_memory;
37
38 constant_pad_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
39 if (constant_pad_op == NULL) {
40 xnn_log_error(
41 "failed to allocate %zu bytes for %s operator descriptor",
42 sizeof(struct xnn_operator), xnn_operator_type_to_string(xnn_operator_type_constant_pad_nd_x32));
43 goto error;
44 }
45
46 constant_pad_op->pad_value = padding_value;
47
48 constant_pad_op->type = operator_type;
49 constant_pad_op->flags = flags;
50
51 constant_pad_op->state = xnn_run_state_invalid;
52
53 *constant_pad_op_out = constant_pad_op;
54 return xnn_status_success;
55
56 error:
57 xnn_delete_operator(constant_pad_op);
58 return status;
59 }
60
xnn_create_constant_pad_nd_x8(const void * padding_value,uint32_t flags,xnn_operator_t * constant_pad_op_out)61 enum xnn_status xnn_create_constant_pad_nd_x8(
62 const void* padding_value,
63 uint32_t flags,
64 xnn_operator_t* constant_pad_op_out)
65 {
66 const uint32_t padding_pattern = *((const uint8_t*) padding_value);
67 return create_constant_pad_nd(
68 padding_pattern * UINT32_C(0x01010101), flags, xnn_operator_type_constant_pad_nd_x8, constant_pad_op_out);
69 }
70
xnn_create_constant_pad_nd_x16(const void * padding_value,uint32_t flags,xnn_operator_t * constant_pad_op_out)71 enum xnn_status xnn_create_constant_pad_nd_x16(
72 const void* padding_value,
73 uint32_t flags,
74 xnn_operator_t* constant_pad_op_out)
75 {
76 const uint32_t padding_pattern = *((const uint16_t*) padding_value);
77 return create_constant_pad_nd(
78 padding_pattern * UINT32_C(0x00010001), flags, xnn_operator_type_constant_pad_nd_x16, constant_pad_op_out);
79 }
80
xnn_create_constant_pad_nd_x32(const void * padding_value,uint32_t flags,xnn_operator_t * constant_pad_op_out)81 enum xnn_status xnn_create_constant_pad_nd_x32(
82 const void* padding_value,
83 uint32_t flags,
84 xnn_operator_t* constant_pad_op_out)
85 {
86 return create_constant_pad_nd(
87 *((const uint32_t*) padding_value), flags, xnn_operator_type_constant_pad_nd_x32, constant_pad_op_out);
88 }
89
setup_constant_pad_nd(xnn_operator_t constant_pad_op,enum xnn_operator_type expected_operator_type,size_t num_dims,const size_t * input_shape,const size_t * pre_paddings,const size_t * post_paddings,const void * input,void * output,uint32_t log2_element_size,size_t num_threads)90 static enum xnn_status setup_constant_pad_nd(
91 xnn_operator_t constant_pad_op,
92 enum xnn_operator_type expected_operator_type,
93 size_t num_dims,
94 const size_t* input_shape,
95 const size_t* pre_paddings,
96 const size_t* post_paddings,
97 const void* input,
98 void* output,
99 uint32_t log2_element_size,
100 size_t num_threads)
101 {
102 if (constant_pad_op->type != expected_operator_type) {
103 xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)",
104 xnn_operator_type_to_string(expected_operator_type),
105 xnn_operator_type_to_string(constant_pad_op->type));
106 return xnn_status_invalid_parameter;
107 }
108 constant_pad_op->state = xnn_run_state_invalid;
109
110 if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
111 xnn_log_error("failed to setup %s operator: XNNPACK is not initialized",
112 xnn_operator_type_to_string(constant_pad_op->type));
113 return xnn_status_uninitialized;
114 }
115
116 if (num_dims > XNN_MAX_TENSOR_DIMS) {
117 xnn_log_error(
118 "failed to setup %s operator with %zu dimensions in input shape: "
119 "the number of input dimensions must not exceed %d",
120 xnn_operator_type_to_string(constant_pad_op->type), num_dims, XNN_MAX_TENSOR_DIMS);
121 return xnn_status_unsupported_parameter;
122 }
123
124 for (size_t i = 0; i < num_dims; i++) {
125 if (input_shape[i] == 0) {
126 xnn_log_error(
127 "failed to setup %s operator: input shape dimension #%zu is zero",
128 xnn_operator_type_to_string(constant_pad_op->type), i);
129 return xnn_status_invalid_parameter;
130 }
131 }
132
133 size_t num_squeezed_dims = 0;
134 size_t normalized_pre_paddings[XNN_MAX_TENSOR_DIMS];
135 size_t normalized_input_shape[XNN_MAX_TENSOR_DIMS];
136 size_t normalized_output_shape[XNN_MAX_TENSOR_DIMS];
137 for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) {
138 normalized_pre_paddings[i] = 0;
139 normalized_input_shape[i] = 1;
140 normalized_output_shape[i] = 1;
141 }
142
143 bool is_previous_dim_padded = true;
144 for (size_t i = 0; i < num_dims; i++) {
145 const size_t pre_padding = pre_paddings[num_dims - 1 - i];
146 const size_t post_padding = post_paddings[num_dims - 1 - i];
147 const size_t input_dim = input_shape[num_dims - 1 - i];
148
149 const bool is_current_dim_padded = (pre_padding | post_padding) != 0;
150 if (is_current_dim_padded || is_previous_dim_padded) {
151 normalized_pre_paddings[XNN_MAX_TENSOR_DIMS - 1 - num_squeezed_dims] = pre_padding;
152 normalized_input_shape[XNN_MAX_TENSOR_DIMS - 1 - num_squeezed_dims] = input_dim;
153 normalized_output_shape[XNN_MAX_TENSOR_DIMS - 1 - num_squeezed_dims] = pre_padding + input_dim + post_padding;
154
155 num_squeezed_dims += 1;
156 is_previous_dim_padded = is_current_dim_padded;
157 } else {
158 assert(!is_previous_dim_padded);
159 assert(pre_padding == 0);
160 assert(post_padding == 0);
161 assert(i != 0);
162
163 normalized_input_shape[XNN_MAX_TENSOR_DIMS - num_squeezed_dims] *= input_dim;
164 normalized_output_shape[XNN_MAX_TENSOR_DIMS - num_squeezed_dims] *= input_dim;
165 }
166 }
167
168 constant_pad_op->context.pad = (struct pad_context) {
169 .input = input,
170 .output = output,
171 .padding_value = constant_pad_op->pad_value,
172 .fill_ukernel = xnn_params.xx.fill.ukernel,
173 .pad_ukernel = xnn_params.xx.pad.ukernel,
174 };
175
176 for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) {
177 constant_pad_op->context.pad.pre_paddings[i] = normalized_pre_paddings[XNN_MAX_TENSOR_DIMS - 1 - i];
178 constant_pad_op->context.pad.input_size[i] = normalized_input_shape[XNN_MAX_TENSOR_DIMS - 1 - i];
179 }
180 size_t input_stride = normalized_input_shape[XNN_MAX_TENSOR_DIMS - 1];
181 size_t output_stride = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 1];
182 for (size_t i = 1; i < XNN_MAX_TENSOR_DIMS; i++) {
183 constant_pad_op->context.pad.input = (const void*)
184 ((uintptr_t) constant_pad_op->context.pad.input - (constant_pad_op->context.pad.pre_paddings[i] * input_stride << log2_element_size));
185 constant_pad_op->context.pad.input_stride[i - 1] = input_stride << log2_element_size;
186 constant_pad_op->context.pad.output_stride[i - 1] = output_stride << log2_element_size;
187 input_stride *= normalized_input_shape[XNN_MAX_TENSOR_DIMS - 1 - i];
188 output_stride *= normalized_output_shape[XNN_MAX_TENSOR_DIMS - 1 - i];
189 }
190 constant_pad_op->context.pad.input_size[0] <<= log2_element_size;
191 constant_pad_op->context.pad.output_size[0] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 1] << log2_element_size;
192 constant_pad_op->context.pad.pre_paddings[0] <<= log2_element_size;
193 constant_pad_op->context.pad.post_paddings[0] =
194 constant_pad_op->context.pad.output_size[0] - constant_pad_op->context.pad.pre_paddings[0] - constant_pad_op->context.pad.input_size[0];
195
196 constant_pad_op->compute.type = xnn_parallelization_type_5d;
197 constant_pad_op->compute.task_5d = (pthreadpool_task_5d_t) xnn_compute_pad_5d;
198 constant_pad_op->compute.range[0] = normalized_output_shape[0];
199 constant_pad_op->compute.range[1] = normalized_output_shape[1];
200 constant_pad_op->compute.range[2] = normalized_output_shape[2];
201 constant_pad_op->compute.range[3] = normalized_output_shape[3];
202 constant_pad_op->compute.range[4] = normalized_output_shape[4];
203 constant_pad_op->state = xnn_run_state_ready;
204
205 return xnn_status_success;
206 }
207
xnn_setup_constant_pad_nd_x8(xnn_operator_t constant_pad_op,size_t num_dims,const size_t * input_shape,const size_t * pre_padding,const size_t * post_padding,const void * input,void * output,pthreadpool_t threadpool)208 enum xnn_status xnn_setup_constant_pad_nd_x8(
209 xnn_operator_t constant_pad_op,
210 size_t num_dims,
211 const size_t* input_shape,
212 const size_t* pre_padding,
213 const size_t* post_padding,
214 const void* input,
215 void* output,
216 pthreadpool_t threadpool)
217 {
218 return setup_constant_pad_nd(
219 constant_pad_op, xnn_operator_type_constant_pad_nd_x8,
220 num_dims, input_shape, pre_padding, post_padding,
221 input, output, 0 /* log2(element size) */,
222 pthreadpool_get_threads_count(threadpool));
223 }
224
xnn_setup_constant_pad_nd_x16(xnn_operator_t constant_pad_op,size_t num_dims,const size_t * input_shape,const size_t * pre_padding,const size_t * post_padding,const void * input,void * output,pthreadpool_t threadpool)225 enum xnn_status xnn_setup_constant_pad_nd_x16(
226 xnn_operator_t constant_pad_op,
227 size_t num_dims,
228 const size_t* input_shape,
229 const size_t* pre_padding,
230 const size_t* post_padding,
231 const void* input,
232 void* output,
233 pthreadpool_t threadpool)
234 {
235 return setup_constant_pad_nd(
236 constant_pad_op, xnn_operator_type_constant_pad_nd_x16,
237 num_dims, input_shape, pre_padding, post_padding,
238 input, output, 1 /* log2(element size) */,
239 pthreadpool_get_threads_count(threadpool));
240 }
241
xnn_setup_constant_pad_nd_x32(xnn_operator_t constant_pad_op,size_t num_dims,const size_t * input_shape,const size_t * pre_padding,const size_t * post_padding,const void * input,void * output,pthreadpool_t threadpool)242 enum xnn_status xnn_setup_constant_pad_nd_x32(
243 xnn_operator_t constant_pad_op,
244 size_t num_dims,
245 const size_t* input_shape,
246 const size_t* pre_padding,
247 const size_t* post_padding,
248 const void* input,
249 void* output,
250 pthreadpool_t threadpool)
251 {
252 return setup_constant_pad_nd(
253 constant_pad_op, xnn_operator_type_constant_pad_nd_x32,
254 num_dims, input_shape, pre_padding, post_padding,
255 input, output, 2 /* log2(element size) */,
256 pthreadpool_get_threads_count(threadpool));
257 }
258