| /external/deqp/external/vulkancts/modules/vulkan/ |
| D | vktTestCaseUtil.hpp | 48 template<typename Arg0> 51 void init (vk::SourceCollections&, Arg0) const {} in init() 54 template<typename Instance, typename Arg0, typename Programs = NoPrograms1<Arg0> > 58 …estCtx, tcu::TestNodeType type, const std::string& name, const std::string& desc, const Arg0& arg0) in InstanceFactory1() argument 61 , m_arg0 (arg0) in InstanceFactory1() 64 …pe type, const std::string& name, const std::string& desc, const Programs& progs, const Arg0& arg0) in InstanceFactory1() argument 67 , m_arg0 (arg0) in InstanceFactory1() 76 const Arg0 m_arg0; 79 template<typename Instance, typename Arg0, typename Support, typename Programs = NoPrograms1<Arg0> > 84 …NodeType type, const std::string& name, const std::string& desc, const Arg0& arg0, const Support& … in InstanceFactory1WithSupport() argument [all …]
|
| D | vktTestGroupUtil.hpp | 69 template<typename Arg0> 73 typedef void (*CreateChildrenFunc) (tcu::TestCaseGroup* testGroup, Arg0 arg0); 74 typedef void (*CleanupGroupFunc) (tcu::TestCaseGroup* testGroup, Arg0 arg0); 80 const Arg0& arg0, in TestGroupHelper1() argument 85 , m_arg0 (arg0) in TestGroupHelper1() 94 const Arg0 m_arg0; 97 template<typename Arg0, typename Arg1> 101 typedef void(*CreateChildrenFunc) (tcu::TestCaseGroup* testGroup, Arg0 arg0, Arg1 arg1); 102 typedef void(*CleanupGroupFunc) (tcu::TestCaseGroup* testGroup, Arg0 arg0, Arg1 arg1); 108 const Arg0& arg0, in TestGroupHelper2() argument [all …]
|
| /external/tensorflow/tensorflow/compiler/mlir/lite/tests/ |
| D | split-merged-operands.mlir | 3 func.func @testSingleLstm(%arg0: tensor<4x4xf32>, %arg1: tensor<4xf32>, %arg2: tensor<4x4x4xf32>) -… 7 …arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg1, %arg1, %arg1, %arg1, %arg1, %arg1, %… 10 …arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg1, %arg1, %arg1, %arg1, %arg1, %arg1, %… 14 func.func @testMultipleLstms(%arg0: tensor<4x4xf32>, %arg1: tensor<4xf32>, %arg2: tensor<4x4x4xf32>… 18 …arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg1, %arg1, %arg1, %arg1, %arg1, %arg1, %… 21 …arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg1, %arg1, %arg1, %arg1, %arg1, %arg1, %… 24 …arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg1, %arg1, %arg1, %arg1, %arg1, %arg1, %… 25 …arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg0, %arg1, %arg1, %arg1, %arg1, %arg1, %arg1, %…
|
| D | legalize-tf.mlir | 3 func.func @add(%arg0: tensor<1xf32>, %arg1: tensor<1xf32>) -> tensor<1xf32> { 4 %0 = "tf.Add"(%arg0, %arg1) : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32> 8 // CHECK: tfl.add %arg0, %arg1 {fused_activation_function = "NONE"} : tensor<1xf32> 12 func.func @sub(%arg0: tensor<1xi64>, %arg1: tensor<1xi64>) -> tensor<1xi64> { 13 %0 = "tf.Sub"(%arg0, %arg1) : (tensor<1xi64>, tensor<1xi64>) -> tensor<1xi64> 17 // CHECK: tfl.sub %arg0, %arg1 {fused_activation_function = "NONE"} : tensor<1xi64> 22 func.func @testAddHighDimsHaveSameShape(%arg0: tensor<1x2x3x4x5x6x7x8xi32>, %arg1: tensor<1x2x3x4x5… 23 // CHECK: tfl.add %arg0, %arg1 {fused_activation_function = "NONE"} 24 …%0 = "tf.Add"(%arg0, %arg1) : (tensor<1x2x3x4x5x6x7x8xi32>, tensor<1x2x3x4x5x6x7x8xi32>) -> tensor… 28 func.func @LeakyRelu(%arg0: tensor<1xf32>) -> tensor<1xf32> { [all …]
|
| D | ops.mlir | 8 ^bb0(%arg0: tensor<? x f32>): 9 // CHECK: "tfl.cos"(%arg0) 10 %0 = "tfl.cos"(%arg0): (tensor<? x f32>) -> tensor<? x f32> 18 ^bb0(%arg0: tensor<?xi32>): 20 %0 = "tfl.cos"(%arg0): (tensor<?xi32>) -> tensor<?xi32> 28 ^bb0(%arg0: tensor<? x f32>): 29 // CHECK: "tfl.exp"(%arg0) 30 %0 = "tfl.exp"(%arg0): (tensor<? x f32>) -> tensor<? x f32> 36 ^bb0(%arg0: tensor<? x f32>): 37 // CHECK: "tfl.floor"(%arg0) [all …]
|
| D | get-arithmetic-count.mlir | 4 ^bb0(%arg0: tensor<256x32x32x3xf32>, %arg1: tensor<16x3x3x3xf32>, %arg2: tensor<16xf32>): 6 …%0 = "tfl.conv_2d"(%arg0, %arg1, %arg2) {dilation_h_factor = 1 : i32, dilation_w_factor = 1 : i32,… 11 ^bb0(%arg0: tensor<?x32x32x3xf32>, %arg1: tensor<16x3x3x3xf32>, %arg2: tensor<16xf32>): 13 …%0 = "tfl.conv_2d"(%arg0, %arg1, %arg2) {dilation_h_factor = 1 : i32, dilation_w_factor = 1 : i32,… 18 ^bb0(%arg0: tensor<1x112x112x3xf32>, %arg1: tensor<1x3x3x32xf32>, %arg2: tensor<32xf32>): 20 …%0 = "tfl.depthwise_conv_2d"(%arg0, %arg1, %arg2) {depth_multiplier = 1 : i32, dilation_h_factor =… 24 func.func @fully_connected(%arg0: tensor<1x37xf32>, %arg1: tensor<40x37xf32>, %arg2: tensor<40xf32>… 26 …%0 = "tfl.fully_connected"(%arg0, %arg1, %arg2) {fused_activation_function = "NONE", keep_num_dims… 30 func.func @testAdd(%arg0: tensor<10x10x10xf32>, %arg1: tensor<10x10x10xf32>) -> tensor<10x10x10xf32… 32 …%0 = "tfl.add"(%arg0, %arg1) {fused_activation_function = "NONE"} : (tensor<10x10x10xf32>, tensor<… [all …]
|
| /external/tensorflow/tensorflow/compiler/mlir/xla/tests/ |
| D | legalize-tf-binary-elementwise.mlir | 14 func.func @add(%arg0: tensor<2xi32>) -> tensor<2xi32> { 15 // CHECK-NEXT: %[[SUM0:.*]] = mhlo.add %arg0, %arg0 : tensor<2xi32> 17 %1 = "tf.AddV2"(%arg0, %arg0) : (tensor<2xi32>, tensor<2xi32>) -> tensor<2xi32> 25 func.func @broadcast_add(%arg0: tensor<1xi32>, %arg1: tensor<1x2xi32>) -> tensor<1x2xi32> { 26 …// CHECK-NEXT: %[[LHS_BCAST:.+]] = "mhlo.broadcast_in_dim"(%arg0) {broadcast_dimensions = dense<1>… 28 %0 = "tf.AddV2"(%arg0, %arg1) : (tensor<1xi32>, tensor<1x2xi32>) -> tensor<1x2xi32> 35 func.func @broadcast_multi_dim_add(%arg0: tensor<4x1x1xi32>, %arg1: tensor<4x4x4x4xi32>) -> tensor<… 36 …// CHECK-NEXT: %[[LHS_BCAST:.+]] = "mhlo.broadcast_in_dim"(%arg0) {broadcast_dimensions = dense<[1… 38 %0 = "tf.AddV2"(%arg0, %arg1) : (tensor<4x1x1xi32>, tensor<4x4x4x4xi32>) -> tensor<4x4x4x4xi32> 43 func.func @add_dynamic(%arg0: tensor<?xi32>, %arg1: tensor<?x?xi32>) -> tensor<?x?xi32> { [all …]
|
| D | legalize-tf-types.mlir | 3 func.func @relu_qint8(%arg0: tensor<1x!tf_type.qint8>) -> tensor<1x!tf_type.qint8> { 4 // CHECK: func @relu_qint8(%arg0: tensor<1xi8>) -> tensor<1xi8> { 5 // CHECK-NEXT: %[[X:.*]] = "tf.Relu"(%arg0) : (tensor<1xi8>) -> tensor<1xi8> 6 %0 = "tf.Relu"(%arg0) : (tensor<1x!tf_type.qint8>) -> tensor<1x!tf_type.qint8> 10 func.func @if_qint8(%arg0: tensor<i1>, %arg1: tensor<1x!tf_type.qint8>, %arg2: tensor<1x!tf_type.qi… 11 …// CHECK: func @if_qint8(%arg0: tensor<i1>, %arg1: tensor<1xi8>, %arg2: tensor<1xi8>) -> tensor<1x… 12 // CHECK-NEXT: %0 = "tf.IfRegion"(%arg0) ({ 18 %0 = "tf.IfRegion"(%arg0) ({ 26 func.func @id_qint8(%arg0: tensor<1x!tf_type.qint8>) -> tensor<1x!tf_type.qint8> { 27 // CHECK: func @id_qint8(%arg0: tensor<1xi8>) -> tensor<1xi8> { [all …]
|
| D | legalize-tf-with-tf2xla.mlir | 6 func.func @binary_op(%arg0: tensor<2xf32>, %arg1: tensor<2xf32>) -> tensor<2xf32> { 7 // CHECK: mhlo.atan2 %arg0, %arg1 : tensor<2xf32> 8 %0 = "tf.Atan2"(%arg0, %arg1) : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xf32> 13 func.func @unknown_op(%arg0: tensor<2xf32>) -> tensor<2xf32> { 15 %0 = "tf.CustomTestOp"(%arg0) : (tensor<2xf32>) -> tensor<2xf32> 21 func.func @not_allowlisted_op(%arg0: tensor<3xi32>, %arg1: tensor<i32>, %arg2: tensor<i32>) -> tens… 23 …%0 = "tf.TensorListReserve"(%arg0, %arg1) : (tensor<3xi32>, tensor<i32>) -> tensor<!tf_type.varian… 25 …%1 = "tf.TensorListGetItem"(%0, %arg2, %arg0) : (tensor<!tf_type.variant<tensor<?x?x?xf32>>>, tens… 30 func.func @unranked_operand(%arg0: tensor<*xf32>) -> tensor<*xf32> { 33 %0 = "tf.Atan2"(%arg0, %arg0) : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32> [all …]
|
| /external/tensorflow/tensorflow/compiler/mlir/tensorflow/tests/ |
| D | tf_trait_folds.mlir | 4 // CHECK-SAME: ([[ARG0:%.+]]: tensor<complex<f32>>) 5 func.func @testSingleConj(%arg0: tensor<complex<f32>>) -> tensor<complex<f32>> { 6 // CHECK: [[CONJ:%.+]] = "tf.Conj"([[ARG0]]) 7 %0 = "tf.Conj"(%arg0) : (tensor<complex<f32>>) -> tensor<complex<f32>> 13 // CHECK-SAME: ([[ARG0:%.+]]: tensor<complex<f32>>) 14 func.func @testDoubleConj(%arg0: tensor<complex<f32>>) -> tensor<complex<f32>> { 15 %0 = "tf.Conj"(%arg0) : (tensor<complex<f32>>) -> tensor<complex<f32>> 17 // CHECK: return [[ARG0]] 22 // CHECK-SAME: ([[ARG0:%.+]]: tensor<complex<f32>>) 23 func.func @testTripleConj(%arg0: tensor<complex<f32>>) -> tensor<complex<f32>> { [all …]
|
| D | canonicalize.mlir | 4 func.func @tfAssertTrue(%arg0: tensor<1x1x6x2xf32>) { 7 "tf.Assert"(%t, %arg0) {summarize = 3} : (tensor<i1>, tensor<1x1x6x2xf32>) -> () 12 func.func @tfAssertFalse(%arg0: tensor<1x1x6x2xf32>) { 15 "tf.Assert"(%f, %arg0) {summarize = 3} : (tensor<i1>, tensor<1x1x6x2xf32>) -> () 23 …// CHECK: "tf.GatherV2"(%arg0, %arg1, %[[AXIS]]) {batch_dims = 0 : i64} : (tensor<4x3xf32>, tensor… 29 func.func @testBatchMatMulToV2(%arg0: tensor<2x3x5xf32>, %arg1: tensor<2x5x7xf32>) -> tensor<2x3x7x… 31 …%0 = "tf.BatchMatMul"(%arg0, %arg1) {adj_x = false, adj_y = false} : (tensor<2x3x5xf32>, tensor<2x… 36 func.func @testDynamicBatchMatMulToV2(%arg0: tensor<2x3x5xf32>, %arg1: tensor<?x5x7xf32>) -> tensor… 38 …%0 = "tf.BatchMatMul"(%arg0, %arg1) {adj_x = false, adj_y = false} : (tensor<2x3x5xf32>, tensor<?x… 43 func.func @testBatchMatMulToMatMul(%arg0: tensor<2x3xf32>, %arg1: tensor<3x2xf32>) -> tensor<2x2xf3… [all …]
|
| D | tpu_identity_pruning.mlir | 6 // CHECK-SAME: ([[ARG0:%.*]]: tensor<i32>) 7 func.func @testIdentity(%arg0: tensor<i32>) { 10 // CHECK-NEXT: tf_device.return [[ARG0]] 12 %1 = "tf.Identity"(%arg0) : (tensor<i32>) -> tensor<i32> 21 // CHECK-SAME: ([[ARG0:%.*]]: tensor<i32>, [[ARG1:%.*]]: tensor<f32>) 22 func.func @testIdentityN(%arg0: tensor<i32>, %arg1: tensor<f32>) { 25 // CHECK-NEXT: tf_device.return [[ARG0]], [[ARG1]] 27 %1:2 = "tf.IdentityN"(%arg0, %arg1) : (tensor<i32>, tensor<f32>) -> (tensor<i32>, tensor<f32>) 36 // CHECK-SAME: ([[ARG0:%.*]]: tensor<i32>) 37 func.func @testTransitiveIdentity(%arg0: tensor<i32>) { [all …]
|
| D | tf_executor_ops_invalid.mlir | 9 func.func @graph_with_invalid_op(%arg0: tensor<*xf32>) { 10 "tf_executor.graph" (%arg0) ({}) : (tensor<*xf32>) -> () 39 func.func @graph_with_invalid_op(%arg0: tensor<*xf32>) -> tensor<*xf32> { 41 %val = arith.addf %arg0, %arg0 : tensor<*xf32> 62 func.func @graph_with_invalid_terminator(%arg0: tensor<*xf32>) -> tensor<*xf32> { 67 func.return %arg0 : tensor<*xf32> 84 func.func @graph_with_invalid_terminator(%arg0: tensor<*xf32>) -> tensor<*xf32> { 89 func.return %arg0 : tensor<*xf32> 95 func.func @graph_with_invalid_terminator(%arg0: tensor<*xf32>) -> tensor<*xf32> { 106 func.func @graph_with_multiple_region(%arg0: tensor<*xf32>) -> tensor<*xf32> { [all …]
|
| D | mark_input_output_aliases.mlir | 16 func.func @simple_input_output_pairs(%arg0: !tf_res_i32, %arg1: !tf_res_f32, %arg2: !tf_res_f32) { 17 %0 = "tf.ReadVariableOp"(%arg0) : (!tf_res_i32) -> tensor<i32> 22 "tf.AssignVariableOp"(%arg0, %device_output#1) : (!tf_res_i32, tensor<i32>) -> () 27 // CHECK-SAME: [[ARG0:%.*]]: tensor<i32> {tf.aliasing_output = 1 : i64}, 30 func.func @device_func_0(%arg0: tensor<i32>, %arg1: tensor<f32>, %arg2: tensor<f32>) -> (tensor<f32… 31 func.return %arg1, %arg0 : tensor<f32>, tensor<i32> 35 func.func @skip_outputs_with_multiple_use(%arg0: !tf_res_i32) { 36 %0 = "tf.ReadVariableOp"(%arg0) : (!tf_res_i32) -> tensor<i32> 38 "tf.AssignVariableOp"(%arg0, %device_output) : (!tf_res_i32, tensor<i32>) -> () 45 func.func @device_func_1(%arg0: tensor<i32>) -> tensor<i32> { [all …]
|
| D | tf_saved_model_optimize_global_tensors_interprocedural.mlir | 17 …func.func @f(%arg0: tensor<!tf_type.resource<tensor<f32>>> {tf_saved_model.bound_input = @v}) -> (… 19 …%val = "tf.PartitionedCall"(%arg0) {config = "", config_proto = "", executor_type = "", f = @f_cal… 23 func.func private @f_callee(%arg0: tensor<*x!tf_type.resource>) -> tensor<f32> { 24 …%val = "tf.PartitionedCall"(%arg0) {config = "", config_proto = "", executor_type = "", f = @f_cal… 28 func.func private @f_callee_callee(%arg0: tensor<*x!tf_type.resource>) -> tensor<f32> { 29 %val = "tf.ReadVariableOp"(%arg0) : (tensor<*x!tf_type.resource>) -> tensor<f32> 50 …func.func @f(%arg0: tensor<!tf_type.resource<tensor<f32>>> {tf_saved_model.bound_input = @v}) -> (… 52 …%val = "tf.PartitionedCall"(%arg0) {config = "", config_proto = "", executor_type = "", f = @f_com… 56 …func.func @f2(%arg0: tensor<!tf_type.resource<tensor<f32>>> {tf_saved_model.bound_input = @v2}) ->… 58 …%val = "tf.PartitionedCall"(%arg0) {config = "", config_proto = "", executor_type = "", f = @f_com… [all …]
|
| /external/tensorflow/tensorflow/compiler/mlir/tosa/tests/ |
| D | tf-to-tosa-pipeline.mlir | 13 // CHECK: %[[VAR3:.*]] = "tosa.conv2d"(%arg0, %[[VAR2]], %[[VAR0]]) {dilation = [1, 1], pad = [0, 1… 14 func.func @test_conv2d(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x16xf32>) -> tensor<1x32x32… 15 …%3 = "tf.Conv2D"(%arg0, %arg1) {data_format = "NHWC", dilations = [1, 1, 1, 1], explicit_paddings… 23 // CHECK: %[[VAR1:.*]] = "tosa.depthwise_conv2d"(%arg0, %arg1, %0) {dilation = [1, 1], pad = [0, 1,… 24 func.func @test_depthwise_conv2d(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x2xf32>) -> tenso… 25 …%5 = "tf.DepthwiseConv2dNative"(%arg0, %arg1) {data_format = "NHWC", dilations = [1, 1, 1, 1], ex… 36 // CHECK: %[[VAR3:.*]] = "tosa.transpose_conv2d"(%arg0, %[[VAR2]], %[[VAR1]]) {out_pad = [0, 0, 0, … 37 func.func @test_transpose_conv2d(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<1x1x16x8xf32>) -> tens… 39 …%4 = "tf.Conv2DBackpropInput"(%3, %arg1, %arg0) {data_format = "NHWC", dilations = [1, 1, 1, 1], … 46 // CHECK: %[[VAR0:.*]] = "tosa.add"(%arg0, %arg1) [all …]
|
| D | tfl-to-tosa-pipeline.mlir | 15 // CHECK: %[[VAR1:.*]] = "tosa.conv2d"(%arg0, %arg1, %[[VAR0]]) {dilation = [1, 1], pad = [0, 1, 0,… 16 func.func @test_conv2d(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>) -> tensor<*xf32> { 18 …%0 = "tfl.conv_2d"(%arg0, %arg1, %cst) {dilation_h_factor = 1 : i32, dilation_w_factor = 1 : i32,… 27 func.func @test_conv2d_dynamic(%arg0: tensor<?x32x32x8xf32>, %arg1: tensor<16x1x1x8xf32>) -> tensor… 29 …%0 = "tfl.conv_2d"(%arg0, %arg1, %cst) {dilation_h_factor = 1 : i32, dilation_w_factor = 1 : i32,… 36 // CHECK: %[[VAR0:.*]] = "tosa.conv2d"(%arg0, %arg1, %arg2) {dilation = [1, 1], pad = [0, 1, 0, 1],… 38 func.func @test_conv2d_bias(%arg0: tensor<1x32x32x8xf32>, %cst: tensor<16x2x2x8xf32>, %cst_0: tenso… 39 …%0 = "tfl.conv_2d"(%arg0, %cst, %cst_0) {dilation_h_factor = 1 : i32, dilation_w_factor = 1 : i32… 47 // CHECK: %[[VAR1:.*]] = "tosa.transpose_conv2d"(%arg0, %arg1, %[[VAR0]]) {out_pad = [0, 0, 0, 0], … 48 func.func @test_transpose_conv2d(%arg0: tensor<1x32x32x8xf32>, %cst_0: tensor<16x1x1x8xf32>) -> ten… [all …]
|
| /external/tensorflow/tensorflow/compiler/xla/mlir_hlo/tests/Dialect/chlo/ |
| D | chlo_legalize_to_hlo_broadcasts.mlir | 6 func.func @addWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { 7 // CHECK: mhlo.add %arg0, %arg1 8 %0 = chlo.broadcast_add %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> 14 // CHECK-SAME: %[[ARG0:.+]]: tensor<?xf32> 16 func.func @dynamicBroadcast(%arg0: tensor<?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?x?xf32> { 17 // CHECK-DAG: %[[ARG0_S:.+]] = shape.shape_of %[[ARG0]] 22 …// CHECK-DAG: %[[ARG0_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG0]], %[[RESULT_EXTENTS]]) … 28 %0 = chlo.broadcast_add %arg0, %arg1 : (tensor<?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32> 34 // CHECK-SAME: %[[ARG0:.+]]: tensor<?xf32> 36 func.func @dynamicBroadcastComplex(%arg0: tensor<?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?x?xcomp… [all …]
|
| /external/tensorflow/tensorflow/compiler/mlir/tfr/tests/ |
| D | ops.mlir | 42 func.func @call_op(%arg0: !tfr.tensor<T>, %arg1: !tfr.tensor_list<TL>, %arg2: i32) -> !tfr.tensor<K… 43 …%0 = tfr.call @Foo(%arg0, %arg1, %arg2) : (!tfr.tensor<T>, !tfr.tensor_list<TL>, i32) -> !tfr.tens… 49 // CHECK-LABEL: call_op_arg_attr(%arg0: i32) -> !tfr.tensor<K> 50 func.func @call_op_arg_attr(%arg0: i32) -> !tfr.tensor<K> { 51 %0 = tfr.call @Bar(%arg0) : (i32) -> !tfr.tensor<K> 57 func.func @call_op_invalid_1(%arg0: tensor<?xf32>) -> !tfr.tensor<K> { 59 %0 = tfr.call @Huu(%arg0) : (tensor<?xf32>) -> !tfr.tensor<K> 66 func.func @get_shape(%arg0: !tfr.tensor) -> (!shape.shape, !shape.shape) { 67 %0 = tfr.get_shape %arg0 -> !shape.shape 68 %1 = "tfr.get_shape"(%arg0) : (!tfr.tensor) -> !shape.shape [all …]
|
| /external/grpc-grpc/test/cpp/common/ |
| D | channel_arguments_test.cc | 131 grpc_arg arg0; in TEST_F() local 132 arg0.type = GRPC_ARG_INTEGER; in TEST_F() 133 arg0.key = const_cast<char*>(key0.c_str()); in TEST_F() 134 arg0.value.integer = 0; in TEST_F() 142 channel_args_.SetInt(arg_key0, arg0.value.integer); in TEST_F() 145 EXPECT_TRUE(HasArg(arg0)); in TEST_F() 150 EXPECT_TRUE(HasArg(arg0)); in TEST_F() 158 grpc_arg arg0; in TEST_F() local 159 arg0.type = GRPC_ARG_STRING; in TEST_F() 160 arg0.key = const_cast<char*>(key0.c_str()); in TEST_F() [all …]
|
| /external/tensorflow/tensorflow/core/kernels/ |
| D | cast_op_impl.h | 33 #define CURRY_TYPES3_NO_HALF(FN, arg0, arg1) \ argument 34 FN(arg0, arg1, bool); \ 35 FN(arg0, arg1, uint8); \ 36 FN(arg0, arg1, uint16); \ 37 FN(arg0, arg1, uint32); \ 38 FN(arg0, arg1, uint64); \ 39 FN(arg0, arg1, int8); \ 40 FN(arg0, arg1, int16); \ 41 FN(arg0, arg1, int32); \ 42 FN(arg0, arg1, int64_t); \ [all …]
|
| /external/tensorflow/tensorflow/core/transforms/consolidate_attrs/tests/ |
| D | function_input_shapes.mlir | 4 // CHECK-SAME: %[[ARG0:.*]]: tensor<4xi32> 7 tfg.func @test_one(%arg0: tensor<*xi32>) -> (tensor<*xi32>) 9 // CHECK: A(%[[ARG0]]) : (tensor<4xi32>) 10 %A, %ctl = A(%arg0) : (tensor<*xi32>) -> (tensor<*xi32>) 17 // CHECK: %[[ARG0:.*]]: tensor<4xi32> 21 tfg.func @test_incompatible(%arg0: tensor<*xi32>, %arg1: tensor<i32>) -> (tensor<*xi32>) 23 // CHECK: A(%[[ARG0]], %[[ARG1]]) : (tensor<4xi32>, tensor<i32>) 24 %A, %ctl = A(%arg0, %arg1) : (tensor<*xi32>, tensor<i32>) -> (tensor<*xi32>) 31 // CHECK-SAME: %[[ARG0:.*]]: tensor<4xi32> 34 tfg.func @test_return_type(%arg0: tensor<*xi32>) -> (tensor<*xi32>) [all …]
|
| /external/tensorflow/tensorflow/compiler/mlir/tfrt/python_tests/ |
| D | tf_transpose_test.py | 36 func.func @test(%arg0: tensor<?x?xf32>) -> tensor<?x?xf32> { 39 %1 = "tf.Transpose"(%arg0, %0) 54 arg0 = np.random.uniform(0, 10.0, size=(d0, d1)).astype(np.float32) 56 [res] = jitrt.execute(compiled, [arg0]) 57 np.testing.assert_allclose(res, np.transpose(arg0), atol=0.0) 62 func.func @test(%arg0: tensor<?x?x?xf32>) -> tensor<?x?x?xf32> { 65 %1 = "tf.Transpose"(%arg0, %0) 78 arg0 = np.arange(0, dim_size * dim_size * dim_size, 1, 81 [res] = jitrt.execute(compiled, [arg0]) 82 np.testing.assert_array_equal(res, np.transpose(arg0, (0, 2, 1))) [all …]
|
| D | tf_reduction_test.py | 39 arg0 = np.random.uniform(1.0, 5.0, size=(10)).astype(np.float32) 41 [res] = jitrt.execute(compiled, [arg0]) 42 np.testing.assert_allclose(res, np.sum(arg0, axis=0), atol=0.01) 56 arg0 = np.random.uniform(1.0, 1.0, size=(10)).astype(np.float32) 58 [res] = jitrt.execute(compiled, [arg0]) 59 np.testing.assert_allclose(res, np.max(arg0, axis=0), atol=0.01) 73 arg0 = np.random.uniform(1.0, 1.0, size=(10)).astype(np.float32) 75 [res] = jitrt.execute(compiled, [arg0]) 76 np.testing.assert_allclose(res, arg0, atol=0.01) 90 arg0 = np.random.uniform(0.0, 10.0, size=(8, 10)).astype(np.float32) [all …]
|
| /external/tensorflow/tensorflow/compiler/xla/mlir_hlo/tosa/tests/ |
| D | binary.mlir | 4 func.func @add(%arg0 : tensor<10xf32>, %arg1 : tensor<10xf32>) -> tensor<10xf32> { 6 %0 = "mhlo.add"(%arg0, %arg1) : (tensor<10xf32>, tensor<10xf32>) -> tensor<10xf32> 11 func.func @compare_eq(%arg0 : tensor<10xf32>, %arg1 : tensor<10xf32>) -> tensor<10xi1> { 13 …%0 = "mhlo.compare"(%arg0, %arg1) {comparison_direction = #mhlo<comparison_direction EQ>} : (tenso… 18 func.func @compare_lt(%arg0 : tensor<10xf32>, %arg1 : tensor<10xf32>) -> tensor<10xi1> { 20 …%0 = "mhlo.compare"(%arg0, %arg1) {comparison_direction = #mhlo<comparison_direction LT>} : (tenso… 25 func.func @compare_ne(%arg0 : tensor<10xi32>, %arg1 : tensor<10xi32>) -> tensor<10xi1> { 26 // CHECK-DAG: %[[VAR0:.*]] = "tosa.equal"(%arg0, %arg1) 28 …%0 = "mhlo.compare"(%arg0, %arg1) {comparison_direction = #mhlo<comparison_direction NE>} : (tenso… 33 func.func @dot_vector_vector(%arg0 : tensor<3xf32>, %arg1 : tensor<3xf32>) -> tensor<f32> { [all …]
|