| /external/libaom/tools/ | 
| D | gen_constrained_tokenset.py | 16 cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta]18 For a given beta and a given probability of the 1-node, the alpha
 19 is first solved, and then the {alpha, beta} pair is used to generate
 30 def cdf_spareto(x, xm, beta):  argument
 31   p = 1 - (xm / (np.abs(x) + xm))**beta
 36 def get_spareto(p, beta):  argument
 40     return ((cdf(1.5, x, beta) - cdf(0.5, x, beta)) /
 41             (1 - cdf(0.5, x, beta)) - p)**2
 45   parray[0] = 2 * (cdf(0.5, alpha, beta) - 0.5)
 46   parray[1] = (2 * (cdf(1.5, alpha, beta) - cdf(0.5, alpha, beta)))
 [all …]
 
 | 
| /external/cblas/testing/ | 
| D | c_s3chke.c | 32           ALPHA=0.0, BETA=0.0;  in F77_s3chke()  local50                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_s3chke()
 54                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_s3chke()
 58                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_s3chke()
 62                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_s3chke()
 66                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_s3chke()
 70                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_s3chke()
 74                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_s3chke()
 78                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_s3chke()
 82                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_s3chke()
 [all …]
 
 | 
| D | c_d3chke.c | 32           ALPHA=0.0, BETA=0.0;  in F77_d3chke()  local51                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_d3chke()
 55                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_d3chke()
 59                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_d3chke()
 63                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_d3chke()
 67                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_d3chke()
 71                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_d3chke()
 75                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_d3chke()
 79                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_d3chke()
 83                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_d3chke()
 [all …]
 
 | 
| D | c_z3chke.c | 33            BETA[2]  = {0.0,0.0},   in F77_z3chke()  local53                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_z3chke()
 57                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_z3chke()
 61                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_z3chke()
 65                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_z3chke()
 69                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_z3chke()
 73                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_z3chke()
 77                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_z3chke()
 81                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_z3chke()
 85                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_z3chke()
 [all …]
 
 | 
| D | c_c3chke.c | 33            BETA[2]  = {0.0,0.0},   in F77_c3chke()  local53                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_c3chke()
 57                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_c3chke()
 61                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_c3chke()
 65                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_c3chke()
 69                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_c3chke()
 73                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_c3chke()
 77                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_c3chke()
 81                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_c3chke()
 85                    ALPHA, A, 1, B, 1, BETA, C, 1 );  in F77_c3chke()
 [all …]
 
 | 
| /external/ImageMagick/MagickCore/ | 
| D | fx.c | 524 static inline double FxGCD(const double alpha,const double beta)  in FxGCD()  argument526   if (alpha < beta)   in FxGCD()
 527     return(FxGCD(beta,alpha));   in FxGCD()
 528   if (fabs(beta) < 0.001)   in FxGCD()
 530   return(FxGCD(beta,alpha-beta*floor(alpha/beta)));   in FxGCD()
 577     beta;  in FxGetSymbol()  local
 641                 depth,&beta,exception);  in FxGetSymbol()
 671                 depth,&beta,exception);  in FxGetSymbol()
 673               point.y=beta;  in FxGetSymbol()
 697                   depth,&beta,exception);  in FxGetSymbol()
 [all …]
 
 | 
| D | composite-private.h | 36   const double q,const double beta)  in MagickOver_()  argument43   Da=QuantumScale*beta;  in MagickOver_()
 53   const double alpha,const Quantum *q,const double beta,Quantum *composite)  in CompositePixelOver()  argument
 67   Da=QuantumScale*beta;  in CompositePixelOver()
 87           (double) q[i],beta));  in CompositePixelOver()
 93           (double) q[i],beta));  in CompositePixelOver()
 99           (double) q[i],beta));  in CompositePixelOver()
 105           (double) q[i],beta));  in CompositePixelOver()
 123   const PixelInfo *q,const double beta,PixelInfo *composite)  in CompositePixelInfoOver()  argument
 134   Da=QuantumScale*beta,  in CompositePixelInfoOver()
 [all …]
 
 | 
| /external/tensorflow/tensorflow/python/kernel_tests/distributions/ | 
| D | beta_test.py | 26 from tensorflow.python.ops.distributions import beta as beta_lib51     dist = beta_lib.Beta(a, b)
 60     dist = beta_lib.Beta(a, b)
 69     dist = beta_lib.Beta(a, b)
 78     dist = beta_lib.Beta(a, b)
 85     dist = beta_lib.Beta(a, b)
 92     dist = beta_lib.Beta(a, b, validate_args=True)
 109     dist = beta_lib.Beta(a, b)
 118     dist = beta_lib.Beta(a, b)
 128     dist = beta_lib.Beta(a, b)
 [all …]
 
 | 
| /external/tensorflow/tensorflow/python/ops/distributions/ | 
| D | beta.py | 15 """The Beta distribution class."""37     "Beta",
 46 @tf_export(v1=["distributions.Beta"])
 47 class Beta(distribution.Distribution):  class
 48   """Beta distribution.
 50   The Beta distribution is defined over the `(0, 1)` interval using parameters
 51   `concentration1` (aka "alpha") and `concentration0` (aka "beta").
 58   pdf(x; alpha, beta) = x**(alpha - 1) (1 - x)**(beta - 1) / Z
 59   Z = Gamma(alpha) Gamma(beta) / Gamma(alpha + beta)
 65   * `concentration0 = beta`,
 [all …]
 
 | 
| /external/XNNPACK/test/ | 
| D | f32-velu.cc | 89   TEST(F32_VELU__NEON_RR2_LUT16_P3_X4, beta) {  in TEST()  argument91     for (float beta : std::vector<float>({0.3f, 3.0f})) {  in TEST()  local
 95           .beta(beta)  in TEST()
 172   TEST(F32_VELU__NEON_RR2_LUT16_P3_X8, beta) {  in TEST()  argument
 174     for (float beta : std::vector<float>({0.3f, 3.0f})) {  in TEST()  local
 178           .beta(beta)  in TEST()
 255   TEST(F32_VELU__NEON_RR2_LUT16_P3_X12, beta) {  in TEST()  argument
 257     for (float beta : std::vector<float>({0.3f, 3.0f})) {  in TEST()  local
 261           .beta(beta)  in TEST()
 338   TEST(F32_VELU__NEON_RR2_LUT16_P3_X16, beta) {  in TEST()  argument
 [all …]
 
 | 
| /external/armnn/src/backends/backendsCommon/test/layerTests/ | 
| D | SoftmaxTestImpl.hpp | 19     float beta);25         float beta,
 32         float beta);
 38         float beta,
 45         float beta);
 51         float beta,
 58     float beta);
 64         float beta);
 70         float beta);
 76         float beta);
 [all …]
 
 | 
| D | SoftmaxTestImpl.cpp | 63     float beta,  in SimpleSoftmaxBaseTestImpl()  argument94     data.m_Parameters.m_Beta = beta;  in SimpleSoftmaxBaseTestImpl()
 124     float beta)  in SimpleSoftmaxTestImpl()  argument
 129     float x0[4] = { exp((0.f - 1.0f) * beta), exp((1.0f - 1.0f) * beta),  in SimpleSoftmaxTestImpl()
 130                     exp((0.0f - 1.0f) * beta), exp((0.0f - 1.0f) * beta) };  in SimpleSoftmaxTestImpl()
 132     float x1[4] = { exp((0.5f - 0.5f) * beta), exp((0.0f - 0.5f) * beta),  in SimpleSoftmaxTestImpl()
 133                     exp((0.0f - 0.5f) * beta), exp((0.0f - 0.5f) * beta) };  in SimpleSoftmaxTestImpl()
 145 … SimpleSoftmaxBaseTestImpl<ArmnnType, 2>(workloadFactory, memoryManager, tensorHandleFactory, beta,  in SimpleSoftmaxTestImpl()
 154         float beta,  in SimpleSoftmaxTestImpl()  argument
 201 … SimpleSoftmaxBaseTestImpl<ArmnnType, 2>(workloadFactory, memoryManager, tensorHandleFactory, beta,  in SimpleSoftmaxTestImpl()
 [all …]
 
 | 
| /external/apache-commons-math/src/main/java/org/apache/commons/math/distribution/ | 
| D | BetaDistributionImpl.java | 23 import org.apache.commons.math.special.Beta;27  * Implements the Beta distribution.
 32  * Beta distribution</a></li>
 54     private double beta;  field in BetaDistributionImpl
 57      * updated whenever alpha or beta are changed.
 67      * @param beta second shape parameter (must be positive)
 72     public BetaDistributionImpl(double alpha, double beta, double inverseCumAccuracy) {  in BetaDistributionImpl()  argument
 74         this.beta = beta;  in BetaDistributionImpl()
 82      * @param beta second shape parameter (must be positive)
 84     public BetaDistributionImpl(double alpha, double beta) {  in BetaDistributionImpl()  argument
 [all …]
 
 | 
| D | GammaDistributionImpl.java | 48     private double beta;  field in GammaDistributionImpl54      * Create a new gamma distribution with the given alpha and beta values.
 56      * @param beta the scale parameter.
 58     public GammaDistributionImpl(double alpha, double beta) {  in GammaDistributionImpl()  argument
 59         this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);  in GammaDistributionImpl()
 63      * Create a new gamma distribution with the given alpha and beta values.
 65      * @param beta the scale parameter.
 70     public GammaDistributionImpl(double alpha, double beta, double inverseCumAccuracy) {  in GammaDistributionImpl()  argument
 73         setBetaInternal(beta);  in GammaDistributionImpl()
 100             ret = Gamma.regularizedGammaP(alpha, x / beta);  in cumulativeProbability()
 [all …]
 
 | 
| /external/cronet/third_party/abseil-cpp/absl/random/ | 
| D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution:36 //   pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1),
 37 // where the params alpha and beta are both strictly positive real values.
 40 // to 0 or 1, due to numerical errors when alpha and beta are very different.
 42 // Usage note: One usage is that alpha and beta are counts of number of
 44 // approximating a beta distribution with a Gaussian distribution with the same
 46 // smaller of alpha and beta when the number of trials are sufficiently large,
 47 // to quantify how far a beta distribution is from the normal distribution.
 57     explicit param_type(result_type alpha, result_type beta)  in param_type()  argument
 58         : alpha_(alpha), beta_(beta) {  in param_type()
 [all …]
 
 | 
| /external/webrtc/third_party/abseil-cpp/absl/random/ | 
| D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution:36 //   pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1),
 37 // where the params alpha and beta are both strictly positive real values.
 40 // to 0 or 1, due to numerical errors when alpha and beta are very different.
 42 // Usage note: One usage is that alpha and beta are counts of number of
 44 // approximating a beta distribution with a Gaussian distribution with the same
 46 // smaller of alpha and beta when the number of trials are sufficiently large,
 47 // to quantify how far a beta distribution is from the normal distribution.
 57     explicit param_type(result_type alpha, result_type beta)  in param_type()  argument
 58         : alpha_(alpha), beta_(beta) {  in param_type()
 [all …]
 
 | 
| /external/rust/crates/grpcio-sys/grpc/third_party/abseil-cpp/absl/random/ | 
| D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution:36 //   pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1),
 37 // where the params alpha and beta are both strictly positive real values.
 40 // to 0 or 1, due to numerical errors when alpha and beta are very different.
 42 // Usage note: One usage is that alpha and beta are counts of number of
 44 // approximating a beta distribution with a Gaussian distribution with the same
 46 // smaller of alpha and beta when the number of trials are sufficiently large,
 47 // to quantify how far a beta distribution is from the normal distribution.
 57     explicit param_type(result_type alpha, result_type beta)  in param_type()  argument
 58         : alpha_(alpha), beta_(beta) {  in param_type()
 [all …]
 
 | 
| /external/angle/third_party/abseil-cpp/absl/random/ | 
| D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution:36 //   pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1),
 37 // where the params alpha and beta are both strictly positive real values.
 40 // to 0 or 1, due to numerical errors when alpha and beta are very different.
 42 // Usage note: One usage is that alpha and beta are counts of number of
 44 // approximating a beta distribution with a Gaussian distribution with the same
 46 // smaller of alpha and beta when the number of trials are sufficiently large,
 47 // to quantify how far a beta distribution is from the normal distribution.
 57     explicit param_type(result_type alpha, result_type beta)  in param_type()  argument
 58         : alpha_(alpha), beta_(beta) {  in param_type()
 [all …]
 
 | 
| /external/libtextclassifier/abseil-cpp/absl/random/ | 
| D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution:36 //   pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1),
 37 // where the params alpha and beta are both strictly positive real values.
 40 // to 0 or 1, due to numerical errors when alpha and beta are very different.
 42 // Usage note: One usage is that alpha and beta are counts of number of
 44 // approximating a beta distribution with a Gaussian distribution with the same
 46 // smaller of alpha and beta when the number of trials are sufficiently large,
 47 // to quantify how far a beta distribution is from the normal distribution.
 57     explicit param_type(result_type alpha, result_type beta)  in param_type()  argument
 58         : alpha_(alpha), beta_(beta) {  in param_type()
 [all …]
 
 | 
| /external/openscreen/third_party/abseil/src/absl/random/ | 
| D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution:36 //   pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1),
 37 // where the params alpha and beta are both strictly positive real values.
 40 // to 0 or 1, due to numerical errors when alpha and beta are very different.
 42 // Usage note: One usage is that alpha and beta are counts of number of
 44 // approximating a beta distribution with a Gaussian distribution with the same
 46 // smaller of alpha and beta when the number of trials are sufficiently large,
 47 // to quantify how far a beta distribution is from the normal distribution.
 57     explicit param_type(result_type alpha, result_type beta)  in param_type()  argument
 58         : alpha_(alpha), beta_(beta) {  in param_type()
 [all …]
 
 | 
| /external/tensorflow/third_party/absl/abseil-cpp/absl/random/ | 
| D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution:36 //   pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1),
 37 // where the params alpha and beta are both strictly positive real values.
 40 // to 0 or 1, due to numerical errors when alpha and beta are very different.
 42 // Usage note: One usage is that alpha and beta are counts of number of
 44 // approximating a beta distribution with a Gaussian distribution with the same
 46 // smaller of alpha and beta when the number of trials are sufficiently large,
 47 // to quantify how far a beta distribution is from the normal distribution.
 57     explicit param_type(result_type alpha, result_type beta)  in param_type()  argument
 58         : alpha_(alpha), beta_(beta) {  in param_type()
 [all …]
 
 | 
| /external/abseil-cpp/absl/random/ | 
| D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution:36 //   pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1),
 37 // where the params alpha and beta are both strictly positive real values.
 40 // to 0 or 1, due to numerical errors when alpha and beta are very different.
 42 // Usage note: One usage is that alpha and beta are counts of number of
 44 // approximating a beta distribution with a Gaussian distribution with the same
 46 // smaller of alpha and beta when the number of trials are sufficiently large,
 47 // to quantify how far a beta distribution is from the normal distribution.
 57     explicit param_type(result_type alpha, result_type beta)  in param_type()  argument
 58         : alpha_(alpha), beta_(beta) {  in param_type()
 [all …]
 
 | 
| /external/tensorflow/tensorflow/python/kernel_tests/nn_ops/ | 
| D | lrn_op_test.py | 37            beta=0.5):  argument52                 np.power(bias + alpha * np.sum(patch * patch), beta))
 62       # random depth_radius, bias, alpha, beta. cuDNN requires depth_radius to
 68       # cuDNN requires beta >= 0.01.
 69       beta = 0.01 + 2.0 * np.random.rand()
 76           beta=beta)
 84         beta=beta)
 86     print("LRN error for bias ", bias, "alpha ", alpha, " beta ", beta, " is ",
 121     beta = 0.404427052
 149               beta=beta))
 [all …]
 
 | 
| /external/eigen/lapack/ | 
| D | zlarfg.f | 40 *>       H**H * ( alpha ) = ( beta ),   H**H * H = I.43 *> where alpha and beta are scalars, with beta real, and x is an
 71 *>          On exit, it is overwritten with the value beta.
 130       DOUBLE PRECISION   ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM  local
 163          BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
 168          IF( ABS( BETA ).LT.SAFMIN ) THEN
 170 *           XNORM, BETA may be inaccurate; scale X and recompute them
 175             BETA = BETA*RSAFMN
 178             IF( ABS( BETA ).LT.SAFMIN )
 181 *           New BETA is at most 1, at least SAFMIN
 [all …]
 
 | 
| D | clarfg.f | 40 *>       H**H * ( alpha ) = ( beta ),   H**H * H = I.43 *> where alpha and beta are scalars, with beta real, and x is an
 71 *>          On exit, it is overwritten with the value beta.
 130       REAL               ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM  local
 163          BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
 168          IF( ABS( BETA ).LT.SAFMIN ) THEN
 170 *           XNORM, BETA may be inaccurate; scale X and recompute them
 175             BETA = BETA*RSAFMN
 178             IF( ABS( BETA ).LT.SAFMIN )
 181 *           New BETA is at most 1, at least SAFMIN
 [all …]
 
 |