| /external/tensorflow/tensorflow/compiler/xla/service/ |
| D | shape_inference.h | 16 // Shape inference is used by the XLA service as the user builds up 33 // For a given operation and input shapes, infers what the resulting shape is 36 // the shape that results from an operation is inferred. Some methods have 37 // overloads for inferring shape at the HLO level. 39 // TODO(b/73352135): Shape inference does not issue very good error messages, in 40 // part because HloInstruction::ToString() is not available since shape 45 // Infers the shape produced by applying the given unary operation to the 46 // given input shape. 47 static StatusOr<Shape> InferUnaryOpShape(HloOpcode opcode, 48 const Shape& shape); [all …]
|
| /external/tensorflow/tensorflow/compiler/xla/ |
| D | shape_util.h | 36 #include "tensorflow/compiler/xla/shape.h" 57 // An index for specifying a particular nested subshape within a shape. Used in 61 // shape. For a non-nested tuple, an index has a single element. For example, 89 // Namespaced collection of (static) shape utilities. 95 // Data structure which describes the coordinates and the shape, of a tuple 96 // shaped sub-shape. 99 IndexedShape(ShapeIndex index, Shape shape) in IndexedShape() 100 : index(std::move(index)), shape(std::move(shape)) {} in IndexedShape() 102 Shape shape; member 105 // Returns the number of elements are contained within the provided shape; [all …]
|
| D | shape_util.cc | 97 // Constructs and returns the new shape with the given minor_to_major order in 99 StatusOr<Shape> MakeShapeWithLayoutInternal( in MakeShapeWithLayoutInternal() 114 TF_ASSIGN_OR_RETURN(Shape shape, in MakeShapeWithLayoutInternal() 121 *shape.mutable_layout() = in MakeShapeWithLayoutInternal() 124 TF_RETURN_IF_ERROR(ShapeUtil::ValidateShape(shape)); in MakeShapeWithLayoutInternal() 125 return shape; in MakeShapeWithLayoutInternal() 140 Shape MakeTupleShapeImpl(absl::Span<ShapePtrOrRef> shapes) { in MakeTupleShapeImpl() 141 Shape result; in MakeTupleShapeImpl() 144 for (const auto& shape : shapes) { in MakeTupleShapeImpl() local 145 ShapeUtil::AppendShapeToTuple(Deref(shape), &result); in MakeTupleShapeImpl() [all …]
|
| D | layout_util.cc | 118 /* static */ Layout LayoutUtil::GetDefaultLayoutForShape(const Shape& shape) { in GetDefaultLayoutForShape() argument 119 if (shape.IsOpaque() || shape.IsToken()) { in GetDefaultLayoutForShape() 125 CHECK(shape.IsArray()); in GetDefaultLayoutForShape() 126 return CreateDefaultLayoutForRank(shape.dimensions_size()); in GetDefaultLayoutForShape() 145 /* static */ void LayoutUtil::SetToDefaultLayout(Shape* shape) { in SetToDefaultLayout() argument 146 if (shape->IsTuple()) { in SetToDefaultLayout() 147 // Tuple shape. in SetToDefaultLayout() 148 for (auto& element_shape : *shape->mutable_tuple_shapes()) { in SetToDefaultLayout() 151 shape->clear_layout(); in SetToDefaultLayout() 152 } else if (shape->IsArray()) { in SetToDefaultLayout() [all …]
|
| D | layout_util_test.cc | 29 Shape MakeShapeWithLayout( in MakeShapeWithLayout() 33 Shape shape = ShapeUtil::MakeShape(element_type, dimensions); local 34 *shape.mutable_layout() = 36 return shape; 41 Shape shape = in TEST_F() local 43 Shape other_shape = in TEST_F() 46 Shape tuple0 = ShapeUtil::MakeTupleShape({}); in TEST_F() 47 Shape tuple1 = ShapeUtil::MakeTupleShape({shape}); in TEST_F() 48 Shape tuple2 = ShapeUtil::MakeTupleShape({shape, shape}); in TEST_F() 60 Shape other_tuple2 = ShapeUtil::MakeTupleShape({shape, other_shape}); in TEST_F() [all …]
|
| /external/tensorflow/tensorflow/compiler/mlir/tools/kernel_gen/tests/ |
| D | shape_simplification.mlir | 1 // RUN: kernel-gen-opt -split-input-file -kernelgen-shape-simplification %s | FileCheck %s 5 func @f() -> !shape.shape { 6 // CHECK: shape.broadcast 7 %0 = shape.const_shape [2] : !shape.shape 8 %1 = shape.const_shape [7] : !shape.shape 9 %2 = shape.broadcast %0, %1 : !shape.shape, !shape.shape -> !shape.shape 10 return %2 : !shape.shape 15 // Broadcast of partially dynamic shapes yields a static shape. 17 func @f(%arg0 : tensor<42x?x42x?xf32>, %arg1 : tensor<42x?x?xf32>) -> !shape.shape { 18 // CHECK: %[[CST:.*]] = shape.const_shape [42, 42, 42, 256] : !shape.shape [all …]
|
| /external/tensorflow/tensorflow/compiler/xla/mlir_hlo/tests/ |
| D | shape_simplification.mlir | 1 // RUN: mlir-hlo-opt -split-input-file -shape-simplification %s | FileCheck %s 5 func.func @f() -> !shape.shape { 6 // CHECK: shape.broadcast 7 %0 = shape.const_shape [2] : !shape.shape 8 %1 = shape.const_shape [7] : !shape.shape 9 %2 = shape.broadcast %0, %1 : !shape.shape, !shape.shape -> !shape.shape 10 func.return %2 : !shape.shape 15 // Broadcast of partially dynamic shapes yields a static shape. 17 func.func @f(%arg0 : tensor<42x?x42x?xf32>, %arg1 : tensor<42x?x?xf32>) -> !shape.shape { 18 // CHECK: %[[CST:.*]] = shape.const_shape [42, 42, 42, 256] : !shape.shape [all …]
|
| /external/tensorflow/tensorflow/lite/kernels/shim/ |
| D | shape_test.cc | 15 #include "tensorflow/lite/kernels/shim/shape.h" 24 TEST(Shape, Eq) { in TEST() argument 25 EXPECT_TRUE(Shape({1, 2}) == Shape({1, 2})); in TEST() 27 EXPECT_TRUE(Shape(std::vector<int>{}) == Shape(std::vector<int>{})); in TEST() 29 EXPECT_TRUE(Shape({1}) == Shape({1})); in TEST() 31 EXPECT_FALSE(Shape({1, 2, 1}) == Shape({1, 2})); in TEST() 33 EXPECT_FALSE(Shape({1, 3}) == Shape({1, 2})); in TEST() 35 EXPECT_FALSE(Shape({3, -1, 2}) == Shape({3, -1, 2})); in TEST() 37 EXPECT_FALSE(Shape() == Shape()); in TEST() 38 // Unknown rank vs known shape in TEST() [all …]
|
| /external/gemmlowp/test/ |
| D | benchmark_meta_gemm.cc | 64 struct Shape { struct 73 Shape(std::int32_t n, std::int32_t m, std::int32_t k) in Shape() argument 104 double run_gemms(std::vector<Shape>* shapes) { in run_gemms() argument 106 for (auto& shape : *shapes) { in run_gemms() 107 ops += run_gemm(shape.n, shape.m, shape.k, shape.working_set().lhs, in run_gemms() 108 shape.working_set().rhs, shape.working_set().result); in run_gemms() 159 void time_all(std::vector<Shape>* shapes, std::int32_t repetitions, in time_all() 179 void time_one(Shape* shape, double max_time) { in time_one() argument 184 std::cout << std::setprecision(6) << std::fixed << shape->n << ", " in time_one() 185 << shape->m << ", " << shape->k << ", " << std::flush; in time_one() [all …]
|
| /external/tensorflow/tensorflow/lite/delegates/gpu/common/ |
| D | convert.cc | 28 #include "tensorflow/lite/delegates/gpu/common/shape.h" 43 absl::Status ConvertToPHWO4I4(absl::Span<const float> in, const OHWI& shape, in ConvertToPHWO4I4() argument 45 if (in.size() != shape.DimensionsProduct()) { in ConvertToPHWO4I4() 48 in.size(), " != ", shape.DimensionsProduct())); in ConvertToPHWO4I4() 50 if (out.size() != GetElementsSizeForPHWO4I4(shape)) { in ConvertToPHWO4I4() 53 out.size(), " != ", GetElementsSizeForPHWO4I4(shape))); in ConvertToPHWO4I4() 57 for (int p = 0; p < DivideRoundUp(shape.o, kPhwo4i4ChannelsInPlane); ++p) { in ConvertToPHWO4I4() 58 for (int h = 0; h < shape.h; ++h) { in ConvertToPHWO4I4() 59 for (int w = 0; w < shape.w; ++w) { in ConvertToPHWO4I4() 60 for (int c = 0; c < DivideRoundUp(shape.i, kPhwo4i4ChannelsInPlane); in ConvertToPHWO4I4() [all …]
|
| /external/tensorflow/tensorflow/compiler/xla/mlir_hlo/tests/Dialect/mhlo/ |
| D | merge_assuming_ops.mlir | 5 // Shape computations shall be reified. 9 // CHECK: %[[SHAPE:.*]] = shape.shape_of %[[ARG]] : tensor<?x32xi16> -> tensor<?xindex> 10 // CHECK: "use"(%[[SHAPE]]) 12 %1 = shape.shape_of %0 : tensor<?x32xf16> -> tensor<?xindex> 19 // Shape computations shall be reified. 23 // CHECK: %[[SHAPE:.*]] = shape.shape_of %[[ARG0]] : tensor<?x32xf16> -> tensor<?xindex> 24 // CHECK: "use"(%[[SHAPE]]) 27 %2 = shape.shape_of %1 : tensor<?x32xf16> -> tensor<?xindex> 37 %c : tensor<?xindex>) -> !shape.witness { 38 // CHECK-NOT: shape.broadcast [all …]
|
| D | constraint_fusion.mlir | 9 // CHECK-DAG: %[[S0:.*]] = shape.shape_of %[[ARG0]] 10 // CHECK-DAG: %[[S1:.*]] = shape.shape_of %[[ARG1]] 11 // CHECK-DAG: %[[S2:.*]] = shape.shape_of %[[ARG2]] 12 // CHECK-DAG: %[[S3:.*]] = shape.shape_of %[[ARG3]] 13 // CHECK-DAG: %[[COMBINED_W:.*]] = shape.cstr_broadcastable %[[S0]], %[[S1]], %[[S2]], %[[S3]] 14 // CHECK: %[[RES:.*]] = shape.assuming %[[COMBINED_W]] 15 // CHECK-DAG: %[[S0_:.*]] = shape.shape_of %[[ARG0]] 16 // CHECK-DAG: %[[S1_:.*]] = shape.shape_of %[[ARG1]] 17 // CHECK-DAG: %[[S01:.*]] = shape.broadcast %[[S0_]], %[[S1_]] 21 // CHECK-DAG: %[[S2:.*]] = shape.shape_of %[[ARG2]] [all …]
|
| /external/armnn/src/armnn/test/ |
| D | TensorTest.cpp | 214 TensorShape shape({0,1,2,3}); variable 217 CHECK(shape[2] == 2); 218 shape[2] = 20; 219 CHECK(shape[2] == 20); 263 const armnn::TensorShape shape (armnn::Dimensionality::Scalar ); 264 armnn::TensorInfo info ( shape, DataType::Float32 ); 267 CHECK(armnn::Dimensionality::Scalar == shape.GetDimensionality()); 273 shape_equal = shape; 274 CHECK(shape_equal == shape); 275 CHECK(shape_different != shape); [all …]
|
| /external/tensorflow/tensorflow/compiler/mlir/xla/ir/ |
| D | mlir_hlo_builder.h | 32 #include "tensorflow/compiler/xla/shape.h" 108 // Returns the shape of the given op. 109 StatusOr<const Shape*> GetShapePtr(XlaOp op) const override; 121 const Shape& shape, XlaOp lhs, XlaOp rhs, const Window& window, 130 StatusOr<XlaOp> FftInternal(const Shape& shape, XlaOp operand, 135 const Shape& shape, XlaOp a, XlaOp b, 138 StatusOr<XlaOp> CholeskyInternal(const Shape& shape, XlaOp a, 143 const XlaComputation* computation, const Shape& shape, 145 std::optional<absl::Span<const Shape>> operand_shapes_with_layout, 154 const Shape& shape, absl::Span<const XlaOp> all_operands, [all …]
|
| /external/tensorflow/tensorflow/java/src/main/java/org/tensorflow/ |
| D | Shape.java | 20 /** The possibly partially known shape of a tensor produced by an operation. */ 21 public final class Shape { class 23 /** Create a Shape representing an unknown number of dimensions. */ 24 public static Shape unknown() { in unknown() 25 return new Shape(null); in unknown() 28 /** Create a Shape representing a scalar value. */ 29 public static Shape scalar() { in scalar() 30 return new Shape(new long[0]); in scalar() 34 * Create a Shape representing an N-dimensional value. 36 * <p>Creates a Shape representing an N-dimensional value (N being at least 1), with the provided [all …]
|
| /external/tensorflow/tensorflow/python/ops/ |
| D | init_ops_v2.py | 42 def __call__(self, shape, dtype=None, **kwargs): 43 # returns a tensor of shape `shape` and dtype `dtype` 48 def __call__(self, shape, dtype=None, **kwargs): argument 52 shape: Shape of the tensor. 57 partition in a partitioned variable. `partition_shape` is the shape of 58 the partition (i.e. the shape of the returned tensor) and 60 partition w.r.t each axis. For example, a tensor of shape `(30, 100)` 61 can be partitioned into two partitions: `p0` of shape `(10, 100)` and 62 `p1` of shape `(20, 100)`; if the initializer is called with 115 the Initializer object, without knowing the shape and dtype of the variable [all …]
|
| D | init_ops_v2_test.py | 36 shape=None, argument 38 if shape is None: 39 shape = [100] 40 t1 = self.evaluate(init1(shape, dtype)) 41 t2 = self.evaluate(init2(shape, dtype)) 42 self.assertEqual(tensor_shape.as_shape(shape), t1.shape) 43 self.assertEqual(tensor_shape.as_shape(shape), t2.shape) 46 def _duplicated_test(self, init, shape=None, dtype=dtypes.float32): argument 47 if shape is None: 48 shape = [100] [all …]
|
| D | random_ops.py | 43 def random_normal(shape, argument 55 <tf.Tensor: shape=(4,), dtype=float32, numpy=..., dtype=float32)> 61 <tf.Tensor: shape=(2, 2), dtype=float32, numpy= 70 shape: A 1-D integer Tensor or Python array. The shape of the output tensor. 84 A tensor of the specified shape filled with random normal values. 86 with ops.name_scope(name, "random_normal", [shape, mean, stddev]) as name: 87 shape_tensor = tensor_util.shape_tensor(shape) 95 tensor_util.maybe_set_static_shape(value, shape) 102 def parameterized_truncated_normal(shape, argument 117 shape: A 1-D integer Tensor or Python array. The shape of the output tensor. [all …]
|
| /external/tensorflow/tensorflow/lite/delegates/gpu/common/task/ |
| D | weights_conversion.h | 25 #include "tensorflow/lite/delegates/gpu/common/shape.h" 41 const int dst_slices = DivideRoundUp(weights.shape.o, 4); in RearrangeWeightsToOHWIOGroupI4O4() 42 const int src_slices = DivideRoundUp(weights.shape.i, 4); in RearrangeWeightsToOHWIOGroupI4O4() 47 for (int y = 0; y < weights.shape.h; ++y) { in RearrangeWeightsToOHWIOGroupI4O4() 48 for (int x = 0; x < weights.shape.w; ++x) { in RearrangeWeightsToOHWIOGroupI4O4() 56 if (s_ch < weights.shape.i && d_ch < weights.shape.o) { in RearrangeWeightsToOHWIOGroupI4O4() 58 weights.shape.LinearIndex({d_ch, y, x, s_ch}); in RearrangeWeightsToOHWIOGroupI4O4() 77 const int dst_slices = DivideRoundUp(weights.shape.o, 4); in RearrangeWeightsToODHWIOGroupI4O4() 78 const int src_slices = DivideRoundUp(weights.shape.i, 4); in RearrangeWeightsToODHWIOGroupI4O4() 83 for (int z = 0; z < weights.shape.d; ++z) { in RearrangeWeightsToODHWIOGroupI4O4() [all …]
|
| /external/tensorflow/tensorflow/compiler/mlir/hlo/tests/ |
| D | broadcast_propagation.mlir | 3 // Shape computations shall be reified. 7 // CHECK: %[[SHAPE:.*]] = shape.shape_of %[[ARG]] : tensor<?x32xi16> -> tensor<?xindex> 8 // CHECK: "use"(%[[SHAPE]]) 10 %1 = shape.shape_of %0 : tensor<?x32xf16> -> tensor<?xindex> 17 // Shape computations shall be reified. 21 // CHECK: %[[SHAPE:.*]] = shape.shape_of %[[ARG0]] : tensor<?x32xf16> -> tensor<?xindex> 22 // CHECK: "use"(%[[SHAPE]]) 25 %2 = shape.shape_of %1 : tensor<?x32xf16> -> tensor<?xindex> 32 // Broadcasts can be moved up over unary shape-preserving operations. 49 // Broadcasts can be moved up over n-ary shape-preserving operations. [all …]
|
| /external/tensorflow/tensorflow/python/grappler/ |
| D | datasets_test.py | 15 """Tests for the datasets shape inference.""" 35 'shape': tensor_shape.TensorShape([]) 38 'shape': tensor_shape.TensorShape([3]) 41 'shape': tensor_shape.TensorShape([1, 3]) 54 self.assertEqual(test_case['shape'], 55 op_properties['IteratorGetNext'][0].shape) 60 'shape': tensor_shape.TensorShape([]) 63 'shape': tensor_shape.TensorShape([3]) 66 'shape': tensor_shape.TensorShape([1, 3]) 79 self.assertEqual(test_case['shape'], [all …]
|
| /external/tensorflow/tensorflow/python/tpu/ |
| D | tpu_sharding.py | 157 def get_unpartitioned_shape(self, shape): argument 158 """Returns the shape of an unpartitioned Tensor. 160 When given the shape of a 'sharded-size' Tensor, returns the shape 161 of the full shape of its unpartitioned Tensor. 164 shape: The shape of the sharded Tensor. 167 The shape of the unpartitioned version of the Tensor. 170 ValueError: if shape has unknown sharded dimension 172 shape = tensor_shape.as_shape(shape) 173 dims = shape.as_list() 178 raise ValueError(f"Shape {shape.as_list()} must have a fixed size for " [all …]
|
| /external/tensorflow/tensorflow/python/keras/engine/ |
| D | input_spec.py | 31 """Specifies the rank, dtype and shape of every input to a layer. 36 compatibility checks for input structure, input rank, input shape, and 39 A None entry in a shape is compatible with any dimension, 40 a None shape is compatible with any shape. 44 shape: Shape tuple, expected shape of the input 63 # The layer will accept inputs with shape (?, 28, 28) & (?, 28, 28, 1) 66 shape=(None, 28, 28, 1), 73 shape=None, argument 81 shape = tensor_shape.TensorShape(shape) 82 if shape.rank is None: [all …]
|
| /external/tflite-support/tensorflow_lite_support/java/src/java/org/tensorflow/lite/support/tensorbuffer/ |
| D | TensorBuffer.java | 33 /** Shape of the tensor stored in this buffer. */ 34 protected int[] shape; field in TensorBuffer 46 * Creates a {@link TensorBuffer} with specified {@code shape} and {@link DataType}. Here are some 50 * Creating a float TensorBuffer with shape {2, 3}: 51 * int[] shape = new int[] {2, 3}; 52 * TensorBuffer tensorBuffer = TensorBuffer.createFixedSize(shape, DataType.FLOAT32); 57 * int[] shape = new int[] {}; 58 * TensorBuffer tensorBuffer = TensorBuffer.createFixedSize(shape, DataType.UINT8); 63 * int[] shape = new int[] {0}; 64 * TensorBuffer tensorBuffer = TensorBuffer.createFixedSize(shape, DataType.UINT8); [all …]
|
| /external/tensorflow/tensorflow/cc/gradients/ |
| D | array_grad_test.cc | 59 xs.push_back(Placeholder(scope_, DT_FLOAT, Placeholder::Shape(x_shape))); in TEST_F() 60 xs.push_back(Placeholder(scope_, DT_FLOAT, Placeholder::Shape(x_shape))); in TEST_F() 69 xs.push_back(Placeholder(scope_, DT_FLOAT, Placeholder::Shape(x_shape))); in TEST_F() 70 xs.push_back(Placeholder(scope_, DT_FLOAT, Placeholder::Shape(x_shape))); in TEST_F() 78 auto x = Placeholder(scope_, DT_FLOAT, Placeholder::Shape(x_shape)); in TEST_F() 87 auto x = Placeholder(scope_, DT_FLOAT, Placeholder::Shape(x_shape)); in TEST_F() 95 TensorShape shape({5, 2}); in TEST_F() local 96 auto x = Placeholder(scope_, DT_FLOAT, Placeholder::Shape(shape)); in TEST_F() 98 RunTest(x, shape, y, shape); in TEST_F() 103 auto x = Placeholder(scope_, DT_FLOAT, Placeholder::Shape(x_shape)); in TEST_F() [all …]
|