1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/ganesh/ops/AAHairLinePathRenderer.h"
9
10 #include "include/core/SkPoint3.h"
11 #include "include/private/base/SkTemplates.h"
12 #include "src/core/SkGeometry.h"
13 #include "src/core/SkMatrixPriv.h"
14 #include "src/core/SkPointPriv.h"
15 #include "src/core/SkRectPriv.h"
16 #include "src/core/SkStroke.h"
17 #include "src/gpu/ganesh/GrAuditTrail.h"
18 #include "src/gpu/ganesh/GrBuffer.h"
19 #include "src/gpu/ganesh/GrCaps.h"
20 #include "src/gpu/ganesh/GrDefaultGeoProcFactory.h"
21 #include "src/gpu/ganesh/GrDrawOpTest.h"
22 #include "src/gpu/ganesh/GrOpFlushState.h"
23 #include "src/gpu/ganesh/GrProcessor.h"
24 #include "src/gpu/ganesh/GrProgramInfo.h"
25 #include "src/gpu/ganesh/GrResourceProvider.h"
26 #include "src/gpu/ganesh/GrStyle.h"
27 #include "src/gpu/ganesh/GrUtil.h"
28 #include "src/gpu/ganesh/SurfaceDrawContext.h"
29 #include "src/gpu/ganesh/effects/GrBezierEffect.h"
30 #include "src/gpu/ganesh/geometry/GrPathUtils.h"
31 #include "src/gpu/ganesh/geometry/GrStyledShape.h"
32 #include "src/gpu/ganesh/ops/GrMeshDrawOp.h"
33 #include "src/gpu/ganesh/ops/GrSimpleMeshDrawOpHelperWithStencil.h"
34
35 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
36
37 using PtArray = SkTArray<SkPoint, true>;
38 using IntArray = SkTArray<int, true>;
39 using FloatArray = SkTArray<float, true>;
40
41 namespace {
42
43 // quadratics are rendered as 5-sided polys in order to bound the
44 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
45 // bloat_quad. Quadratics and conics share an index buffer
46
47 // lines are rendered as:
48 // *______________*
49 // |\ -_______ /|
50 // | \ \ / |
51 // | *--------* |
52 // | / ______/ \ |
53 // */_-__________\*
54 // For: 6 vertices and 18 indices (for 6 triangles)
55
56 // Each quadratic is rendered as a five sided polygon. This poly bounds
57 // the quadratic's bounding triangle but has been expanded so that the
58 // 1-pixel wide area around the curve is inside the poly.
59 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
60 // that is rendered would look like this:
61 // b0
62 // b
63 //
64 // a0 c0
65 // a c
66 // a1 c1
67 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
68 // specified by these 9 indices:
69 static const uint16_t kQuadIdxBufPattern[] = {
70 0, 1, 2,
71 2, 4, 3,
72 1, 4, 2
73 };
74
75 static const int kIdxsPerQuad = std::size(kQuadIdxBufPattern);
76 static const int kQuadNumVertices = 5;
77 static const int kQuadsNumInIdxBuffer = 256;
78 SKGPU_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
79
get_quads_index_buffer(GrResourceProvider * resourceProvider)80 sk_sp<const GrBuffer> get_quads_index_buffer(GrResourceProvider* resourceProvider) {
81 SKGPU_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
82 return resourceProvider->findOrCreatePatternedIndexBuffer(
83 kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
84 gQuadsIndexBufferKey);
85 }
86
87
88 // Each line segment is rendered as two quads and two triangles.
89 // p0 and p1 have alpha = 1 while all other points have alpha = 0.
90 // The four external points are offset 1 pixel perpendicular to the
91 // line and half a pixel parallel to the line.
92 //
93 // p4 p5
94 // p0 p1
95 // p2 p3
96 //
97 // Each is drawn as six triangles specified by these 18 indices:
98
99 static const uint16_t kLineSegIdxBufPattern[] = {
100 0, 1, 3,
101 0, 3, 2,
102 0, 4, 5,
103 0, 5, 1,
104 0, 2, 4,
105 1, 5, 3
106 };
107
108 static const int kIdxsPerLineSeg = std::size(kLineSegIdxBufPattern);
109 static const int kLineSegNumVertices = 6;
110 static const int kLineSegsNumInIdxBuffer = 256;
111
112 SKGPU_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
113
get_lines_index_buffer(GrResourceProvider * resourceProvider)114 sk_sp<const GrBuffer> get_lines_index_buffer(GrResourceProvider* resourceProvider) {
115 SKGPU_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
116 return resourceProvider->findOrCreatePatternedIndexBuffer(
117 kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineSegNumVertices,
118 gLinesIndexBufferKey);
119 }
120
121 // Takes 178th time of logf on Z600 / VC2010
get_float_exp(float x)122 int get_float_exp(float x) {
123 static_assert(sizeof(int) == sizeof(float));
124 #ifdef SK_DEBUG
125 static bool tested;
126 if (!tested) {
127 tested = true;
128 SkASSERT(get_float_exp(0.25f) == -2);
129 SkASSERT(get_float_exp(0.3f) == -2);
130 SkASSERT(get_float_exp(0.5f) == -1);
131 SkASSERT(get_float_exp(1.f) == 0);
132 SkASSERT(get_float_exp(2.f) == 1);
133 SkASSERT(get_float_exp(2.5f) == 1);
134 SkASSERT(get_float_exp(8.f) == 3);
135 SkASSERT(get_float_exp(100.f) == 6);
136 SkASSERT(get_float_exp(1000.f) == 9);
137 SkASSERT(get_float_exp(1024.f) == 10);
138 SkASSERT(get_float_exp(3000000.f) == 21);
139 }
140 #endif
141 const int* iptr = (const int*)&x;
142 return (((*iptr) & 0x7f800000) >> 23) - 127;
143 }
144
145 // Uses the max curvature function for quads to estimate
146 // where to chop the conic. If the max curvature is not
147 // found along the curve segment it will return 1 and
148 // dst[0] is the original conic. If it returns 2 the dst[0]
149 // and dst[1] are the two new conics.
split_conic(const SkPoint src[3],SkConic dst[2],const SkScalar weight)150 int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
151 SkScalar t = SkFindQuadMaxCurvature(src);
152 // SkFindQuadMaxCurvature() returns either a value in [0, 1) or NaN.
153 // However, passing NaN to conic.chopAt() will assert. Checking to see if
154 // t is in (0,1) will also cover the NaN case since NaN comparisons are always
155 // false, so we'll drop down into the else block in that case.
156 if (0 < t && t < 1) {
157 if (dst) {
158 SkConic conic;
159 conic.set(src, weight);
160 if (!conic.chopAt(t, dst)) {
161 dst[0].set(src, weight);
162 return 1;
163 }
164 }
165 return 2;
166 } else {
167 if (dst) {
168 dst[0].set(src, weight);
169 }
170 return 1;
171 }
172 }
173
174 // Calls split_conic on the entire conic and then once more on each subsection.
175 // Most cases will result in either 1 conic (chop point is not within t range)
176 // or 3 points (split once and then one subsection is split again).
chop_conic(const SkPoint src[3],SkConic dst[4],const SkScalar weight)177 int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
178 SkConic dstTemp[2];
179 int conicCnt = split_conic(src, dstTemp, weight);
180 if (2 == conicCnt) {
181 int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
182 conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
183 } else {
184 dst[0] = dstTemp[0];
185 }
186 return conicCnt;
187 }
188
189 // returns 0 if quad/conic is degen or close to it
190 // in this case approx the path with lines
191 // otherwise returns 1
is_degen_quad_or_conic(const SkPoint p[3],SkScalar * dsqd)192 int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
193 static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
194 static const SkScalar gDegenerateToLineTolSqd =
195 gDegenerateToLineTol * gDegenerateToLineTol;
196
197 if (SkPointPriv::DistanceToSqd(p[0], p[1]) < gDegenerateToLineTolSqd ||
198 SkPointPriv::DistanceToSqd(p[1], p[2]) < gDegenerateToLineTolSqd) {
199 return 1;
200 }
201
202 *dsqd = SkPointPriv::DistanceToLineBetweenSqd(p[1], p[0], p[2]);
203 if (*dsqd < gDegenerateToLineTolSqd) {
204 return 1;
205 }
206
207 if (SkPointPriv::DistanceToLineBetweenSqd(p[2], p[1], p[0]) < gDegenerateToLineTolSqd) {
208 return 1;
209 }
210 return 0;
211 }
212
is_degen_quad_or_conic(const SkPoint p[3])213 int is_degen_quad_or_conic(const SkPoint p[3]) {
214 SkScalar dsqd;
215 return is_degen_quad_or_conic(p, &dsqd);
216 }
217
218 // we subdivide the quads to avoid huge overfill
219 // if it returns -1 then should be drawn as lines
num_quad_subdivs(const SkPoint p[3])220 int num_quad_subdivs(const SkPoint p[3]) {
221 SkScalar dsqd;
222 if (is_degen_quad_or_conic(p, &dsqd)) {
223 return -1;
224 }
225
226 // tolerance of triangle height in pixels
227 // tuned on windows Quadro FX 380 / Z600
228 // trade off of fill vs cpu time on verts
229 // maybe different when do this using gpu (geo or tess shaders)
230 static const SkScalar gSubdivTol = 175 * SK_Scalar1;
231
232 if (dsqd <= gSubdivTol * gSubdivTol) {
233 return 0;
234 } else {
235 static const int kMaxSub = 4;
236 // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
237 // = log4(d*d/tol*tol)/2
238 // = log2(d*d/tol*tol)
239
240 // +1 since we're ignoring the mantissa contribution.
241 int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
242 log = std::min(std::max(0, log), kMaxSub);
243 return log;
244 }
245 }
246
247 /**
248 * Generates the lines and quads to be rendered. Lines are always recorded in
249 * device space. We will do a device space bloat to account for the 1pixel
250 * thickness.
251 * Quads are recorded in device space unless m contains
252 * perspective, then in they are in src space. We do this because we will
253 * subdivide large quads to reduce over-fill. This subdivision has to be
254 * performed before applying the perspective matrix.
255 */
gather_lines_and_quads(const SkPath & path,const SkMatrix & m,const SkIRect & devClipBounds,SkScalar capLength,bool convertConicsToQuads,PtArray * lines,PtArray * quads,PtArray * conics,IntArray * quadSubdivCnts,FloatArray * conicWeights)256 int gather_lines_and_quads(const SkPath& path,
257 const SkMatrix& m,
258 const SkIRect& devClipBounds,
259 SkScalar capLength,
260 bool convertConicsToQuads,
261 PtArray* lines,
262 PtArray* quads,
263 PtArray* conics,
264 IntArray* quadSubdivCnts,
265 FloatArray* conicWeights) {
266 SkPath::Iter iter(path, false);
267
268 int totalQuadCount = 0;
269 SkRect bounds;
270 SkIRect ibounds;
271
272 bool persp = m.hasPerspective();
273
274 // Whenever a degenerate, zero-length contour is encountered, this code will insert a
275 // 'capLength' x-aligned line segment. Since this is rendering hairlines it is hoped this will
276 // suffice for AA square & circle capping.
277 int verbsInContour = 0; // Does not count moves
278 bool seenZeroLengthVerb = false;
279 SkPoint zeroVerbPt;
280
281 // Adds a quad that has already been chopped to the list and checks for quads that are close to
282 // lines. Also does a bounding box check. It takes points that are in src space and device
283 // space. The src points are only required if the view matrix has perspective.
284 auto addChoppedQuad = [&](const SkPoint srcPts[3], const SkPoint devPts[4],
285 bool isContourStart) {
286 SkRect bounds;
287 SkIRect ibounds;
288 bounds.setBounds(devPts, 3);
289 bounds.outset(SK_Scalar1, SK_Scalar1);
290 bounds.roundOut(&ibounds);
291 // We only need the src space space pts when not in perspective.
292 SkASSERT(srcPts || !persp);
293 if (SkIRect::Intersects(devClipBounds, ibounds)) {
294 int subdiv = num_quad_subdivs(devPts);
295 SkASSERT(subdiv >= -1);
296 if (-1 == subdiv) {
297 SkPoint* pts = lines->push_back_n(4);
298 pts[0] = devPts[0];
299 pts[1] = devPts[1];
300 pts[2] = devPts[1];
301 pts[3] = devPts[2];
302 if (isContourStart && pts[0] == pts[1] && pts[2] == pts[3]) {
303 seenZeroLengthVerb = true;
304 zeroVerbPt = pts[0];
305 }
306 } else {
307 // when in perspective keep quads in src space
308 const SkPoint* qPts = persp ? srcPts : devPts;
309 SkPoint* pts = quads->push_back_n(3);
310 pts[0] = qPts[0];
311 pts[1] = qPts[1];
312 pts[2] = qPts[2];
313 quadSubdivCnts->push_back() = subdiv;
314 totalQuadCount += 1 << subdiv;
315 }
316 }
317 };
318
319 // Applies the view matrix to quad src points and calls the above helper.
320 auto addSrcChoppedQuad = [&](const SkPoint srcSpaceQuadPts[3], bool isContourStart) {
321 SkPoint devPts[3];
322 m.mapPoints(devPts, srcSpaceQuadPts, 3);
323 addChoppedQuad(srcSpaceQuadPts, devPts, isContourStart);
324 };
325
326 SkPoint pathPts[4] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}};
327 for (;;) {
328 SkPath::Verb verb = iter.next(pathPts);
329 switch (verb) {
330 case SkPath::kConic_Verb:
331 if (convertConicsToQuads) {
332 SkScalar weight = iter.conicWeight();
333 SkAutoConicToQuads converter;
334 const SkPoint* quadPts = converter.computeQuads(pathPts, weight, 0.25f);
335 for (int i = 0; i < converter.countQuads(); ++i) {
336 addSrcChoppedQuad(quadPts + 2 * i, !verbsInContour && 0 == i);
337 }
338 } else {
339 SkConic dst[4];
340 // We chop the conics to create tighter clipping to hide error
341 // that appears near max curvature of very thin conics. Thin
342 // hyperbolas with high weight still show error.
343 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
344 for (int i = 0; i < conicCnt; ++i) {
345 SkPoint devPts[4];
346 SkPoint* chopPnts = dst[i].fPts;
347 m.mapPoints(devPts, chopPnts, 3);
348 bounds.setBounds(devPts, 3);
349 bounds.outset(SK_Scalar1, SK_Scalar1);
350 bounds.roundOut(&ibounds);
351 if (SkIRect::Intersects(devClipBounds, ibounds)) {
352 if (is_degen_quad_or_conic(devPts)) {
353 SkPoint* pts = lines->push_back_n(4);
354 pts[0] = devPts[0];
355 pts[1] = devPts[1];
356 pts[2] = devPts[1];
357 pts[3] = devPts[2];
358 if (verbsInContour == 0 && i == 0 && pts[0] == pts[1] &&
359 pts[2] == pts[3]) {
360 seenZeroLengthVerb = true;
361 zeroVerbPt = pts[0];
362 }
363 } else {
364 // when in perspective keep conics in src space
365 SkPoint* cPts = persp ? chopPnts : devPts;
366 SkPoint* pts = conics->push_back_n(3);
367 pts[0] = cPts[0];
368 pts[1] = cPts[1];
369 pts[2] = cPts[2];
370 conicWeights->push_back() = dst[i].fW;
371 }
372 }
373 }
374 }
375 verbsInContour++;
376 break;
377 case SkPath::kMove_Verb:
378 // New contour (and last one was unclosed). If it was just a zero length drawing
379 // operation, and we're supposed to draw caps, then add a tiny line.
380 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
381 SkPoint* pts = lines->push_back_n(2);
382 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
383 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
384 }
385 verbsInContour = 0;
386 seenZeroLengthVerb = false;
387 break;
388 case SkPath::kLine_Verb: {
389 SkPoint devPts[2];
390 m.mapPoints(devPts, pathPts, 2);
391 bounds.setBounds(devPts, 2);
392 bounds.outset(SK_Scalar1, SK_Scalar1);
393 bounds.roundOut(&ibounds);
394 if (SkIRect::Intersects(devClipBounds, ibounds)) {
395 SkPoint* pts = lines->push_back_n(2);
396 pts[0] = devPts[0];
397 pts[1] = devPts[1];
398 if (verbsInContour == 0 && pts[0] == pts[1]) {
399 seenZeroLengthVerb = true;
400 zeroVerbPt = pts[0];
401 }
402 }
403 verbsInContour++;
404 break;
405 }
406 case SkPath::kQuad_Verb: {
407 SkPoint choppedPts[5];
408 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
409 // When it is degenerate it allows the approximation with lines to work since the
410 // chop point (if there is one) will be at the parabola's vertex. In the nearly
411 // degenerate the QuadUVMatrix computed for the points is almost singular which
412 // can cause rendering artifacts.
413 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
414 for (int i = 0; i < n; ++i) {
415 addSrcChoppedQuad(choppedPts + i * 2, !verbsInContour && 0 == i);
416 }
417 verbsInContour++;
418 break;
419 }
420 case SkPath::kCubic_Verb: {
421 SkPoint devPts[4];
422 m.mapPoints(devPts, pathPts, 4);
423 bounds.setBounds(devPts, 4);
424 bounds.outset(SK_Scalar1, SK_Scalar1);
425 bounds.roundOut(&ibounds);
426 if (SkIRect::Intersects(devClipBounds, ibounds)) {
427 PREALLOC_PTARRAY(32) q;
428 // We convert cubics to quadratics (for now).
429 // In perspective have to do conversion in src space.
430 if (persp) {
431 SkScalar tolScale =
432 GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
433 GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
434 } else {
435 GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
436 }
437 for (int i = 0; i < q.size(); i += 3) {
438 if (persp) {
439 addSrcChoppedQuad(&q[i], !verbsInContour && 0 == i);
440 } else {
441 addChoppedQuad(nullptr, &q[i], !verbsInContour && 0 == i);
442 }
443 }
444 }
445 verbsInContour++;
446 break;
447 }
448 case SkPath::kClose_Verb:
449 // Contour is closed, so we don't need to grow the starting line, unless it's
450 // *just* a zero length subpath. (SVG Spec 11.4, 'stroke').
451 if (capLength > 0) {
452 if (seenZeroLengthVerb && verbsInContour == 1) {
453 SkPoint* pts = lines->push_back_n(2);
454 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
455 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
456 } else if (verbsInContour == 0) {
457 // Contour was (moveTo, close). Add a line.
458 SkPoint devPts[2];
459 m.mapPoints(devPts, pathPts, 1);
460 devPts[1] = devPts[0];
461 bounds.setBounds(devPts, 2);
462 bounds.outset(SK_Scalar1, SK_Scalar1);
463 bounds.roundOut(&ibounds);
464 if (SkIRect::Intersects(devClipBounds, ibounds)) {
465 SkPoint* pts = lines->push_back_n(2);
466 pts[0] = SkPoint::Make(devPts[0].fX - capLength, devPts[0].fY);
467 pts[1] = SkPoint::Make(devPts[1].fX + capLength, devPts[1].fY);
468 }
469 }
470 }
471 break;
472 case SkPath::kDone_Verb:
473 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
474 // Path ended with a dangling (moveTo, line|quad|etc). If the final verb is
475 // degenerate, we need to draw a line.
476 SkPoint* pts = lines->push_back_n(2);
477 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
478 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
479 }
480 return totalQuadCount;
481 }
482 }
483 }
484
485 struct LineVertex {
486 SkPoint fPos;
487 float fCoverage;
488 };
489
490 struct BezierVertex {
491 SkPoint fPos;
492 union {
493 struct {
494 SkScalar fKLM[3];
495 } fConic;
496 SkVector fQuadCoord;
497 struct {
498 SkScalar fBogus[4];
499 };
500 };
501 };
502
503 static_assert(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
504
intersect_lines(const SkPoint & ptA,const SkVector & normA,const SkPoint & ptB,const SkVector & normB,SkPoint * result)505 void intersect_lines(const SkPoint& ptA, const SkVector& normA,
506 const SkPoint& ptB, const SkVector& normB,
507 SkPoint* result) {
508
509 SkScalar lineAW = -normA.dot(ptA);
510 SkScalar lineBW = -normB.dot(ptB);
511
512 SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
513 wInv = SkScalarInvert(wInv);
514 if (!SkScalarIsFinite(wInv)) {
515 // lines are parallel, pick the point in between
516 *result = (ptA + ptB)*SK_ScalarHalf;
517 *result += normA;
518 } else {
519 result->fX = normA.fY * lineBW - lineAW * normB.fY;
520 result->fX *= wInv;
521
522 result->fY = lineAW * normB.fX - normA.fX * lineBW;
523 result->fY *= wInv;
524 }
525 }
526
set_uv_quad(const SkPoint qpts[3],BezierVertex verts[kQuadNumVertices])527 void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
528 // this should be in the src space, not dev coords, when we have perspective
529 GrPathUtils::QuadUVMatrix DevToUV(qpts);
530 DevToUV.apply(verts, kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint));
531 }
532
bloat_quad(const SkPoint qpts[3],const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex verts[kQuadNumVertices])533 bool bloat_quad(const SkPoint qpts[3],
534 const SkMatrix* toDevice,
535 const SkMatrix* toSrc,
536 BezierVertex verts[kQuadNumVertices]) {
537 SkASSERT(!toDevice == !toSrc);
538 // original quad is specified by tri a,b,c
539 SkPoint a = qpts[0];
540 SkPoint b = qpts[1];
541 SkPoint c = qpts[2];
542
543 if (toDevice) {
544 toDevice->mapPoints(&a, 1);
545 toDevice->mapPoints(&b, 1);
546 toDevice->mapPoints(&c, 1);
547 }
548 // make a new poly where we replace a and c by a 1-pixel wide edges orthog
549 // to edges ab and bc:
550 //
551 // before | after
552 // | b0
553 // b |
554 // |
555 // | a0 c0
556 // a c | a1 c1
557 //
558 // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
559 // respectively.
560 BezierVertex& a0 = verts[0];
561 BezierVertex& a1 = verts[1];
562 BezierVertex& b0 = verts[2];
563 BezierVertex& c0 = verts[3];
564 BezierVertex& c1 = verts[4];
565
566 SkVector ab = b;
567 ab -= a;
568 SkVector ac = c;
569 ac -= a;
570 SkVector cb = b;
571 cb -= c;
572
573 // After the transform (or due to floating point math) we might have a line,
574 // try to do something reasonable
575
576 bool abNormalized = ab.normalize();
577 bool cbNormalized = cb.normalize();
578
579 if (!abNormalized) {
580 if (!cbNormalized) {
581 return false; // Quad is degenerate so we won't add it.
582 }
583
584 ab = cb;
585 }
586
587 if (!cbNormalized) {
588 cb = ab;
589 }
590
591 // We should have already handled degenerates
592 SkASSERT(ab.length() > 0 && cb.length() > 0);
593
594 SkVector abN = SkPointPriv::MakeOrthog(ab, SkPointPriv::kLeft_Side);
595 if (abN.dot(ac) > 0) {
596 abN.negate();
597 }
598
599 SkVector cbN = SkPointPriv::MakeOrthog(cb, SkPointPriv::kLeft_Side);
600 if (cbN.dot(ac) < 0) {
601 cbN.negate();
602 }
603
604 a0.fPos = a;
605 a0.fPos += abN;
606 a1.fPos = a;
607 a1.fPos -= abN;
608
609 if (toDevice && SkPointPriv::LengthSqd(ac) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
610 c = b;
611 }
612 c0.fPos = c;
613 c0.fPos += cbN;
614 c1.fPos = c;
615 c1.fPos -= cbN;
616
617 intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
618
619 if (toSrc) {
620 SkMatrixPriv::MapPointsWithStride(*toSrc, &verts[0].fPos, sizeof(BezierVertex),
621 kQuadNumVertices);
622 }
623
624 return true;
625 }
626
627 // Equations based off of Loop-Blinn Quadratic GPU Rendering
628 // Input Parametric:
629 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
630 // Output Implicit:
631 // f(x, y, w) = f(P) = K^2 - LM
632 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
633 // k, l, m are calculated in function GrPathUtils::getConicKLM
set_conic_coeffs(const SkPoint p[3],BezierVertex verts[kQuadNumVertices],const SkScalar weight)634 void set_conic_coeffs(const SkPoint p[3],
635 BezierVertex verts[kQuadNumVertices],
636 const SkScalar weight) {
637 SkMatrix klm;
638
639 GrPathUtils::getConicKLM(p, weight, &klm);
640
641 for (int i = 0; i < kQuadNumVertices; ++i) {
642 const SkPoint3 pt3 = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f};
643 klm.mapHomogeneousPoints((SkPoint3* ) verts[i].fConic.fKLM, &pt3, 1);
644 }
645 }
646
add_conics(const SkPoint p[3],const SkScalar weight,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)647 void add_conics(const SkPoint p[3],
648 const SkScalar weight,
649 const SkMatrix* toDevice,
650 const SkMatrix* toSrc,
651 BezierVertex** vert) {
652 if (bloat_quad(p, toDevice, toSrc, *vert)) {
653 set_conic_coeffs(p, *vert, weight);
654 *vert += kQuadNumVertices;
655 }
656 }
657
add_quads(const SkPoint p[3],int subdiv,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)658 void add_quads(const SkPoint p[3],
659 int subdiv,
660 const SkMatrix* toDevice,
661 const SkMatrix* toSrc,
662 BezierVertex** vert) {
663 SkASSERT(subdiv >= 0);
664 // temporary vertex storage to avoid reading the vertex buffer
665 BezierVertex outVerts[kQuadNumVertices] = {};
666
667 // storage for the chopped quad
668 // pts 0,1,2 are the first quad, and 2,3,4 the second quad
669 SkPoint choppedQuadPts[5];
670 // start off with our original curve in the second quad slot
671 memcpy(&choppedQuadPts[2], p, 3*sizeof(SkPoint));
672
673 int stepCount = 1 << subdiv;
674 while (stepCount > 1) {
675 // The general idea is:
676 // * chop the quad using pts 2,3,4 as the input
677 // * write out verts using pts 0,1,2
678 // * now 2,3,4 is the remainder of the curve, chop again until all subdivisions are done
679 SkScalar h = 1.f / stepCount;
680 SkChopQuadAt(&choppedQuadPts[2], choppedQuadPts, h);
681
682 if (bloat_quad(choppedQuadPts, toDevice, toSrc, outVerts)) {
683 set_uv_quad(choppedQuadPts, outVerts);
684 memcpy(*vert, outVerts, kQuadNumVertices * sizeof(BezierVertex));
685 *vert += kQuadNumVertices;
686 }
687 --stepCount;
688 }
689
690 // finish up, write out the final quad
691 if (bloat_quad(&choppedQuadPts[2], toDevice, toSrc, outVerts)) {
692 set_uv_quad(&choppedQuadPts[2], outVerts);
693 memcpy(*vert, outVerts, kQuadNumVertices * sizeof(BezierVertex));
694 *vert += kQuadNumVertices;
695 }
696 }
697
add_line(const SkPoint p[2],const SkMatrix * toSrc,uint8_t coverage,LineVertex ** vert)698 void add_line(const SkPoint p[2],
699 const SkMatrix* toSrc,
700 uint8_t coverage,
701 LineVertex** vert) {
702 const SkPoint& a = p[0];
703 const SkPoint& b = p[1];
704
705 SkVector ortho, vec = b;
706 vec -= a;
707
708 SkScalar lengthSqd = SkPointPriv::LengthSqd(vec);
709
710 if (vec.setLength(SK_ScalarHalf)) {
711 // Create a vector orthogonal to 'vec' and of unit length
712 ortho.fX = 2.0f * vec.fY;
713 ortho.fY = -2.0f * vec.fX;
714
715 float floatCoverage = GrNormalizeByteToFloat(coverage);
716
717 if (lengthSqd >= 1.0f) {
718 // Relative to points a and b:
719 // The inner vertices are inset half a pixel along the line a,b
720 (*vert)[0].fPos = a + vec;
721 (*vert)[0].fCoverage = floatCoverage;
722 (*vert)[1].fPos = b - vec;
723 (*vert)[1].fCoverage = floatCoverage;
724 } else {
725 // The inner vertices are inset a distance of length(a,b) from the outer edge of
726 // geometry. For the "a" inset this is the same as insetting from b by half a pixel.
727 // The coverage is then modulated by the length. This gives us the correct
728 // coverage for rects shorter than a pixel as they get translated subpixel amounts
729 // inside of a pixel.
730 SkScalar length = SkScalarSqrt(lengthSqd);
731 (*vert)[0].fPos = b - vec;
732 (*vert)[0].fCoverage = floatCoverage * length;
733 (*vert)[1].fPos = a + vec;
734 (*vert)[1].fCoverage = floatCoverage * length;
735 }
736 // Relative to points a and b:
737 // The outer vertices are outset half a pixel along the line a,b and then a whole pixel
738 // orthogonally.
739 (*vert)[2].fPos = a - vec + ortho;
740 (*vert)[2].fCoverage = 0;
741 (*vert)[3].fPos = b + vec + ortho;
742 (*vert)[3].fCoverage = 0;
743 (*vert)[4].fPos = a - vec - ortho;
744 (*vert)[4].fCoverage = 0;
745 (*vert)[5].fPos = b + vec - ortho;
746 (*vert)[5].fCoverage = 0;
747
748 if (toSrc) {
749 SkMatrixPriv::MapPointsWithStride(*toSrc, &(*vert)->fPos, sizeof(LineVertex),
750 kLineSegNumVertices);
751 }
752 } else {
753 // just make it degenerate and likely offscreen
754 for (int i = 0; i < kLineSegNumVertices; ++i) {
755 (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
756 }
757 }
758
759 *vert += kLineSegNumVertices;
760 }
761
762 ///////////////////////////////////////////////////////////////////////////////
763
764 class AAHairlineOp final : public GrMeshDrawOp {
765 private:
766 using Helper = GrSimpleMeshDrawOpHelperWithStencil;
767
768 public:
769 DEFINE_OP_CLASS_ID
770
Make(GrRecordingContext * context,GrPaint && paint,const SkMatrix & viewMatrix,const SkPath & path,const GrStyle & style,const SkIRect & devClipBounds,const GrUserStencilSettings * stencilSettings)771 static GrOp::Owner Make(GrRecordingContext* context,
772 GrPaint&& paint,
773 const SkMatrix& viewMatrix,
774 const SkPath& path,
775 const GrStyle& style,
776 const SkIRect& devClipBounds,
777 const GrUserStencilSettings* stencilSettings) {
778 SkScalar hairlineCoverage;
779 uint8_t newCoverage = 0xff;
780 if (GrIsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
781 newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
782 }
783
784 const SkStrokeRec& stroke = style.strokeRec();
785 SkScalar capLength = SkPaint::kButt_Cap != stroke.getCap() ? hairlineCoverage * 0.5f : 0.0f;
786
787 return Helper::FactoryHelper<AAHairlineOp>(context, std::move(paint), newCoverage,
788 viewMatrix, path,
789 devClipBounds, capLength, stencilSettings);
790 }
791
AAHairlineOp(GrProcessorSet * processorSet,const SkPMColor4f & color,uint8_t coverage,const SkMatrix & viewMatrix,const SkPath & path,SkIRect devClipBounds,SkScalar capLength,const GrUserStencilSettings * stencilSettings)792 AAHairlineOp(GrProcessorSet* processorSet,
793 const SkPMColor4f& color,
794 uint8_t coverage,
795 const SkMatrix& viewMatrix,
796 const SkPath& path,
797 SkIRect devClipBounds,
798 SkScalar capLength,
799 const GrUserStencilSettings* stencilSettings)
800 : INHERITED(ClassID())
801 , fHelper(processorSet, GrAAType::kCoverage, stencilSettings)
802 , fColor(color)
803 , fCoverage(coverage) {
804 fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds, capLength});
805
806 this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
807 IsHairline::kYes);
808 }
809
name() const810 const char* name() const override { return "AAHairlineOp"; }
811
visitProxies(const GrVisitProxyFunc & func) const812 void visitProxies(const GrVisitProxyFunc& func) const override {
813
814 bool visited = false;
815 for (int i = 0; i < 3; ++i) {
816 if (fProgramInfos[i]) {
817 fProgramInfos[i]->visitFPProxies(func);
818 visited = true;
819 }
820 }
821
822 if (!visited) {
823 fHelper.visitProxies(func);
824 }
825 }
826
fixedFunctionFlags() const827 FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
828
finalize(const GrCaps & caps,const GrAppliedClip * clip,GrClampType clampType)829 GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
830 GrClampType clampType) override {
831 // This Op uses uniform (not vertex) color, so doesn't need to track wide color.
832 return fHelper.finalizeProcessors(caps, clip, clampType,
833 GrProcessorAnalysisCoverage::kSingleChannel, &fColor,
834 nullptr);
835 }
836
837 enum class Program : uint8_t {
838 kNone = 0x0,
839 kLine = 0x1,
840 kQuad = 0x2,
841 kConic = 0x4,
842 };
843
844 private:
845 void makeLineProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
846 const GrSurfaceProxyView& writeView,
847 bool usesMSAASurface,
848 const SkMatrix* geometryProcessorViewM,
849 const SkMatrix* geometryProcessorLocalM,
850 GrXferBarrierFlags renderPassXferBarriers,
851 GrLoadOp colorLoadOp);
852 void makeQuadProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
853 const GrSurfaceProxyView& writeView,
854 bool usesMSAASurface,
855 const SkMatrix* geometryProcessorViewM,
856 const SkMatrix* geometryProcessorLocalM,
857 GrXferBarrierFlags renderPassXferBarriers,
858 GrLoadOp colorLoadOp);
859 void makeConicProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
860 const GrSurfaceProxyView& writeView,
861 bool usesMSAASurface,
862 const SkMatrix* geometryProcessorViewM,
863 const SkMatrix* geometryProcessorLocalM,
864 GrXferBarrierFlags renderPassXferBarriers,
865 GrLoadOp colorLoadOp);
866
programInfo()867 GrProgramInfo* programInfo() override {
868 // This Op has 3 programInfos and implements its own onPrePrepareDraws so this entry point
869 // should really never be called.
870 SkASSERT(0);
871 return nullptr;
872 }
873
874 Program predictPrograms(const GrCaps*) const;
875
876 void onCreateProgramInfo(const GrCaps*,
877 SkArenaAlloc*,
878 const GrSurfaceProxyView& writeView,
879 bool usesMSAASurface,
880 GrAppliedClip&&,
881 const GrDstProxyView&,
882 GrXferBarrierFlags renderPassXferBarriers,
883 GrLoadOp colorLoadOp) override;
884
885 void onPrePrepareDraws(GrRecordingContext*,
886 const GrSurfaceProxyView& writeView,
887 GrAppliedClip*,
888 const GrDstProxyView&,
889 GrXferBarrierFlags renderPassXferBarriers,
890 GrLoadOp colorLoadOp) override;
891
892 void onPrepareDraws(GrMeshDrawTarget*) override;
893 void onExecute(GrOpFlushState*, const SkRect& chainBounds) override;
894
onCombineIfPossible(GrOp * t,SkArenaAlloc *,const GrCaps & caps)895 CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override {
896 AAHairlineOp* that = t->cast<AAHairlineOp>();
897
898 if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
899 return CombineResult::kCannotCombine;
900 }
901
902 if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
903 return CombineResult::kCannotCombine;
904 }
905
906 // We go to identity if we don't have perspective
907 if (this->viewMatrix().hasPerspective() &&
908 !SkMatrixPriv::CheapEqual(this->viewMatrix(), that->viewMatrix())) {
909 return CombineResult::kCannotCombine;
910 }
911
912 // TODO we can actually combine hairlines if they are the same color in a kind of bulk
913 // method but we haven't implemented this yet
914 // TODO investigate going to vertex color and coverage?
915 if (this->coverage() != that->coverage()) {
916 return CombineResult::kCannotCombine;
917 }
918
919 if (this->color() != that->color()) {
920 return CombineResult::kCannotCombine;
921 }
922
923 if (fHelper.usesLocalCoords() && !SkMatrixPriv::CheapEqual(this->viewMatrix(),
924 that->viewMatrix())) {
925 return CombineResult::kCannotCombine;
926 }
927
928 fPaths.push_back_n(that->fPaths.size(), that->fPaths.begin());
929 return CombineResult::kMerged;
930 }
931
932 #if GR_TEST_UTILS
onDumpInfo() const933 SkString onDumpInfo() const override {
934 return SkStringPrintf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n%s",
935 fColor.toBytes_RGBA(), fCoverage, fPaths.size(),
936 fHelper.dumpInfo().c_str());
937 }
938 #endif
939
color() const940 const SkPMColor4f& color() const { return fColor; }
coverage() const941 uint8_t coverage() const { return fCoverage; }
viewMatrix() const942 const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
943
944 struct PathData {
945 SkMatrix fViewMatrix;
946 SkPath fPath;
947 SkIRect fDevClipBounds;
948 SkScalar fCapLength;
949 };
950
951 SkSTArray<1, PathData, true> fPaths;
952 Helper fHelper;
953 SkPMColor4f fColor;
954 uint8_t fCoverage;
955
956 Program fCharacterization = Program::kNone; // holds a mask of required programs
957 GrSimpleMesh* fMeshes[3] = { nullptr };
958 GrProgramInfo* fProgramInfos[3] = { nullptr };
959
960 using INHERITED = GrMeshDrawOp;
961 };
962
GR_MAKE_BITFIELD_CLASS_OPS(AAHairlineOp::Program)963 GR_MAKE_BITFIELD_CLASS_OPS(AAHairlineOp::Program)
964
965 void AAHairlineOp::makeLineProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
966 const GrPipeline* pipeline,
967 const GrSurfaceProxyView& writeView,
968 bool usesMSAASurface,
969 const SkMatrix* geometryProcessorViewM,
970 const SkMatrix* geometryProcessorLocalM,
971 GrXferBarrierFlags renderPassXferBarriers,
972 GrLoadOp colorLoadOp) {
973 if (fProgramInfos[0]) {
974 return;
975 }
976
977 GrGeometryProcessor* lineGP;
978 {
979 using namespace GrDefaultGeoProcFactory;
980
981 Color color(this->color());
982 LocalCoords localCoords(fHelper.usesLocalCoords() ? LocalCoords::kUsePosition_Type
983 : LocalCoords::kUnused_Type);
984 localCoords.fMatrix = geometryProcessorLocalM;
985
986 lineGP = GrDefaultGeoProcFactory::Make(arena,
987 color,
988 Coverage::kAttribute_Type,
989 localCoords,
990 *geometryProcessorViewM);
991 SkASSERT(sizeof(LineVertex) == lineGP->vertexStride());
992 }
993
994 fProgramInfos[0] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
995 &caps, arena, pipeline, writeView, usesMSAASurface, lineGP, GrPrimitiveType::kTriangles,
996 renderPassXferBarriers, colorLoadOp, fHelper.stencilSettings());
997 }
998
makeQuadProgramInfo(const GrCaps & caps,SkArenaAlloc * arena,const GrPipeline * pipeline,const GrSurfaceProxyView & writeView,bool usesMSAASurface,const SkMatrix * geometryProcessorViewM,const SkMatrix * geometryProcessorLocalM,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)999 void AAHairlineOp::makeQuadProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
1000 const GrPipeline* pipeline,
1001 const GrSurfaceProxyView& writeView,
1002 bool usesMSAASurface,
1003 const SkMatrix* geometryProcessorViewM,
1004 const SkMatrix* geometryProcessorLocalM,
1005 GrXferBarrierFlags renderPassXferBarriers,
1006 GrLoadOp colorLoadOp) {
1007 if (fProgramInfos[1]) {
1008 return;
1009 }
1010
1011 GrGeometryProcessor* quadGP = GrQuadEffect::Make(arena,
1012 this->color(),
1013 *geometryProcessorViewM,
1014 caps,
1015 *geometryProcessorLocalM,
1016 fHelper.usesLocalCoords(),
1017 this->coverage());
1018 SkASSERT(sizeof(BezierVertex) == quadGP->vertexStride());
1019
1020 fProgramInfos[1] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
1021 &caps, arena, pipeline, writeView, usesMSAASurface, quadGP, GrPrimitiveType::kTriangles,
1022 renderPassXferBarriers, colorLoadOp, fHelper.stencilSettings());
1023 }
1024
makeConicProgramInfo(const GrCaps & caps,SkArenaAlloc * arena,const GrPipeline * pipeline,const GrSurfaceProxyView & writeView,bool usesMSAASurface,const SkMatrix * geometryProcessorViewM,const SkMatrix * geometryProcessorLocalM,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)1025 void AAHairlineOp::makeConicProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
1026 const GrPipeline* pipeline,
1027 const GrSurfaceProxyView& writeView,
1028 bool usesMSAASurface,
1029 const SkMatrix* geometryProcessorViewM,
1030 const SkMatrix* geometryProcessorLocalM,
1031 GrXferBarrierFlags renderPassXferBarriers,
1032 GrLoadOp colorLoadOp) {
1033 if (fProgramInfos[2]) {
1034 return;
1035 }
1036
1037 GrGeometryProcessor* conicGP = GrConicEffect::Make(arena,
1038 this->color(),
1039 *geometryProcessorViewM,
1040 caps,
1041 *geometryProcessorLocalM,
1042 fHelper.usesLocalCoords(),
1043 this->coverage());
1044 SkASSERT(sizeof(BezierVertex) == conicGP->vertexStride());
1045
1046 fProgramInfos[2] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
1047 &caps, arena, pipeline, writeView, usesMSAASurface, conicGP,
1048 GrPrimitiveType::kTriangles, renderPassXferBarriers, colorLoadOp,
1049 fHelper.stencilSettings());
1050 }
1051
predictPrograms(const GrCaps * caps) const1052 AAHairlineOp::Program AAHairlineOp::predictPrograms(const GrCaps* caps) const {
1053 bool convertConicsToQuads = !caps->shaderCaps()->fFloatIs32Bits;
1054
1055 // When predicting the programs we always include the lineProgram bc it is used as a fallback
1056 // for quads and conics. In non-DDL mode there are cases where it sometimes isn't needed for a
1057 // given path.
1058 Program neededPrograms = Program::kLine;
1059
1060 for (int i = 0; i < fPaths.size(); i++) {
1061 uint32_t mask = fPaths[i].fPath.getSegmentMasks();
1062
1063 if (mask & (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask)) {
1064 neededPrograms |= Program::kQuad;
1065 }
1066 if (mask & SkPath::kConic_SegmentMask) {
1067 if (convertConicsToQuads) {
1068 neededPrograms |= Program::kQuad;
1069 } else {
1070 neededPrograms |= Program::kConic;
1071 }
1072 }
1073 }
1074
1075 return neededPrograms;
1076 }
1077
onCreateProgramInfo(const GrCaps * caps,SkArenaAlloc * arena,const GrSurfaceProxyView & writeView,bool usesMSAASurface,GrAppliedClip && appliedClip,const GrDstProxyView & dstProxyView,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)1078 void AAHairlineOp::onCreateProgramInfo(const GrCaps* caps,
1079 SkArenaAlloc* arena,
1080 const GrSurfaceProxyView& writeView,
1081 bool usesMSAASurface,
1082 GrAppliedClip&& appliedClip,
1083 const GrDstProxyView& dstProxyView,
1084 GrXferBarrierFlags renderPassXferBarriers,
1085 GrLoadOp colorLoadOp) {
1086 // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
1087 SkMatrix invert;
1088 if (!this->viewMatrix().invert(&invert)) {
1089 return;
1090 }
1091
1092 // we will transform to identity space if the viewmatrix does not have perspective
1093 bool hasPerspective = this->viewMatrix().hasPerspective();
1094 const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
1095 const SkMatrix* geometryProcessorLocalM = &invert;
1096 if (hasPerspective) {
1097 geometryProcessorViewM = &this->viewMatrix();
1098 geometryProcessorLocalM = &SkMatrix::I();
1099 }
1100
1101 auto pipeline = fHelper.createPipeline(caps, arena, writeView.swizzle(),
1102 std::move(appliedClip), dstProxyView);
1103
1104 if (fCharacterization & Program::kLine) {
1105 this->makeLineProgramInfo(*caps, arena, pipeline, writeView, usesMSAASurface,
1106 geometryProcessorViewM, geometryProcessorLocalM,
1107 renderPassXferBarriers, colorLoadOp);
1108 }
1109 if (fCharacterization & Program::kQuad) {
1110 this->makeQuadProgramInfo(*caps, arena, pipeline, writeView, usesMSAASurface,
1111 geometryProcessorViewM, geometryProcessorLocalM,
1112 renderPassXferBarriers, colorLoadOp);
1113 }
1114 if (fCharacterization & Program::kConic) {
1115 this->makeConicProgramInfo(*caps, arena, pipeline, writeView, usesMSAASurface,
1116 geometryProcessorViewM, geometryProcessorLocalM,
1117 renderPassXferBarriers, colorLoadOp);
1118
1119 }
1120 }
1121
onPrePrepareDraws(GrRecordingContext * context,const GrSurfaceProxyView & writeView,GrAppliedClip * clip,const GrDstProxyView & dstProxyView,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)1122 void AAHairlineOp::onPrePrepareDraws(GrRecordingContext* context,
1123 const GrSurfaceProxyView& writeView,
1124 GrAppliedClip* clip,
1125 const GrDstProxyView& dstProxyView,
1126 GrXferBarrierFlags renderPassXferBarriers,
1127 GrLoadOp colorLoadOp) {
1128 SkArenaAlloc* arena = context->priv().recordTimeAllocator();
1129 const GrCaps* caps = context->priv().caps();
1130
1131 // http://skbug.com/12201 -- DDL does not yet support DMSAA.
1132 bool usesMSAASurface = writeView.asRenderTargetProxy()->numSamples() > 1;
1133
1134 // This is equivalent to a GrOpFlushState::detachAppliedClip
1135 GrAppliedClip appliedClip = clip ? std::move(*clip) : GrAppliedClip::Disabled();
1136
1137 // Conservatively predict which programs will be required
1138 fCharacterization = this->predictPrograms(caps);
1139
1140 this->createProgramInfo(caps, arena, writeView, usesMSAASurface, std::move(appliedClip),
1141 dstProxyView, renderPassXferBarriers, colorLoadOp);
1142
1143 context->priv().recordProgramInfo(fProgramInfos[0]);
1144 context->priv().recordProgramInfo(fProgramInfos[1]);
1145 context->priv().recordProgramInfo(fProgramInfos[2]);
1146 }
1147
onPrepareDraws(GrMeshDrawTarget * target)1148 void AAHairlineOp::onPrepareDraws(GrMeshDrawTarget* target) {
1149 // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
1150 SkMatrix invert;
1151 if (!this->viewMatrix().invert(&invert)) {
1152 return;
1153 }
1154
1155 // we will transform to identity space if the viewmatrix does not have perspective
1156 const SkMatrix* toDevice = nullptr;
1157 const SkMatrix* toSrc = nullptr;
1158 if (this->viewMatrix().hasPerspective()) {
1159 toDevice = &this->viewMatrix();
1160 toSrc = &invert;
1161 }
1162
1163 SkDEBUGCODE(Program predictedPrograms = this->predictPrograms(&target->caps()));
1164 Program actualPrograms = Program::kNone;
1165
1166 // This is hand inlined for maximum performance.
1167 PREALLOC_PTARRAY(128) lines;
1168 PREALLOC_PTARRAY(128) quads;
1169 PREALLOC_PTARRAY(128) conics;
1170 IntArray qSubdivs;
1171 FloatArray cWeights;
1172 int quadCount = 0;
1173
1174 int instanceCount = fPaths.size();
1175 bool convertConicsToQuads = !target->caps().shaderCaps()->fFloatIs32Bits;
1176 for (int i = 0; i < instanceCount; i++) {
1177 const PathData& args = fPaths[i];
1178 quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
1179 args.fCapLength, convertConicsToQuads, &lines, &quads,
1180 &conics, &qSubdivs, &cWeights);
1181 }
1182
1183 int lineCount = lines.size() / 2;
1184 int conicCount = conics.size() / 3;
1185 int quadAndConicCount = conicCount + quadCount;
1186
1187 static constexpr int kMaxLines = SK_MaxS32 / kLineSegNumVertices;
1188 static constexpr int kMaxQuadsAndConics = SK_MaxS32 / kQuadNumVertices;
1189 if (lineCount > kMaxLines || quadAndConicCount > kMaxQuadsAndConics) {
1190 return;
1191 }
1192
1193 // do lines first
1194 if (lineCount) {
1195 SkASSERT(predictedPrograms & Program::kLine);
1196 actualPrograms |= Program::kLine;
1197
1198 sk_sp<const GrBuffer> linesIndexBuffer = get_lines_index_buffer(target->resourceProvider());
1199
1200 GrMeshDrawOp::PatternHelper helper(target, GrPrimitiveType::kTriangles, sizeof(LineVertex),
1201 std::move(linesIndexBuffer), kLineSegNumVertices,
1202 kIdxsPerLineSeg, lineCount, kLineSegsNumInIdxBuffer);
1203
1204 LineVertex* verts = reinterpret_cast<LineVertex*>(helper.vertices());
1205 if (!verts) {
1206 SkDebugf("Could not allocate vertices\n");
1207 return;
1208 }
1209
1210 for (int i = 0; i < lineCount; ++i) {
1211 add_line(&lines[2*i], toSrc, this->coverage(), &verts);
1212 }
1213
1214 fMeshes[0] = helper.mesh();
1215 }
1216
1217 if (quadCount || conicCount) {
1218 sk_sp<const GrBuffer> vertexBuffer;
1219 int firstVertex;
1220
1221 sk_sp<const GrBuffer> quadsIndexBuffer = get_quads_index_buffer(target->resourceProvider());
1222
1223 int vertexCount = kQuadNumVertices * quadAndConicCount;
1224 void* vertices = target->makeVertexSpace(sizeof(BezierVertex), vertexCount, &vertexBuffer,
1225 &firstVertex);
1226
1227 if (!vertices || !quadsIndexBuffer) {
1228 SkDebugf("Could not allocate vertices\n");
1229 return;
1230 }
1231
1232 // Setup vertices
1233 BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
1234
1235 int unsubdivQuadCnt = quads.size() / 3;
1236 for (int i = 0; i < unsubdivQuadCnt; ++i) {
1237 SkASSERT(qSubdivs[i] >= 0);
1238 if (!quads[3*i].isFinite() || !quads[3*i+1].isFinite() || !quads[3*i+2].isFinite()) {
1239 return;
1240 }
1241 add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
1242 }
1243
1244 // Start Conics
1245 for (int i = 0; i < conicCount; ++i) {
1246 add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
1247 }
1248
1249 if (quadCount > 0) {
1250 SkASSERT(predictedPrograms & Program::kQuad);
1251 actualPrograms |= Program::kQuad;
1252
1253 fMeshes[1] = target->allocMesh();
1254 fMeshes[1]->setIndexedPatterned(quadsIndexBuffer, kIdxsPerQuad, quadCount,
1255 kQuadsNumInIdxBuffer, vertexBuffer, kQuadNumVertices,
1256 firstVertex);
1257 firstVertex += quadCount * kQuadNumVertices;
1258 }
1259
1260 if (conicCount > 0) {
1261 SkASSERT(predictedPrograms & Program::kConic);
1262 actualPrograms |= Program::kConic;
1263
1264 fMeshes[2] = target->allocMesh();
1265 fMeshes[2]->setIndexedPatterned(std::move(quadsIndexBuffer), kIdxsPerQuad, conicCount,
1266 kQuadsNumInIdxBuffer, std::move(vertexBuffer),
1267 kQuadNumVertices, firstVertex);
1268 }
1269 }
1270
1271 // In DDL mode this will replace the predicted program requirements with the actual ones.
1272 // However, we will already have surfaced the predicted programs to the DDL.
1273 fCharacterization = actualPrograms;
1274 }
1275
onExecute(GrOpFlushState * flushState,const SkRect & chainBounds)1276 void AAHairlineOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) {
1277 this->createProgramInfo(flushState);
1278
1279 for (int i = 0; i < 3; ++i) {
1280 if (fProgramInfos[i] && fMeshes[i]) {
1281 flushState->bindPipelineAndScissorClip(*fProgramInfos[i], chainBounds);
1282 flushState->bindTextures(fProgramInfos[i]->geomProc(), nullptr,
1283 fProgramInfos[i]->pipeline());
1284 flushState->drawMesh(*fMeshes[i]);
1285 }
1286 }
1287 }
1288
1289 } // anonymous namespace
1290
1291 ///////////////////////////////////////////////////////////////////////////////////////////////////
1292
1293 #if GR_TEST_UTILS
1294
GR_DRAW_OP_TEST_DEFINE(AAHairlineOp)1295 GR_DRAW_OP_TEST_DEFINE(AAHairlineOp) {
1296 SkMatrix viewMatrix = GrTest::TestMatrix(random);
1297 const SkPath& path = GrTest::TestPath(random);
1298 SkIRect devClipBounds;
1299 devClipBounds.setEmpty();
1300 return AAHairlineOp::Make(context, std::move(paint), viewMatrix, path,
1301 GrStyle::SimpleHairline(), devClipBounds,
1302 GrGetRandomStencil(random, context));
1303 }
1304
1305 #endif
1306
1307 ///////////////////////////////////////////////////////////////////////////////////////////////////
1308
1309 namespace skgpu::v1 {
1310
onCanDrawPath(const CanDrawPathArgs & args) const1311 PathRenderer::CanDrawPath AAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
1312 if (GrAAType::kCoverage != args.fAAType) {
1313 return CanDrawPath::kNo;
1314 }
1315
1316 if (!GrIsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
1317 return CanDrawPath::kNo;
1318 }
1319
1320 // We don't currently handle dashing in this class though perhaps we should.
1321 if (args.fShape->style().pathEffect()) {
1322 return CanDrawPath::kNo;
1323 }
1324
1325 if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
1326 args.fCaps->shaderCaps()->fShaderDerivativeSupport) {
1327 return CanDrawPath::kYes;
1328 }
1329
1330 return CanDrawPath::kNo;
1331 }
1332
1333
onDrawPath(const DrawPathArgs & args)1334 bool AAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
1335 GR_AUDIT_TRAIL_AUTO_FRAME(args.fContext->priv().auditTrail(),
1336 "AAHairlinePathRenderer::onDrawPath");
1337 SkASSERT(args.fSurfaceDrawContext->numSamples() <= 1);
1338
1339 SkPath path;
1340 args.fShape->asPath(&path);
1341 GrOp::Owner op =
1342 AAHairlineOp::Make(args.fContext, std::move(args.fPaint), *args.fViewMatrix, path,
1343 args.fShape->style(), *args.fClipConservativeBounds,
1344 args.fUserStencilSettings);
1345 args.fSurfaceDrawContext->addDrawOp(args.fClip, std::move(op));
1346 return true;
1347 }
1348
1349 } // namespace skgpu::v1
1350