• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2019 Google LLC.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/ganesh/tessellate/GrPathTessellationShader.h"
9 
10 #include "src/base/SkMathPriv.h"
11 #include "src/gpu/KeyBuilder.h"
12 #include "src/gpu/ganesh/effects/GrDisableColorXP.h"
13 #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h"
14 #include "src/gpu/ganesh/glsl/GrGLSLVarying.h"
15 #include "src/gpu/ganesh/glsl/GrGLSLVertexGeoBuilder.h"
16 #include "src/gpu/tessellate/FixedCountBufferUtils.h"
17 #include "src/gpu/tessellate/Tessellation.h"
18 #include "src/gpu/tessellate/WangsFormula.h"
19 
20 namespace {
21 
22 using namespace skgpu::tess;
23 
24 // Draws a simple array of triangles.
25 class SimpleTriangleShader : public GrPathTessellationShader {
26 public:
SimpleTriangleShader(const SkMatrix & viewMatrix,SkPMColor4f color)27     SimpleTriangleShader(const SkMatrix& viewMatrix, SkPMColor4f color)
28             : GrPathTessellationShader(kTessellate_SimpleTriangleShader_ClassID,
29                                        GrPrimitiveType::kTriangles,
30                                        viewMatrix,
31                                        color,
32                                        PatchAttribs::kNone) {
33         constexpr static Attribute kInputPointAttrib{"inputPoint", kFloat2_GrVertexAttribType,
34                                                      SkSLType::kFloat2};
35         this->setVertexAttributesWithImplicitOffsets(&kInputPointAttrib, 1);
36     }
37 
38 private:
name() const39     const char* name() const final { return "tessellate_SimpleTriangleShader"; }
addToKey(const GrShaderCaps &,skgpu::KeyBuilder *) const40     void addToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const final {}
41     std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const final;
42 };
43 
makeProgramImpl(const GrShaderCaps &) const44 std::unique_ptr<GrGeometryProcessor::ProgramImpl> SimpleTriangleShader::makeProgramImpl(
45         const GrShaderCaps&) const {
46     class Impl : public GrPathTessellationShader::Impl {
47         void emitVertexCode(const GrShaderCaps&,
48                             const GrPathTessellationShader&,
49                             GrGLSLVertexBuilder* v,
50                             GrGLSLVaryingHandler*,
51                             GrGPArgs* gpArgs) override {
52             v->codeAppend(
53             "float2 localcoord = inputPoint;"
54             "float2 vertexpos = AFFINE_MATRIX * localcoord + TRANSLATE;");
55             gpArgs->fLocalCoordVar.set(SkSLType::kFloat2, "localcoord");
56             gpArgs->fPositionVar.set(SkSLType::kFloat2, "vertexpos");
57         }
58     };
59     return std::make_unique<Impl>();
60 }
61 
62 
63 // Uses instanced draws to triangulate standalone closed curves with a "middle-out" topology.
64 // Middle-out draws a triangle with vertices at T=[0, 1/2, 1] and then recurses breadth first:
65 //
66 //   depth=0: T=[0, 1/2, 1]
67 //   depth=1: T=[0, 1/4, 2/4], T=[2/4, 3/4, 1]
68 //   depth=2: T=[0, 1/8, 2/8], T=[2/8, 3/8, 4/8], T=[4/8, 5/8, 6/8], T=[6/8, 7/8, 1]
69 //   ...
70 //
71 // The shader determines how many segments are required to render each individual curve smoothly,
72 // and emits empty triangles at any vertices whose sk_VertexIDs are higher than necessary. It is the
73 // caller's responsibility to draw enough vertices per instance for the most complex curve in the
74 // batch to render smoothly (i.e., NumTrianglesAtResolveLevel() * 3).
75 class MiddleOutShader : public GrPathTessellationShader {
76 public:
MiddleOutShader(const GrShaderCaps & shaderCaps,const SkMatrix & viewMatrix,const SkPMColor4f & color,PatchAttribs attribs)77     MiddleOutShader(const GrShaderCaps& shaderCaps, const SkMatrix& viewMatrix,
78                     const SkPMColor4f& color, PatchAttribs attribs)
79             : GrPathTessellationShader(kTessellate_MiddleOutShader_ClassID,
80                                        GrPrimitiveType::kTriangles, viewMatrix, color, attribs) {
81         fInstanceAttribs.emplace_back("p01", kFloat4_GrVertexAttribType, SkSLType::kFloat4);
82         fInstanceAttribs.emplace_back("p23", kFloat4_GrVertexAttribType, SkSLType::kFloat4);
83         if (fAttribs & PatchAttribs::kFanPoint) {
84             fInstanceAttribs.emplace_back("fanPointAttrib",
85                                           kFloat2_GrVertexAttribType,
86                                           SkSLType::kFloat2);
87         }
88         if (fAttribs & PatchAttribs::kColor) {
89             fInstanceAttribs.emplace_back("colorAttrib",
90                                           (fAttribs & PatchAttribs::kWideColorIfEnabled)
91                                                   ? kFloat4_GrVertexAttribType
92                                                   : kUByte4_norm_GrVertexAttribType,
93                                           SkSLType::kHalf4);
94         }
95         if (fAttribs & PatchAttribs::kExplicitCurveType) {
96             // A conic curve is written out with p3=[w,Infinity], but GPUs that don't support
97             // infinity can't detect this. On these platforms we also write out an extra float with
98             // each patch that explicitly tells the shader what type of curve it is.
99             fInstanceAttribs.emplace_back("curveType", kFloat_GrVertexAttribType, SkSLType::kFloat);
100         }
101         this->setInstanceAttributesWithImplicitOffsets(fInstanceAttribs.data(),
102                                                        fInstanceAttribs.size());
103         SkASSERT(fInstanceAttribs.size() <= kMaxInstanceAttribCount);
104         SkASSERT(this->instanceStride() ==
105                  sizeof(SkPoint) * 4 + PatchAttribsStride(fAttribs));
106 
107         constexpr static Attribute kVertexAttrib("resolveLevel_and_idx", kFloat2_GrVertexAttribType,
108                                                  SkSLType::kFloat2);
109         this->setVertexAttributesWithImplicitOffsets(&kVertexAttrib, 1);
110     }
111 
112 private:
name() const113     const char* name() const final { return "tessellate_MiddleOutShader"; }
addToKey(const GrShaderCaps &,skgpu::KeyBuilder * b) const114     void addToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const final {
115         // When color is in a uniform, it's always wide so we need to ignore kWideColorIfEnabled.
116         // When color is in an attrib, its wideness is accounted for as part of the attrib key in
117         // GrGeometryProcessor::getAttributeKey().
118         // Either way, we get the correct key by ignoring .
119         b->add32((uint32_t)(fAttribs & ~PatchAttribs::kWideColorIfEnabled));
120     }
121     std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const final;
122 
123     constexpr static int kMaxInstanceAttribCount = 5;
124     SkSTArray<kMaxInstanceAttribCount, Attribute> fInstanceAttribs;
125 };
126 
makeProgramImpl(const GrShaderCaps &) const127 std::unique_ptr<GrGeometryProcessor::ProgramImpl> MiddleOutShader::makeProgramImpl(
128         const GrShaderCaps&) const {
129     class Impl : public GrPathTessellationShader::Impl {
130         void emitVertexCode(const GrShaderCaps& shaderCaps,
131                             const GrPathTessellationShader& shader,
132                             GrGLSLVertexBuilder* v,
133                             GrGLSLVaryingHandler* varyingHandler,
134                             GrGPArgs* gpArgs) override {
135             const MiddleOutShader& middleOutShader = shader.cast<MiddleOutShader>();
136             v->defineConstant("PRECISION", skgpu::tess::kPrecision);
137             v->defineConstant("MAX_FIXED_RESOLVE_LEVEL",
138                               (float)skgpu::tess::kMaxResolveLevel);
139             v->defineConstant("MAX_FIXED_SEGMENTS",
140                               (float)(skgpu::tess::kMaxParametricSegments));
141             v->insertFunction(GrTessellationShader::WangsFormulaSkSL());
142             if (middleOutShader.fAttribs & PatchAttribs::kExplicitCurveType) {
143                 v->insertFunction(SkStringPrintf(
144                 "bool is_conic_curve() {"
145                     "return curveType != %g;"
146                 "}", skgpu::tess::kCubicCurveType).c_str());
147                 v->insertFunction(SkStringPrintf(
148                 "bool is_triangular_conic_curve() {"
149                     "return curveType == %g;"
150                 "}", skgpu::tess::kTriangularConicCurveType).c_str());
151             } else {
152                 SkASSERT(shaderCaps.fInfinitySupport);
153                 v->insertFunction(
154                 "bool is_conic_curve() { return isinf(p23.w); }"
155                 "bool is_triangular_conic_curve() { return isinf(p23.z); }");
156             }
157             if (shaderCaps.fBitManipulationSupport) {
158                 v->insertFunction(
159                 "float ldexp_portable(float x, float p) {"
160                     "return ldexp(x, int(p));"
161                 "}");
162             } else {
163                 v->insertFunction(
164                 "float ldexp_portable(float x, float p) {"
165                     "return x * exp2(p);"
166                 "}");
167             }
168             v->codeAppend(
169             "float resolveLevel = resolveLevel_and_idx.x;"
170             "float idxInResolveLevel = resolveLevel_and_idx.y;"
171             "float2 localcoord;");
172             if (middleOutShader.fAttribs & PatchAttribs::kFanPoint) {
173                 v->codeAppend(
174                 // A negative resolve level means this is the fan point.
175                 "if (resolveLevel < 0) {"
176                     "localcoord = fanPointAttrib;"
177                 "} else ");  // Fall through to next if (). Trailing space is important.
178             }
179             v->codeAppend(
180             "if (is_triangular_conic_curve()) {"
181                 // This patch is an exact triangle.
182                 "localcoord = (resolveLevel != 0) ? p01.zw"
183                            ": (idxInResolveLevel != 0) ? p23.xy"
184                                                       ": p01.xy;"
185             "} else {"
186                 "float2 p0=p01.xy, p1=p01.zw, p2=p23.xy, p3=p23.zw;"
187                 "float w = -1;"  // w < 0 tells us to treat the instance as an integral cubic.
188                 "float maxResolveLevel;"
189                 "if (is_conic_curve()) {"
190                     // Conics are 3 points, with the weight in p3.
191                     "w = p3.x;"
192                     "maxResolveLevel = wangs_formula_conic_log2(PRECISION, AFFINE_MATRIX * p0,"
193                                                                           "AFFINE_MATRIX * p1,"
194                                                                           "AFFINE_MATRIX * p2, w);"
195                     "p1 *= w;"  // Unproject p1.
196                     "p3 = p2;"  // Duplicate the endpoint for shared code that also runs on cubics.
197                 "} else {"
198                     // The patch is an integral cubic.
199                     "maxResolveLevel = wangs_formula_cubic_log2(PRECISION, p0, p1, p2, p3,"
200                                                                "AFFINE_MATRIX);"
201                 "}"
202                 "if (resolveLevel > maxResolveLevel) {"
203                     // This vertex is at a higher resolve level than we need. Demote to a lower
204                     // resolveLevel, which will produce a degenerate triangle.
205                     "idxInResolveLevel = floor(ldexp_portable(idxInResolveLevel,"
206                                                              "maxResolveLevel - resolveLevel));"
207                     "resolveLevel = maxResolveLevel;"
208                 "}"
209                 // Promote our location to a discrete position in the maximum fixed resolve level.
210                 // This is extra paranoia to ensure we get the exact same fp32 coordinates for
211                 // colocated points from different resolve levels (e.g., the vertices T=3/4 and
212                 // T=6/8 should be exactly colocated).
213                 "float fixedVertexID = floor(.5 + ldexp_portable("
214                         "idxInResolveLevel, MAX_FIXED_RESOLVE_LEVEL - resolveLevel));"
215                 "if (0 < fixedVertexID && fixedVertexID < MAX_FIXED_SEGMENTS) {"
216                     "float T = fixedVertexID * (1 / MAX_FIXED_SEGMENTS);"
217 
218                     // Evaluate at T. Use De Casteljau's for its accuracy and stability.
219                     "float2 ab = mix(p0, p1, T);"
220                     "float2 bc = mix(p1, p2, T);"
221                     "float2 cd = mix(p2, p3, T);"
222                     "float2 abc = mix(ab, bc, T);"
223                     "float2 bcd = mix(bc, cd, T);"
224                     "float2 abcd = mix(abc, bcd, T);"
225 
226                     // Evaluate the conic weight at T.
227                     "float u = mix(1.0, w, T);"
228                     "float v = w + 1 - u;"  // == mix(w, 1, T)
229                     "float uv = mix(u, v, T);"
230 
231                     "localcoord = (w < 0) ?" /*cubic*/ "abcd:" /*conic*/ "abc/uv;"
232                 "} else {"
233                     "localcoord = (fixedVertexID == 0) ? p0.xy : p3.xy;"
234                 "}"
235             "}"
236             "float2 vertexpos = AFFINE_MATRIX * localcoord + TRANSLATE;");
237             gpArgs->fLocalCoordVar.set(SkSLType::kFloat2, "localcoord");
238             gpArgs->fPositionVar.set(SkSLType::kFloat2, "vertexpos");
239             if (middleOutShader.fAttribs & PatchAttribs::kColor) {
240                 GrGLSLVarying colorVarying(SkSLType::kHalf4);
241                 varyingHandler->addVarying("color",
242                                            &colorVarying,
243                                            GrGLSLVaryingHandler::Interpolation::kCanBeFlat);
244                 v->codeAppendf("%s = colorAttrib;", colorVarying.vsOut());
245                 fVaryingColorName = colorVarying.fsIn();
246             }
247         }
248     };
249     return std::make_unique<Impl>();
250 }
251 
252 }  // namespace
253 
Make(const GrShaderCaps & shaderCaps,SkArenaAlloc * arena,const SkMatrix & viewMatrix,const SkPMColor4f & color,PatchAttribs attribs)254 GrPathTessellationShader* GrPathTessellationShader::Make(const GrShaderCaps& shaderCaps,
255                                                          SkArenaAlloc* arena,
256                                                          const SkMatrix& viewMatrix,
257                                                          const SkPMColor4f& color,
258                                                          PatchAttribs attribs) {
259     // We should use explicit curve type when, and only when, there isn't infinity support.
260     // Otherwise the GPU can infer curve type based on infinity.
261     SkASSERT(shaderCaps.fInfinitySupport != (attribs & PatchAttribs::kExplicitCurveType));
262     return arena->make<MiddleOutShader>(shaderCaps, viewMatrix, color, attribs);
263 }
264 
MakeSimpleTriangleShader(SkArenaAlloc * arena,const SkMatrix & viewMatrix,const SkPMColor4f & color)265 GrPathTessellationShader* GrPathTessellationShader::MakeSimpleTriangleShader(
266         SkArenaAlloc* arena, const SkMatrix& viewMatrix, const SkPMColor4f& color) {
267     return arena->make<SimpleTriangleShader>(viewMatrix, color);
268 }
269 
MakeStencilOnlyPipeline(const ProgramArgs & args,GrAAType aaType,const GrAppliedHardClip & hardClip,GrPipeline::InputFlags pipelineFlags)270 const GrPipeline* GrPathTessellationShader::MakeStencilOnlyPipeline(
271         const ProgramArgs& args,
272         GrAAType aaType,
273         const GrAppliedHardClip& hardClip,
274         GrPipeline::InputFlags pipelineFlags) {
275     GrPipeline::InitArgs pipelineArgs;
276     pipelineArgs.fInputFlags = pipelineFlags;
277     pipelineArgs.fCaps = args.fCaps;
278     return args.fArena->make<GrPipeline>(pipelineArgs,
279                                          GrDisableColorXPFactory::MakeXferProcessor(),
280                                          hardClip);
281 }
282 
283 // Evaluate our point of interest using numerically stable linear interpolations. We add our own
284 // "safe_mix" method to guarantee we get exactly "b" when T=1. The builtin mix() function seems
285 // spec'd to behave this way, but empirical results results have shown it does not always.
286 const char* GrPathTessellationShader::Impl::kEvalRationalCubicFn =
287 "float3 safe_mix(float3 a, float3 b, float T, float one_minus_T) {"
288     "return a*one_minus_T + b*T;"
289 "}"
290 "float2 eval_rational_cubic(float4x3 P, float T) {"
291     "float one_minus_T = 1.0 - T;"
292     "float3 ab = safe_mix(P[0], P[1], T, one_minus_T);"
293     "float3 bc = safe_mix(P[1], P[2], T, one_minus_T);"
294     "float3 cd = safe_mix(P[2], P[3], T, one_minus_T);"
295     "float3 abc = safe_mix(ab, bc, T, one_minus_T);"
296     "float3 bcd = safe_mix(bc, cd, T, one_minus_T);"
297     "float3 abcd = safe_mix(abc, bcd, T, one_minus_T);"
298     "return abcd.xy / abcd.z;"
299 "}";
300 
onEmitCode(EmitArgs & args,GrGPArgs * gpArgs)301 void GrPathTessellationShader::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
302     const auto& shader = args.fGeomProc.cast<GrPathTessellationShader>();
303     args.fVaryingHandler->emitAttributes(shader);
304 
305     // Vertex shader.
306     const char* affineMatrix, *translate;
307     fAffineMatrixUniform = args.fUniformHandler->addUniform(nullptr, kVertex_GrShaderFlag,
308                                                             SkSLType::kFloat4, "affineMatrix",
309                                                             &affineMatrix);
310     fTranslateUniform = args.fUniformHandler->addUniform(nullptr, kVertex_GrShaderFlag,
311                                                          SkSLType::kFloat2, "translate", &translate);
312     args.fVertBuilder->codeAppendf("float2x2 AFFINE_MATRIX = float2x2(%s.xy, %s.zw);",
313                                    affineMatrix, affineMatrix);
314     args.fVertBuilder->codeAppendf("float2 TRANSLATE = %s;", translate);
315     this->emitVertexCode(*args.fShaderCaps,
316                          shader,
317                          args.fVertBuilder,
318                          args.fVaryingHandler,
319                          gpArgs);
320 
321     // Fragment shader.
322     if (!(shader.fAttribs & PatchAttribs::kColor)) {
323         const char* color;
324         fColorUniform = args.fUniformHandler->addUniform(nullptr, kFragment_GrShaderFlag,
325                                                          SkSLType::kHalf4, "color", &color);
326         args.fFragBuilder->codeAppendf("half4 %s = %s;", args.fOutputColor, color);
327     } else {
328         args.fFragBuilder->codeAppendf("half4 %s = %s;",
329                                        args.fOutputColor, fVaryingColorName.c_str());
330     }
331     args.fFragBuilder->codeAppendf("const half4 %s = half4(1);", args.fOutputCoverage);
332 }
333 
setData(const GrGLSLProgramDataManager & pdman,const GrShaderCaps &,const GrGeometryProcessor & geomProc)334 void GrPathTessellationShader::Impl::setData(const GrGLSLProgramDataManager& pdman, const
335                                              GrShaderCaps&, const GrGeometryProcessor& geomProc) {
336     const auto& shader = geomProc.cast<GrPathTessellationShader>();
337     const SkMatrix& m = shader.viewMatrix();
338     pdman.set4f(fAffineMatrixUniform, m.getScaleX(), m.getSkewY(), m.getSkewX(), m.getScaleY());
339     pdman.set2f(fTranslateUniform, m.getTranslateX(), m.getTranslateY());
340 
341     if (!(shader.fAttribs & PatchAttribs::kColor)) {
342         const SkPMColor4f& color = shader.color();
343         pdman.set4f(fColorUniform, color.fR, color.fG, color.fB, color.fA);
344     }
345 }
346