• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2021 Google LLC.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/tessellate/Tessellation.h"
9 
10 #include "include/core/SkPath.h"
11 #include "src/base/SkUtils.h"
12 #include "src/core/SkGeometry.h"
13 #include "src/core/SkPathPriv.h"
14 #include "src/gpu/BufferWriter.h"
15 #include "src/gpu/tessellate/CullTest.h"
16 #include "src/gpu/tessellate/MiddleOutPolygonTriangulator.h"
17 #include "src/gpu/tessellate/WangsFormula.h"
18 
19 namespace skgpu::tess {
20 
21 namespace {
22 
23 using float2 = skvx::float2;
24 using float4 = skvx::float4;
25 
26 // This value only protects us against getting stuck in infinite recursion due to fp32 precision
27 // issues. Mathematically, every curve should reduce to manageable visible sections in O(log N)
28 // chops, where N is the the magnitude of its control points.
29 //
30 // But, to define a protective upper bound, a cubic can enter or exit the viewport as many as 6
31 // times. So we may need to refine the curve (via binary search chopping at T=.5) up to 6 times.
32 //
33 // Furthermore, chopping a cubic at T=.5 may only reduce its length by 1/8 (.5^3), so we may require
34 // up to 6 chops in order to reduce the length by 1/2.
35 constexpr static int kMaxChopsPerCurve = 128/*magnitude of +fp32_max - -fp32_max*/ *
36                                          6/*max number of chops to reduce the length by half*/ *
37                                          6/*max number of viewport boundary crosses*/;
38 
39 // Writes a new path, chopping as necessary so no verbs require more segments than
40 // kMaxTessellationSegmentsPerCurve. Curves completely outside the viewport are flattened into
41 // lines.
42 class PathChopper {
43 public:
PathChopper(float tessellationPrecision,const SkMatrix & matrix,const SkRect & viewport)44     PathChopper(float tessellationPrecision, const SkMatrix& matrix, const SkRect& viewport)
45             : fTessellationPrecision(tessellationPrecision)
46             , fCullTest(viewport, matrix)
47             , fVectorXform(matrix) {
48         fPath.setIsVolatile(true);
49     }
50 
path() const51     SkPath path() const { return fPath; }
52 
moveTo(SkPoint p)53     void moveTo(SkPoint p) { fPath.moveTo(p); }
lineTo(const SkPoint p[2])54     void lineTo(const SkPoint p[2]) { fPath.lineTo(p[1]); }
close()55     void close() { fPath.close(); }
56 
quadTo(const SkPoint quad[3])57     void quadTo(const SkPoint quad[3]) {
58         SkASSERT(fPointStack.empty());
59         // Use a heap stack to recursively chop the quad into manageable, on-screen segments.
60         fPointStack.push_back_n(3, quad);
61         int numChops = 0;
62         while (!fPointStack.empty()) {
63             const SkPoint* p = fPointStack.end() - 3;
64             if (!fCullTest.areVisible3(p)) {
65                 fPath.lineTo(p[2]);
66             } else {
67                 float n4 = wangs_formula::quadratic_p4(fTessellationPrecision, p, fVectorXform);
68                 if (n4 > kMaxSegmentsPerCurve_p4 && numChops < kMaxChopsPerCurve) {
69                     SkPoint chops[5];
70                     SkChopQuadAtHalf(p, chops);
71                     fPointStack.pop_back_n(3);
72                     fPointStack.push_back_n(3, chops+2);
73                     fPointStack.push_back_n(3, chops);
74                     ++numChops;
75                     continue;
76                 }
77                 fPath.quadTo(p[1], p[2]);
78             }
79             fPointStack.pop_back_n(3);
80         }
81     }
82 
conicTo(const SkPoint conic[3],float weight)83     void conicTo(const SkPoint conic[3], float weight) {
84         SkASSERT(fPointStack.empty());
85         SkASSERT(fWeightStack.empty());
86         // Use a heap stack to recursively chop the conic into manageable, on-screen segments.
87         fPointStack.push_back_n(3, conic);
88         fWeightStack.push_back(weight);
89         int numChops = 0;
90         while (!fPointStack.empty()) {
91             const SkPoint* p = fPointStack.end() - 3;
92             float w = fWeightStack.back();
93             if (!fCullTest.areVisible3(p)) {
94                 fPath.lineTo(p[2]);
95             } else {
96                 float n2 = wangs_formula::conic_p2(fTessellationPrecision, p, w, fVectorXform);
97                 if (n2 > kMaxSegmentsPerCurve_p2 && numChops < kMaxChopsPerCurve) {
98                     SkConic chops[2];
99                     if (!SkConic(p,w).chopAt(.5, chops)) {
100                         SkPoint line[2] = {p[0], p[2]};
101                         this->lineTo(line);
102                         continue;
103                     }
104                     fPointStack.pop_back_n(3);
105                     fWeightStack.pop_back();
106                     fPointStack.push_back_n(3, chops[1].fPts);
107                     fWeightStack.push_back(chops[1].fW);
108                     fPointStack.push_back_n(3, chops[0].fPts);
109                     fWeightStack.push_back(chops[0].fW);
110                     ++numChops;
111                     continue;
112                 }
113                 fPath.conicTo(p[1], p[2], w);
114             }
115             fPointStack.pop_back_n(3);
116             fWeightStack.pop_back();
117         }
118         SkASSERT(fWeightStack.empty());
119     }
120 
cubicTo(const SkPoint cubic[4])121     void cubicTo(const SkPoint cubic[4]) {
122         SkASSERT(fPointStack.empty());
123         // Use a heap stack to recursively chop the cubic into manageable, on-screen segments.
124         fPointStack.push_back_n(4, cubic);
125         int numChops = 0;
126         while (!fPointStack.empty()) {
127             SkPoint* p = fPointStack.end() - 4;
128             if (!fCullTest.areVisible4(p)) {
129                 fPath.lineTo(p[3]);
130             } else {
131                 float n4 = wangs_formula::cubic_p4(fTessellationPrecision, p, fVectorXform);
132                 if (n4 > kMaxSegmentsPerCurve_p4 && numChops < kMaxChopsPerCurve) {
133                     SkPoint chops[7];
134                     SkChopCubicAtHalf(p, chops);
135                     fPointStack.pop_back_n(4);
136                     fPointStack.push_back_n(4, chops+3);
137                     fPointStack.push_back_n(4, chops);
138                     ++numChops;
139                     continue;
140                 }
141                 fPath.cubicTo(p[1], p[2], p[3]);
142             }
143             fPointStack.pop_back_n(4);
144         }
145     }
146 
147 private:
148     const float fTessellationPrecision;
149     const CullTest fCullTest;
150     const wangs_formula::VectorXform fVectorXform;
151     SkPath fPath;
152 
153     // Used for stack-based recursion (instead of using the runtime stack).
154     SkSTArray<8, SkPoint> fPointStack;
155     SkSTArray<2, float> fWeightStack;
156 };
157 
158 }  // namespace
159 
PreChopPathCurves(float tessellationPrecision,const SkPath & path,const SkMatrix & matrix,const SkRect & viewport)160 SkPath PreChopPathCurves(float tessellationPrecision,
161                          const SkPath& path,
162                          const SkMatrix& matrix,
163                          const SkRect& viewport) {
164     // If the viewport is exceptionally large, we could end up blowing out memory with an unbounded
165     // number of of chops. Therefore, we require that the viewport is manageable enough that a fully
166     // contained curve can be tessellated in kMaxTessellationSegmentsPerCurve or fewer. (Any larger
167     // and that amount of pixels wouldn't fit in memory anyway.)
168     SkASSERT(wangs_formula::worst_case_cubic(
169                      tessellationPrecision,
170                      viewport.width(),
171                      viewport.height()) <= kMaxSegmentsPerCurve);
172     PathChopper chopper(tessellationPrecision, matrix, viewport);
173     for (auto [verb, p, w] : SkPathPriv::Iterate(path)) {
174         switch (verb) {
175             case SkPathVerb::kMove:
176                 chopper.moveTo(p[0]);
177                 break;
178             case SkPathVerb::kLine:
179                 chopper.lineTo(p);
180                 break;
181             case SkPathVerb::kQuad:
182                 chopper.quadTo(p);
183                 break;
184             case SkPathVerb::kConic:
185                 chopper.conicTo(p, *w);
186                 break;
187             case SkPathVerb::kCubic:
188                 chopper.cubicTo(p);
189                 break;
190             case SkPathVerb::kClose:
191                 chopper.close();
192                 break;
193         }
194     }
195     return chopper.path();
196 }
197 
FindCubicConvex180Chops(const SkPoint pts[],float T[2],bool * areCusps)198 int FindCubicConvex180Chops(const SkPoint pts[], float T[2], bool* areCusps) {
199     SkASSERT(pts);
200     SkASSERT(T);
201     SkASSERT(areCusps);
202 
203     // If a chop falls within a distance of "kEpsilon" from 0 or 1, throw it out. Tangents become
204     // unstable when we chop too close to the boundary. This works out because the tessellation
205     // shaders don't allow more than 2^10 parametric segments, and they snap the beginning and
206     // ending edges at 0 and 1. So if we overstep an inflection or point of 180-degree rotation by a
207     // fraction of a tessellation segment, it just gets snapped.
208     constexpr static float kEpsilon = 1.f / (1 << 11);
209     // Floating-point representation of "1 - 2*kEpsilon".
210     constexpr static uint32_t kIEEE_one_minus_2_epsilon = (127 << 23) - 2 * (1 << (24 - 11));
211     // Unfortunately we don't have a way to static_assert this, but we can runtime assert that the
212     // kIEEE_one_minus_2_epsilon bits are correct.
213     SkASSERT(sk_bit_cast<float>(kIEEE_one_minus_2_epsilon) == 1 - 2*kEpsilon);
214 
215     float2 p0 = skvx::bit_pun<float2>(pts[0]);
216     float2 p1 = skvx::bit_pun<float2>(pts[1]);
217     float2 p2 = skvx::bit_pun<float2>(pts[2]);
218     float2 p3 = skvx::bit_pun<float2>(pts[3]);
219 
220     // Find the cubic's power basis coefficients. These define the bezier curve as:
221     //
222     //                                    |T^3|
223     //     Cubic(T) = x,y = |A  3B  3C| * |T^2| + P0
224     //                      |.   .   .|   |T  |
225     //
226     // And the tangent direction (scaled by a uniform 1/3) will be:
227     //
228     //                                                 |T^2|
229     //     Tangent_Direction(T) = dx,dy = |A  2B  C| * |T  |
230     //                                    |.   .  .|   |1  |
231     //
232     float2 C = p1 - p0;
233     float2 D = p2 - p1;
234     float2 E = p3 - p0;
235     float2 B = D - C;
236     float2 A = -3*D + E;
237 
238     // Now find the cubic's inflection function. There are inflections where F' x F'' == 0.
239     // We formulate this as a quadratic equation:  F' x F'' == aT^2 + bT + c == 0.
240     // See: https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
241     // NOTE: We only need the roots, so a uniform scale factor does not affect the solution.
242     float a = cross(A,B);
243     float b = cross(A,C);
244     float c = cross(B,C);
245     float b_over_minus_2 = -.5f * b;
246     float discr_over_4 = b_over_minus_2*b_over_minus_2 - a*c;
247 
248     // If -cuspThreshold <= discr_over_4 <= cuspThreshold, it means the two roots are within
249     // kEpsilon of one another (in parametric space). This is close enough for our purposes to
250     // consider them a single cusp.
251     float cuspThreshold = a * (kEpsilon/2);
252     cuspThreshold *= cuspThreshold;
253 
254     if (discr_over_4 < -cuspThreshold) {
255         // The curve does not inflect or cusp. This means it might rotate more than 180 degrees
256         // instead. Chop were rotation == 180 deg. (This is the 2nd root where the tangent is
257         // parallel to tan0.)
258         //
259         //      Tangent_Direction(T) x tan0 == 0
260         //      (AT^2 x tan0) + (2BT x tan0) + (C x tan0) == 0
261         //      (A x C)T^2 + (2B x C)T + (C x C) == 0  [[because tan0 == P1 - P0 == C]]
262         //      bT^2 + 2cT + 0 == 0  [[because A x C == b, B x C == c]]
263         //      T = [0, -2c/b]
264         //
265         // NOTE: if C == 0, then C != tan0. But this is fine because the curve is definitely
266         // convex-180 if any points are colocated, and T[0] will equal NaN which returns 0 chops.
267         *areCusps = false;
268         float root = sk_ieee_float_divide(c, b_over_minus_2);
269         // Is "root" inside the range [kEpsilon, 1 - kEpsilon)?
270         if (sk_bit_cast<uint32_t>(root - kEpsilon) < kIEEE_one_minus_2_epsilon) {
271             T[0] = root;
272             return 1;
273         }
274         return 0;
275     }
276 
277     *areCusps = (discr_over_4 <= cuspThreshold);
278     if (*areCusps) {
279         // The two roots are close enough that we can consider them a single cusp.
280         if (a != 0 || b_over_minus_2 != 0 || c != 0) {
281             // Pick the average of both roots.
282             float root = sk_ieee_float_divide(b_over_minus_2, a);
283             // Is "root" inside the range [kEpsilon, 1 - kEpsilon)?
284             if (sk_bit_cast<uint32_t>(root - kEpsilon) < kIEEE_one_minus_2_epsilon) {
285                 T[0] = root;
286                 return 1;
287             }
288             return 0;
289         }
290 
291         // The curve is a flat line. The standard inflection function doesn't detect cusps from flat
292         // lines. Find cusps by searching instead for points where the tangent is perpendicular to
293         // tan0. This will find any cusp point.
294         //
295         //     dot(tan0, Tangent_Direction(T)) == 0
296         //
297         //                         |T^2|
298         //     tan0 * |A  2B  C| * |T  | == 0
299         //            |.   .  .|   |1  |
300         //
301         float2 tan0 = skvx::if_then_else(C != 0, C, p2 - p0);
302         a = dot(tan0, A);
303         b_over_minus_2 = -dot(tan0, B);
304         c = dot(tan0, C);
305         discr_over_4 = std::max(b_over_minus_2*b_over_minus_2 - a*c, 0.f);
306     }
307 
308     // Solve our quadratic equation to find where to chop. See the quadratic formula from
309     // Numerical Recipes in C.
310     float q = sqrtf(discr_over_4);
311     q = copysignf(q, b_over_minus_2);
312     q = q + b_over_minus_2;
313     float2 roots = float2{q,c} / float2{a,q};
314 
315     auto inside = (roots > kEpsilon) & (roots < (1 - kEpsilon));
316     if (inside[0]) {
317         if (inside[1] && roots[0] != roots[1]) {
318             if (roots[0] > roots[1]) {
319                 roots = skvx::shuffle<1,0>(roots);  // Sort.
320             }
321             roots.store(T);
322             return 2;
323         }
324         T[0] = roots[0];
325         return 1;
326     }
327     if (inside[1]) {
328         T[0] = roots[1];
329         return 1;
330     }
331     return 0;
332 }
333 
334 }  // namespace skgpu::tess
335