• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 
8 #include "include/utils/SkShadowUtils.h"
9 
10 #include "include/core/SkBlendMode.h"
11 #include "include/core/SkBlender.h"
12 #include "include/core/SkBlurTypes.h"
13 #include "include/core/SkCanvas.h"
14 #include "include/core/SkColorFilter.h"
15 #include "include/core/SkMaskFilter.h"
16 #include "include/core/SkMatrix.h"
17 #include "include/core/SkPaint.h"
18 #include "include/core/SkPath.h"
19 #include "include/core/SkPoint.h"
20 #include "include/core/SkPoint3.h"
21 #include "include/core/SkRect.h"
22 #include "include/core/SkRefCnt.h"
23 #include "include/core/SkVertices.h"
24 #include "include/private/SkIDChangeListener.h"
25 #include "include/private/base/SkTPin.h"
26 #include "include/private/base/SkTemplates.h"
27 #include "include/private/base/SkTo.h"
28 #include "src/base/SkRandom.h"
29 #include "src/core/SkBlurMask.h"
30 #include "src/core/SkColorFilterPriv.h"
31 #include "src/core/SkDevice.h"
32 #include "src/core/SkDrawShadowInfo.h"
33 #include "src/core/SkPathPriv.h"
34 #include "src/core/SkResourceCache.h"
35 #include "src/core/SkVerticesPriv.h"
36 
37 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
38 #include "src/utils/SkShadowTessellator.h"
39 #endif
40 
41 #if defined(SK_GANESH)
42 #include "src/gpu/ganesh/GrStyle.h"
43 #include "src/gpu/ganesh/geometry/GrStyledShape.h"
44 #endif
45 
46 #include <algorithm>
47 #include <cstring>
48 #include <functional>
49 #include <memory>
50 #include <new>
51 #include <utility>
52 
53 using namespace skia_private;
54 
55 class SkRRect;
56 
57 ///////////////////////////////////////////////////////////////////////////////////////////////////
58 
59 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
60 namespace {
61 
resource_cache_shared_id()62 uint64_t resource_cache_shared_id() {
63     return 0x2020776f64616873llu;  // 'shadow  '
64 }
65 
66 /** Factory for an ambient shadow mesh with particular shadow properties. */
67 struct AmbientVerticesFactory {
68     SkScalar fOccluderHeight = SK_ScalarNaN;  // NaN so that isCompatible will fail until init'ed.
69     bool fTransparent;
70     SkVector fOffset;
71 
isCompatible__anon6c02a7aa0111::AmbientVerticesFactory72     bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const {
73         if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) {
74             return false;
75         }
76         *translate = that.fOffset;
77         return true;
78     }
79 
makeVertices__anon6c02a7aa0111::AmbientVerticesFactory80     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
81                                    SkVector* translate) const {
82         SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
83         // pick a canonical place to generate shadow
84         SkMatrix noTrans(ctm);
85         if (!ctm.hasPerspective()) {
86             noTrans[SkMatrix::kMTransX] = 0;
87             noTrans[SkMatrix::kMTransY] = 0;
88         }
89         *translate = fOffset;
90         return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent);
91     }
92 };
93 
94 /** Factory for an spot shadow mesh with particular shadow properties. */
95 struct SpotVerticesFactory {
96     enum class OccluderType {
97         // The umbra cannot be dropped out because either the occluder is not opaque,
98         // or the center of the umbra is visible. Uses point light.
99         kPointTransparent,
100         // The umbra can be dropped where it is occluded. Uses point light.
101         kPointOpaquePartialUmbra,
102         // It is known that the entire umbra is occluded. Uses point light.
103         kPointOpaqueNoUmbra,
104         // Uses directional light.
105         kDirectional,
106         // The umbra can't be dropped out. Uses directional light.
107         kDirectionalTransparent,
108     };
109 
110     SkVector fOffset;
111     SkPoint  fLocalCenter;
112     SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
113     SkPoint3 fDevLightPos;
114     SkScalar fLightRadius;
115     OccluderType fOccluderType;
116 
isCompatible__anon6c02a7aa0111::SpotVerticesFactory117     bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const {
118         if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ ||
119             fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) {
120             return false;
121         }
122         switch (fOccluderType) {
123             case OccluderType::kPointTransparent:
124             case OccluderType::kPointOpaqueNoUmbra:
125                 // 'this' and 'that' will either both have no umbra removed or both have all the
126                 // umbra removed.
127                 *translate = that.fOffset;
128                 return true;
129             case OccluderType::kPointOpaquePartialUmbra:
130                 // In this case we partially remove the umbra differently for 'this' and 'that'
131                 // if the offsets don't match.
132                 if (fOffset == that.fOffset) {
133                     translate->set(0, 0);
134                     return true;
135                 }
136                 return false;
137             case OccluderType::kDirectional:
138             case OccluderType::kDirectionalTransparent:
139                 *translate = that.fOffset - fOffset;
140                 return true;
141         }
142         SK_ABORT("Uninitialized occluder type?");
143     }
144 
makeVertices__anon6c02a7aa0111::SpotVerticesFactory145     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
146                                    SkVector* translate) const {
147         bool transparent = fOccluderType == OccluderType::kPointTransparent ||
148                            fOccluderType == OccluderType::kDirectionalTransparent;
149         bool directional = fOccluderType == OccluderType::kDirectional ||
150                            fOccluderType == OccluderType::kDirectionalTransparent;
151         SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
152         if (directional) {
153             translate->set(0, 0);
154             return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius,
155                                                  transparent, true);
156         } else if (ctm.hasPerspective() || OccluderType::kPointOpaquePartialUmbra == fOccluderType) {
157             translate->set(0, 0);
158             return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius,
159                                                  transparent, false);
160         } else {
161             // pick a canonical place to generate shadow, with light centered over path
162             SkMatrix noTrans(ctm);
163             noTrans[SkMatrix::kMTransX] = 0;
164             noTrans[SkMatrix::kMTransY] = 0;
165             SkPoint devCenter(fLocalCenter);
166             noTrans.mapPoints(&devCenter, 1);
167             SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ);
168             *translate = fOffset;
169             return SkShadowTessellator::MakeSpot(path, noTrans, zParams,
170                                                  centerLightPos, fLightRadius, transparent, false);
171         }
172     }
173 };
174 
175 /**
176  * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache
177  * records are immutable this is not itself a Rec. When we need to update it we return this on
178  * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add
179  * a new Rec with an adjusted size for any deletions/additions.
180  */
181 class CachedTessellations : public SkRefCnt {
182 public:
size() const183     size_t size() const { return fAmbientSet.size() + fSpotSet.size(); }
184 
find(const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate) const185     sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix,
186                            SkVector* translate) const {
187         return fAmbientSet.find(ambient, matrix, translate);
188     }
189 
add(const SkPath & devPath,const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate)190     sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient,
191                           const SkMatrix& matrix, SkVector* translate) {
192         return fAmbientSet.add(devPath, ambient, matrix, translate);
193     }
194 
find(const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate) const195     sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix,
196                            SkVector* translate) const {
197         return fSpotSet.find(spot, matrix, translate);
198     }
199 
add(const SkPath & devPath,const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate)200     sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot,
201                           const SkMatrix& matrix, SkVector* translate) {
202         return fSpotSet.add(devPath, spot, matrix, translate);
203     }
204 
205 private:
206     template <typename FACTORY, int MAX_ENTRIES>
207     class Set {
208     public:
size() const209         size_t size() const { return fSize; }
210 
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const211         sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
212                                SkVector* translate) const {
213             for (int i = 0; i < MAX_ENTRIES; ++i) {
214                 if (fEntries[i].fFactory.isCompatible(factory, translate)) {
215                     const SkMatrix& m = fEntries[i].fMatrix;
216                     if (matrix.hasPerspective() || m.hasPerspective()) {
217                         if (matrix != fEntries[i].fMatrix) {
218                             continue;
219                         }
220                     } else if (matrix.getScaleX() != m.getScaleX() ||
221                                matrix.getSkewX() != m.getSkewX() ||
222                                matrix.getScaleY() != m.getScaleY() ||
223                                matrix.getSkewY() != m.getSkewY()) {
224                         continue;
225                     }
226                     return fEntries[i].fVertices;
227                 }
228             }
229             return nullptr;
230         }
231 
add(const SkPath & path,const FACTORY & factory,const SkMatrix & matrix,SkVector * translate)232         sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix,
233                               SkVector* translate) {
234             sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate);
235             if (!vertices) {
236                 return nullptr;
237             }
238             int i;
239             if (fCount < MAX_ENTRIES) {
240                 i = fCount++;
241             } else {
242                 i = fRandom.nextULessThan(MAX_ENTRIES);
243                 fSize -= fEntries[i].fVertices->approximateSize();
244             }
245             fEntries[i].fFactory = factory;
246             fEntries[i].fVertices = vertices;
247             fEntries[i].fMatrix = matrix;
248             fSize += vertices->approximateSize();
249             return vertices;
250         }
251 
252     private:
253         struct Entry {
254             FACTORY fFactory;
255             sk_sp<SkVertices> fVertices;
256             SkMatrix fMatrix;
257         };
258         Entry fEntries[MAX_ENTRIES];
259         int fCount = 0;
260         size_t fSize = 0;
261         SkRandom fRandom;
262     };
263 
264     Set<AmbientVerticesFactory, 4> fAmbientSet;
265     Set<SpotVerticesFactory, 4> fSpotSet;
266 };
267 
268 /**
269  * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular
270  * path. The key represents the path's geometry and not any shadow params.
271  */
272 class CachedTessellationsRec : public SkResourceCache::Rec {
273 public:
CachedTessellationsRec(const SkResourceCache::Key & key,sk_sp<CachedTessellations> tessellations)274     CachedTessellationsRec(const SkResourceCache::Key& key,
275                            sk_sp<CachedTessellations> tessellations)
276             : fTessellations(std::move(tessellations)) {
277         fKey.reset(new uint8_t[key.size()]);
278         memcpy(fKey.get(), &key, key.size());
279     }
280 
getKey() const281     const Key& getKey() const override {
282         return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
283     }
284 
bytesUsed() const285     size_t bytesUsed() const override { return fTessellations->size(); }
286 
getCategory() const287     const char* getCategory() const override { return "tessellated shadow masks"; }
288 
refTessellations() const289     sk_sp<CachedTessellations> refTessellations() const { return fTessellations; }
290 
291     template <typename FACTORY>
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const292     sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
293                            SkVector* translate) const {
294         return fTessellations->find(factory, matrix, translate);
295     }
296 
297 private:
298     std::unique_ptr<uint8_t[]> fKey;
299     sk_sp<CachedTessellations> fTessellations;
300 };
301 
302 /**
303  * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the
304  * vertices and a translation vector. If the CachedTessellations does not contain a suitable
305  * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations
306  * to the caller. The caller will update it and reinsert it back into the cache.
307  */
308 template <typename FACTORY>
309 struct FindContext {
FindContext__anon6c02a7aa0111::FindContext310     FindContext(const SkMatrix* viewMatrix, const FACTORY* factory)
311             : fViewMatrix(viewMatrix), fFactory(factory) {}
312     const SkMatrix* const fViewMatrix;
313     // If this is valid after Find is called then we found the vertices and they should be drawn
314     // with fTranslate applied.
315     sk_sp<SkVertices> fVertices;
316     SkVector fTranslate = {0, 0};
317 
318     // If this is valid after Find then the caller should add the vertices to the tessellation set
319     // and create a new CachedTessellationsRec and insert it into SkResourceCache.
320     sk_sp<CachedTessellations> fTessellationsOnFailure;
321 
322     const FACTORY* fFactory;
323 };
324 
325 /**
326  * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of
327  * the FindContext are used to determine if the vertices are reusable. If so the vertices and
328  * necessary translation vector are set on the FindContext.
329  */
330 template <typename FACTORY>
FindVisitor(const SkResourceCache::Rec & baseRec,void * ctx)331 bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) {
332     FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx;
333     const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec);
334     findContext->fVertices =
335             rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate);
336     if (findContext->fVertices) {
337         return true;
338     }
339     // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been
340     // manipulated we will add a new Rec.
341     findContext->fTessellationsOnFailure = rec.refTessellations();
342     return false;
343 }
344 
345 class ShadowedPath {
346 public:
ShadowedPath(const SkPath * path,const SkMatrix * viewMatrix)347     ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix)
348             : fPath(path)
349             , fViewMatrix(viewMatrix)
350 #if defined(SK_GANESH)
351             , fShapeForKey(*path, GrStyle::SimpleFill())
352 #endif
353     {}
354 
path() const355     const SkPath& path() const { return *fPath; }
viewMatrix() const356     const SkMatrix& viewMatrix() const { return *fViewMatrix; }
357 #if defined(SK_GANESH)
358     /** Negative means the vertices should not be cached for this path. */
keyBytes() const359     int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); }
writeKey(void * key) const360     void writeKey(void* key) const {
361         fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key));
362     }
isRRect(SkRRect * rrect)363     bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); }
364 #else
keyBytes() const365     int keyBytes() const { return -1; }
writeKey(void * key) const366     void writeKey(void* key) const { SK_ABORT("Should never be called"); }
isRRect(SkRRect * rrect)367     bool isRRect(SkRRect* rrect) { return false; }
368 #endif
369 
370 private:
371     const SkPath* fPath;
372     const SkMatrix* fViewMatrix;
373 #if defined(SK_GANESH)
374     GrStyledShape fShapeForKey;
375 #endif
376 };
377 
378 // This creates a domain of keys in SkResourceCache used by this file.
379 static void* kNamespace;
380 
381 // When the SkPathRef genID changes, invalidate a corresponding GrResource described by key.
382 class ShadowInvalidator : public SkIDChangeListener {
383 public:
ShadowInvalidator(const SkResourceCache::Key & key)384     ShadowInvalidator(const SkResourceCache::Key& key) {
385         fKey.reset(new uint8_t[key.size()]);
386         memcpy(fKey.get(), &key, key.size());
387     }
388 
389 private:
getKey() const390     const SkResourceCache::Key& getKey() const {
391         return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
392     }
393 
394     // always purge
FindVisitor(const SkResourceCache::Rec &,void *)395     static bool FindVisitor(const SkResourceCache::Rec&, void*) {
396         return false;
397     }
398 
changed()399     void changed() override {
400         SkResourceCache::Find(this->getKey(), ShadowInvalidator::FindVisitor, nullptr);
401     }
402 
403     std::unique_ptr<uint8_t[]> fKey;
404 };
405 
406 /**
407  * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless
408  * they are first found in SkResourceCache.
409  */
410 template <typename FACTORY>
draw_shadow(const FACTORY & factory,std::function<void (const SkVertices *,SkBlendMode,const SkPaint &,SkScalar tx,SkScalar ty,bool)> drawProc,ShadowedPath & path,SkColor color)411 bool draw_shadow(const FACTORY& factory,
412                  std::function<void(const SkVertices*, SkBlendMode, const SkPaint&,
413                  SkScalar tx, SkScalar ty, bool)> drawProc, ShadowedPath& path, SkColor color) {
414     FindContext<FACTORY> context(&path.viewMatrix(), &factory);
415 
416     SkResourceCache::Key* key = nullptr;
417     AutoSTArray<32 * 4, uint8_t> keyStorage;
418     int keyDataBytes = path.keyBytes();
419     if (keyDataBytes >= 0) {
420         keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key));
421         key = new (keyStorage.begin()) SkResourceCache::Key();
422         path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key)));
423         key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes);
424         SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context);
425     }
426 
427     sk_sp<SkVertices> vertices;
428     bool foundInCache = SkToBool(context.fVertices);
429     if (foundInCache) {
430         vertices = std::move(context.fVertices);
431     } else {
432         // TODO: handle transforming the path as part of the tessellator
433         if (key) {
434             // Update or initialize a tessellation set and add it to the cache.
435             sk_sp<CachedTessellations> tessellations;
436             if (context.fTessellationsOnFailure) {
437                 tessellations = std::move(context.fTessellationsOnFailure);
438             } else {
439                 tessellations.reset(new CachedTessellations());
440             }
441             vertices = tessellations->add(path.path(), factory, path.viewMatrix(),
442                                           &context.fTranslate);
443             if (!vertices) {
444                 return false;
445             }
446             auto rec = new CachedTessellationsRec(*key, std::move(tessellations));
447             SkPathPriv::AddGenIDChangeListener(path.path(), sk_make_sp<ShadowInvalidator>(*key));
448             SkResourceCache::Add(rec);
449         } else {
450             vertices = factory.makeVertices(path.path(), path.viewMatrix(),
451                                             &context.fTranslate);
452             if (!vertices) {
453                 return false;
454             }
455         }
456     }
457 
458     SkPaint paint;
459     // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of
460     // that against our 'color' param.
461     paint.setColorFilter(
462          SkColorFilters::Blend(color, SkBlendMode::kModulate)->makeComposed(
463                                                                 SkColorFilterPriv::MakeGaussian()));
464 
465     drawProc(vertices.get(), SkBlendMode::kModulate, paint,
466              context.fTranslate.fX, context.fTranslate.fY, path.viewMatrix().hasPerspective());
467 
468     return true;
469 }
470 }  // namespace
471 
tilted(const SkPoint3 & zPlaneParams)472 static bool tilted(const SkPoint3& zPlaneParams) {
473     return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY);
474 }
475 #endif // SK_ENABLE_OPTIMIZE_SIZE
476 
ComputeTonalColors(SkColor inAmbientColor,SkColor inSpotColor,SkColor * outAmbientColor,SkColor * outSpotColor)477 void SkShadowUtils::ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor,
478                                        SkColor* outAmbientColor, SkColor* outSpotColor) {
479     // For tonal color we only compute color values for the spot shadow.
480     // The ambient shadow is greyscale only.
481 
482     // Ambient
483     *outAmbientColor = SkColorSetARGB(SkColorGetA(inAmbientColor), 0, 0, 0);
484 
485     // Spot
486     int spotR = SkColorGetR(inSpotColor);
487     int spotG = SkColorGetG(inSpotColor);
488     int spotB = SkColorGetB(inSpotColor);
489     int max = std::max(std::max(spotR, spotG), spotB);
490     int min = std::min(std::min(spotR, spotG), spotB);
491     SkScalar luminance = 0.5f*(max + min)/255.f;
492     SkScalar origA = SkColorGetA(inSpotColor)/255.f;
493 
494     // We compute a color alpha value based on the luminance of the color, scaled by an
495     // adjusted alpha value. We want the following properties to match the UX examples
496     // (assuming a = 0.25) and to ensure that we have reasonable results when the color
497     // is black and/or the alpha is 0:
498     //     f(0, a) = 0
499     //     f(luminance, 0) = 0
500     //     f(1, 0.25) = .5
501     //     f(0.5, 0.25) = .4
502     //     f(1, 1) = 1
503     // The following functions match this as closely as possible.
504     SkScalar alphaAdjust = (2.6f + (-2.66667f + 1.06667f*origA)*origA)*origA;
505     SkScalar colorAlpha = (3.544762f + (-4.891428f + 2.3466f*luminance)*luminance)*luminance;
506     colorAlpha = SkTPin(alphaAdjust*colorAlpha, 0.0f, 1.0f);
507 
508     // Similarly, we set the greyscale alpha based on luminance and alpha so that
509     //     f(0, a) = a
510     //     f(luminance, 0) = 0
511     //     f(1, 0.25) = 0.15
512     SkScalar greyscaleAlpha = SkTPin(origA*(1 - 0.4f*luminance), 0.0f, 1.0f);
513 
514     // The final color we want to emulate is generated by rendering a color shadow (C_rgb) using an
515     // alpha computed from the color's luminance (C_a), and then a black shadow with alpha (S_a)
516     // which is an adjusted value of 'a'.  Assuming SrcOver, a background color of B_rgb, and
517     // ignoring edge falloff, this becomes
518     //
519     //      (C_a - S_a*C_a)*C_rgb + (1 - (S_a + C_a - S_a*C_a))*B_rgb
520     //
521     // Assuming premultiplied alpha, this means we scale the color by (C_a - S_a*C_a) and
522     // set the alpha to (S_a + C_a - S_a*C_a).
523     SkScalar colorScale = colorAlpha*(SK_Scalar1 - greyscaleAlpha);
524     SkScalar tonalAlpha = colorScale + greyscaleAlpha;
525     SkScalar unPremulScale = colorScale / tonalAlpha;
526     *outSpotColor = SkColorSetARGB(tonalAlpha*255.999f,
527                                    unPremulScale*spotR,
528                                    unPremulScale*spotG,
529                                    unPremulScale*spotB);
530 }
531 
fill_shadow_rec(const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,SkColor ambientColor,SkColor spotColor,uint32_t flags,const SkMatrix & ctm,SkDrawShadowRec * rec)532 static bool fill_shadow_rec(const SkPath& path, const SkPoint3& zPlaneParams,
533                             const SkPoint3& lightPos, SkScalar lightRadius,
534                             SkColor ambientColor, SkColor spotColor,
535                             uint32_t flags, const SkMatrix& ctm, SkDrawShadowRec* rec) {
536     SkPoint pt = { lightPos.fX, lightPos.fY };
537     if (!SkToBool(flags & kDirectionalLight_ShadowFlag)) {
538         // If light position is in device space, need to transform to local space
539         // before applying to SkCanvas.
540         SkMatrix inverse;
541         if (!ctm.invert(&inverse)) {
542             return false;
543         }
544         inverse.mapPoints(&pt, 1);
545     }
546 
547     rec->fZPlaneParams   = zPlaneParams;
548     rec->fLightPos       = { pt.fX, pt.fY, lightPos.fZ };
549     rec->fLightRadius    = lightRadius;
550     rec->fAmbientColor   = ambientColor;
551     rec->fSpotColor      = spotColor;
552     rec->fFlags          = flags;
553 
554     return true;
555 }
556 
557 // Draw an offset spot shadow and outlining ambient shadow for the given path.
DrawShadow(SkCanvas * canvas,const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,SkColor ambientColor,SkColor spotColor,uint32_t flags)558 void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams,
559                                const SkPoint3& lightPos, SkScalar lightRadius,
560                                SkColor ambientColor, SkColor spotColor,
561                                uint32_t flags) {
562     SkDrawShadowRec rec;
563     if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, ambientColor, spotColor,
564                          flags, canvas->getTotalMatrix(), &rec)) {
565         return;
566     }
567 
568     canvas->private_draw_shadow_rec(path, rec);
569 }
570 
GetLocalBounds(const SkMatrix & ctm,const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,uint32_t flags,SkRect * bounds)571 bool SkShadowUtils::GetLocalBounds(const SkMatrix& ctm, const SkPath& path,
572                                    const SkPoint3& zPlaneParams, const SkPoint3& lightPos,
573                                    SkScalar lightRadius, uint32_t flags, SkRect* bounds) {
574     SkDrawShadowRec rec;
575     if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, SK_ColorBLACK, SK_ColorBLACK,
576                          flags, ctm, &rec)) {
577         return false;
578     }
579 
580     SkDrawShadowMetrics::GetLocalBounds(path, rec, ctm, bounds);
581 
582     return true;
583 }
584 
585 //////////////////////////////////////////////////////////////////////////////////////////////
586 
validate_rec(const SkDrawShadowRec & rec)587 static bool validate_rec(const SkDrawShadowRec& rec) {
588     return rec.fLightPos.isFinite() && rec.fZPlaneParams.isFinite() &&
589            SkScalarIsFinite(rec.fLightRadius);
590 }
591 
drawShadow(const SkPath & path,const SkDrawShadowRec & rec)592 void SkBaseDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) {
593     if (!validate_rec(rec)) {
594         return;
595     }
596 
597     SkMatrix viewMatrix = this->localToDevice();
598     SkAutoDeviceTransformRestore adr(this, SkMatrix::I());
599 
600 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
601     auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint,
602                                 SkScalar tx, SkScalar ty, bool hasPerspective) {
603         if (vertices->priv().vertexCount()) {
604             // For perspective shadows we've already computed the shadow in world space,
605             // and we can't translate it without changing it. Otherwise we concat the
606             // change in translation from the cached version.
607             SkAutoDeviceTransformRestore adr(
608                     this,
609                     hasPerspective ? SkMatrix::I()
610                                    : this->localToDevice() * SkMatrix::Translate(tx, ty));
611             // The vertex colors for a tesselated shadow polygon are always either opaque black
612             // or transparent and their real contribution to the final blended color is via
613             // their alpha. We can skip expensive per-vertex color conversion for this.
614             this->drawVertices(vertices, SkBlender::Mode(mode), paint, /*skipColorXform=*/true);
615         }
616     };
617 
618     ShadowedPath shadowedPath(&path, &viewMatrix);
619 
620     bool tiltZPlane = tilted(rec.fZPlaneParams);
621     bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
622     bool useBlur = SkToBool(rec.fFlags & SkShadowFlags::kConcaveBlurOnly_ShadowFlag) &&
623                    !path.isConvex();
624     bool uncached = tiltZPlane || path.isVolatile();
625 #endif
626     bool directional = SkToBool(rec.fFlags & SkShadowFlags::kDirectionalLight_ShadowFlag);
627 
628     SkPoint3 zPlaneParams = rec.fZPlaneParams;
629     SkPoint3 devLightPos = rec.fLightPos;
630     if (!directional) {
631         viewMatrix.mapPoints((SkPoint*)&devLightPos.fX, 1);
632     }
633     float lightRadius = rec.fLightRadius;
634 
635     if (SkColorGetA(rec.fAmbientColor) > 0) {
636         bool success = false;
637 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
638         if (uncached && !useBlur) {
639             sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix,
640                                                                           zPlaneParams,
641                                                                           transparent);
642             if (vertices) {
643                 SkPaint paint;
644                 // Run the vertex color through a GaussianColorFilter and then modulate the
645                 // grayscale result of that against our 'color' param.
646                 paint.setColorFilter(
647                     SkColorFilters::Blend(rec.fAmbientColor,
648                                                   SkBlendMode::kModulate)->makeComposed(
649                                                                SkColorFilterPriv::MakeGaussian()));
650                 // The vertex colors for a tesselated shadow polygon are always either opaque black
651                 // or transparent and their real contribution to the final blended color is via
652                 // their alpha. We can skip expensive per-vertex color conversion for this.
653                 this->drawVertices(vertices.get(),
654                                    SkBlender::Mode(SkBlendMode::kModulate),
655                                    paint,
656                                    /*skipColorXform=*/true);
657                 success = true;
658             }
659         }
660 
661         if (!success && !useBlur) {
662             AmbientVerticesFactory factory;
663             factory.fOccluderHeight = zPlaneParams.fZ;
664             factory.fTransparent = transparent;
665             if (viewMatrix.hasPerspective()) {
666                 factory.fOffset.set(0, 0);
667             } else {
668                 factory.fOffset.fX = viewMatrix.getTranslateX();
669                 factory.fOffset.fY = viewMatrix.getTranslateY();
670             }
671 
672             success = draw_shadow(factory, drawVertsProc, shadowedPath, rec.fAmbientColor);
673         }
674 #endif // !defined(SK_ENABLE_OPTIMIZE_SIZE)
675 
676         // All else has failed, draw with blur
677         if (!success) {
678             // Pretransform the path to avoid transforming the stroke, below.
679             SkPath devSpacePath;
680             path.transform(viewMatrix, &devSpacePath);
681             devSpacePath.setIsVolatile(true);
682 
683             // The tesselator outsets by AmbientBlurRadius (or 'r') to get the outer ring of
684             // the tesselation, and sets the alpha on the path to 1/AmbientRecipAlpha (or 'a').
685             //
686             // We want to emulate this with a blur. The full blur width (2*blurRadius or 'f')
687             // can be calculated by interpolating:
688             //
689             //            original edge        outer edge
690             //         |       |<---------- r ------>|
691             //         |<------|--- f -------------->|
692             //         |       |                     |
693             //    alpha = 1  alpha = a          alpha = 0
694             //
695             // Taking ratios, f/1 = r/a, so f = r/a and blurRadius = f/2.
696             //
697             // We now need to outset the path to place the new edge in the center of the
698             // blur region:
699             //
700             //             original   new
701             //         |       |<------|--- r ------>|
702             //         |<------|--- f -|------------>|
703             //         |       |<- o ->|<--- f/2 --->|
704             //
705             //     r = o + f/2, so o = r - f/2
706             //
707             // We outset by using the stroker, so the strokeWidth is o/2.
708             //
709             SkScalar devSpaceOutset = SkDrawShadowMetrics::AmbientBlurRadius(zPlaneParams.fZ);
710             SkScalar oneOverA = SkDrawShadowMetrics::AmbientRecipAlpha(zPlaneParams.fZ);
711             SkScalar blurRadius = 0.5f*devSpaceOutset*oneOverA;
712             SkScalar strokeWidth = 0.5f*(devSpaceOutset - blurRadius);
713 
714             // Now draw with blur
715             SkPaint paint;
716             paint.setColor(rec.fAmbientColor);
717             paint.setStrokeWidth(strokeWidth);
718             paint.setStyle(SkPaint::kStrokeAndFill_Style);
719             SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(blurRadius);
720             bool respectCTM = false;
721             paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
722             this->drawPath(devSpacePath, paint);
723         }
724     }
725 
726     if (SkColorGetA(rec.fSpotColor) > 0) {
727         bool success = false;
728 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
729         if (uncached && !useBlur) {
730             sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix,
731                                                                        zPlaneParams,
732                                                                        devLightPos, lightRadius,
733                                                                        transparent,
734                                                                        directional);
735             if (vertices) {
736                 SkPaint paint;
737                 // Run the vertex color through a GaussianColorFilter and then modulate the
738                 // grayscale result of that against our 'color' param.
739                 paint.setColorFilter(
740                     SkColorFilters::Blend(rec.fSpotColor,
741                                                   SkBlendMode::kModulate)->makeComposed(
742                                                       SkColorFilterPriv::MakeGaussian()));
743                 // The vertex colors for a tesselated shadow polygon are always either opaque black
744                 // or transparent and their real contribution to the final blended color is via
745                 // their alpha. We can skip expensive per-vertex color conversion for this.
746                 this->drawVertices(vertices.get(),
747                                    SkBlender::Mode(SkBlendMode::kModulate),
748                                    paint,
749                                    /*skipColorXform=*/true);
750                 success = true;
751             }
752         }
753 
754         if (!success && !useBlur) {
755             SpotVerticesFactory factory;
756             factory.fOccluderHeight = zPlaneParams.fZ;
757             factory.fDevLightPos = devLightPos;
758             factory.fLightRadius = lightRadius;
759 
760             SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY());
761             factory.fLocalCenter = center;
762             viewMatrix.mapPoints(&center, 1);
763             SkScalar radius, scale;
764             if (SkToBool(rec.fFlags & kDirectionalLight_ShadowFlag)) {
765                 SkDrawShadowMetrics::GetDirectionalParams(zPlaneParams.fZ, devLightPos.fX,
766                                                           devLightPos.fY, devLightPos.fZ,
767                                                           lightRadius, &radius, &scale,
768                                                           &factory.fOffset);
769             } else {
770                 SkDrawShadowMetrics::GetSpotParams(zPlaneParams.fZ, devLightPos.fX - center.fX,
771                                                    devLightPos.fY - center.fY, devLightPos.fZ,
772                                                    lightRadius, &radius, &scale, &factory.fOffset);
773             }
774 
775             SkRect devBounds;
776             viewMatrix.mapRect(&devBounds, path.getBounds());
777             if (transparent ||
778                 SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() ||
779                 SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) {
780                 // if the translation of the shadow is big enough we're going to end up
781                 // filling the entire umbra, we can treat these as all the same
782                 if (directional) {
783                     factory.fOccluderType =
784                             SpotVerticesFactory::OccluderType::kDirectionalTransparent;
785                 } else {
786                     factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointTransparent;
787                 }
788             } else if (directional) {
789                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kDirectional;
790             } else if (factory.fOffset.length()*scale + scale < radius) {
791                 // if we don't translate more than the blur distance, can assume umbra is covered
792                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointOpaqueNoUmbra;
793             } else if (path.isConvex()) {
794                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointOpaquePartialUmbra;
795             } else {
796                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointTransparent;
797             }
798             // need to add this after we classify the shadow
799             factory.fOffset.fX += viewMatrix.getTranslateX();
800             factory.fOffset.fY += viewMatrix.getTranslateY();
801 
802             SkColor color = rec.fSpotColor;
803 #ifdef DEBUG_SHADOW_CHECKS
804             switch (factory.fOccluderType) {
805                 case SpotVerticesFactory::OccluderType::kPointTransparent:
806                     color = 0xFFD2B48C;  // tan for transparent
807                     break;
808                 case SpotVerticesFactory::OccluderType::kPointOpaquePartialUmbra:
809                     color = 0xFFFFA500;   // orange for opaque
810                     break;
811                 case SpotVerticesFactory::OccluderType::kPointOpaqueNoUmbra:
812                     color = 0xFFE5E500;  // corn yellow for covered
813                     break;
814                 case SpotVerticesFactory::OccluderType::kDirectional:
815                 case SpotVerticesFactory::OccluderType::kDirectionalTransparent:
816                     color = 0xFF550000;  // dark red for directional
817                     break;
818             }
819 #endif
820             success = draw_shadow(factory, drawVertsProc, shadowedPath, color);
821         }
822 #endif // !defined(SK_ENABLE_OPTIMIZE_SIZE)
823 
824         // All else has failed, draw with blur
825         if (!success) {
826             SkMatrix shadowMatrix;
827             SkScalar radius;
828             if (!SkDrawShadowMetrics::GetSpotShadowTransform(devLightPos, lightRadius,
829                                                              viewMatrix, zPlaneParams,
830                                                              path.getBounds(), directional,
831                                                              &shadowMatrix, &radius)) {
832                 return;
833             }
834             SkAutoDeviceTransformRestore adr2(this, shadowMatrix);
835 
836             SkPaint paint;
837             paint.setColor(rec.fSpotColor);
838             SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(radius);
839             bool respectCTM = false;
840             paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
841             this->drawPath(path, paint);
842         }
843     }
844 }
845