1# Copyright 2019 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Test configs for eye.""" 16import numpy as np 17import tensorflow.compat.v1 as tf 18from tensorflow.lite.testing.zip_test_utils import create_scalar_data 19from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests 20from tensorflow.lite.testing.zip_test_utils import register_make_test_function 21 22 23@register_make_test_function() 24def make_eye_tests(options): 25 """Make a set of tests for tf.eye op.""" 26 27 test_parameters = [{ 28 "num_rows_shape": [[]], 29 "num_cols_shape": [[]], 30 "batch_shape": [[3], [2, 4], [4, 5, 6], None], 31 "use_num_cols": [True, False], 32 "dtype": [tf.float32, tf.int32], 33 }] 34 35 def build_graph(parameters): 36 """Make a set of tests to do eye.""" 37 38 input_tensor0 = tf.compat.v1.placeholder( 39 dtype=tf.int32, name="num_rows", shape=parameters["num_rows_shape"]) 40 input_tensor1 = tf.compat.v1.placeholder( 41 dtype=tf.int32, name="num_columns", shape=parameters["num_cols_shape"]) 42 if parameters["use_num_cols"]: 43 outs = tf.eye( 44 num_rows=input_tensor0, 45 num_columns=input_tensor1, 46 batch_shape=parameters["batch_shape"], 47 dtype=parameters["dtype"]) 48 return [input_tensor0, input_tensor1], [outs] 49 else: 50 outs = tf.eye(num_rows=input_tensor0, dtype=parameters["dtype"]) 51 return [input_tensor0], [outs] 52 53 def build_inputs(parameters, sess, inputs, outputs): 54 input_value0 = create_scalar_data(dtype=np.int32, min_value=1) 55 input_value1 = create_scalar_data(dtype=np.int32, min_value=1) 56 if parameters["use_num_cols"]: 57 return [input_value0, input_value1], sess.run( 58 outputs, feed_dict=dict(zip(inputs, [input_value0, input_value1]))) 59 else: 60 return [input_value0], sess.run( 61 outputs, feed_dict=dict(zip(inputs, [input_value0]))) 62 63 make_zip_of_tests(options, test_parameters, build_graph, build_inputs) 64