• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 
8 #include "src/gpu/ganesh/vk/GrVkPipelineStateBuilder.h"
9 
10 #include "include/gpu/GrDirectContext.h"
11 #include "src/core/SkReadBuffer.h"
12 #include "src/core/SkTraceEvent.h"
13 #include "src/gpu/ganesh/GrAutoLocaleSetter.h"
14 #include "src/gpu/ganesh/GrDirectContextPriv.h"
15 #include "src/gpu/ganesh/GrPersistentCacheUtils.h"
16 #include "src/gpu/ganesh/GrShaderCaps.h"
17 #include "src/gpu/ganesh/GrStencilSettings.h"
18 #include "src/gpu/ganesh/vk/GrVkDescriptorSetManager.h"
19 #include "src/gpu/ganesh/vk/GrVkGpu.h"
20 #include "src/gpu/ganesh/vk/GrVkPipeline.h"
21 #include "src/gpu/ganesh/vk/GrVkRenderPass.h"
22 #include "src/gpu/ganesh/vk/GrVkRenderTarget.h"
23 #include "src/sksl/SkSLProgramSettings.h"
24 #include "src/utils/SkShaderUtils.h"
25 
CreatePipelineState(GrVkGpu * gpu,const GrProgramDesc & desc,const GrProgramInfo & programInfo,VkRenderPass compatibleRenderPass,bool overrideSubpassForResolveLoad)26 GrVkPipelineState* GrVkPipelineStateBuilder::CreatePipelineState(
27         GrVkGpu* gpu,
28         const GrProgramDesc& desc,
29         const GrProgramInfo& programInfo,
30         VkRenderPass compatibleRenderPass,
31         bool overrideSubpassForResolveLoad) {
32 
33     GrVkResourceProvider& resourceProvider = gpu->resourceProvider();
34 
35     resourceProvider.pipelineStateCache()->stats()->incShaderCompilations();
36 
37     // ensure that we use "." as a decimal separator when creating SkSL code
38     GrAutoLocaleSetter als("C");
39 
40     // create a builder.  This will be handed off to effects so they can use it to add
41     // uniforms, varyings, textures, etc
42     GrVkPipelineStateBuilder builder(gpu, desc, programInfo);
43 
44     if (!builder.emitAndInstallProcs()) {
45         return nullptr;
46     }
47 
48     return builder.finalize(desc, compatibleRenderPass, overrideSubpassForResolveLoad);
49 }
50 
GrVkPipelineStateBuilder(GrVkGpu * gpu,const GrProgramDesc & desc,const GrProgramInfo & programInfo)51 GrVkPipelineStateBuilder::GrVkPipelineStateBuilder(GrVkGpu* gpu,
52                                                    const GrProgramDesc& desc,
53                                                    const GrProgramInfo& programInfo)
54         : INHERITED(desc, programInfo)
55         , fGpu(gpu)
56         , fVaryingHandler(this)
57         , fUniformHandler(this) {}
58 
caps() const59 const GrCaps* GrVkPipelineStateBuilder::caps() const {
60     return fGpu->caps();
61 }
62 
shaderCompiler() const63 SkSL::Compiler* GrVkPipelineStateBuilder::shaderCompiler() const {
64     return fGpu->shaderCompiler();
65 }
66 
finalizeFragmentSecondaryColor(GrShaderVar & outputColor)67 void GrVkPipelineStateBuilder::finalizeFragmentSecondaryColor(GrShaderVar& outputColor) {
68     outputColor.addLayoutQualifier("location = 0, index = 1");
69 }
70 
createVkShaderModule(VkShaderStageFlagBits stage,const std::string & sksl,VkShaderModule * shaderModule,VkPipelineShaderStageCreateInfo * stageInfo,const SkSL::ProgramSettings & settings,std::string * outSPIRV,SkSL::Program::Inputs * outInputs)71 bool GrVkPipelineStateBuilder::createVkShaderModule(VkShaderStageFlagBits stage,
72                                                     const std::string& sksl,
73                                                     VkShaderModule* shaderModule,
74                                                     VkPipelineShaderStageCreateInfo* stageInfo,
75                                                     const SkSL::ProgramSettings& settings,
76                                                     std::string* outSPIRV,
77                                                     SkSL::Program::Inputs* outInputs) {
78     if (!GrCompileVkShaderModule(fGpu, sksl, stage, shaderModule,
79                                  stageInfo, settings, outSPIRV, outInputs)) {
80         return false;
81     }
82     if (outInputs->fUseFlipRTUniform) {
83         this->addRTFlipUniform(SKSL_RTFLIP_NAME);
84     }
85     return true;
86 }
87 
installVkShaderModule(VkShaderStageFlagBits stage,const GrGLSLShaderBuilder & builder,VkShaderModule * shaderModule,VkPipelineShaderStageCreateInfo * stageInfo,std::string spirv,SkSL::Program::Inputs inputs)88 bool GrVkPipelineStateBuilder::installVkShaderModule(VkShaderStageFlagBits stage,
89                                                      const GrGLSLShaderBuilder& builder,
90                                                      VkShaderModule* shaderModule,
91                                                      VkPipelineShaderStageCreateInfo* stageInfo,
92                                                      std::string spirv,
93                                                      SkSL::Program::Inputs inputs) {
94     if (!GrInstallVkShaderModule(fGpu, spirv, stage, shaderModule, stageInfo)) {
95         return false;
96     }
97     if (inputs.fUseFlipRTUniform) {
98         this->addRTFlipUniform(SKSL_RTFLIP_NAME);
99     }
100     return true;
101 }
102 
103 static constexpr SkFourByteTag kSPIRV_Tag = SkSetFourByteTag('S', 'P', 'R', 'V');
104 static constexpr SkFourByteTag kSKSL_Tag = SkSetFourByteTag('S', 'K', 'S', 'L');
105 
loadShadersFromCache(SkReadBuffer * cached,VkShaderModule outShaderModules[],VkPipelineShaderStageCreateInfo * outStageInfo)106 int GrVkPipelineStateBuilder::loadShadersFromCache(SkReadBuffer* cached,
107                                                    VkShaderModule outShaderModules[],
108                                                    VkPipelineShaderStageCreateInfo* outStageInfo) {
109     std::string shaders[kGrShaderTypeCount];
110     SkSL::Program::Inputs inputs[kGrShaderTypeCount];
111 
112     if (!GrPersistentCacheUtils::UnpackCachedShaders(cached, shaders, inputs, kGrShaderTypeCount)) {
113         return 0;
114     }
115 
116     bool success = this->installVkShaderModule(VK_SHADER_STAGE_VERTEX_BIT,
117                                                fVS,
118                                                &outShaderModules[kVertex_GrShaderType],
119                                                &outStageInfo[0],
120                                                shaders[kVertex_GrShaderType],
121                                                inputs[kVertex_GrShaderType]);
122 
123     success = success && this->installVkShaderModule(VK_SHADER_STAGE_FRAGMENT_BIT,
124                                                      fFS,
125                                                      &outShaderModules[kFragment_GrShaderType],
126                                                      &outStageInfo[1],
127                                                      shaders[kFragment_GrShaderType],
128                                                      inputs[kFragment_GrShaderType]);
129 
130     if (!success) {
131         for (int i = 0; i < kGrShaderTypeCount; ++i) {
132             if (outShaderModules[i]) {
133                 GR_VK_CALL(fGpu->vkInterface(),
134                            DestroyShaderModule(fGpu->device(), outShaderModules[i], nullptr));
135             }
136         }
137         return 0;
138     }
139     return 2;
140 }
141 
storeShadersInCache(const std::string shaders[],const SkSL::Program::Inputs inputs[],bool isSkSL)142 void GrVkPipelineStateBuilder::storeShadersInCache(const std::string shaders[],
143                                                    const SkSL::Program::Inputs inputs[],
144                                                    bool isSkSL) {
145     // Here we shear off the Vk-specific portion of the Desc in order to create the
146     // persistent key. This is bc Vk only caches the SPIRV code, not the fully compiled
147     // program, and that only depends on the base GrProgramDesc data.
148     // The +4 is to include the kShader_PersistentCacheKeyType code the Vulkan backend adds
149     // to the key right after the base key.
150     sk_sp<SkData> key = SkData::MakeWithoutCopy(this->desc().asKey(),
151                                                 this->desc().initialKeyLength()+4);
152     SkString description = GrProgramDesc::Describe(fProgramInfo, *this->caps());
153 
154     sk_sp<SkData> data = GrPersistentCacheUtils::PackCachedShaders(isSkSL ? kSKSL_Tag : kSPIRV_Tag,
155                                                                    shaders,
156                                                                    inputs, kGrShaderTypeCount);
157 
158     this->gpu()->getContext()->priv().getPersistentCache()->store(*key, *data, description);
159 }
160 
finalize(const GrProgramDesc & desc,VkRenderPass compatibleRenderPass,bool overrideSubpassForResolveLoad)161 GrVkPipelineState* GrVkPipelineStateBuilder::finalize(const GrProgramDesc& desc,
162                                                       VkRenderPass compatibleRenderPass,
163                                                       bool overrideSubpassForResolveLoad) {
164     TRACE_EVENT0("skia.shaders", TRACE_FUNC);
165 
166     VkDescriptorSetLayout dsLayout[GrVkUniformHandler::kDescSetCount];
167     VkShaderModule shaderModules[kGrShaderTypeCount] = { VK_NULL_HANDLE,
168                                                          VK_NULL_HANDLE };
169 
170     GrVkResourceProvider& resourceProvider = fGpu->resourceProvider();
171     // These layouts are not owned by the PipelineStateBuilder and thus should not be destroyed
172     dsLayout[GrVkUniformHandler::kUniformBufferDescSet] = resourceProvider.getUniformDSLayout();
173 
174     GrVkDescriptorSetManager::Handle samplerDSHandle;
175     resourceProvider.getSamplerDescriptorSetHandle(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
176                                                    fUniformHandler, &samplerDSHandle);
177     dsLayout[GrVkUniformHandler::kSamplerDescSet] =
178             resourceProvider.getSamplerDSLayout(samplerDSHandle);
179 
180     dsLayout[GrVkUniformHandler::kInputDescSet] = resourceProvider.getInputDSLayout();
181 
182     this->finalizeShaders();
183 
184     bool usePushConstants = fUniformHandler.usePushConstants();
185     VkPipelineShaderStageCreateInfo shaderStageInfo[3];
186     SkSL::ProgramSettings settings;
187     settings.fRTFlipBinding = this->gpu()->vkCaps().getFragmentUniformBinding();
188     settings.fRTFlipSet = this->gpu()->vkCaps().getFragmentUniformSet();
189     settings.fSharpenTextures = true;
190     settings.fRTFlipOffset = fUniformHandler.getRTFlipOffset();
191     settings.fUsePushConstants = usePushConstants;
192     if (fFS.fForceHighPrecision) {
193         settings.fForceHighPrecision = true;
194     }
195     SkASSERT(!this->fragColorIsInOut());
196 
197     sk_sp<SkData> cached;
198     SkReadBuffer reader;
199     SkFourByteTag shaderType = 0;
200     auto persistentCache = fGpu->getContext()->priv().getPersistentCache();
201     if (persistentCache) {
202         // Here we shear off the Vk-specific portion of the Desc in order to create the
203         // persistent key. This is bc Vk only caches the SPIRV code, not the fully compiled
204         // program, and that only depends on the base GrProgramDesc data.
205         // The +4 is to include the kShader_PersistentCacheKeyType code the Vulkan backend adds
206         // to the key right after the base key.
207         sk_sp<SkData> key = SkData::MakeWithoutCopy(desc.asKey(), desc.initialKeyLength()+4);
208         cached = persistentCache->load(*key);
209         if (cached) {
210             reader.setMemory(cached->data(), cached->size());
211             shaderType = GrPersistentCacheUtils::GetType(&reader);
212         }
213     }
214 
215     int numShaderStages = 0;
216     if (kSPIRV_Tag == shaderType) {
217         numShaderStages = this->loadShadersFromCache(&reader, shaderModules, shaderStageInfo);
218     }
219 
220     // Proceed from sources if we didn't get a SPIRV cache (or the cache was invalid)
221     if (!numShaderStages) {
222         numShaderStages = 2; // We always have at least vertex and fragment stages.
223         std::string shaders[kGrShaderTypeCount];
224         SkSL::Program::Inputs inputs[kGrShaderTypeCount];
225 
226         std::string* sksl[kGrShaderTypeCount] = {
227             &fVS.fCompilerString,
228             &fFS.fCompilerString,
229         };
230         std::string cached_sksl[kGrShaderTypeCount];
231         if (kSKSL_Tag == shaderType) {
232             if (GrPersistentCacheUtils::UnpackCachedShaders(&reader, cached_sksl, inputs,
233                                                             kGrShaderTypeCount)) {
234                 for (int i = 0; i < kGrShaderTypeCount; ++i) {
235                     sksl[i] = &cached_sksl[i];
236                 }
237             }
238         }
239 
240         bool success = this->createVkShaderModule(VK_SHADER_STAGE_VERTEX_BIT,
241                                                   *sksl[kVertex_GrShaderType],
242                                                   &shaderModules[kVertex_GrShaderType],
243                                                   &shaderStageInfo[0],
244                                                   settings,
245                                                   &shaders[kVertex_GrShaderType],
246                                                   &inputs[kVertex_GrShaderType]);
247 
248         success = success && this->createVkShaderModule(VK_SHADER_STAGE_FRAGMENT_BIT,
249                                                         *sksl[kFragment_GrShaderType],
250                                                         &shaderModules[kFragment_GrShaderType],
251                                                         &shaderStageInfo[1],
252                                                         settings,
253                                                         &shaders[kFragment_GrShaderType],
254                                                         &inputs[kFragment_GrShaderType]);
255 
256         if (!success) {
257             for (int i = 0; i < kGrShaderTypeCount; ++i) {
258                 if (shaderModules[i]) {
259                     GR_VK_CALL(fGpu->vkInterface(), DestroyShaderModule(fGpu->device(),
260                                                                         shaderModules[i], nullptr));
261                 }
262             }
263             return nullptr;
264         }
265 
266         if (persistentCache && !cached) {
267             bool isSkSL = false;
268             if (fGpu->getContext()->priv().options().fShaderCacheStrategy ==
269                     GrContextOptions::ShaderCacheStrategy::kSkSL) {
270                 for (int i = 0; i < kGrShaderTypeCount; ++i) {
271                     shaders[i] = SkShaderUtils::PrettyPrint(*sksl[i]);
272                 }
273                 isSkSL = true;
274             }
275             this->storeShadersInCache(shaders, inputs, isSkSL);
276         }
277     }
278 
279     // The vulkan spec says that if a subpass has an input attachment, then the input attachment
280     // descriptor set must be bound to all pipelines in that subpass. This includes pipelines that
281     // don't actually use the input attachment. Thus we look at the renderPassBarriers and not just
282     // the DstProxyView barrier flags to determine if we use the input attachment.
283     bool usesInput = SkToBool(fProgramInfo.renderPassBarriers() & GrXferBarrierFlags::kTexture);
284     uint32_t layoutCount =
285         usesInput ? GrVkUniformHandler::kDescSetCount : (GrVkUniformHandler::kDescSetCount - 1);
286     // Create the VkPipelineLayout
287     VkPipelineLayoutCreateInfo layoutCreateInfo;
288     memset(&layoutCreateInfo, 0, sizeof(VkPipelineLayoutCreateFlags));
289     layoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
290     layoutCreateInfo.pNext = nullptr;
291     layoutCreateInfo.flags = 0;
292     layoutCreateInfo.setLayoutCount = layoutCount;
293     layoutCreateInfo.pSetLayouts = dsLayout;
294     VkPushConstantRange pushConstantRange = {};
295     if (usePushConstants) {
296         pushConstantRange.stageFlags = fGpu->vkCaps().getPushConstantStageFlags();
297         pushConstantRange.offset = 0;
298         // size must be a multiple of 4
299         SkASSERT(!SkToBool(fUniformHandler.currentOffset() & 0x3));
300         pushConstantRange.size = fUniformHandler.currentOffset();
301         layoutCreateInfo.pushConstantRangeCount = 1;
302         layoutCreateInfo.pPushConstantRanges = &pushConstantRange;
303     } else {
304         layoutCreateInfo.pushConstantRangeCount = 0;
305         layoutCreateInfo.pPushConstantRanges = nullptr;
306     }
307 
308     VkPipelineLayout pipelineLayout;
309     VkResult result;
310     GR_VK_CALL_RESULT(fGpu, result, CreatePipelineLayout(fGpu->device(), &layoutCreateInfo, nullptr,
311                                                          &pipelineLayout));
312     if (result != VK_SUCCESS) {
313         return nullptr;
314     }
315 
316     // For the vast majority of cases we only have one subpass so we default piplines to subpass 0.
317     // However, if we need to load a resolve into msaa attachment for discardable msaa then the
318     // main subpass will be 1.
319     uint32_t subpass = 0;
320     if (overrideSubpassForResolveLoad ||
321         (fProgramInfo.colorLoadOp() == GrLoadOp::kLoad &&
322          fGpu->vkCaps().programInfoWillUseDiscardableMSAA(fProgramInfo))) {
323         subpass = 1;
324     }
325     sk_sp<const GrVkPipeline> pipeline = resourceProvider.makePipeline(
326             fProgramInfo, shaderStageInfo, numShaderStages, compatibleRenderPass, pipelineLayout,
327             subpass);
328 
329     for (int i = 0; i < kGrShaderTypeCount; ++i) {
330         // This if check should not be needed since calling destroy on a VK_NULL_HANDLE is allowed.
331         // However this is causing a crash in certain drivers (e.g. NVidia).
332         if (shaderModules[i]) {
333             GR_VK_CALL(fGpu->vkInterface(), DestroyShaderModule(fGpu->device(), shaderModules[i],
334                                                                 nullptr));
335         }
336     }
337 
338     if (!pipeline) {
339         GR_VK_CALL(fGpu->vkInterface(), DestroyPipelineLayout(fGpu->device(), pipelineLayout,
340                                                               nullptr));
341         return nullptr;
342     }
343 
344     return new GrVkPipelineState(fGpu,
345                                  std::move(pipeline),
346                                  samplerDSHandle,
347                                  fUniformHandles,
348                                  fUniformHandler.fUniforms,
349                                  fUniformHandler.currentOffset(),
350                                  fUniformHandler.usePushConstants(),
351                                  fUniformHandler.fSamplers,
352                                  std::move(fGPImpl),
353                                  std::move(fXPImpl),
354                                  std::move(fFPImpls));
355 }
356